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We consider turbulent flows in a differentially heated Taylor-Couette system with an axial

Poiseuille flow. The numerical approach is based on the Reynolds Stress Modeling (RSM) of Elena

and Schiestel [1, 2] widely validated in various rotor-stator cavities with throughflow [3–5] and heat

transfer [6]. To show the capability of the present code, our numerical predictions are compared

very favorably to the velocity measurements of Escudier and Gouldson [7] in the isothermal case,

for both the mean and turbulent fields. The RSM model improves, in particular, the predictions of

the k − ε model of Naser [8]. Then, the second order model is applied for a large range of rota-

tional Reynolds (3744 ≤ Rei ≤ 37443) and Prandtl numbers (0.01 ≤ Pr ≤ 12), flow rate coefficient

(0 ≤ Cw ≤ 30000) in a very narrow cavity of radius ratio s = Ri/Ro = 0.961 and aspect ratio

L = (Ro − Ri)/h = 0.013, where Ri and Ro are the radii of the inner and outer cylinders respec-

tively and h is the cavity height. Temperature gradients are imposed between the incoming fluid

and the inner and outer cylinders. The mean hydrodynamic and thermal fields reveal three distinct

regions across the radial gap with a central region of almost constant axial and tangential mean

velocities and constant mean temperature. Turbulence, which is weakly anisotropic, is mainly con-

centrated in that region and vanishes towards the cylinders. The mean velocity distributions are not

clearly affected by the rotational Reynolds number and the flow rate coefficient. The effects of the

flow parameters on the thermal field are more noticeable and considered in details. Correlations for

the averaged Nusselt numbers along both cylinders are finally provided according to the flow control

parameters Rei, Cw and Pr.

Keywords: RANS modeling, Reynolds Stress Model, Taylor-Couette-Poiseuille flow, turbulence,

heat transfer.
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Nomenclature

A2, A3 Second and third invariants of the anisotropy tensor.

Cw Volume flow rate coefficient.

h Height of the cavity (m).

k Turbulence kinetic energy (m2/s2).

L Aspect ratio of the cavity.

N Rotation parameter.

Nui, Nuo Local Nusselt numbers along the inner and outer cylinders respectively.

Nui, Nuo Averaged Nusselt numbers for the inner and outer cylinders respectively.

Q Volume flow rate (m3/s).

r, θ, z Cylindrical coordinates (m).

Pr Prandtl number.

Rei Rotational Reynolds number based on the rotating velocity of the inner cylinder.

Ret Turbulence Reynolds number.

Ri, Ro Radii of the inner and outer cylinders respectively (m).

Rij Reynolds stress tensor with i, j = (r, θ, z) (m2/s2).

v′r, v
′
θ, v

′
z Fluctuating radial, tangential and axial velocity components (m/s).

Vr, Vθ, Vz Mean radial, tangential and axial velocity components (m/s).

Vz Averaged axial velocity imposed at the inlet (m/s).

s Radius ratio.

Ta Temperature of the incoming fluid (K).

Ti, To Temperatures of the inner and outer cylinders respectively (K).

δ boundary layer thickness (m).

∆R Hydraulic diameter (m).

ε Dissipation rate of the turbulence kinetic energy (m2/s3).
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κi, κo Heating factors for the inner and outer cylinders respectively.

ν Kinematic viscosity of the fluid (m2/s).

Ω Rotation rate of the inner cylinder (rad/s).

Ψ Stream function.

σ Thermal diffusivity of the fluid (m2/s).

∗ denotes a normalized quantity.

a denotes a quantity for the incoming fluid.

i denotes a quantity on the inner cylinder.

o denotes a quantity on the outer cylinder.
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I. INTRODUCTION

The present investigation is concerned with the numerical modeling of fluid flow and heat transfer in a

Taylor-Couette-Poiseuille system. The turbulent flow is confined between two differentially heated coaxial

cylinders, with an inner rotating cylinder and a outer stationary one. An axial thoughflow of fresh fluid is also

superimposed. This kind of Taylor-Couette flows with a superimposed Poiseuille flow is of great importance,

since these flows have many applications in process engineering (dynamic membrane filtration, rheology, UV

disinfection, pasteurization), geophysics (mantle convection) and also in the turbomachinery industry for

bearings, asynchronous motor with axial ventilation [9], rotating heat exchangers and the drilling of oil wells

among others. In the present work, the Taylor-Couette-Poiseuille system is a simple representation of the gap

between the rotating and the stationary parts of an electrical motor contained in an air conditioning pack. A

better knowledge of the convective heat transfer in the annular gap is required to optimize the perfomances

of such a rotating machinery. Usually, the radial gap between the cylinders is quite weak (of the order of 1

mm) and the rotation rate of the inner cylinder can reach more than 80000 rpm. The difficulty to perform

accurate measurements in such closed clearances and especially in the very thin boundary layers along the

cylinders has slowed down the development of specific turbulence models. It explains why relatively few

works have been dedicated to such complex flows up to now.

The effect of an axial throughflow in a Taylor-Couette system, where only the inner cylinder is rotating,

has been considered experimentally by Kaye and Elgar [10] in the isothermal case. Their results showed

in particular the existence of four flow regimes depending on the Reynolds number based on the incoming

flow velocity and the radial gap between the cylinders and on the Taylor number: laminar and turbulent

flows, with or without Taylor vortices. Becker and Kaye [11] performed temperature measurements for a

large range of rotation rate and superimposed flow rate. They studied the heat transfer in the gap between

a heated inner rotating cylinder and a cooled outer stationary one. Compared to the isothermal case, they

did not highlight the existence of Taylor vortices in the turbulent regime.

Most of the experimental works so far have been performed in Taylor-Couette systems characterized by a

small aspect ratio L = (Ro−Ri)/h and a large radius ratio s = Ri/Ro, with Ri and Ro the radii of the inner

and outer cylinders respectively and h the length of the cylinders. Aoki et al. [12] performed a combined

theoretical and experimental investigation of turbulent Taylor-Couette flows without any Poiseuille flow.
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The most noticeable result is that the gap ratio (Ro − Ri)/Ri in the range [0.055− 0.132] has only a small

effect on the heat transfer for three different fluids: air, iso-buthyl alcohol and spindle oil. They provided

also numerous correlations for the Nusselt number according to the Taylor and Prandtl numbers. Kuzay

and Scott [13] studied experimentally the turbulent heat transfer in the gap between an inner rotating or

non rotating insulated cylinder and an outer stationary and heated cylinder combined with an axial flow

of air. They established correlations for the Nusselt numbers against a new physical parameter, called the

rotation parameter N , which combines both the rotation and axial flow effects. This parameter is defined as

the ratio between the rotating speed of the inner cylinder ΩRi and the mean axial velocity of the incoming

fluid Vz. Lee and Minkowycz [14] highlighted experimentally the effects of the gap ratio (Ro − Ri)/Ri

in the range [0.0083 − 0.051] and of grooved cylinders on the heat transfer. They showed in particular

that the heat transfer process is enhanced for increasing values of the gap ratio. Escudier and Gouldson

[7] performed velocity measurements by Laser Doppler Anemometry (LDA) in a cavity characterized by

L = 0.0041 and s = 0.506 for various flow conditions (rotation rate Ω and flow rate Q) and different fluids

including Newtonian and shear-thinning fluids. For the Newtonian fluid in the turbulent regime, the radial

distribution of the axial velocity and the pressure drop are similar to the ones observed in pipe flows. The

radial distribution of the tangential velocity reveals a flow structure divided into three regions: two very thin

boundary layers, one on each cylinder, separated by a central core in near solid body rotation. The main

effect of the superimposed axial throughflow is to reduce the tangential velocity in the core region. Nouri

and Whitelaw [15] measured the three mean velocity components and the associated Reynolds stress tensor

of the flow subjected to an axial superimposed throughflow in a concentric annulus (L = 0.0102, s = 0.496)

with or without rotation of the inner cylinder. Compared to the non-rotating case (for a given flow rate

coefficient Cw = Q/(νRo) = 42306), the rotation of the inner cylinder at Ω = 300 rpm (rotational Reynolds

number Rei = ΩRi(Ro − Ri)/ν = 1616.6) does not affect the drag coefficient and the radial distribution of

the mean axial velocity in the turbulent regime. It slightly enhances turbulence intensities especially close

to the walls. For Cw = 125039, there is absolutely no effect of the rotation of the inner shaft on both the

mean axial flow and turbulence intensities. In a further paper, Nouri and Whitelaw [16] extended their work

to the case of eccentric cylinder arrangements and proposed a review of previous works on Taylor-Couette

flows including Newtonian and non-Newtonian fluids and rotating and non rotating flows. Bouafia et al. [17]
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performed extensive temperature measurements in the gap between a heated rotating inner cylinder and a

cooled stationary outer one. An axial Poiseuille flow of air can be superimposed or not. The heat transfer

is increased in the case of grooved cylinders compared to the basic case with smooth walls for an enclosed

cavity. When an axial flow is imposed, the heat transfer along the rotating wall is increased in the smooth

cylinder case. Numerous correlations for the Nusselt numbers along both surfaces are provided against a

modified Taylor number and an effective Reynolds number for various flow conditions.

