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Abstract

The paper reviews the range of flows that rbaycreated within thin cylindrical or annular
cavities due to the rotation of one of the confinidisks. At low Reynolds numbers the
rotation gives rise to an axisymmetric, radiallyygard motion near the rotor with a return
flow along the stationary disk. As the Reynolds bemis raised this base flow gives way to a
shear flow populated by discrete vortices, whetfearylindrical or spiral form, near both the
rotating and stationary disks. At Reynolds numliegh enough for turbulent flow to occur,
in the 20" Century both experimental and computational stidieated the flow as
axisymmetric and steady. Recent research has shob@wever, that complex organized
structures also persist in the turbulent regime.

Key Words
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Acronymslist

ASM : Algebraic Stress Models

DNS: Direct Numerical Simulation

LDA/V: Laser Doppler Anemometry/Velocimetry

LES: Large Eddy Simulation

TCL: Two-Component Limit

(U)RANS: (Unsteady) Reynolds-Averaged Navier-Stokes

Summary Pointslist

1. The laminar base flow is axisymmetric and thilaeensional due to the recirculation in the
meridional plane created by the centrifugal forssogiated with the rotation of the disk. In
this plane, the flow is predominantly radial withive boundary layers along the disks.



2. The stability of the flow is governed by the bdary layers and is closely connected with
that of a single infinite rotating disk.

3. The cross-flow instability appearing as travgllicircular or spiral rolls governs the
transition scenario to turbulence.

4. Organized vortex structures are also presetitarturbulent flow regime. Those occurring
close to the discs are well-resolved by LES contpria.

5. Large-scale vortex structures in the core offin have not been satisfactorily captured
by either URANS or LES computations.

6. The circumferentially- and temporally-averageéowf features are, for the most part,
satisfactorily resolved by RANS modelling thougle tidth of agreement understandably
increases with the level of closure. Best agreemegpurted to date is with a second-moment
closure satisfying the TCL constraint.

Future | ssues

1. Our knowledge of the different scenarios foms$iion must be further extended. In
particular, the role of the cross-flow instabildy turbulence breakdown needs to be clarified.
2. Efficient control strategies to delay or promdhe transition to turbulence in the disk
boundary layers remain to be developed.

3. An urgent question to resolve is whether, irbtent flow, the failure to reproduce
numerically the permanent large-scale structurekiesto inadequate numerical modelling or
whether the “failure” arises from relatively smdkpartures of the actual experiments from
the idealized test-case configurations.

4. Numerical modelling must be improved to facibtahe exploration via LES both of
industrial configurations and physically more coexpflows addressing, in particular, higher
rotation rates, appreciable density variations @ased to large temperature differences and
finally more realistic geometries.

Related Resour ces

1. Greenspan HP. 1990. The Theory of Rotating EllBdeukelen Press, Brookline

2. Owen JM, Rogers RH. 198Blow and Heat Transfer in Rotating-Disc Systemal. 2:
Rotating cavitiesed. WD Morris, New-York: Wiley & Sons Inc.

3. School of Mechanical, Aerospace & Civil Enginegr Website of the Turbulence
Mechanics SIGhttp://tmgflows.mace.manchester.ac.uk/#rotatin gpass

4. IRPHE / Geophysical and Rotating flows reseatem: https://www.irphe.univ-
mrs.fr/~legal/ROT.html

5. FAST / Turbulence en rotationttp://www.fast.u-psud.fr/~moisy/turbrot/turb_frgph

6. LIMSI / Groupe Convection et Rotatidmtp://www.limsi.fr/Scientifigue/coro/galerie




1. INTRODUCTION

Confined cavity flows between two coaxial disksear both of which are rotating, and
closed by a cylindrical sleeve or shroud, are lmth in the flow phenomena they create and
the range of industrial flows with which they aneked. The sheer diversity of the resultant
flows has required, however, that the present velimits attention to cases where one of the
disks is at rest, where the inter-disk spacingrialscompared with the disk radius and where
there is no through-flow. Some impression of theetg of flow structures arising with other
boundary conditions may, however, be gained froenabok by Owen & Rogers (1989), the
review of engineering disk cavities by Owen (20803, from specific studies: for example,
by Escudier (1984) and Serre & Bontoux (206d)tall cavities, Abrahamson et al. (1991)
and Humphrey et al. (1995) for co-rotating diskd dMoisy et al. (2004) for counter-rotating
disks.

