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≤ Re i ≤ 37443) and Prandtl numbers (0.01 ≤ P r ≤ 12), flow rate coefficient (0 ≤ Cw ≤ 30000) in a very narrow cavity of radius ratio s = Ri/Ro = 0.961 and aspect ratio L = (R o -R i )/h = 0.013, where R i and R o are the radii of the inner and outer cylinders respectively and h is the cavity height. Temperature gradients are imposed between the incoming fluid and the inner and outer cylinders. The mean hydrodynamic and thermal fields reveal three distinct regions across the radial gap with a central region of almost constant axial and tangential mean velocities and constant mean temperature. Turbulence, which is weakly anisotropic, is mainly concentrated in that region and vanishes towards the cylinders. The mean velocity distributions are not clearly affected by the rotational Reynolds number and the flow rate coefficient. The effects of the flow parameters on the thermal field are more noticeable and considered in details. Correlations for the averaged Nusselt numbers along both cylinders are finally provided according to the flow control parameters Rei, Cw and P r.

o denotes a quantity on the outer cylinder.

I. INTRODUCTION

The present investigation is concerned with the numerical modeling of fluid flow and heat transfer in a

Taylor-Couette-Poiseuille system. The turbulent flow is confined between two differentially heated coaxial cylinders, with an inner rotating cylinder and a outer stationary one. An axial thoughflow of fresh fluid is also superimposed. This kind of Taylor-Couette flows with a superimposed Poiseuille flow is of great importance, since these flows have many applications in process engineering (dynamic membrane filtration, rheology, UV disinfection, pasteurization), geophysics (mantle convection) and also in the turbomachinery industry for bearings, asynchronous motor with axial ventilation [START_REF] Giret | Transferts thermiques convectifs dans le cadre de machines tournantes[END_REF], rotating heat exchangers and the drilling of oil wells among others. In the present work, the Taylor-Couette-Poiseuille system is a simple representation of the gap between the rotating and the stationary parts of an electrical motor contained in an air conditioning pack. A better knowledge of the convective heat transfer in the annular gap is required to optimize the perfomances of such a rotating machinery. Usually, the radial gap between the cylinders is quite weak (of the order of 1 mm) and the rotation rate of the inner cylinder can reach more than 80000 rpm. The difficulty to perform accurate measurements in such closed clearances and especially in the very thin boundary layers along the cylinders has slowed down the development of specific turbulence models. It explains why relatively few works have been dedicated to such complex flows up to now.

The effect of an axial throughflow in a Taylor-Couette system, where only the inner cylinder is rotating, has been considered experimentally by Kaye and Elgar [START_REF] Kaye | Modes of adiabatic and diabatic fluid flow in an annulus with an inner rotating cylinder[END_REF] in the isothermal case. Their results showed in particular the existence of four flow regimes depending on the Reynolds number based on the incoming flow velocity and the radial gap between the cylinders and on the Taylor number: laminar and turbulent flows, with or without Taylor vortices. Becker and Kaye [START_REF] Becker | Measurement of diabatic flow in an annulus with an inner rotating cylinder[END_REF] performed temperature measurements for a large range of rotation rate and superimposed flow rate. They studied the heat transfer in the gap between a heated inner rotating cylinder and a cooled outer stationary one. Compared to the isothermal case, they did not highlight the existence of Taylor vortices in the turbulent regime.

Most of the experimental works so far have been performed in Taylor-Couette systems characterized by a small aspect ratio L = (R o -R i )/h and a large radius ratio s = R i /R o , with R i and R o the radii of the inner and outer cylinders respectively and h the length of the cylinders. Aoki et al. [START_REF] Aoki | Convective heat transfer in an annulus with an inner rotating cylinder[END_REF] performed a combined theoretical and experimental investigation of turbulent Taylor-Couette flows without any Poiseuille flow.

The most noticeable result is that the gap ratio (R o -R i )/R i in the range [0.055 -0.132] has only a small effect on the heat transfer for three different fluids: air, iso-buthyl alcohol and spindle oil. They provided also numerous correlations for the Nusselt number according to the Taylor and Prandtl numbers. Kuzay and Scott [START_REF] Kuzay | Turbulent heat transfer studies in annulus with inner cylinder rotation[END_REF] studied experimentally the turbulent heat transfer in the gap between an inner rotating or non rotating insulated cylinder and an outer stationary and heated cylinder combined with an axial flow of air. They established correlations for the Nusselt numbers against a new physical parameter, called the rotation parameter N , which combines both the rotation and axial flow effects. This parameter is defined as the ratio between the rotating speed of the inner cylinder ΩR i and the mean axial velocity of the incoming fluid V z . Lee and Minkowycz [START_REF] Lee | Heat transfer characteristics of the annulus of two-coaxial cylinders with one cylinder rotating[END_REF] highlighted experimentally the effects of the gap ratio (R o -R i )/R i in the range [0.0083 -0.051] and of grooved cylinders on the heat transfer. They showed in particular that the heat transfer process is enhanced for increasing values of the gap ratio. Escudier and Gouldson performed extensive temperature measurements in the gap between a heated rotating inner cylinder and a cooled stationary outer one. An axial Poiseuille flow of air can be superimposed or not. The heat transfer is increased in the case of grooved cylinders compared to the basic case with smooth walls for an enclosed cavity. When an axial flow is imposed, the heat transfer along the rotating wall is increased in the smooth cylinder case. Numerous correlations for the Nusselt numbers along both surfaces are provided against a modified Taylor number and an effective Reynolds number for various flow conditions.

Naser [START_REF] Naser | Prediction of newtonian and non-newtonian flow through concentric annulus with centerbody rotation[END_REF] compared the predictions of a k -ε model with the experimental data of Escudier and Gouldson [START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF] for the same flow conditions. For a turbulent Newtonian flow, the model showed large discrepancies for the mean velocity components. The profiles depend strongly on the axial position, which is not observed in the experiments [START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF]. Naser [START_REF] Naser | Prediction of newtonian and non-newtonian flow through concentric annulus with centerbody rotation[END_REF] attributed these deviations to the fact that the eddy viscosity concept, on which the model is developed, is incompatible with the simulated flow conditions. It can be attributed also to the fact that the k -ε model is not sensitized to the implicit effects of rotation on turbulence. Char

and Hsu [START_REF] Char | Numerical prediction of turbulent mixed convection in a concentric horizontal rotating annulus with low-Re two-equation models[END_REF] The three turbulence models underestimated the heat transfer coefficients along both cylinders. Moreover, the entrainment coefficient of the fluid was far from the theoretical value for a fully turbulent flow. These discrepancies were attributed by the authors to the boundary conditions imposed at the inlet and outlet sections and to the turbulence models used. Very recently, Giret [START_REF] Giret | Transferts thermiques convectifs dans le cadre de machines tournantes[END_REF] performed a combined experimental and numerical investigation of the convective heat transfers in the air gap of an alternator. Heat transfer measurements were compared to two-equation models contained within the commercial code ANSYS CFX for various flow conditions and different geometries for the inner rotating cylinder. The convective heat transfers were underestimated by the models on the rotor and overestimated on the stator. The experimental results were found to be almost the same when the inner cylinder is smooth or with four inter-polar gaps.

To our knowledge, Chung and Sung [START_REF] Chung | Large-eddy simulation of turbulent flow in a concentric annulus with rotation of an inner cylinder[END_REF] were the first to perform Large Eddy Simulation (LES) in such complex configurations. They compared their numerical data to the experimental ones of Nouri and Whitelaw [START_REF] Nouri | Flow of newtonian and non-newtonian fluids in a concentric annulus with rotation of the inner cylinder[END_REF] for s = 0.5, C w = 20970 and Re i = [954. 5; 1909.1; 3818.1]. They obtained a relatively close agreement for the mean velocity and the Reynolds stress tensor components. The mean tangential velocity was slightly overestimated in the main part of the radial gap between the cylinders. They focused their numerical investigation on the appearance of turbulent structures attributed to the destabilization of the flow along the inner rotating cylinder and giving rise to strong events (sweeps and ejections).