Naser [8] compared the predictions of a k− ε model with the experimental data of Escudier and Gouldson

[7] for the same flow conditions. For a turbulent Newtonian flow, the model showed large discrepancies for

the mean velocity components. The profiles depend strongly on the axial position, which is not observed

in the experiments [7]. Naser [8] attributed these deviations to the fact that the eddy viscosity concept, on

which the model is developed, is incompatible with the simulated flow conditions. It can be attributed also

to the fact that the k − ε model is not sensitized to the implicit effects of rotation on turbulence. Char

and Hsu [18] conducted numerical predictions using a modified version of the Launder-Sharma k − ε model

for turbulent mixed convection of air in a concentric horizontal rotating annulus. This model includes both

the Yap correction and the Kato-Launder modification, which slightly improves the predictions compared

to the classical Launder and Sharma model. The authors performed a parametric study of the fluid flow

and heat transfer for various radius ratios 0.1 ≤ s ≤ 0.385, Reynolds numbers 0 ≤ Rei ≤ 105 and Rayleigh

numbers 107 ≤ Ra ≤ 1010. For this range of Ra, they highlighted the three-dimensional structure of the

flow with a two-cell structure in a (r, θ) plane for Re up to 104. Kuosa et al. [19] considered the cooling

of high-speed electrical machines, where only the inner cylinder is rotating. They compared the predictions

of three different models: an algebraic modeling, a low-Reynolds number k − ε modeling and a k − ω SST

model. The hydrodynamic and thermal fields are established for various rotation rates and mass flow rates.

The three turbulence models underestimated the heat transfer coefficients along both cylinders. Moreover,

the entrainment coefficient of the fluid was far from the theoretical value for a fully turbulent flow. These

discrepancies were attributed by the authors to the boundary conditions imposed at the inlet and outlet

sections and to the turbulence models used. Very recently, Giret [9] performed a combined experimental

and numerical investigation of the convective heat transfers in the air gap of an alternator. Heat transfer

measurements were compared to two-equation models contained within the commercial code ANSYS CFX for
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various flow conditions and different geometries for the inner rotating cylinder. The convective heat transfers

were underestimated by the models on the rotor and overestimated on the stator. The experimental results

were found to be almost the same when the inner cylinder is smooth or with four inter-polar gaps.

To our knowledge, Chung and Sung [20] were the first to perform Large Eddy Simulation (LES) in

such complex configurations. They compared their numerical data to the experimental ones of Nouri and

Whitelaw [15] for s = 0.5, Cw = 20970 and Rei = [954.5; 1909.1; 3818.1]. They obtained a relatively close

agreement for the mean velocity and the Reynolds stress tensor components. The mean tangential velocity

was slightly overestimated in the main part of the radial gap between the cylinders. They focused their

numerical investigation on the appearance of turbulent structures attributed to the destabilization of the

flow along the inner rotating cylinder and giving rise to strong events (sweeps and ejections).

The purpose of this work is to predict the turbulent flow and heat transfert in the gap of an electrical

machine (schematized here by a very narrow Taylor-Couette-Poiseuille system) for a wide range of operating

conditions (see Table I). As there is absolutely no experimental or numerical evidence of three-dimensional

structures embedded in such flows [11], two-dimensional calculations can be performed without any loss of

information. The Reynolds Stress Model (RSM) of Elena and Schiestel [1, 2, 21], which has shown to offer

the best trade-off between accuracy and calculation cost in various rotating flow arrangements [3–6, 22],

has thus been chosen for this study. We propose here to extend, for the first time, the application of its

well established turbulence model to real operating flow conditions in the rotor-stator gap of an electrical

motor. It is also to get a better insight into the dynamics and the heat transfer process of the turbulent

Taylor-Couette-Poiseuille flow in a very narrow cavity.

The paper is organized as follows: the geometrical configuration and the numerical modeling are described

in Sections II and III respectively. Comparisons between the present calculations and the LDA measurements

of Escudier and Gouldson [7] are performed in section IV to show the capability of the RSM model to predict

such complex flows under isothermal conditions. The predictions of the RSM are extended to non-isothermal

Taylor-Couette-Poiseuille flows in Sections V and VI. Section V is devoted to the detailed analyzis of the

hydrodynamic and thermal fields for a given set of parameters (Rei = 10216, Cw = 14858, Pr = 0.7). The

influence of the Reynolds and Prandtl numbers and of the flow rate are investigated in section VI. Finally

some conclusions and closing remarks are provided in section VII.
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II. GEOMETRICAL CONFIGURATION AND FLOW CONTROL PARAMETERS

Figure 1: Schematic representation of the Taylor-Couette-Poiseuille configuration with relevant notations.

The cavity sketched in figure 1 is composed of two smooth concentric cylinders. The inner cylinder of

radius Ri is rotating at a given rotation rate Ω, while the outer cylinder of radius Ro is stationary. This

configuration is known in the litterature as the Taylor-Couette problem. The height of the cavity is denoted

h in the following. An axial volume flow rate Q can be superimposed at the cavity inlet.

The mean flow is mainly governed by four flow control parameters: the aspect ratio of the cavity L, its

radius ratio s, the rotational Reynolds number Rei based on the rotating speed of the inner cylinder ΩRi

and half the hydraulic diameter ∆R = Ro −Ri and the flow rate coefficient Cw defined as follows:

ÃL =
Ro −Ri

h
s =

Ri

Ro

Rei =
ΩRi(Ro −Ri)

ν
Cw =

Q

νRo

where ν is the fluid kinematic viscosity. Two different geometries will be considered in the following. Configu-

ration 1 corresponds to the experiments performed by Escudier and Gouldson [7] under isothermal conditions

(section IV) and Configuration 2 to another case including heat transfer effects (sections V and VI). The val-

ues of all parameters for these two configurations are summarized in Table I. The value Cw = 0 corresponds
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to a closed cavity. The parameter Rei is also known as a Taylor number. The values of Rei considered here

are much higher than the critical value Rei = 210 for the transition to turbulence found experimentally by

Aoki et al. [12], which ensures that the flow is highly turbulent without Taylor vortices.

L s Rei Cw Pr κi κo

configuration 1 0.0041 0.506 961.1 2839; 5914; 17742 − − −

configuration 2 0.013 0.961 [3744− 37443] [0− 30000] [0.01− 12] 0.117 0.245

Table I: Values of the flow control parameters for Configuration 1 corresponding to the experiments of Escudier and

Gouldson [7] and Configuration 2.

Concerning the boundary conditions for the temperature field T in Configuration 2, the fluid at the inlet

enters the cavity at a constant temperature denoted Ta. The inner and outer cylinders are maintained at

constant temperatures Ti and To respectively. Thus, the heat transfer is driven by three main parameters,

two heating factors κi and κo for the inner and outer cylinders respectively and the Prandtl number Pr

defined as follows:

κi =
Ti − Ta

Ta
= 0.117 κo =

To − Ta

Ta
= 0.245 0.01 ≤ Pr =

ν

σ
≤ 12

with σ the thermal diffusivity of the fluid. The two heating factors κi = 0.117 and κo = 0.245, which are

proportional to Gr/Re2
i , where Gr is the Grashof number based on the temperature Ta, are small enough

to make the hypothesis of no density variation as the gravitational effects are small compared to the inertial

effects (Gr << Re2
i ).