At the rotating disk itself the no-slip condit ensures that the motion is purely
circumferential. For the narrow cavities under edesation, however, the radial pressure
gradient induced by the disk’s rotation variedditietween the disks, being determined by the
smaller circumferential velocities prevailing irethore region away from the disk surfaces. In
the strongly swirling flow adjacent to the rotatidigk, this pressure gradient is insufficient to
prevent a radial outflow which may exceed 10% ef libcal disk speed. Thus, as first noted
by Ekman (1902) in connection with the atmosphé&atindary layer, the mean velocity
vector undergoes skewing as one moves away fronw#lle This skewing is an essential
contributor to the variety of the flow patternstth@y result.

Analogously, close to the stationary disk, #werling flow is retarded by viscous or
turbulent stresses below that in the c@ecause the pressure gradient is then too strang fo
radial equilibrium, the fluid moves radially inwadOn the shroud, because the inter-disk

spacing is small, the classical Taylor-Goértler aity arising from shear flow over curved



surfaces may be of only secondary importance. Tireusl does, however, additionally
contribute to the flow complexity by provoking teeparation of the rotor boundary layer and
causing this flow to impinge on the stator wall.

Concerning the remainder of the review, Sesti® and 3 below define the geometry, the
terminology adopted, and the important dimensianfeEgameters governing the flow together
with a parametric map of the principal flow regim&se main focus of the paper is however
on the instability patterns that are created lejadintransition and eventually to turbulence
and on the turbulent flow regime itself. These fdha subjects of Sections 4 and 5 in which

the flow structures are principally conveyed by folgoaphs or equivalent computer graphics.

2. GEOMETRY AND CHARACTERISTIC FLOW PARAMETERS

The geometrical model of the rotor-stator cavitynpoises two smooth coaxial parallel
disks enclosing either a cylindrical or an annwlamain Eigure 1) of internal and external
radii a and b, respectively. For cylindrical cavitieg<0) it includes the rotation axis. The
upper disk of the cavity is at rest (stator) whihe lower disk rotates at uniform angular
velocity Q (rotor). The flow domain is bounded by one or wytinders of heighh, the inner
one (the hub), attached to the rotor, being ragatvhile the outer one (the shroud), attached
to the stator, is at rest. In practice, there senall radial clearancg, between the shroud and
the rotorwhich exerts negligible effects for the flows catesied here.

This geometry is fully characterized by tgeometrical parameters formed from the
combination of the three independent length scagb, h; these are usually chosen as the
aspect ratio of the cavi@=h/b and the curvature paramei=(b+a)/(b-a). For a cylindrical
cavity, Ry=1. The present review limits attention to the caseadfially elongated cavities

(G<1) because of their relevance to cavities in gasiterbystems.



The structure of the base flow is characterizeddoye globaparameter, which may be
taken as a Reynolds number,;R@/0)? which scales the boundary layer thicknesses of

characteristic length=(v/Q)*?

with respect to the cavity height, Stability analysis requires
two local control parameters, Ro and,,R#ue to the flow’s radial inhomogeneity. The local
Rossby numbeis defined, following Lingwood (1997), as: Ro(Q;- Q)/Q whereQ; isthe

fluid’s angular velocity in the core, an@ is a reference rotation rate of the system

o) E(Qf +Q)/4+\/((Qf +Q)/4)2+(Qf _Q)Z /2. This parameter compares the (nonlinear) inertial

effects to the (linear) Coriolis force, so that wHeo goes to zero, the flow solution becomes
linear. The local Reynolds number is defined asdineensionless radius Re(r/o). In the

literature of finite disk systems, the Reynolds bemcan alternatively be based on the
external radius of the cavity, R&b%v which is easy to obtain and gives an upper boond t
the (square of the) local Reynolds number, Rae two global parameters are linked by the

relation Rg=Re G2

3. BASE FLOW

The laminar base flow is axisymmetric and threeatisional due to the circulation in
the meridional planer,) created by the centrifugal force associated withrotation of the
disk. In this plane, the flow is essentially radiathin the boundary layers along the disks.

In infinite cavities G- 0), the base flow is governed purely by the glotalameter
Re,. For small Rg the disk boundary layers merge and the basie sgburely viscous. At
large R, Mellor et al.(1968) (numerically) and Kreiss & Partner (1983)dlgtically) have
demonstrated that many similarity solutions exidte two best known solutions are those
obtained by Batchelor (1951) and Stewartson (19&8)ause of their relevance to flows

observed in finite cavities. Batchelor (1951) shdwhat the two boundary layers are



separated by a central core in solid-body rotatizaracterized by zero radial velociy; € 0)
and zero axial gradient of velocity as a directsamuence of the Taylor-Proudman theorem.
The alternative solution proposed by Stewartso®§)@onsists of a single boundary layer at
the rotating disk and a core above it which dodgotate.