The purpose of this work is to predict the turbulent flow and heat transfert in the gap of an electrical machine (schematized here by a very narrow Taylor-Couette-Poiseuille system) for a wide range of operating conditions (see Table I). As there is absolutely no experimental or numerical evidence of three-dimensional structures embedded in such flows [START_REF] Becker | Measurement of diabatic flow in an annulus with an inner rotating cylinder[END_REF], two-dimensional calculations can be performed without any loss of information. The Reynolds Stress Model (RSM) of Elena and Schiestel [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF][START_REF] Schiestel | Modeling of anisotropic turbulence in rapid rotation[END_REF][START_REF] Elena | Turbulence modeling of confined flow in rotating disk systems[END_REF], which has shown to offer the best trade-off between accuracy and calculation cost in various rotating flow arrangements [START_REF] Poncet | Écoulements de type rotor-stator soumis à un flux axial: de Batchelor à Stewartson[END_REF][START_REF] Poncet | Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow[END_REF][START_REF] Haddadi | Turbulence modeling of torsional couette flows[END_REF][START_REF] Poncet | Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow[END_REF][START_REF] Poncet | Turbulence modeling of the Von Kármán flow: viscous and inertial stirrings[END_REF],

has thus been chosen for this study. We propose here to extend, for the first time, the application of its well established turbulence model to real operating flow conditions in the rotor-stator gap of an electrical motor. It is also to get a better insight into the dynamics and the heat transfer process of the turbulent Taylor-Couette-Poiseuille flow in a very narrow cavity.

The paper is organized as follows: the geometrical configuration and the numerical modeling are described in Sections II and III respectively. Comparisons between the present calculations and the LDA measurements of Escudier and Gouldson [START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF] are performed in section IV to show the capability of the RSM model to predict such complex flows under isothermal conditions. The predictions of the RSM are extended to non-isothermal Taylor-Couette-Poiseuille flows in Sections V and VI. Section V is devoted to the detailed analyzis of the hydrodynamic and thermal fields for a given set of parameters (Re i = 10216, C w = 14858, P r = 0.7). The influence of the Reynolds and Prandtl numbers and of the flow rate are investigated in section VI. Finally some conclusions and closing remarks are provided in section VII. The cavity sketched in figure 1 is composed of two smooth concentric cylinders. The inner cylinder of radius R i is rotating at a given rotation rate Ω, while the outer cylinder of radius R o is stationary. This configuration is known in the litterature as the Taylor-Couette problem. The height of the cavity is denoted h in the following. An axial volume flow rate Q can be superimposed at the cavity inlet.

II. GEOMETRICAL CONFIGURATION AND FLOW CONTROL PARAMETERS

The mean flow is mainly governed by four flow control parameters: the aspect ratio of the cavity L, its radius ratio s, the rotational Reynolds number Re i based on the rotating speed of the inner cylinder ΩR i and half the hydraulic diameter ∆R = R o -R i and the flow rate coefficient C w defined as follows:

L = R o -R i h s = R i R o Re i = ΩR i (R o -R i ) ν C w = Q νR o
where ν is the fluid kinematic viscosity. Two different geometries will be considered in the following. Configuration 1 corresponds to the experiments performed by Escudier and Gouldson [START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF] under isothermal conditions (section IV) and Configuration 2 to another case including heat transfer effects (sections V and VI). The values of all parameters for these two configurations are summarized in Concerning the boundary conditions for the temperature field T in Configuration 2, the fluid at the inlet enters the cavity at a constant temperature denoted T a . The inner and outer cylinders are maintained at constant temperatures T i and T o respectively. Thus, the heat transfer is driven by three main parameters, two heating factors κ i and κ o for the inner and outer cylinders respectively and the Prandtl number P r defined as follows:

κ i = T i -T a T a = 0.117 κ o = T o -T a T a = 0.245 0.01 ≤ P r = ν σ ≤ 12
with σ the thermal diffusivity of the fluid. The two heating factors κ i = 0.117 and κ o = 0.245, which are proportional to Gr/Re 2 i , where Gr is the Grashof number based on the temperature T a , are small enough to make the hypothesis of no density variation as the gravitational effects are small compared to the inertial effects (Gr << Re 2 i ).

The relevant parameters to study heat transfer are the local Nusselt numbers along the inner and outer cylinders defined as:

N u i (z) = R o -R i T i -T a ∂T ∂r | i (z) (1) N u o (z) = R o -R i T o -T a ∂T ∂r | o (z) (2) 
We also define the averaged Nusselt numbers N u i and N u o , which are the averaged values of the local Nusselt numbers along the heated surfaces, defined as follows:

N u i = R o -R i h 1 T i -T a h 0 ∂T ∂r | i (z)dz (3) N u o = R o -R i h 1 T o -T a h 0 ∂T ∂r | o (z)dz (4) 

III. STATISTICAL MODELING

The predictions of the present Reynolds Stress Model (RSM) developed by Elena and Schiestel [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF][START_REF] Schiestel | Modeling of anisotropic turbulence in rapid rotation[END_REF][START_REF] Elena | Turbulence modeling of confined flow in rotating disk systems[END_REF] have already been validated in various rotating cavities including rotor-stator configurations with throughflow [START_REF] Poncet | Écoulements de type rotor-stator soumis à un flux axial: de Batchelor à Stewartson[END_REF][START_REF] Poncet | Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow[END_REF][START_REF] Haddadi | Turbulence modeling of torsional couette flows[END_REF][START_REF] Poncet | Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow[END_REF] and Von Kármán flows between counter-rotating impellers [START_REF] Poncet | Turbulence modeling of the Von Kármán flow: viscous and inertial stirrings[END_REF] for different geometries and a wide range of rotation rate, imposed throughflow and type of fluid. Elena and Schiestel [START_REF] Elena | Turbulence modeling of confined flow in rotating disk systems[END_REF] showed that this level of closure is adequate in such flow configurations, while the usual k -model, which is blind to any rotation effect presents serious deficiencies. The reader can refer to the previous works of Elena and Schiestel [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF][START_REF] Schiestel | Modeling of anisotropic turbulence in rapid rotation[END_REF][START_REF] Elena | Turbulence modeling of confined flow in rotating disk systems[END_REF] and Poncet et al. [START_REF] Poncet | Écoulements de type rotor-stator soumis à un flux axial: de Batchelor à Stewartson[END_REF][START_REF] Poncet | Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow[END_REF][START_REF] Haddadi | Turbulence modeling of torsional couette flows[END_REF][START_REF] Poncet | Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow[END_REF] for more details about the statistical modeling.

A. The differential Reynolds Stress Model

The flow studied here exhibits several complexities (high rotation rate, imposed throughflow, wall effects, strong curvature), which are a severe test for turbulence modeling methods. Our approach is based on onepoint statistical modeling using a low Reynolds number second-order full stress transport closure derived from the Launder and Tselepidakis [START_REF] Launder | Application of a new second-moment closure to turbulent channel flow rotating in orthogonal mode[END_REF] model and sensitized to rotation effects by Elena and Schiestel [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF][START_REF] Schiestel | Modeling of anisotropic turbulence in rapid rotation[END_REF].

It corresponds to the RSM3 model fully described in [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF]. This approach allows for a detailed description of near-wall turbulence and is free from any eddy viscosity hypothesis. The general equation for the Reynolds stress tensor R ij can be written:

dR ij dt = P ij + D ij + Φ ij -ij + T ij ( 5 
)
where P ij , D ij , Φ ij , ij , and T ij respectively denote the production, diffusion, pressure-strain correlation, dissipation and extra terms. The diffusion term D ij is split into two parts: a turbulent diffusion D T ij , which is interpreted as the diffusion due to both velocity and pressure fluctuations [START_REF] Daly | Transport equation for turbulence[END_REF] and a viscous diffusion D ν ij , which cannot be neglected in the low Reynolds number region. In a classical way, the pressure-strain correlation term Φ ij can be decomposed as below:

Φ ij = Φ (1) ij + Φ (2) ij + Φ (w) ij (6) Φ (1)
ij is interpreted as a slow nonlinear return to isotropy and is modeled as a quadratic development in the stress anisotropy tensor, with coefficients sensitized to the invariants of anisotropy. This term is damped near the wall. The linear rapid part Φ

(2)

ij includes cubic terms. A wall correction Φ (w)
ij is applied to the linear part which is modeled using the Gibson and Launder hypothesis [START_REF] Gibson | Ground effects on pressure fluctuations in the atmospheric boundary layer[END_REF] with a strongly reduced numerical coefficient. However the widely adopted length scale k 3/2 ε -1 is replaced by the length scale of the fluctuations normal to the wall. The viscous dissipation tensor has been modeled in order to conform with the wall limits obtained from Taylor series expansions of the fluctuating velocities [START_REF] Launder | Asymptotic near-wall stress dissipation rates in a turbulent flow[END_REF]. The extra term T ij accounts for implicit effects of the rotation on the turbulence field. Indeed, high speed rotation produces indirect effects on the turbulence field that are not modeled in usual closures, even in second order closures. These effects modify the structure of the turbulence eddies in a complex manner that can be evidenced in two-point statistics [START_REF] Cambon | Spectral approach to non-isotropic turbulence subjected to rotation[END_REF]. A practical extension for one-point closures, to approximate the effects, has been developed by Elena and Schiestel [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF][START_REF] Schiestel | Modeling of anisotropic turbulence in rapid rotation[END_REF]. It consists in additionnal terms in the stress transport equations that act only when the flow is subjected to strong rotation. More precisely, the pressure-strain correlation is sensitized to the Reynolds and Cambon structure tensor. A spectral jamming term that enhances bidimensionality and the blocking effect of the spectral transfer are also included. These terms are fully explained and detailed analytically in [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF][START_REF] Poncet | Écoulements de type rotor-stator soumis à un flux axial: de Batchelor à Stewartson[END_REF] and their influences will be discussed in the following.