The relevant parameters to study heat transfer are the local Nusselt numbers along the inner and outer

cylinders defined as:

Nui(z) =
Ro −Ri

Ti − Ta

∂T

∂r
|i(z) (1)

Nuo(z) =
Ro −Ri

To − Ta

∂T

∂r
|o(z) (2)

We also define the averaged Nusselt numbers Nui and Nuo, which are the averaged values of the local

Nusselt numbers along the heated surfaces, defined as follows:
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Nui =
Ro −Ri

h

1
Ti − Ta

∫ h

0

∂T

∂r
|i(z)dz (3)

Nuo =
Ro −Ri

h

1
To − Ta

∫ h

0

∂T

∂r
|o(z)dz (4)

III. STATISTICAL MODELING

The predictions of the present Reynolds Stress Model (RSM) developed by Elena and Schiestel [1, 2, 21]

have already been validated in various rotating cavities including rotor-stator configurations with throughflow

[3–6] and Von Kármán flows between counter-rotating impellers [22] for different geometries and a wide range

of rotation rate, imposed throughflow and type of fluid. Elena and Schiestel [21] showed that this level of

closure is adequate in such flow configurations, while the usual k − ε model, which is blind to any rotation

effect presents serious deficiencies. The reader can refer to the previous works of Elena and Schiestel [1, 2, 21]

and Poncet et al. [3–6] for more details about the statistical modeling.

A. The differential Reynolds Stress Model

The flow studied here exhibits several complexities (high rotation rate, imposed throughflow, wall effects,

strong curvature), which are a severe test for turbulence modeling methods. Our approach is based on one-

point statistical modeling using a low Reynolds number second-order full stress transport closure derived

from the Launder and Tselepidakis [23] model and sensitized to rotation effects by Elena and Schiestel [1, 2].

It corresponds to the RSM3 model fully described in [1]. This approach allows for a detailed description of

near-wall turbulence and is free from any eddy viscosity hypothesis. The general equation for the Reynolds

stress tensor Rij can be written:

dRij

dt
= Pij + Dij + Φij − εij + Tij (5)

where Pij , Dij , Φij , εij , and Tij respectively denote the production, diffusion, pressure-strain correlation,

dissipation and extra terms. The diffusion term Dij is split into two parts: a turbulent diffusion DT
ij , which

is interpreted as the diffusion due to both velocity and pressure fluctuations [24] and a viscous diffusion
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Dν
ij , which cannot be neglected in the low Reynolds number region. In a classical way, the pressure-strain

correlation term Φij can be decomposed as below:

Φij = Φ(1)
ij + Φ(2)

ij + Φ(w)
ij (6)

Φ(1)
ij is interpreted as a slow nonlinear return to isotropy and is modeled as a quadratic development in the

stress anisotropy tensor, with coefficients sensitized to the invariants of anisotropy. This term is damped

near the wall. The linear rapid part Φ(2)
ij includes cubic terms. A wall correction Φ(w)

ij is applied to the linear

part which is modeled using the Gibson and Launder hypothesis [25] with a strongly reduced numerical co-

efficient. However the widely adopted length scale k3/2ε−1 is replaced by the length scale of the fluctuations

normal to the wall. The viscous dissipation tensor has been modeled in order to conform with the wall

limits obtained from Taylor series expansions of the fluctuating velocities [26]. The extra term Tij accounts

for implicit effects of the rotation on the turbulence field. Indeed, high speed rotation produces indirect

effects on the turbulence field that are not modeled in usual closures, even in second order closures. These

effects modify the structure of the turbulence eddies in a complex manner that can be evidenced in two-point

statistics [27]. A practical extension for one-point closures, to approximate the effects, has been developed

by Elena and Schiestel [1, 2]. It consists in additionnal terms in the stress transport equations that act only

when the flow is subjected to strong rotation. More precisely, the pressure-strain correlation is sensitized to

the Reynolds and Cambon structure tensor. A spectral jamming term that enhances bidimensionality and

the blocking effect of the spectral transfer are also included. These terms are fully explained and detailed

analytically in [1, 3] and their influences will be discussed in the following.

For the thermal field, as we consider only relatively small temperature differences, density is not signifi-

cantly affected, which allows to dissociate the dynamical effects from the heat transfer process. Poncet and

Schiestel [6] obtained indeed very satisfactory results using this approach for temperature differences up to

75 K in similar geometries. Thus, the temperature equation writes:

∂T

∂t
+ VjT,j = σT,jj − F t

j,j (7)

where F t
i is the turbulent flux approximated by a gradient hypothesis with a tensorial diffusive coefficient:
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F t
i = −ct

k

ε
RijT,j (8)

with ct = cµ/Prt = 0.1, cµ = νtε/k2 = 0.09 a coefficient used to define the turbulent viscosity νt and

Prt = 0.9 the turbulent Prandtl number. It is indeed a common feature for two-dimensional computations

in rotating flows and more generally for near-wall turbulent flows to fix the value of the turbulent Prandtl

number Prt to 0.9 (see the monographs of Launder et al. [28] and Schiestel [29]). The numerical work of

Ong [30] and Iacovides and Chew [31] can also be cited.

The effects of the anisotropy of the turbulence field and the implicit effects of rotation are included in the

term kRij/ε (Eq.8) for most of them.

B. Numerical method

The computational procedure is based on a finite volume method using staggered grids for mean velocity

components with axisymmetry hypothesis in the mean and non staggered grids for the Reynolds stress tensor.

The code is steady elliptic. The velocity-pressure coupling is solved using the SIMPLER algorithm. In order

to overcome stability problems, several stabilizing techniques are introduced in the numerical procedure.

Also, the stress component equations are solved using matrix block tridiagonal solution to enhance stability

using non staggered grids.

To check the grid independence of the solution for Configuration 2, some crucial quantities for turbulent

Taylor-Couette flows have been considered: the mean tangential velocity component at mid-plane for the

mean field and the maximum of the turbulence kinetic energy in the whole cavity for the turbulent field.

Table II shows that the (NPR = 180)×(NPZ = 400) mesh in the (r, z) frame provides the best arrangement

between accuracy and CPU time compared to the other meshes considered. For this grid, the size of the

thinner mesh is ∆1r = 9× 10−8h and ∆1z = 3.89× 10−6h in the radial and axial directions respectively.

It is also verified that the grid is sufficiently refined close the cylinders to describe accurately the viscous

sublayers. For example, the wall coordinate r+ = ∆1ru
∗/ν (u∗ the friction velocity at the wall and ∆1r

the size of the first mesh in the radial direction) remains below 0.05 along both cylinders for configuration

2, which is quite below the classical value r+ = 1, for which the viscous sublayer is described by at least 5
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difference with the 180× 400 mesh 180× 500 180× 600 200× 600

mean field 1.8% 2.2% 1.4%

turbulent field 0.2% 0.2% 0.3%

Table II: Influence of the mesh grid on the mean and turbulent fields for L = 0.013, Rei = 10216 and Cw = 14858

(Configuration 2). Comparisons with the 180× 400 mesh, which is chosen as the reference mesh grid.

mesh points.

configuration NPR×NPZ ∆1r/h ∆1z/h max(r+)

1 180× 400 5.65× 10−5 6.38× 10−3 0.21

2 180× 400 9× 10−8 3.89× 10−6 0.05

Table III: Computational details for both configurations. ∆1r and ∆1z are the size of the first cell in the radial and

axial directions and max(r+) is the maximum value of the wall coordinate along both cylinders.

It has also been checked that the same grid arrangement provides a grid independent solution for the

Configuration 1 corresponding to the experiments of Escudier and Gouldson [7]. Table III summarizes the

computational details used in the present work. The 180× 400 mesh in the (r, z) frame has then proved to

be sufficient to get grid-independent solutions for both configurations. It will be used for all cases considered

in the following. About 30000 iterations (20 hours) on the M2P2 cluster composed of 2 xeon quadcore 3

GHz are necessary to obtain the numerical convergence of the calculations.