The main effect of finite-radius disks is that thteundary conditions are not compatible
with self-similarity solutions though there may gealitative resemblance far from the end
walls, Brady & Durlofski (1987). Indeed, these arth suggest that the base flow is
completely determined by the radial boundary coowlét and hence unique for a prescribed
set of initial and boundary conditions. Thus, fufficiently large Rg a base flow
gualitatively similar to the Batchelor solution ocs in closed geometries, whereas the
Stewartson solution commonly appears in cavitieth whrough-flow (Daily et al. 1964,
Poncet et al. 2005b) or in open cavities (i.ehautt a shroud).

In the limit G<<1, Daily & Nece (1960) identify the four flow reges shown irFigure 2.
According to Dyment (1981), the boundary betweegiRes | and Il is given b .Re"*=q,
wherea is a constant greater than unity. In the turbutegime, where the thickness of the
disk boundary layers increases greatly, the tiamsitom Regimes IIl and IV satisfactorily
fits G.Re® ~ 05. As reported by Cooper & Reshotko (1975), mamnditions may be
observed between all these flow regimes=IIV - 1 11 - | - 1l IV - 1ll as well as
more expected transitions such as llll or Il - IV. The thickening of the boundary layers
combined with the increasing value of the local i@gls number Revhenmoving towards
the periphery of the cavity explain the transittmenarios ll- IV - llland Il - | - |l for
a given set of parameters (K&,

By analogy with the similarity solution betweenimife disks, flows in Regime Il are
usually referred to as of Batchelor type (Batchel®51). In the core, the normalized

circumferential velocity component is used to defamentrainment coefficierk=Q:/Q. The



departure of finite-disk flows from the similarisplutions (Zandbergen & Dijkstra 1987) can
be characterized by the resultant valueKofFor infinite-disk cavities, laminar similarity
solutions give a constant valu€=0.313, as obtained numerically by Pearson (196%) a
theoretically by Rasmussen (1971). For finite-diskvities, both the experimental
measurements of Gauthier al. (1999) in a cylindrical cavityG=0.0479) and the numerical
results of Serret al. (2001) in an annular cavitys€0.04,R=5) show thaK is an increasing
function of the local radius. Such behaviour underlines that the base flow featare not
homogeneous in the radial direction and requireyodsd in 82, local scaling parameters such
as Ro and Re The rotor boundary-layer is usually termgdmewhat simplistically) the
Ekman layer in reference to the linear similariojusion (Ro=0) of a fluid rotating over an
infinite single disk rotating at the same speednigk 1902). In that layer, the radial velocity
component is positive/ >0) and the circumferential componé&fytranges between the local
speed of the diskr, and the core speeldQr. In a confined cavity, by continuity, as there is
no radial flow in the central core, the radial tmf near the rotor is necessarily compensated
by an inward radial flow along the stator. By amglavith the similarity solution of a rotating
fluid over a single, infinite, stationary disk (RDr this layer is termed the Bodewadt layer
(Bodewadt, 1940). The flow in that layer is cergtgd (/,<0) andV, ranges fronKQr to O.
The flow passes from the rotor to the stator bountigyer along the shroud. The fluid flows
radially inwards along the stationary disk therune$ near the axis or along the hub into the
rotor boundary layer. The axial velocity componesnalmost zero in the whole cavity apart
from these two regions very close to the confintyfinders or to the axis where the hub is
absent.

Compared to the regimes with distinct boundary rigyeelatively few investigations
have been devoted to Regime | with merged boundmygrs probably because of the

difficulty of performing accurate measurements vétith small clearances. The basic state is



purely viscous. The radial velocity component ekbilan S-shaped profile with an outward
flow along the rotor and an inward flow along thatar (Daily & Nece 1960). Apart from

very close to the disks, the tangential velocitgnponent varies almost linearly with the axial
coordinate. These flow regimes are termed “tordi@wuette flows with merged boundary

layers” (Cros & Le Gal, 2002).

4. INSTABILITIESAND TRANSITION

As noted in82, the review focuses on the case of radially eltety@avities G<1) for
otherwise the rotating disk has only a very smiiflat except within its vicinity and the flow
stability is simply dominated by the boundary caioti on the shroud. A large variety of
structures can be observed according to the coritmnés, Q) as mapped by Schouveiler et
al. (2001) Figure 3).