For the thermal field, as we consider only relatively small temperature differences, density is not significantly affected, which allows to dissociate the dynamical effects from the heat transfer process. Poncet and Schiestel [START_REF] Poncet | Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow[END_REF] obtained indeed very satisfactory results using this approach for temperature differences up to 75 K in similar geometries. Thus, the temperature equation writes:

∂T ∂t + V j T ,j = σT ,jj -F t j,j (7) 
where F t i is the turbulent flux approximated by a gradient hypothesis with a tensorial diffusive coefficient:

F t i = -c t k ε R ij T ,j (8) 
with c t = c µ /P r t = 0.1, c µ = ν t ε/k 2 = 0.09 a coefficient used to define the turbulent viscosity ν t and P r t = 0.9 the turbulent Prandtl number. It is indeed a common feature for two-dimensional computations in rotating flows and more generally for near-wall turbulent flows to fix the value of the turbulent Prandtl number P r t to 0.9 (see the monographs of Launder et al. [START_REF] Launder | Turbulence models and their applications[END_REF] and Schiestel [START_REF] Schiestel | Les écoulements turbulents: modélisation et simulation[END_REF]). The numerical work of Ong [START_REF] Ong | Computation of fluid flow and heat transfer in rotating disc systems[END_REF] and Iacovides and Chew [START_REF] Iacovides | The computation of convective heat transfer in rotating cavities[END_REF] can also be cited.

The effects of the anisotropy of the turbulence field and the implicit effects of rotation are included in the term kR ij /ε (Eq.8) for most of them.

B. Numerical method

The computational procedure is based on a finite volume method using staggered grids for mean velocity components with axisymmetry hypothesis in the mean and non staggered grids for the Reynolds stress tensor.

The code is steady elliptic. The velocity-pressure coupling is solved using the SIMPLER algorithm. In order to overcome stability problems, several stabilizing techniques are introduced in the numerical procedure.

Also, the stress component equations are solved using matrix block tridiagonal solution to enhance stability using non staggered grids.

To check the grid independence of the solution for Configuration 2, some crucial quantities for turbulent

Taylor-Couette flows have been considered: the mean tangential velocity component at mid-plane for the mean field and the maximum of the turbulence kinetic energy in the whole cavity for the turbulent field.

Table II shows that the (N P R = 180)×(N P Z = 400) mesh in the (r, z) frame provides the best arrangement between accuracy and CPU time compared to the other meshes considered. For this grid, the size of the thinner mesh is ∆ 1 r = 9 × 10 -8 h and ∆ 1 z = 3.89 × 10 -6 h in the radial and axial directions respectively.

It is also verified that the grid is sufficiently refined close the cylinders to describe accurately the viscous sublayers. For example, the wall coordinate r + = ∆ 1 ru * /ν (u * the friction velocity at the wall and ∆ 1 r the size of the first mesh in the radial direction) remains below 0.05 along both cylinders for configuration 2, which is quite below the classical value r + = 1, for which the viscous sublayer is described by at least 5 It has also been checked that the same grid arrangement provides a grid independent solution for the Configuration 1 corresponding to the experiments of Escudier and Gouldson [START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF]. Table III summarizes the computational details used in the present work. The 180 × 400 mesh in the (r, z) frame has then proved to be sufficient to get grid-independent solutions for both configurations. It will be used for all cases considered in the following. About 30000 iterations (20 hours) on the M2P2 cluster composed of 2 xeon quadcore 3

GHz are necessary to obtain the numerical convergence of the calculations.

C. Boundary conditions

For both configurations, all the variables are set to zero at the walls except for the tangential velocity V θ , which is set to ΩR i on the inner rotating cylinder and zero on the outer stationary cylinder. A linear profile for the mean tangential velocity component is imposed at the inlet as we the aspect ratio of the cavity is quite weak. Thus, V θ varies linearly from zero on the outer wall up to ΩR i on the inner wall. When a throughflow is enforced, a parabolic profile is then imposed for the axial velocity V z at the cavity inlet, with a given low level of turbulence intensity (1%). In the outflow section, the pressure is permanently fixed, whereas the derivatives for all the other independent quantities are set to zero if the fluid leaves the cavity, and fixed external values are imposed if reversed flow occurs. A special treatment for this type of mixed boundary conditions has been developed. During the calculation, if reversed flow occurs, an advection equation for all quantity is solved in a region located just outside the physical domain (see Poncet [START_REF] Poncet | Écoulements de type rotor-stator soumis à un flux axial: de Batchelor à Stewartson[END_REF]). It enables to moderate the evolution of these quantities and so to stabilize the calculations. Nevertheless, it is noteworthy that reversed flows have never been observed in the present work, whatever the values of the flow control parameters.

For Configuration 1, isothermal conditions are assumed. In Configuration 2, the temperature is fixed at the walls:

T = T i at r = R i and T = T o at r = R o .
The temperature of the incoming fluid is fixed to T a .

The velocity and thermal fields are initialized as follows: the fluid is at rest with a temperature of T a .

IV. VALIDATION OF THE RSM MODEL IN THE CONFIGURATION 1 OF ESCUDIER AND GOULDSON [7]

The predictions of the RSM model have already been widely validated in various rotating flow arrangements. Among others, we can cite the works on turbulent flows in a rotor-stator cavity with or without an imposed throughflow [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF][START_REF] Schiestel | Modeling of anisotropic turbulence in rapid rotation[END_REF][START_REF] Poncet | Écoulements de type rotor-stator soumis à un flux axial: de Batchelor à Stewartson[END_REF][START_REF] Poncet | Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow[END_REF][START_REF] Haddadi | Turbulence modeling of torsional couette flows[END_REF][START_REF] Elena | Turbulence modeling of confined flow in rotating disk systems[END_REF], with heat transfer effects [START_REF] Poncet | Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow[END_REF], and the work on the turbulent Von Kármán flow between counter-rotating disks equipped or not with straight blades [START_REF] Poncet | Turbulence modeling of the Von Kármán flow: viscous and inertial stirrings[END_REF]. Nevertheless, in order to show the detailed performances of the present model, our predictions are compared to the LDA measurements of Escudier and Gouldson [START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF] and to the k -ε model of Naser [START_REF] Naser | Prediction of newtonian and non-newtonian flow through concentric annulus with centerbody rotation[END_REF] in a very elongated Taylor-Couette system defined by L = 0.0041 and s = 0.506. In this section, the rotational Reynolds number is fixed to As a preliminary, we define the following dimensionless quantities: the dimensionless radial

r * = (r -R i )/(R o -R i )
and axial z * = z/h positions. Thus, r * = 0 on the inner cylinder and r * = 1 on the outer cylinder. In the same way, z * = 0 corresponds to the cavity inlet and z * = 1 to the outlet.

The mean tangential velocity component is normalized using the rotational speed of the inner cylinder ΩR i , whereas the mean axial velocity component is normalized using the mean axial velocity V z imposed at the inlet, defined by

V z = Q/(π(R 2 o -R 2 i )): V * θ = V θ /(ΩR i ) and V * z = V z /V z .
To enable direct comparisons with the measurements of Escudier and Gouldson [START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF], the tangential v θ and axial v z normal stresses are normalized by The laminar profiles (dotted lines) and the predictions of the k -ε model of Naser [START_REF] Naser | Prediction of newtonian and non-newtonian flow through concentric annulus with centerbody rotation[END_REF] (dash-dotted) for Cw = 17742 are also shown. implies a decrease of the rotating speed of the core region. Moreover, the tangential velocity is no more constant in the gap but is inversely proportional to the radius. Thus, the mean angular momentum is almost constant in that region.