C. Boundary conditions

For both configurations, all the variables are set to zero at the walls except for the tangential velocity Vθ,

which is set to ΩRi on the inner rotating cylinder and zero on the outer stationary cylinder. A linear profile

for the mean tangential velocity component is imposed at the inlet as we the aspect ratio of the cavity is quite

weak. Thus, Vθ varies linearly from zero on the outer wall up to ΩRi on the inner wall. When a throughflow

is enforced, a parabolic profile is then imposed for the axial velocity Vz at the cavity inlet, with a given low

level of turbulence intensity (1%). In the outflow section, the pressure is permanently fixed, whereas the

derivatives for all the other independent quantities are set to zero if the fluid leaves the cavity, and fixed
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external values are imposed if reversed flow occurs. A special treatment for this type of mixed boundary

conditions has been developed. During the calculation, if reversed flow occurs, an advection equation for

all quantity is solved in a region located just outside the physical domain (see Poncet [3]). It enables to

moderate the evolution of these quantities and so to stabilize the calculations. Nevertheless, it is noteworthy

that reversed flows have never been observed in the present work, whatever the values of the flow control

parameters.

For Configuration 1, isothermal conditions are assumed. In Configuration 2, the temperature is fixed at

the walls: T = Ti at r = Ri and T = To at r = Ro. The temperature of the incoming fluid is fixed to Ta.

The velocity and thermal fields are initialized as follows: the fluid is at rest with a temperature of Ta.

IV. VALIDATION OF THE RSM MODEL IN THE CONFIGURATION 1 OF ESCUDIER AND

GOULDSON [7]

The predictions of the RSM model have already been widely validated in various rotating flow arrange-

ments. Among others, we can cite the works on turbulent flows in a rotor-stator cavity with or without an

imposed throughflow [1–5, 21], with heat transfer effects [6], and the work on the turbulent Von Kármán

flow between counter-rotating disks equipped or not with straight blades [22]. Nevertheless, in order to

show the detailed performances of the present model, our predictions are compared to the LDA measure-

ments of Escudier and Gouldson [7] and to the k − ε model of Naser [8] in a very elongated Taylor-Couette

system defined by L = 0.0041 and s = 0.506. In this section, the rotational Reynolds number is fixed to

Rei = 961.07 and the comparisons are performed at a given axial position z∗ = z/h = 0.1 for three values

of the flow rate coefficient: Cw = 2839, 5914, 17742. Thus, three values of the rotation parameter are con-

sidered: N = 0.968, 0.465, 0.148.

As a preliminary, we define the following dimensionless quantities: the dimensionless radial r∗ =

(r − Ri)/(Ro − Ri) and axial z∗ = z/h positions. Thus, r∗ = 0 on the inner cylinder and r∗ = 1 on

the outer cylinder. In the same way, z∗ = 0 corresponds to the cavity inlet and z∗ = 1 to the outlet.

The mean tangential velocity component is normalized using the rotational speed of the inner cylinder ΩRi,

whereas the mean axial velocity component is normalized using the mean axial velocity Vz imposed at the

inlet, defined by Vz = Q/(π(R2
o − R2

i )): V ∗
θ = Vθ/(ΩRi) and V ∗

z = Vz/Vz. To enable direct comparisons
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with the measurements of Escudier and Gouldson [7], the tangential v′θ and axial v′z normal stresses are

normalized by Vz: v
′∗
θ =

√
v
′2
θ /Vz and v

′∗
z =

√
v′2z /Vz.
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Figure 2: Radial distributions of the mean (a) tangential and (b) axial velocity components for L = 0.0041, s = 0.506

and Rei = 961.1 at z∗ = 0.1; Comparisons between the present RSM (lines) and the LDA measurements of Escudier

and Gouldson [7] (symbols) for three values of Cw: Cw = 2839 (×, −), Cw = 5914 (4, −−) and Cw = 17742 (◦, .−).

The laminar profiles (dotted lines) and the predictions of the k − ε model of Naser [8] (dash-dotted) for Cw = 17742

are also shown.

Figure 2 shows the distributions of the dimensionless mean tangential and axial velocity components at

z∗ = 0.1. For the two lowest values of Cw, the tangential velocity profiles (Fig.2a) exhibit a structure divided

into three regions: two thin boundary layers developed on each cylinder separated by a core rotating at a

constant velocity. The central region rotates at 32% (resp. 34%) of the cylinder speed for (Cw = 2839; N =

0.968) (resp. (Cw = 5914; N = 0.465)) well below the value 0.53 given by Taylor [32] in the absence of

throughflow. The flow is here mainly governed by the rotation for these values of N . A decrease of the

rotation parameter to N = 0.148 (corresponding to an increase of the flow rate coefficient to Cw = 17742)

implies a decrease of the rotating speed of the core region. Moreover, the tangential velocity is no more

constant in the gap but is inversely proportional to the radius. Thus, the mean angular momentum is almost

constant in that region.

There is only a weak effect of the flow rate coefficient on the radial distributions of the axial velocity

(Fig.2b). The profiles are close to the turbulent Poiseuille flow profiles in pipes with a nearly constant axial
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velocity in the gap and thin boundary layers on the cylinders. For this value of radius ratio s = 0.506, the

profiles are almost symmetric. The profiles become flatter with increasing N as already noted by Nouri and

Whitelaw [15]. It is noteworthy that, whatever the value of Cw, the mean velocity profiles are far from the

laminar profiles highlighting the turbulent nature of the flow.

For the mean field, the predictions of the RSM model are in very good agreement with the experimental

data. The RSM predicts quite well the mean tangential velocity in the core of the flow. Moreover, it offers

a good description of the boundary layer thicknesses along the cylinders as it can be seen from the mean

axial velocity profiles. For Cw = 17742, the RSM improves significantly the results of the k− ε of Naser [8],

which fails to predict the right profiles with large discrepancies for both the axial and tangential velocity

components. The axial velocity is largely underestimated in the core and the tangential velocity is slightly

overestimated. Fully developed conditions are reached at z∗ = 0.1 using the RSM in agreement with the

observations of Escudier and Gouldson [7], whereas the predictions of the k − ε model of Naser [8] showed

a large dependence of the tangential velocity profiles on the axial position. The main reasons for these

discrepancies are that the k − ε model is blind to any rotation effects, and that the eddy viscosity concept,

on which this model is based, is unsuitable with the present flow situation. On the contrary, the present

RSM model is both sensitized to rotation effects [1, 21] and free from any eddy viscosity hypothesis.
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Figure 3: Radial distributions of the (a) tangential v
′∗
θ and (b) axial v

′∗
z normal Reynolds stress tensor components.

See legend of Figure 2.
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Figure 3 presents the radial distributions of the tangential and axial normal Reynolds stress tensor com-

ponents for the same sets of parameters. Turbulence is mainly concentrated in the core region and vanishes

towards the walls. The tangential and axial velocity fluctuations show a progressive decrease with increasing

flow rate coefficient (or decreasing rotation parameter) in agreement with the experimental data of Escudier

and Gouldson [7] and the LES results of Chung and Sung [20]. It is attributed by Escudier and Gouldson [7]

to the vortical structures observed for low Cw values induced by the centerbody rotation. For high values of

Cw, the radial penetration of the rotational influence is reduced and turbulent fluctuations are suppressed

as if there were no solid body rotation. The profiles of v
′∗
θ and v

′∗
z are asymmetric for the highest value

of the rotation parameter N = 0.968 (Cw = 2839) in agreement with [20], which can be attributed to the

destabilizing effect of the centrifugal forces. All these phenomenons are well reproduced by the RSM, which

predicts also quite good the turbulent intensities in the core of the flow. Some discrepancies are obtained

in the boundary layers, especially for the peak values very close to the walls. The variations in the radial

direction of the turbulent levels along each cylinder are also smoother than the experimental ones, which was

also the case for the LES results of Chung and Sung [20] against the measurements of Nouri and Whitelaw

[15].

Considering also the previous validations in various interdisk cavities [1, 3–6, 22], the second order model

can now be used confidently to carry a parametric study of turbulent Taylor-Couette-Poiseuille flows with

heat transfers in a narrow gap cavity characterized by a very small aspect ratio L = 0.013 and a large

radius ratio s = 0.961 and for a wide range of the flow parameters (the Reynolds number Rei, the flow rate

coefficient Cw and the Prandtl number Pr).