V z : v * θ = v 2 θ /V z and v * z = v 2 z /V z .
There is only a weak effect of the flow rate coefficient on the radial distributions of the axial velocity (Fig. 2b). The profiles are close to the turbulent Poiseuille flow profiles in pipes with a nearly constant axial velocity in the gap and thin boundary layers on the cylinders. For this value of radius ratio s = 0.506, the profiles are almost symmetric. The profiles become flatter with increasing N as already noted by Nouri and Whitelaw [START_REF] Nouri | Flow of newtonian and non-newtonian fluids in a concentric annulus with rotation of the inner cylinder[END_REF]. It is noteworthy that, whatever the value of C w , the mean velocity profiles are far from the laminar profiles highlighting the turbulent nature of the flow.

For the mean field, the predictions of the RSM model are in very good agreement with the experimental data. The RSM predicts quite well the mean tangential velocity in the core of the flow. Moreover, it offers a good description of the boundary layer thicknesses along the cylinders as it can be seen from the mean axial velocity profiles. For C w = 17742, the RSM improves significantly the results of the k -ε of Naser [START_REF] Naser | Prediction of newtonian and non-newtonian flow through concentric annulus with centerbody rotation[END_REF],

which fails to predict the right profiles with large discrepancies for both the axial and tangential velocity components. The axial velocity is largely underestimated in the core and the tangential velocity is slightly overestimated. Fully developed conditions are reached at z * = 0.1 using the RSM in agreement with the observations of Escudier and Gouldson [START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF], whereas the predictions of the k -ε model of Naser [START_REF] Naser | Prediction of newtonian and non-newtonian flow through concentric annulus with centerbody rotation[END_REF] showed a large dependence of the tangential velocity profiles on the axial position. The main reasons for these discrepancies are that the k -ε model is blind to any rotation effects, and that the eddy viscosity concept, on which this model is based, is unsuitable with the present flow situation. On the contrary, the present RSM model is both sensitized to rotation effects [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF][START_REF] Elena | Turbulence modeling of confined flow in rotating disk systems[END_REF] and free from any eddy viscosity hypothesis. and Gouldson [START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF] and the LES results of Chung and Sung [START_REF] Chung | Large-eddy simulation of turbulent flow in a concentric annulus with rotation of an inner cylinder[END_REF]. It is attributed by Escudier and Gouldson [START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF] to the vortical structures observed for low C w values induced by the centerbody rotation. For high values of C w , the radial penetration of the rotational influence is reduced and turbulent fluctuations are suppressed as if there were no solid body rotation. The profiles of v * θ and v * z are asymmetric for the highest value of the rotation parameter N = 0.968 (C w = 2839) in agreement with [START_REF] Chung | Large-eddy simulation of turbulent flow in a concentric annulus with rotation of an inner cylinder[END_REF], which can be attributed to the destabilizing effect of the centrifugal forces. All these phenomenons are well reproduced by the RSM, which predicts also quite good the turbulent intensities in the core of the flow. Some discrepancies are obtained in the boundary layers, especially for the peak values very close to the walls. The variations in the radial direction of the turbulent levels along each cylinder are also smoother than the experimental ones, which was also the case for the LES results of Chung and Sung [START_REF] Chung | Large-eddy simulation of turbulent flow in a concentric annulus with rotation of an inner cylinder[END_REF] against the measurements of Nouri and Whitelaw [START_REF] Nouri | Flow of newtonian and non-newtonian fluids in a concentric annulus with rotation of the inner cylinder[END_REF].

Considering also the previous validations in various interdisk cavities [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF][START_REF] Poncet | Écoulements de type rotor-stator soumis à un flux axial: de Batchelor à Stewartson[END_REF][START_REF] Poncet | Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow[END_REF][START_REF] Haddadi | Turbulence modeling of torsional couette flows[END_REF][START_REF] Poncet | Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow[END_REF][START_REF] Poncet | Turbulence modeling of the Von Kármán flow: viscous and inertial stirrings[END_REF], the second order model can now be used confidently to carry a parametric study of turbulent Taylor-Couette-Poiseuille flows with heat transfers in a narrow gap cavity characterized by a very small aspect ratio L = 0.013 and a large radius ratio s = 0.961 and for a wide range of the flow parameters (the Reynolds number Re i , the flow rate coefficient C w and the Prandtl number P r).

V. BASIC CASE IN CONFIGURATION 2

Configuration 2 (see Table I) is now considered. Before performing a parametric study, a basic case (Re i = 10216, C w = 14858, N = 4.24 and P r = 0.7) is investigated in details to fully depict the hydrodynamic and thermal fields. We recall that the boundary conditions imposed at z * = 0 correspond to the laminar regime with a linear [START_REF] Chung | Large-eddy simulation of turbulent flow in a concentric annulus with rotation of an inner cylinder[END_REF]. This behavior is analogous to the turbulent torsional Couette flow found in very flat rotor-stator disk cavities [START_REF] Haddadi | Turbulence modeling of torsional couette flows[END_REF]. V * θ is exactly equal to 0.5 at mid-radius, which is to be compared to the theoretical value 0.48 of Polkowski [START_REF] Polkowski | Turbulent flow between coaxial cylinders with inner cylinder rotating[END_REF], whereas Kuosa et al. [START_REF] Kuosa | Numerical and experimental modelling of gas flow and heat transfer in the air gap of an electric machine[END_REF] obtained 0.083 with the k -ω SST model. Note that this swirl level is much higher than the measured or computed one obtained in the case of the Escudier and Gouldson's [START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF] experiment, which is a direct effect of both the narrow gap between the walls and to the high value of the rotation parameter N = 4.24 considered here. From the radial profiles in figure 4, we can deduce the thicknesses of the boundary layers δ V i and δ V o on the inner and outer cylinders respectively. δ V i (resp. δ V o ) is the height at which the mean tangential velocity component reaches 99% (resp. 1%) of ΩR i . For 0.2 ≤ z * ≤ 0.8, these thicknesses are almost constant and equal to δ V i /(∆R) = 0.03 and δ V o /(∆R) = 0.04.

In the outlet section (z * = 1) where a given pressure is imposed, absolutely no reversed flow has been observed in the present case. It can be seen also from the streamline patterns shown in Figure 6a. The small contraction of the streamlines at the outlet is only due to the apparent aspect ratio 0.345 of Figure 6a, which does not respect the real aspect ratio of the cavity equal to 0.013. At the outlet, V * θ varies non monotonously with r * . Close to the inner rotating cylinder, it varies very quickly from 0.1 for r * = 0.1 to 1 on the rotor. The axial velocity profile tends to the laminar profile at the outlet with a strong axial velocity in the center of the gap. As for the hydrodynamic mean flow, the temperature field T * does not depend on the axial position for z * ≥ 0.4 (Fig. 4c). Note that the temperature T is normalized as follows: T * = (T -T a )/(T o -T a ). Thus, T * = 0 in the inlet section (z * = 0) and T * = 1 along the outer cylinder (r * = 1), where the highest temperature is reached (see also figure 6c). The mean temperature profiles can also be divided into three areas: two thermal boundary layers separated by a region, where the temperature is quasi constant. For z * ≥ 0.4, the temperature reached in the core region tends to T * = 0.768. It is slightly higher than the value T * = 0.738 corresponding to the average value between the cylinder temperatures T i and T o . It shows in particular the dominating influence of the (warmest) outer cylinder. For this set of parameters, rotation effects on the mean flow are dominant compared to the superimposed throughflow as the value of the rotation parameter N = 4.24 is high. Thus, the residence time of the incoming fluid (at T * = 0) inside the cavity is large enough for the walls to warm significantly the fresh incoming fluid. It explains why the mean temperature remains in the range 0.7 ≤ T * ≤ 0.9 (Figure 6c). From the temperature profiles in figure 4c, we can evaluate the thicknesses of the thermal boundary layers denoted δ T i and δ T o on the inner and outer cylinders respectively. δ T i (resp. δ T o ) is the height at which the mean temperature reaches 99% (resp. 1%) of the averaged temperature in the core. Thus, δ T i /∆R = 0.023 and δ T o /∆R = 0.06 for 0.4 ≤ z * ≤ 0.8. As expected, the thermal boundary layer is thicker than the hydrodynamic one along the stator. The Prandtl number, which compares the hydrodynamic and thermal boundary layer thicknesses, is indeed equal to P r = 0.7 ≤ 1 in the present case. as A 2 = a ij a ji and A 3 = a ij a jk a ki [START_REF] Lumley | Computational modeling of turbulent flows[END_REF]. The results of the RSM model respect the realizability diagram of Lumley [START_REF] Lumley | Computational modeling of turbulent flows[END_REF] as they remain within the region delimited by the two lines corresponding to the axisymmetric

flow A 3 = ±A 3/2 2 /
√ 6 and the straight upper one corresponding to the two-component limit

A 3 = A 2 -8/9.
It confirms that the turbulence is almost isotropic in the core region as the curve tends to the origin point (A 2 = 0, A 3 = 0). On the other way, the curve slightly tends to the one component limit (upper right corner in Figure 7) close to the walls.

C. Turbulence kinetic energy budgets

To highlight the influence of the additionnal terms taking into account the implicit effects of rotation on turbulence in the present RSM, budgets for the turbulence kinetic energy transport equation are here performed. The equation for the turbulence kinetic energy k is given in [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF] as:

dk dt = P + D T + D ν -+ D R + J (9)
The terms D R and J model two implicit effects of rotation on turbulence. D R is an inhomogeneous diffusion term, which slows down the tendancy of bidimensionalization close to the walls. Its empirical term takes also into account the significant increase of the turbulent diffusion due to the triple fluctuating velocity correlation and to the fluctuating pressure in the case of strong rotation. Another characteristic phenomenon due to rotation is a reduction of the energy transfer from large to small turbulent scales. This last phenomenon is modeled here through an inverse flux J. All details about these terms can be found in [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF]. Budgets for the turbulence kinetic energy k (normalized here by (Ωh) 2 ) are presented in Figure 8 at midheight of the cavity in both boundary layers. The transport of k is mainly governed by the production P and the dissipation terms, which compensate almost each other. The molecular D ν and turbulent D T diffusion terms can not be neglected close to the walls. In the viscous sublayers, where low Reynolds numbers are reached, D ν compensates exactly the dissipation , whereas the term D T is almost zero. The inhomogeneous diffusion term D R , which usually flattens the turbulence kinetic energy by diffusion along the rotation axis [START_REF] Poncet | Écoulements de type rotor-stator soumis à un flux axial: de Batchelor à Stewartson[END_REF], does not contribute here to the k budgets. The inverse flux J, which increases the turbulence level in the core of the flow, has only a weak contribution to the k budgets in both boundary layers, which does not mean that it does not affect the mean and turbulent fields. It can be noticed that the values reached along the stationary outer cylinder are much higher (in absolute value) than those obtained along the inner rotating one. It confirms in particular the RSM predictions of Poncet [START_REF] Poncet | Écoulements de type rotor-stator soumis à un flux axial: de Batchelor à Stewartson[END_REF] in the case of rotor-stator disk flows with throughflow.

The influence of the additionnal terms contained in T has been already addressed by Elena and Schiestel [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF] for rotor-stator disk flows. They compared the predictions of three low-Reynolds number RSM models from the basic model of Hanjalic and Launder [START_REF] Hanjalic | Contribution towards a reynolds-stress closure for low-reynolds number turbulence[END_REF] to the final version described here. The introduction of the new terms did not produce important changes. Nevertheless, the final model was found to improve the predictions of the former ones. The turbulence levels close to the rotor and the location of the relaminarized and turbulent regions were in particular better predicted. From the isotherm maps shown in figure 6c, we can deduce the axial distributions of the local Nusselt numbers N u i and N u o along the inner and outer cylinders respectively defined in equations ( 1) and (2). In figure 9, we can notice strong variations of N u i and N u o for z * ≤ 0.4. For z * ≥ 0.4, as the mean temperature does not depend anymore on the axial location z * , the local Nusselt numbers are nearly constant. N u i tends to 0 for z * = 0.15 as the incoming fluid warms and reaches the same temperature than the inner cylinder at this axial location. At z * 0.15, N u o reaches a maximum, because the incoming cold fluid is ejected to the outer cylinder due to the centrifugal force and so keeps a relatively low temperature. Giret [START_REF] Giret | Transferts thermiques convectifs dans le cadre de machines tournantes[END_REF] did not measure the heat transfer coefficients close to the inlet where the strong variations are expected. Nevertheless, he observed also a strong decrease of N u i from z * 0.15 to z * 0.8.

D. Distributions of the local Nusselt numbers

VI. INFLUENCE OF THE FLOW PARAMETERS

After having depicted the hydrodynamic and thermal fields for a basic case, 18 calculations have been performed to investigate the influence of the flow control parameters: the rotational Reynolds number Re i , the flow rate coefficient C w and the Prandtl number P r.

A. Hydrodynamic field

The influences of the rotational Reynolds number Re i and the flow rate coefficient C w on the mean velocity profiles are shown in Figure 10 at mid-height for 3744 ≤ Re i ≤ 37443 and 0 ≤ C w ≤ 30000.

For a given flow rate C w = 5000, the tangential velocity is inversely proportional to the radius for the lowest value of Re i = 3744 corresponding to a rotation parameter N equal to 4.61 (Fig. 10a). It tends to the classical laminar profile in Taylor-Couette flow. For increasing values of Re i (or N ), the tangential velocity at mid-radius decreases. A center body rotation progressively appears and is combined with a thinning of the boundary layers. The core region rotates at approximately 46% of the inner cylinder speed for Re i = 37443 (N = 46.14) and V * θ is constant over a large radial extension. In the same time, the radial distributions of the axial velocity (Fig. 10b) flatten even the influence of the rotation is quite weak for this range of parameters.

The rotational Reynolds number is now fixed to Re i = 10216 and the flow rate coefficient varies between 0 (N tends to infinity) and C w = 3 × 10 4 (N = 2.1). The influence of C w on the mean velocity profiles remains weak for this set of parameters (Fig. 10c,d). It shows in particular that the rotation parameter does not play any crucial role on the flow structure for the range of parameters considered here. More interesting is the effect of the Reynolds number on the turbulent field illustrated by the radial distributions of the turbulence kinetic energy k * at mid-height z * = 0.5 (Fig. 11a). Whatever the value of Re i , the turbulence is concentrated in the core of the flow with slightly higher turbulence intensities on the outer cylinder side and vanishes towards the walls. The normalized turbulence kinetic energy

k * = k/(ΩR i ) 2
decreases for increasing values of the Reynolds number, because of the normalization by (ΩR i ) 2 . As expected, k is an increasing function of the rotation rate but it appears that, above a certain threshold, Re i has only a weak influence on the turbulence intensities, whereas (ΩR i ) 2 still increases. The effect of the superimposed throughflow on the turbulent field is presented in figure 11b for 0 ≤ C w ≤ 30000 also at mid-height z * = 0.5. The shape of the radial profiles remains the same. The turbulence kinetic energy k * increases with increasing values of C w . The superimposed throughflow acts as the rotation rate on the turbulence. It can be explained by considering the effective Reynolds number Re e = V e ∆R/ν, which is based on the efficient velocity V e = V z 2 + α(ΩR i ) 2 , where α is a weighting coefficient fixed in general to 0.25 [START_REF] Lee | Heat transfer characteristics of the annulus of two-coaxial cylinders with one cylinder rotating[END_REF][START_REF] Gazley | Heat transfer characteristics of the rotational and axial flow between concentric cylinders[END_REF][START_REF] Tachibana | Convective heat transfer of the rotational and axial flow between two concentric cylinders[END_REF]. Note that this value is obtained by supposing that the tangential velocity of the fluid in the gap is half the peripheral velocity of the inner cylinder for narrow gap cavity. This increase is less noticeable for low values of C w (0 ≤ C w ≤ 2500) because, in this range, the mean and turbulent flow fields are mainly dominated by the rotation of the inner cylinder. The effect of the flow rate coefficient on the temperature field (Fig. 12f-12j) is more noticeable than the one of the Reynolds number. Without any superimposed throughflow (Fig. 12f), the isotherms are parallel to the rotation axis and T * mid is equal to 0.841, which is much warmer than the average temperature 0.738 between the two walls, showing the preponderant effect of the outer cylinder. When the flow rate coefficient increases, the isotherms get progressively inclined. For the highest value C w = 30000 (Fig. 12j), the effect of 

B. Thermal field

C. Correlations

These 18 sets of parameters cover a wide range of the rotation parameter N : from 2.1 up to infinity, when no throughflow is superimposed. Thus, for all cases, the parameter N is higher than 0.8, which ensures that the Nusselt numbers depend on both the rotation Ω and the axial throughflow Q (see in [START_REF] Kuzay | Turbulent heat transfer studies in annulus with inner cylinder rotation[END_REF]). 