V. BASIC CASE IN CONFIGURATION 2

Configuration 2 (see Table I) is now considered. Before performing a parametric study, a basic case (Rei =

10216, Cw = 14858, N = 4.24 and Pr = 0.7) is investigated in details to fully depict the hydrodynamic and

thermal fields.
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A. Mean field

Figure 4a and 4b present the radial profiles of the mean tangential and axial velocity components re-

spectively, at different axial positions z∗. The mean radial velocity component is not shown as it is quasi

zero in the whole cavity. The mean flow is helical: the main flow is tangential due to the rotation of the

inner cylinder (Taylor-Couette flow) and the secondary flow is essentially axial due to the superimposed

throughflow (Poiseuille flow), which is confirmed by the streamline patterns shown in figure 6a.

We recall that the boundary conditions imposed at z∗ = 0 correspond to the laminar regime with a linear

Taylor-Couette profile for V ∗
θ and a parabolic Poiseuille profile for V ∗

z . From z∗ ' 0.2 ' 15.6L to 0.8, the

mean flow is well established and the profiles do not depend anymore on the axial position z∗. The mean

profiles of V ∗
θ and V ∗

z are then characteristic of the turbulent regime with two very thin boundary layers

developed on each cylinder. The central region between the two boundary layers is characterized by a quasi

constant mean axial velocity equal to approximatively 1.07, close to a turbulent Poiseuille-like profile in

pipes. The mean tangential velocity component increases linearly when moving from the outer to the inner

cylinders in that region in agreement with the LES results of Chung and Sung [20]. This behavior is anal-

ogous to the turbulent torsional Couette flow found in very flat rotor-stator disk cavities [5]. V ∗
θ is exactly

equal to 0.5 at mid-radius, which is to be compared to the theoretical value 0.48 of Polkowski [33], whereas

Kuosa et al. [19] obtained 0.083 with the k − ω SST model. Note that this swirl level is much higher than

the measured or computed one obtained in the case of the Escudier and Gouldson’s [7] experiment, which

is a direct effect of both the narrow gap between the walls and to the high value of the rotation parameter

N = 4.24 considered here. From the radial profiles in figure 4, we can deduce the thicknesses of the boundary

layers δV i and δV o on the inner and outer cylinders respectively. δV i (resp. δV o) is the height at which the

mean tangential velocity component reaches 99% (resp. 1%) of ΩRi. For 0.2 ≤ z∗ ≤ 0.8, these thicknesses

are almost constant and equal to δV i/(∆R) = 0.03 and δV o/(∆R) = 0.04.

In the outlet section (z∗ = 1) where a given pressure is imposed, absolutely no reversed flow has been

observed in the present case. It can be seen also from the streamline patterns shown in Figure 6a. The

small contraction of the streamlines at the outlet is only due to the apparent aspect ratio 0.345 of Figure

6a, which does not respect the real aspect ratio of the cavity equal to 0.013. At the outlet, V ∗
θ varies non

monotonously with r∗. Close to the inner rotating cylinder, it varies very quickly from 0.1 for r∗ = 0.1 to 1
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on the rotor. The axial velocity profile tends to the laminar profile at the outlet with a strong axial velocity

in the center of the gap.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

r*

V
θ
*

(a)

z*=1
z*=0.8
z*=0.2
z*=0.1
z*=0

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

r*

V
z
*

(b)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

r*

T*

(c)

Figure 4: Radial profiles of the mean (a) tangential velocity component V ∗
θ , (b) axial velocity component V ∗

z and (c)

dimensionless temperature T ∗ for different axial positions z∗ and Rei = 10216, Cw = 14858 and Pr = 0.7.

As for the hydrodynamic mean flow, the temperature field T ∗ does not depend on the axial position for

z∗ ≥ 0.4 (Fig.4c). Note that the temperature T is normalized as follows: T ∗ = (T − Ta)/(To − Ta). Thus,

T ∗ = 0 in the inlet section (z∗ = 0) and T ∗ = 1 along the outer cylinder (r∗ = 1), where the highest

temperature is reached (see also figure 6c). The mean temperature profiles can also be divided into three

areas: two thermal boundary layers separated by a region, where the temperature is quasi constant. For

z∗ ≥ 0.4, the temperature reached in the core region tends to T ∗ = 0.768. It is slightly higher than the

value T ∗ = 0.738 corresponding to the average value between the cylinder temperatures Ti and To. It

shows in particular the dominating influence of the (warmest) outer cylinder. For this set of parameters,

rotation effects on the mean flow are dominant compared to the superimposed throughflow as the value

of the rotation parameter N = 4.24 is high. Thus, the residence time of the incoming fluid (at T ∗ = 0)

inside the cavity is large enough for the walls to warm significantly the fresh incoming fluid. It explains

why the mean temperature remains in the range 0.7 ≤ T ∗ ≤ 0.9 (Figure 6c). From the temperature profiles
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in figure 4c, we can evaluate the thicknesses of the thermal boundary layers denoted δTi and δTo on the

inner and outer cylinders respectively. δTi (resp. δTo) is the height at which the mean temperature reaches

99% (resp. 1%) of the averaged temperature in the core. Thus, δTi/∆R = 0.023 and δTo/∆R = 0.06 for

0.4 ≤ z∗ ≤ 0.8. As expected, the thermal boundary layer is thicker than the hydrodynamic one along the

stator. The Prandtl number, which compares the hydrodynamic and thermal boundary layer thicknesses, is

indeed equal to Pr = 0.7 ≤ 1 in the present case.

B. Turbulent field
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Figure 5: Radial profiles of the six Reynolds stress tensor components and of the turbulence kinetic energy for

Rei = 10216, Cw = 14858 and Pr = 0.7 at z∗ = 0.5.

Figure 5 shows the radial profiles of the six Reynolds stress tensor components R∗ij and of the turbulence

kinetic energy k∗ at mid-height z∗ = 0.5 for the same set of parameters. Note that, in the following, the
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Reynolds stress tensor components as well as k∗ are normalized by (ΩRi)2. It is not shown here but as for

the mean field, there is no axial dependence of these turbulent quantities for 0.2 ≤ z∗ ≤ 0.8. Turbulence is

then fully developed in that region and not influenced by the inlet and outlet areas. The highest levels of

the normal Reynolds stress tensor components are reached in the core of the flow with maxima closest to the

outer cylinder. As for the highest value of the rotation parameter N = 0.968 considered in Configuration

1, it can be attributed to the destabilizing effect of the centrifugal forces. Turbulence intensities vanish

at the walls. The magnitudes of the three normal Reynolds stress tensor components are quite comparable

indicating that the turbulence is only weakly anisotropic. The R∗rθ behaves like the normal components, with

a maximum along the external cylinder. The two other cross components, which are one order of magnitude

below, indicate a strong shear along the cylinders in agreement with the LES results of Chung and Sung

[20].

Figure 6: Rei = 10216, Cw = 14858 and Pr = 0.7. Isovalues of: (a) the stream function Ψ∗ = Ψ/(ΩR2
0), (b) the

turbulence Reynolds number Ret = k2/(νε), (c) the temperature T ∗. Apparent aspect ratio equal to 0.345.

These last results on the turbulent field are confirmed by figures 6c and 7. The isovalues of the turbulence
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Reynolds number Ret = k2/(νε) (Fig.6c) enable to visualize the turbulent regions in the cavity. The flow

is considered as being laminar for Ret = 1/cµ ≤ 11 (cµ = νT ε/k2 = 0.09, where νT is the turbulence

viscosity). The flow in that case is turbulent everywhere apart from a very tiny region delimited by the

equation z∗ ' 0.005 + 0.045r∗ (0 ≤ r∗ ≤ 1) where Ret ≤ 11. In the core, the flow is highly turbulent as Ret

can reach the maximum value of 2696.
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Figure 7: Anisotropy invariant map at z∗ = 0.5 for Rei = 10216, Cw = 14858 and Pr = 0.7.

Figure 7 shows the anisotropy invariant map for the Reynolds stress tensor at z∗ = 0.5. The second A2

and third A3 invariants of the anisotropy tensor aij of the second moments of the fluctuations are defined

as A2 = aijaji and A3 = aijajkaki [34]. The results of the RSM model respect the realizability diagram of

Lumley [34] as they remain within the region delimited by the two lines corresponding to the axisymmetric

flow A3 = ±A
3/2
2 /

√
6 and the straight upper one corresponding to the two-component limit A3 = A2 − 8/9.