Averaged Nusselt numbers

From the isotherm maps (Fig. 12) and using equations ( 3) and (4), we can calculate the averaged Nusselt numbers N u i and N u o for the inner and outer cylinders respectively. From an engineering point of view, it is quite interesting to provide correlations for N u i and N u o according to the flow control parameters (Re i , C w and P r). Figure 16 shows that the averaged Nusselt numbers on both cylinders can be correlated according to the three flow parameters as follows: These results are in agreement with previous results in various rotating flow arrangements. For turbulent rotating flows, the mean Nusselt number is usually proportional to Re 0.8 [START_REF] Owen | Flow and Heat Transfer in Rotating-Disc Systems[END_REF], which is the case in rotor-stator disk cavities [START_REF] Poncet | Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow[END_REF] and also in Taylor-Couette systems [START_REF] Kuosa | Numerical and experimental modelling of gas flow and heat transfer in the air gap of an electric machine[END_REF]. In rotor-stator disk cavities, the exponent varies between 0.7 [START_REF] Poncet | High-order les of turbulent heat transfers in a rotor-stator cavity[END_REF] and 0.89 [START_REF] Roy | A study of convective heat transfer in a model rotor-stator disk cavity[END_REF], which confirms the relevance of the present results.

N u i = 0.0291 × Re 0.82 i × P r 0.3 × C 0.09 w ( 10 
In the present case, we found that N u i ∝ C 0.09 Our results appear then to be in good agreement with this previous study in an other rotating flow system.

The dependance of N u i and N u o on the Prandtl number is quite different between the two cylinders.

In Taylor-Couette systems, N u is usually known to be proportional to P r β , with β equal or close to 0.3, which is characteristic of heat transfer under the forced convection over a rotating cylinder. Aoki et al. [START_REF] Aoki | Convective heat transfer in an annulus with an inner rotating cylinder[END_REF] proposed β = 0.3 for 360 ≤ Re i ≤ 2274 and Tachibana and Fukui [START_REF] Tachibana | Convective heat transfer of the rotational and axial flow between two concentric cylinders[END_REF] found β = 1/3. Our results along the inner cylinder match quite well with these previous results as N u i ∝ P r 0.3 in the present case.

But there is also a large variability in the values of β depending especially on the temperature distributions imposed at the walls (effect of the Grashof number Gr or of the heating factors κ i and κ o ) and on the geometry (ratio ∆R/R i ). Aoki et al. [START_REF] Aoki | Convective heat transfer in an annulus with an inner rotating cylinder[END_REF] showed indeed that N u ∝ Gr 0.29 . Among others, we can cite the numerical work of Kuosa et al. [START_REF] Kuosa | Numerical and experimental modelling of gas flow and heat transfer in the air gap of an electric machine[END_REF] and the experimental one of Lee and Minkowycz [START_REF] Lee | Heat transfer characteristics of the annulus of two-coaxial cylinders with one cylinder rotating[END_REF], who proposed β = 0.4 or the work of Simmers and Coney [START_REF] Simmers | A Reynolds analogy solution for the heat transfer characteristics of combined Taylor vortex and axial flows[END_REF], who obtained N u ∝ C(P r)P r, with C a function of P r.

In the case of a turbulent rotor-stator flow, Owen and Haynes [START_REF] Owen | Design formulae for the heat loss and frictional resistance of air-cooled rotating discs[END_REF] found β = 0.6. Thus, it appears difficult to provide definitive conclusions concerning the correlation between the averaged Nusselt number and the Prandt number along the outer cylinder. Nevertheless, the value β = 0.8 found here, remains in the range [0.4 -1]. The reader can refer to the PhD theses of Fasquelle [START_REF] Fasquelle | Contribution à la modélisation multi-physique: électro-vibro-acoustique et aérothermique de machines de traction[END_REF] and Giret [START_REF] Giret | Transferts thermiques convectifs dans le cadre de machines tournantes[END_REF], who performed a large review of previous works in Taylor-Couette systems with or without axial throughflow, grooved or ungrooved cylinders and, who provided numerous correlations for the Nusselt number against all flow parameters. Comparisons between the correlation [START_REF] Kaye | Modes of adiabatic and diabatic fluid flow in an annulus with an inner rotating cylinder[END_REF] and previous results [START_REF] Giret | Transferts thermiques convectifs dans le cadre de machines tournantes[END_REF][START_REF] Bouafia | Analyse expérimentale des transferts de chaleur en espace annulaire étroit et rainuré avec cylindre intérieur tournant[END_REF][START_REF] Grosgeorges | Contribution à l'étude du refroidisement d'une paroi tournante par air chargé d'huile[END_REF][START_REF] Peres | Contribution à l'analyse de l'écoulement et des transferts convectifs dans un espace annulaire lisse ou encoché par voie de simulations numériques[END_REF].

To validate the correlation law [START_REF] Kaye | Modes of adiabatic and diabatic fluid flow in an annulus with an inner rotating cylinder[END_REF] along the rotor and to highlight the influence of the rotation rate Ω and of the flow rate coefficient C w on the heat transfer coefficient, our results are compared to previous experimental [START_REF] Giret | Transferts thermiques convectifs dans le cadre de machines tournantes[END_REF][START_REF] Bouafia | Analyse expérimentale des transferts de chaleur en espace annulaire étroit et rainuré avec cylindre intérieur tournant[END_REF][START_REF] Grosgeorges | Contribution à l'étude du refroidisement d'une paroi tournante par air chargé d'huile[END_REF] and numerical [START_REF] Peres | Contribution à l'analyse de l'écoulement et des transferts convectifs dans un espace annulaire lisse ou encoché par voie de simulations numériques[END_REF] data for a given Prandtl number P r = 0.7 and three values of the flow rate coefficient (see Figure 17). For these parameters, the law (10) reduces to the form:

N u i = N u i0 + α × Ω 0.82 (12) 
where the averaged Nusselt number N u i0 has been obtained in the configuration of Giret [START_REF] Giret | Transferts thermiques convectifs dans le cadre de machines tournantes[END_REF] (s = 0.99 and L = 0.003) without rotation (Ω = 0). The coefficient α depends on C 0.09 w . The values of N u i0 and α are given in Table IV for the three flow rates considered by Giret [START_REF] Giret | Transferts thermiques convectifs dans le cadre de machines tournantes[END_REF]. [START_REF] Aoki | Convective heat transfer in an annulus with an inner rotating cylinder[END_REF] for the three flow rates considered by Giret [START_REF] Giret | Transferts thermiques convectifs dans le cadre de machines tournantes[END_REF].

mass
A relatively good agreement is observed between the present results and the experimental data of Giret [START_REF] Giret | Transferts thermiques convectifs dans le cadre de machines tournantes[END_REF] for Ω up to 1500 rpm whatever the value of C w . The better agreement is obtained for the intermediate value of the flow rate coefficient C w = 21368. This new correlation [START_REF] Aoki | Convective heat transfer in an annulus with an inner rotating cylinder[END_REF] improves the correlation of Grosgeorges [START_REF] Grosgeorges | Contribution à l'étude du refroidisement d'une paroi tournante par air chargé d'huile[END_REF] and most of all the one of Bouafia et al. [START_REF] Bouafia | Analyse expérimentale des transferts de chaleur en espace annulaire étroit et rainuré avec cylindre intérieur tournant[END_REF], which overestimates N u i whatever the value of the rotation rate. The numerical results of Peres [START_REF] Peres | Contribution à l'analyse de l'écoulement et des transferts convectifs dans un espace annulaire lisse ou encoché par voie de simulations numériques[END_REF] fail to predict the good tendency as the averaged Nusselt number varies slightly against the rotation rate. For all correlations, the main discrepancy for the heat transfer coefficient along the rotor is observed for very high rotation rates (Ω = 2000 rpm). Giret [START_REF] Giret | Transferts thermiques convectifs dans le cadre de machines tournantes[END_REF] did not provide any explanation for the weak values of N u i obtained for Ω = 2000 rpm. Note that the same experimental results are not available along the stator, which prevents from doing the same comparisons along the other cylinder.

  κ i , κ o Heating factors for the inner and outer cylinders respectively. ν Kinematic viscosity of the fluid (m 2 /s). Ω Rotation rate of the inner cylinder (rad/s). Ψ Stream function. σ Thermal diffusivity of the fluid (m 2 /s). * denotes a normalized quantity. a denotes a quantity for the incoming fluid. i denotes a quantity on the inner cylinder.
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 7 performed velocity measurements by Laser Doppler Anemometry (LDA) in a cavity characterized by L = 0.0041 and s = 0.506 for various flow conditions (rotation rate Ω and flow rate Q) and different fluids including Newtonian and shear-thinning fluids. For the Newtonian fluid in the turbulent regime, the radial distribution of the axial velocity and the pressure drop are similar to the ones observed in pipe flows. The radial distribution of the tangential velocity reveals a flow structure divided into three regions: two very thin boundary layers, one on each cylinder, separated by a central core in near solid body rotation. The main effect of the superimposed axial throughflow is to reduce the tangential velocity in the core region. Nouri and Whitelaw [15] measured the three mean velocity components and the associated Reynolds stress tensor of the flow subjected to an axial superimposed throughflow in a concentric annulus (L = 0.0102, s = 0.496) with or without rotation of the inner cylinder. Compared to the non-rotating case (for a given flow rate coefficient C w = Q/(νR o ) = 42306), the rotation of the inner cylinder at Ω = 300 rpm (rotational Reynolds number Re i = ΩR i (R o -R i )/ν = 1616.6) does not affect the drag coefficient and the radial distribution of the mean axial velocity in the turbulent regime. It slightly enhances turbulence intensities especially close to the walls. For C w = 125039, there is absolutely no effect of the rotation of the inner shaft on both the mean axial flow and turbulence intensities. In a further paper, Nouri and Whitelaw [16] extended their work to the case of eccentric cylinder arrangements and proposed a review of previous works on Taylor-Couette flows including Newtonian and non-Newtonian fluids and rotating and non rotating flows. Bouafia et al.[START_REF] Bouafia | Analyse expérimentale des transferts de chaleur en espace annulaire étroit et rainuré avec cylindre intérieur tournant[END_REF] 

  conducted numerical predictions using a modified version of the Launder-Sharma k -ε model for turbulent mixed convection of air in a concentric horizontal rotating annulus. This model includes both the Yap correction and the Kato-Launder modification, which slightly improves the predictions compared to the classical Launder and Sharma model. The authors performed a parametric study of the fluid flow and heat transfer for various radius ratios 0.1 ≤ s ≤ 0.385, Reynolds numbers 0 ≤ Re i ≤ 10 5 and Rayleigh numbers 10 7 ≤ Ra ≤ 10 10 . For this range of Ra, they highlighted the three-dimensional structure of the flow with a two-cell structure in a (r, θ) plane for Re up to 10 4 . Kuosa et al. [19] considered the cooling of high-speed electrical machines, where only the inner cylinder is rotating. They compared the predictions of three different models: an algebraic modeling, a low-Reynolds number k -ε modeling and a k -ω SST model. The hydrodynamic and thermal fields are established for various rotation rates and mass flow rates.

Figure 1 :

 1 Figure 1: Schematic representation of the Taylor-Couette-Poiseuille configuration with relevant notations.

  Re i = 961.07 and the comparisons are performed at a given axial position z * = z/h = 0.1 for three values of the flow rate coefficient: C w = 2839, 5914, 17742. Thus, three values of the rotation parameter are considered: N = 0.968, 0.465, 0.148.

Figure 2 :

 2 Figure 2: Radial distributions of the mean (a) tangential and (b) axial velocity components for L = 0.0041, s = 0.506 and Rei = 961.1 at z * = 0.1; Comparisons between the present RSM (lines) and the LDA measurements of Escudier and Gouldson [7] (symbols) for three values of C w : C w = 2839 (×, -), C w = 5914 ( , --) and C w = 17742 (•, .-).

Figure 2

 2 Figure2shows the distributions of the dimensionless mean tangential and axial velocity components at z * = 0.1. For the two lowest values of C w , the tangential velocity profiles (Fig.2a) exhibit a structure divided into three regions: two thin boundary layers developed on each cylinder separated by a core rotating at a constant velocity. The central region rotates at 32% (resp. 34%) of the cylinder speed for (C w = 2839; N = 0.968) (resp. (C w = 5914; N = 0.465)) well below the value 0.53 given by Taylor[START_REF] Taylor | Distribution of velocity and temperature between concentric rotating cylinders[END_REF] in the absence of throughflow. The flow is here mainly governed by the rotation for these values of N . A decrease of the rotation parameter to N = 0.148 (corresponding to an increase of the flow rate coefficient to C w = 17742)

Figure 3 :

 3 Figure 3: Radial distributions of the (a) tangential v * θ and (b) axial v * z normal Reynolds stress tensor components. See legend of Figure 2.

Figure 3

 3 Figure 3 presents the radial distributions of the tangential and axial normal Reynolds stress tensor components for the same sets of parameters. Turbulence is mainly concentrated in the core region and vanishes towards the walls. The tangential and axial velocity fluctuations show a progressive decrease with increasing flow rate coefficient (or decreasing rotation parameter) in agreement with the experimental data of Escudier

A. Mean fieldFigure

  Figure 4a and 4b present the radial profiles of the mean tangential and axial velocity components respectively, at different axial positions z * . The mean radial velocity component is not shown as it is quasi zero in the whole cavity. The mean flow is helical: the main flow is tangential due to the rotation of the inner cylinder (Taylor-Couette flow) and the secondary flow is essentially axial due to the superimposed throughflow (Poiseuille flow), which is confirmed by the streamline patterns shown in figure 6a.

Figure 4 :

 4 Figure 4: Radial profiles of the mean (a) tangential velocity component V * θ , (b) axial velocity component V * z and (c) dimensionless temperature T * for different axial positions z * and Rei = 10216, Cw = 14858 and P r = 0.7.

Figure 5 :

 5 Figure 5: Radial profiles of the six Reynolds stress tensor components and of the turbulence kinetic energy for Re i = 10216, C w = 14858 and P r = 0.7 at z * = 0.5.

Figure 5

 5 Figure5shows the radial profiles of the six Reynolds stress tensor components R * ij and of the turbulence kinetic energy k * at mid-height z * = 0.5 for the same set of parameters. Note that, in the following, the
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 67 Figure 6: Re i = 10216, C w = 14858 and P r = 0.7. Isovalues of: (a) the stream function Ψ * = Ψ/(ΩR 2 0 ), (b) the turbulence Reynolds number Re t = k 2 /(νε), (c) the temperature T * . Apparent aspect ratio equal to 0.345.

Figure 7

 7 Figure 7 shows the anisotropy invariant map for the Reynolds stress tensor at z * = 0.5. The second A 2 and third A 3 invariants of the anisotropy tensor a ij of the second moments of the fluctuations are defined

Figure 8 :

 8 Figure 8: Turbulence kinetic energy budgets at z * = 0.5 along both cylinders for Re i = 10216, C w = 14858 and P r = 0.7.

Figure 9 :

 9 Figure 9: Axial distributions of the local Nusselt numbers along both disks for Re i = 10216, C w = 14858 and P r = 0.7.

Figure 10 :

 10 Figure 10: Influence of the Reynolds number Re i on the mean (a) tangential and (b) axial velocity components for P r = 0.7 and C w = 5000 at z * = 0.5; Influence of the flow rate coefficient C w on the mean (a) tangential and (b) axial velocity components for P r = 0.7 and Re i = 10216 at z * = 0.5.

Figure 11 :

 11 Figure 11: Radial distributions of the turbulence kinetic energy k * for z * = 0.5 and P r = 0.7: (a) Influence of the Reynolds number (C w = 5000) and (b) influence of the flow rate coefficient (Re i = 10216).

Figure 12 presents

 12 Figure12presents the isotherm maps in a (r, z) plane for all the cases considered here highlighting the influence of the flow parameters on the thermal field. The effect of the Reynolds number is illustrated by comparing figures 12a to 12e for C w = 5000 and P r = 0.7. For a given superimposed throughflow, when the rotation rate of the inner cylinder is increased, the centrifugal effect increases. The main flow is still helical but the thread of the screw gets even smaller. As a consequence, the time of residence increases with increasing

C

  w is preponderant compared to the effect of the rotation rate (N = 2.1). T * mid appears to be a decreasing function of C w following the quadratic law:T * mid = -1.3 × 10 -10 C 2 w -2.6 × 10 -6 C w + 0.84. It is simply dueto the fact that the fresh incoming fluid spends a shorter time in the cavity when C w is high (N is low).We now investigate the influence of the Prandtl number P r on the thermal field for Re i = 10216, C w = 14858 and 0.01 ≤ P r ≤ 12. P r = 0.01 is a typical value for liquid metals, P r = 0.7 -1 for gases (P r = 0.71 for air at 20 • C) and P r = 2 -12 for water. For P r = 0.01 (Fig.12k), the heat transfer process is dominated by conduction from the outer to the inner cylinder. For this Prandtl number, the fluid behaves thermally like a solid. The isotherms are then parallel to the rotation axis except very close to the inlet region. The mean temperature increases linearly from the hub to the shroud. When the Prandtl number P r = ν/σ increases (Fig.12l -12o), the thermal diffusivity of the fluid σ decreases. Thus, the characteristic time for the heat transfer between the cylinders and the fluid increases. As the residence time of the fluid in the cavity remains the same (Re i and C w being constant), the fluid requires more time to exchange heat with the walls. The thermal effects diminish then with increasing values of P r and the flow behavior is essentially hydrodynamic. That is the reason why the mean temperature in the center of the cavity T * mid decreases for increasing values of P r following the quadratic law: T * mid = 0.0014P r 2 -0.052P r + 0.79.