It confirms that the turbulence is almost isotropic in the core region as the curve tends to the origin point

(A2 = 0, A3 = 0). On the other way, the curve slightly tends to the one component limit (upper right corner

in Figure 7) close to the walls.

C. Turbulence kinetic energy budgets

To highlight the influence of the additionnal terms taking into account the implicit effects of rotation

on turbulence in the present RSM, budgets for the turbulence kinetic energy transport equation are here
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performed. The equation for the turbulence kinetic energy k is given in [1] as:

dk

dt
= P + DT + Dν − ε + DR + J (9)

The terms DR and J model two implicit effects of rotation on turbulence. DR is an inhomogeneous diffusion

term, which slows down the tendancy of bidimensionalization close to the walls. Its empirical term takes also

into account the significant increase of the turbulent diffusion due to the triple fluctuating velocity correlation

and to the fluctuating pressure in the case of strong rotation. Another characteristic phenomenon due to

rotation is a reduction of the energy transfer from large to small turbulent scales. This last phenomenon is

modeled here through an inverse flux J . All details about these terms can be found in [1].
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Figure 8: Turbulence kinetic energy budgets at z∗ = 0.5 along both cylinders for Rei = 10216, Cw = 14858 and

Pr = 0.7.

Budgets for the turbulence kinetic energy k (normalized here by (Ωh)2) are presented in Figure 8 at mid-

height of the cavity in both boundary layers. The transport of k is mainly governed by the production P and

the dissipation ε terms, which compensate almost each other. The molecular Dν and turbulent DT diffusion

terms can not be neglected close to the walls. In the viscous sublayers, where low Reynolds numbers are

reached, Dν compensates exactly the dissipation ε, whereas the term DT is almost zero. The inhomogeneous
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diffusion term DR, which usually flattens the turbulence kinetic energy by diffusion along the rotation axis

[3], does not contribute here to the k budgets. The inverse flux J , which increases the turbulence level in

the core of the flow, has only a weak contribution to the k budgets in both boundary layers, which does

not mean that it does not affect the mean and turbulent fields. It can be noticed that the values reached

along the stationary outer cylinder are much higher (in absolute value) than those obtained along the inner

rotating one. It confirms in particular the RSM predictions of Poncet [3] in the case of rotor-stator disk

flows with throughflow.

The influence of the additionnal terms contained in T has been already addressed by Elena and Schiestel

[1] for rotor-stator disk flows. They compared the predictions of three low-Reynolds number RSM models

from the basic model of Hanjalic and Launder [35] to the final version described here. The introduction of

the new terms did not produce important changes. Nevertheless, the final model was found to improve the

predictions of the former ones. The turbulence levels close to the rotor and the location of the relaminarized

and turbulent regions were in particular better predicted.

D. Distributions of the local Nusselt numbers
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Figure 9: Axial distributions of the local Nusselt numbers along both disks for Rei = 10216, Cw = 14858 and

Pr = 0.7.

From the isotherm maps shown in figure 6c, we can deduce the axial distributions of the local Nusselt

numbers Nui and Nuo along the inner and outer cylinders respectively defined in equations (1) and (2). In
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figure 9, we can notice strong variations of Nui and Nuo for z∗ ≤ 0.4. For z∗ ≥ 0.4, as the mean temperature

does not depend anymore on the axial location z∗, the local Nusselt numbers are nearly constant. Nui tends

to 0 for z∗ = 0.15 as the incoming fluid warms and reaches the same temperature than the inner cylinder at

this axial location. At z∗ ' 0.15, Nuo reaches a maximum, because the incoming cold fluid is ejected to the

outer cylinder due to the centrifugal force and so keeps a relatively low temperature. Giret [9] did not measure

the heat transfer coefficients close to the inlet where the strong variations are expected. Nevertheless, he

observed also a strong decrease of Nui from z∗ ' 0.15 to z∗ ' 0.8.

VI. INFLUENCE OF THE FLOW PARAMETERS

After having depicted the hydrodynamic and thermal fields for a basic case, 18 calculations have been

performed to investigate the influence of the flow control parameters: the rotational Reynolds number Rei,

the flow rate coefficient Cw and the Prandtl number Pr.

A. Hydrodynamic field

The influences of the rotational Reynolds number Rei and the flow rate coefficient Cw on the mean velocity

profiles are shown in Figure 10 at mid-height for 3744 ≤ Rei ≤ 37443 and 0 ≤ Cw ≤ 30000.

For a given flow rate Cw = 5000, the tangential velocity is inversely proportional to the radius for the

lowest value of Rei = 3744 corresponding to a rotation parameter N equal to 4.61 (Fig.10a). It tends to the

classical laminar profile in Taylor-Couette flow. For increasing values of Rei (or N), the tangential velocity

at mid-radius decreases. A center body rotation progressively appears and is combined with a thinning of the

boundary layers. The core region rotates at approximately 46% of the inner cylinder speed for Rei = 37443

(N = 46.14) and V ∗
θ is constant over a large radial extension. In the same time, the radial distributions of the

axial velocity (Fig.10b) flatten even the influence of the rotation is quite weak for this range of parameters.

The rotational Reynolds number is now fixed to Rei = 10216 and the flow rate coefficient varies between

0 (N tends to infinity) and Cw = 3 × 104 (N = 2.1). The influence of Cw on the mean velocity profiles

remains weak for this set of parameters (Fig.10c,d). It shows in particular that the rotation parameter does

not play any crucial role on the flow structure for the range of parameters considered here.
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Figure 10: Influence of the Reynolds number Rei on the mean (a) tangential and (b) axial velocity components for

Pr = 0.7 and Cw = 5000 at z∗ = 0.5; Influence of the flow rate coefficient Cw on the mean (a) tangential and (b)

axial velocity components for Pr = 0.7 and Rei = 10216 at z∗ = 0.5.

More interesting is the effect of the Reynolds number on the turbulent field illustrated by the radial

distributions of the turbulence kinetic energy k∗ at mid-height z∗ = 0.5 (Fig.11a). Whatever the value of

Rei, the turbulence is concentrated in the core of the flow with slightly higher turbulence intensities on the

outer cylinder side and vanishes towards the walls. The normalized turbulence kinetic energy k∗ = k/(ΩRi)2

decreases for increasing values of the Reynolds number, because of the normalization by (ΩRi)2. As expected,

k is an increasing function of the rotation rate but it appears that, above a certain threshold, Rei has only

a weak influence on the turbulence intensities, whereas (ΩRi)2 still increases.
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Figure 11: Radial distributions of the turbulence kinetic energy k∗ for z∗ = 0.5 and Pr = 0.7: (a) Influence of the

Reynolds number (Cw = 5000) and (b) influence of the flow rate coefficient (Rei = 10216).

The effect of the superimposed throughflow on the turbulent field is presented in figure 11b for 0 ≤ Cw ≤

30000 also at mid-height z∗ = 0.5. The shape of the radial profiles remains the same. The turbulence kinetic

energy k∗ increases with increasing values of Cw. The superimposed throughflow acts as the rotation rate

on the turbulence. It can be explained by considering the effective Reynolds number Ree = Ve∆R/ν, which

is based on the efficient velocity Ve =
√

Vz
2

+ α(ΩRi)2, where α is a weighting coefficient fixed in general

to 0.25 [14, 36, 37]. Note that this value is obtained by supposing that the tangential velocity of the fluid

in the gap is half the peripheral velocity of the inner cylinder for narrow gap cavity. This increase is less

noticeable for low values of Cw (0 ≤ Cw ≤ 2500) because, in this range, the mean and turbulent flow fields

are mainly dominated by the rotation of the inner cylinder.

B. Thermal field

Figure 12 presents the isotherm maps in a (r, z) plane for all the cases considered here highlighting the

influence of the flow parameters on the thermal field. The effect of the Reynolds number is illustrated by

comparing figures 12a to 12e for Cw = 5000 and Pr = 0.7. For a given superimposed throughflow, when the

rotation rate of the inner cylinder is increased, the centrifugal effect increases. The main flow is still helical but

the thread of the screw gets even smaller. As a consequence, the time of residence increases with increasing
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values of Rei, which implies a more efficient mixing and a better homogenization of the mean temperature

in the whole cavity. So, the mean temperature in the center of the cavity T ∗mid = T ∗(r∗ = 0.5, z∗ = 0.5) is a

decreasing function of Rei following the quadratic law: T ∗mid = 7.5× 10−11Re2
i − 6.4× 10−6Rei + 0.88. For

very high Reynolds numbers, T ∗mid tends to the value 0.738 corresponding to the average between the wall

temperatures. For all cases, the isotherms are parallel to the rotation axis. The size of cold fluid around the

inlet increases with the rotation rate of the hub.

The effect of the flow rate coefficient on the temperature field (Fig.12f-12j) is more noticeable than the

one of the Reynolds number. Without any superimposed throughflow (Fig.12f), the isotherms are parallel

to the rotation axis and T ∗mid is equal to 0.841, which is much warmer than the average temperature 0.738

between the two walls, showing the preponderant effect of the outer cylinder. When the flow rate coefficient

increases, the isotherms get progressively inclined. For the highest value Cw = 30000 (Fig.12j), the effect of

Cw is preponderant compared to the effect of the rotation rate (N = 2.1). T ∗mid appears to be a decreasing

function of Cw following the quadratic law: T ∗mid = −1.3× 10−10C2
w − 2.6× 10−6Cw + 0.84. It is simply due

to the fact that the fresh incoming fluid spends a shorter time in the cavity when Cw is high (N is low).

We now investigate the influence of the Prandtl number Pr on the thermal field for Rei = 10216, Cw =

14858 and 0.01 ≤ Pr ≤ 12. Pr = 0.01 is a typical value for liquid metals, Pr = 0.7− 1 for gases (Pr = 0.71

for air at 20◦C) and Pr = 2− 12 for water. For Pr = 0.01 (Fig.12k), the heat transfer process is dominated

by conduction from the outer to the inner cylinder. For this Prandtl number, the fluid behaves thermally

like a solid. The isotherms are then parallel to the rotation axis except very close to the inlet region. The

mean temperature increases linearly from the hub to the shroud. When the Prandtl number Pr = ν/σ

increases (Fig.12l - 12o), the thermal diffusivity of the fluid σ decreases. Thus, the characteristic time for

the heat transfer between the cylinders and the fluid increases. As the residence time of the fluid in the

cavity remains the same (Rei and Cw being constant), the fluid requires more time to exchange heat with

the walls. The thermal effects diminish then with increasing values of Pr and the flow behavior is essentially

hydrodynamic. That is the reason why the mean temperature in the center of the cavity T ∗mid decreases for

increasing values of Pr following the quadratic law: T ∗mid = 0.0014Pr2 − 0.052Pr + 0.79.
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Figure 12: Isovalues of the mean temperature T ∗.

Influence of the Reynolds number for Cw = 5000, Pr = 0.7: (a) Rei = 3744, (b) Rei = 10216, (c) Rei = 14959, (d)

Rei = 26189, (e) Rei = 37443.

Influence of the flow rate coefficient for Rei = 10216, Pr = 0.7: (f) Cw = 0, (g) Cw = 103, (h) Cw = 5 × 103, (i)

Cw = 14858, (j) Cw = 3× 104.

Influence of the Prandtl number Pr for Rei = 10216, Cw = 14858: (k) Pr = 0.01, (l) Pr = 0.7, (m) Pr = 2, (n)

Pr = 7, (o) Pr = 12.

C. Correlations

These 18 sets of parameters cover a wide range of the rotation parameter N : from 2.1 up to infinity, when

no throughflow is superimposed. Thus, for all cases, the parameter N is higher than 0.8, which ensures that

the Nusselt numbers depend on both the rotation Ω and the axial throughflow Q (see in [13]).
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1. Local Nusselt numbers

The axial distributions of the local Nusselt numbers along the inner cylinder Nui and the outer one Nuo

are presented in figure 13a for Cw = 5000, Pr = 0.7 and different Reynolds numbers. For this flow rate,

Nui tends to zero for z∗ ' 0.1 only for the smallest value of Rei = 3744. For the other Reynolds numbers,

Nui increases with z∗ in the region close to the inlet and then, for z∗ ≤ 0.2, Nui remains almost constant.

Along the outer cylinder, Nuo decreases with z∗ at the cavity inlet and then remains also constant along

the rest of the cylinder height. Except very close to the inlet, Nui and Nuo increase for increasing values

of the Reynolds number Rei, which is expected in such rotating flows [38]. Figure 13b sums up the results

presented in figure 13a at a given axial position z∗ = 0.5, and confirms the dependence of Nui and Nuo on

the rotational Reynolds number Rei.
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Figure 13: Local Nusselt numbers along both cylinders for Cw = 5000, Pr = 0.7 and different Reynolds numbers

Rei: (a) Axial profiles; (b) Variations against Rei at mid-height z∗ = 0.5.

The influence of the axial Poiseuille flow on the local Nusselt numbers is depicted in figure 14a for Rei =

10216, Pr = 0.7 and different values of the flow rate coefficient. Along the hub and for Cw ≤ 5000, the local

Nusselt number Nui does not depend on the axial location for 0.05 ≤ z∗ ≤ 0.95. Nui depends weakly on

Cw for Cw < 5000 then increases strongly for higher flow rates. For Cw ≥ 104, when Cw increases, the axial

location for which Nui tends to 0 moves towards the cavity outlet: Nui ' 0 at z∗ ' 0.095 for Cw = 104,

at z∗ ' 0.14 for Cw = 14858 and at z∗ ' 0.27 for Cw = 30000. In the same time, the region where Nui

is quasi constant gets always smaller for increasing values of Cw. Along the stationary cylinder, the same

behavior is observed. For Cw < 5000, Nuo depends very weakly on both z∗ and Cw. When increasing Cw
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up to 30000, Nuo reaches a maximum close to the cavity inlet. This maximum is shifted to larger z∗ values,

when Cw increases. Thus, Nuo is maximum at z∗ ' 0.06 for Cw = 104, at z∗ ' 0.1 for Cw = 14858 and

at z∗ ' 0.17 for Cw = 30000. Note that the axial positions of the maxima of Nuo do not coincide with the

locations of the minima reached by Nui because of the helicity of the main flow. Figure 14b confirms these

previous results at a given location z∗ = 0.5. Nui and Nuo both increase for increasing values of Cw. The

local decrease of Nui or Nuo correspond to the fact that the fluid gets close the wall temperatures at this

given location. Except for Cw = 30000, the heat transfer coefficient along the rotating cylinder is higher

than the one along the stationary cylinder at z∗ = 0.5: Nui > Nuo.
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Figure 14: Local Nusselt numbers along both cylinders for Rei = 10216, Pr = 0.7 and different values of the flow

rate coefficient Cw: (a) Axial profiles; (b) Variations at mid-height z∗ = 0.5 against Cw.

Figure 15a shows the axial distributions of the local Nusselt numbers for Rei = 10216, Cw = 14858

and different Prandtl numbers. For liquid metals (Pr = 0.01), both Nui and Nuo are quite low and

remain independent of z∗, which reflects the dominating influence of the molecular diffusivity on the heat

transfer process. For higher Prandtl numbers Pr ≥ 0.7, Nui decreases for increasing values of z∗, reaches a

minimum value at a given axial location and then increases weakly when moving towards the cavity outlet.

The minimum value is obtained when the fluid is at approximately the same temperature than the wall. The

axial location for which Nui reaches this minimum value is shifted towards the outlet for increasing Prandtl

numbers. Along the outer cylinder, Nuo increases for increasing Pr values. For gases (Pr = 0.7) and liquids

(Pr = [2, 7, 12]), Nuo reaches a maximum close to the cavity inlet and diminishes for larger axial locations.

These results are confirmed by figure 15b, highlighting the influence of Pr on the local Nusselt number at
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mid-height. It clearly shows that Nuo strongly increases for increasing Pr values and also that, for a given

Prandtl number, Nuo is larger than Nui. Nui does not vary monotonously with Pr, because at mid-height

and for Pr = 7, the fluid reaches the wall temperature and so Nui tends to zero. Apart from Pr = 7, Nui

slightly increases with Pr.
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Figure 15: Local Nusselt numbers along both cylinders for Rei = 10216, Cw = 14858 and different Prandtl numbers

Pr: (a) Axial profiles; (b) Variations at mid-height z∗ = 0.5 against Pr.