Figure 12 :

 12 Figure 12: Isovalues of the mean temperature T * . Influence of the Reynolds number for C w = 5000, P r = 0.7: (a) Re i = 3744, (b) Re i = 10216, (c) Re i = 14959, (d) Rei = 26189, (e) Rei = 37443. Influence of the flow rate coefficient for Re i = 10216, P r = 0.7: (f) C w = 0, (g) C w = 10 3 , (h) C w = 5 × 10 3 , (i) C w = 14858, (j) C w = 3 × 10 4 . Influence of the Prandtl number P r for Rei = 10216, Cw = 14858: (k) P r = 0.01, (l) P r = 0.7, (m) P r = 2, (n) P r = 7, (o) P r = 12.

1 .Figure 13 :Figure 14 :

 11314 Figure 13: Local Nusselt numbers along both cylinders for Cw = 5000, P r = 0.7 and different Reynolds numbers Re i : (a) Axial profiles; (b) Variations against Re i at mid-height z * = 0.5.

Figure 15a shows theFigure 15 :

 15 Figure15ashows the axial distributions of the local Nusselt numbers for Re i = 10216, C w = 14858 and different Prandtl numbers. For liquid metals (P r = 0.01), both N u i and N u o are quite low and remain independent of z * , which reflects the dominating influence of the molecular diffusivity on the heat transfer process. For higher Prandtl numbers P r ≥ 0.7, N u i decreases for increasing values of z * , reaches a minimum value at a given axial location and then increases weakly when moving towards the cavity outlet.The minimum value is obtained when the fluid is at approximately the same temperature than the wall. The axial location for which N u i reaches this minimum value is shifted towards the outlet for increasing Prandtl numbers. Along the outer cylinder, N u o increases for increasing P r values. For gases (P r = 0.7) and liquids (P r =[START_REF] Schiestel | Modeling of anisotropic turbulence in rapid rotation[END_REF][START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF][START_REF] Aoki | Convective heat transfer in an annulus with an inner rotating cylinder[END_REF]), N u o reaches a maximum close to the cavity inlet and diminishes for larger axial locations.These results are confirmed by figure15b, highlighting the influence of P r on the local Nusselt number at

11 )Figure 16 :

 1116 Figure 16: Correlations for the averaged Nusselt numbers along the: (a) inner cylinder and (b) the outer cylinder for all the considered cases.

w

  and N u o ∝ C 0.08 w . To our knowledge, the only previous work providing a correlation with the flow rate coefficient is the one of Poncet and Schiestel [6] obtained using the same RSM model in the case of a rotor-stator interdisk cavity. These authors gave indeed the following correlation for the averaged Nusselt number along the stationary disk: N u ∝ Re 0.8 P r 0.5 C 0.11 w for a wide range of the parameters 5 × 10 5 ≤ Re = ΩR 2 o /ν ≤ 1.44 × 10 6 , 0 ≤ C w ≤ 12082 and 1 ≤ P r ≤ 12.

Figure 17 :

 17 Figure 17: Avergaed Nusselt number along the rotor N u i against the rotation rate Ω for P r = 0.7 and three values of the flow rate coefficient: (a) Cw = 10684 (mass flow rate of 30 g/s), (b) Cw = 21368 (mass flow rate of 60 g/s), (c)C w = 32052 (mass flow rate of 90 g/s). Comparisons between the correlation (10) and previous results

Table I .

 I The value C w = 0 corresponds to a closed cavity. The parameter Re i is also known as a Taylor number. The values of Re i considered here are much higher than the critical value Re i = 210 for the transition to turbulence found experimentally by Aoki et al.[START_REF] Aoki | Convective heat transfer in an annulus with an inner rotating cylinder[END_REF], which ensures that the flow is highly turbulent without Taylor vortices.

	L	s	Re i	C w	P r	κ i	κ o
	configuration 1 0.0041 0.506	961.1	2839; 5914; 17742	-	-	-
	configuration 2 0.013 0.961 [3744 -37443]	[0 -30000]	[0.01 -12] 0.117 0.245
	Table I: Values of the flow control parameters for Configuration 1 corresponding to the experiments of Escudier and
	Gouldson [7] and Configuration 2.						

Table II :

 II Influence of the mesh grid on the mean and turbulent fields for L = 0.013, Re i = 10216 and C w = 14858 (Configuration 2). Comparisons with the 180 × 400 mesh, which is chosen as the reference mesh grid.

		mean field	1.8%	2.2%	1.4%
		turbulent field	0.2%	0.2%	0.3%
	mesh points.			
	configuration N P R × N P Z	∆1r/h	∆1z/h	max(r + )
	1	180 × 400 5.65 × 10 -5 6.38 × 10 -3	0.21
	2	180 × 400	9 × 10	

difference with the 180 × 400 mesh 180 × 500 180 × 600 200 × 600 -8 3.89 × 10 -6 0.05

Table

III

: Computational details for both configurations. ∆ 1 r and ∆ 1 z are the size of the first cell in the radial and axial directions and max(r + ) is the maximum value of the wall coordinate along both cylinders.

Table IV :

 IV Coefficients involved in the empirical law

	flow rate (g/s) Cw	α N ui0
	30	10684 0.533 6.03
	60	21368 0.568 9.85
	90	32052 0.589 14.17

VII. CONCLUSIONS

In this study, the effects of the rotational speed, the flow rate and the working fluid on the hydrodynamic and thermal fields have been investigated numerically using the Reynolds Stress Modeling of Elena and Schiestel [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF][START_REF] Schiestel | Modeling of anisotropic turbulence in rapid rotation[END_REF] for the turbulent flow between two concentric cylinders where only the inner cylinder is rotating. Even if this model has been widely validated in various rotating cavities [START_REF] Elena | Turbulence modeling of rotating confined flows[END_REF][START_REF] Schiestel | Modeling of anisotropic turbulence in rapid rotation[END_REF][START_REF] Poncet | Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow[END_REF][START_REF] Poncet | Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow[END_REF], it has been also favorably compared to the velocity measurements of Escudier and Gouldson [START_REF] Escudier | Concentric annular flow with centerbody rotation of a newtonian and a shear-thinning liquid[END_REF] for a turbulent flow in a very elongated Taylor-Couette system. In particular, it improves significantly the predictions of the k -ε model of Naser [START_REF] Naser | Prediction of newtonian and non-newtonian flow through concentric annulus with centerbody rotation[END_REF] in the same configuration.

The RSM model has then be used in a Taylor-Couette-Poiseuille system defined by a radius ratio s = 0.961 and an aspect ratio L = 0.013 for a wide range of flow control parameters: rotational Reynolds number Re i , flow rate coefficient C w and Prandtl number P r. The results showed that the flow is established quite rapidly. For axial positions larger than 20% of the cavity height, the radial profiles of the mean velocity components and also of the Reynolds stresses do not depend any more on the axial position. The mean flow is helical with a Poiseuille-like profile for the mean axial velocity component and a torsional Couette-like profile for the mean tangential velocity component. Turbulence is mainly concentrated in the middle of the gap between the two cylinders and vanishes towards the walls. The thermal field is also independent of the axial position for z ≥ 0.2h. The dominating influence of the outer cylinder on the thermal field has been shown. Finally, new correlations have been provided for the averaged Nusselt numbers along both cylinders according to the Reynolds and Prandtl numbers and to the flow rate coefficient and for a wide range of these parameters.

More comparisons with experimental data for the mean and turbulent hydrodynamic fields are now required before performing new calculations to investigate the effects of the geometry (aspect ratio L and radius ratio s) and of the heating factors (κ i and κ o ) or the Grashof number on the heat transfer.
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