2. Averaged Nusselt numbers

From the isotherm maps (Fig.12) and using equations (3) and (4), we can calculate the averaged Nusselt

numbers Nui and Nuo for the inner and outer cylinders respectively. From an engineering point of view, it is

quite interesting to provide correlations for Nui and Nuo according to the flow control parameters (Rei, Cw

and Pr). Figure 16 shows that the averaged Nusselt numbers on both cylinders can be correlated according

to the three flow parameters as follows:

Nui = 0.0291×Re0.82
i × Pr0.3 × C0.09

w (10)

Nuo = 0.0454×Re0.75
i × Pr0.8 × C0.08

w (11)

These two correlations are valid for 3744 ≤ Rei ≤ 37443, 0 ≤ Cw ≤ 30000 and 0.01 ≤ Pr ≤ 12 for a cavity

characterized by a small aspect ratio L = 0.013 and a large radius ratio s = 0.961 and for two given heating

factors κi = 0.117 and κo = 0.245.
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Figure 16: Correlations for the averaged Nusselt numbers along the: (a) inner cylinder and (b) the outer cylinder for

all the considered cases.

These results are in agreement with previous results in various rotating flow arrangements. For turbulent

rotating flows, the mean Nusselt number is usually proportional to Re0.8 [38], which is the case in rotor-stator

disk cavities [6] and also in Taylor-Couette systems [19]. In rotor-stator disk cavities, the exponent varies

between 0.7 [39] and 0.89 [40], which confirms the relevance of the present results.

In the present case, we found that Nui ∝ C0.09
w and Nuo ∝ C0.08

w . To our knowledge, the only previous

work providing a correlation with the flow rate coefficient is the one of Poncet and Schiestel [6] obtained

using the same RSM model in the case of a rotor-stator interdisk cavity. These authors gave indeed the

following correlation for the averaged Nusselt number along the stationary disk: Nu ∝ Re0.8Pr0.5C0.11
w for

a wide range of the parameters 5 × 105 ≤ Re = ΩR2
o/ν ≤ 1.44 × 106, 0 ≤ Cw ≤ 12082 and 1 ≤ Pr ≤ 12.

Our results appear then to be in good agreement with this previous study in an other rotating flow system.

The dependance of Nui and Nuo on the Prandtl number is quite different between the two cylinders.

In Taylor-Couette systems, Nu is usually known to be proportional to Prβ , with β equal or close to 0.3,

which is characteristic of heat transfer under the forced convection over a rotating cylinder. Aoki et al.

[12] proposed β = 0.3 for 360 ≤ Rei ≤ 2274 and Tachibana and Fukui [37] found β = 1/3. Our results

along the inner cylinder match quite well with these previous results as Nui ∝ Pr0.3 in the present case.

But there is also a large variability in the values of β depending especially on the temperature distributions

imposed at the walls (effect of the Grashof number Gr or of the heating factors κi and κo) and on the
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geometry (ratio ∆R/Ri). Aoki et al. [12] showed indeed that Nu ∝ Gr0.29. Among others, we can cite the

numerical work of Kuosa et al. [19] and the experimental one of Lee and Minkowycz [14], who proposed

β = 0.4 or the work of Simmers and Coney [41], who obtained Nu ∝ C(Pr)Pr, with C a function of Pr.

In the case of a turbulent rotor-stator flow, Owen and Haynes [42] found β = 0.6. Thus, it appears difficult

to provide definitive conclusions concerning the correlation between the averaged Nusselt number and the

Prandt number along the outer cylinder. Nevertheless, the value β = 0.8 found here, remains in the range

[0.4 − 1]. The reader can refer to the PhD theses of Fasquelle [43] and Giret [9], who performed a large

review of previous works in Taylor-Couette systems with or without axial throughflow, grooved or ungrooved

cylinders and, who provided numerous correlations for the Nusselt number against all flow parameters.
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Figure 17: Avergaed Nusselt number along the rotor Nui against the rotation rate Ω for Pr = 0.7 and three values

of the flow rate coefficient: (a) Cw = 10684 (mass flow rate of 30 g/s), (b) Cw = 21368 (mass flow rate of 60

g/s), (c)Cw = 32052 (mass flow rate of 90 g/s). Comparisons between the correlation (10) and previous results

[9, 17, 44, 45].

To validate the correlation law (10) along the rotor and to highlight the influence of the rotation rate

Ω and of the flow rate coefficient Cw on the heat transfer coefficient, our results are compared to previous

experimental [9, 17, 44] and numerical [45] data for a given Prandtl number Pr = 0.7 and three values of

the flow rate coefficient (see Figure 17). For these parameters, the law (10) reduces to the form:

Nui = Nui0 + α× Ω0.82 (12)

where the averaged Nusselt number Nui0 has been obtained in the configuration of Giret [9] (s = 0.99 and
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L = 0.003) without rotation (Ω = 0). The coefficient α depends on C0.09
w . The values of Nui0 and α are

given in Table IV for the three flow rates considered by Giret [9].

mass flow rate (g/s) Cw α Nui0

30 10684 0.533 6.03

60 21368 0.568 9.85

90 32052 0.589 14.17

Table IV: Coefficients involved in the empirical law (12) for the three flow rates considered by Giret [9].

A relatively good agreement is observed between the present results and the experimental data of Giret [9]

for Ω up to 1500 rpm whatever the value of Cw. The better agreement is obtained for the intermediate value

of the flow rate coefficient Cw = 21368. This new correlation (12) improves the correlation of Grosgeorges

[44] and most of all the one of Bouafia et al. [17], which overestimates Nui whatever the value of the rotation

rate. The numerical results of Peres [45] fail to predict the good tendency as the averaged Nusselt number

varies slightly against the rotation rate. For all correlations, the main discrepancy for the heat transfer

coefficient along the rotor is observed for very high rotation rates (Ω = 2000 rpm). Giret [9] did not provide

any explanation for the weak values of Nui obtained for Ω = 2000 rpm. Note that the same experimental

results are not available along the stator, which prevents from doing the same comparisons along the other

cylinder.
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VII. CONCLUSIONS

In this study, the effects of the rotational speed, the flow rate and the working fluid on the hydrody-

namic and thermal fields have been investigated numerically using the Reynolds Stress Modeling of Elena

and Schiestel [1, 2] for the turbulent flow between two concentric cylinders where only the inner cylinder is

rotating. Even if this model has been widely validated in various rotating cavities [1, 2, 4, 6], it has been

also favorably compared to the velocity measurements of Escudier and Gouldson [7] for a turbulent flow in

a very elongated Taylor-Couette system. In particular, it improves significantly the predictions of the k − ε

model of Naser [8] in the same configuration.

The RSM model has then be used in a Taylor-Couette-Poiseuille system defined by a radius ratio s = 0.961

and an aspect ratio L = 0.013 for a wide range of flow control parameters: rotational Reynolds number Rei,

flow rate coefficient Cw and Prandtl number Pr. The results showed that the flow is established quite

rapidly. For axial positions larger than 20% of the cavity height, the radial profiles of the mean velocity

components and also of the Reynolds stresses do not depend any more on the axial position. The mean flow

is helical with a Poiseuille-like profile for the mean axial velocity component and a torsional Couette-like

profile for the mean tangential velocity component. Turbulence is mainly concentrated in the middle of the

gap between the two cylinders and vanishes towards the walls. The thermal field is also independent of the

axial position for z ≥ 0.2h. The dominating influence of the outer cylinder on the thermal field has been

shown. Finally, new correlations have been provided for the averaged Nusselt numbers along both cylinders

according to the Reynolds and Prandtl numbers and to the flow rate coefficient and for a wide range of these

parameters.

More comparisons with experimental data for the mean and turbulent hydrodynamic fields are now re-

quired before performing new calculations to investigate the effects of the geometry (aspect ratio L and

radius ratio s) and of the heating factors (κi and κo) or the Grashof number on the heat transfer.
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[44] Grosgeorges, M., 1983, Contribution à l’étude du refroidisement d’une paroi tournante par air chargé d’huile,
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