The limiting case of very thin cavitie$3<<1, has been little documented. The boundary
layers merge (Cros & Le Gal 2002) and the flow tetaw be of torsional Couette type with
features close to narrow-gap Taylor-Couette systdisls cavities. The literature is much
more extensive for steady base flows of Batchegoe.t The stability is primarily governed by
the disk boundary-layers and the waves they suppattcan be locally analysed by reference
to theoretical results from infinite disks. Nevetlss, the presence of the hub and the shroud
can introduce other phenomena that may alter tbbaglstability of the flow and lead to
ingestion of large-amplitude disturbances into thsk boundary layers, causing major
disruptions of the layer, possibly unrelated to #tability of the layer itself (Lopez &
Weidman, 1996). Such phenomena may be relatedetdldlv adjacent to the confining
cylinders being centrifugally unstable (Taylor-Gért. They may also be linked to the

formation of corner vortices at the junction betwedbe disks and the sidewalls due to a



combination of the bending vortex lines around ¢beners, and the horizontal diffusion of

vorticity transporting the vortex lines radiallytime sidewall layers.

4.1 Typel and Typell Instabilities

In the Batchelor regime, the stability of the flasvclosely connected with that of the
single-disk. Experimental, numerical and theorétreaults display similar structures related
to the two basic types of linear instability, reést to as Type | and Type Il which can arise
for different Rossby numbers ranging from Ro=-1n(\)(drmén flow) to Ro=1 (B&dewadt
flow) (see Faller 1991, Lingwood 1997, Seeateal 2004). The linear theory of the Ekman
flow (Ro=0) by Lilly (1966) shows that Type | is amviscid instability related to an inflexion
point in the profile of the radial velocity, similto the Tollmien-Schlichting instability of the
flat-plate boundary layer (Reed & Saric 1989). Tiype Il instability is more specific to the
rotating-disk boundary layer since it is relatedite combined effects of Coriolis and viscous
forces and occurs at a lower critical Reynolds nemntban the Type I.

In terms of the overall flow, these instabilitegspear as a waviness of the streamlines but
since the disturbances have vorticity they appsatravelling vortices rolling up around a
circular or spiral axis when the basic flow is sabted from the total. They may be
characterized by four parameters: the wavelengtthe orientation of their wave fronts with
respect to the geostrophic flow,the frequencyg = 2xf, and the azimuthal wavenumbgr,
The spiral orientation, the radidt=27/A) and azimuthal wave numbers are interrelated by:
tang)=p/k. The wavelengthA which depends on the boundary-layer characterlstigth
5E(V/Q)/2 is smaller for Type | than for Type Il, and theifentationg, is positive (Type ) or
null or negative (Type Il).

The properties of these instabilities are entidfined for similarity solutions obtained

for infinite disks (see Crespo del Areb al. 2005). In the Batchelor regime, the characteristi



parameters found in the two-disk probléhoh 1991) agree closely with the results for a
single rotating disk with R0=0.313 (Pikhtov & Snorn 1992) corresponding to the
asymptotic value of Ro for the Batchelor solutidhe linear stability analysis of a Batchelor
flow at Re=1000, Serre et al. (2004), found /e85 and Rg;=48 in the stator-layer
compared with Rg,=100 and R@=280 in the rotor layer.

Previous results cannot be directly extended taefidisks but provide good reference
data. The radial confinement makes comparison thi¢oretical results difficultThere is a
large disparity of results in the literature linkiedvariousproperties of these instabilities. The
local Rossby number, Ro, is no longer constantraag vary with the radius (Gauthier et al.
1999, Serre et al. 2001) and this affects the djlstadility properties of the boundary layers.
Thus, the stability of the flow is governed by t@mmpetition between destabilizing non-linear
effects and non-parallel effects known to be siahit in linear theory (Othman & Corke
2006, Davies & Carpenter 2003).

Thus, the critical parameters of the global indiigbior the onset of Type | and Type Il
may depart from those of the Ekman and the Bodewadnhdary layers for a single disk,
Serre et al. (2004). In general, boundary layerfinite-disks cavities appear to be slightly
more stable than the corresponding similarity sohg Tatro & Mollo-Christensen (1967)
found a linear dependence of the local critical idgs numbers on Rossby number
Re=124.5-7.32Ro and Rg=56.3-116.8Rpresultsthat have recently been confirmég
Viaud et al. (2008) using spectral DNS in a rowgiisk cavity with radial through-flow (an
arrangement with many similarities to the presew}). Several authors have also mentioned
that the most unstable azimuthal wavenumfgk (i.e. the number of spiral arms) and its
related frequency change with RerdRo. Lingwood (1997) specified theoretically thtax
is proportional to RéRo. Since Reand Ro are both functions of the radius, it isiclift to

compare theoretical values gfaxwith experimental or numerical observations in adl@sed
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cavity. In general, the observed valuesfgixare smaller than those expected from theory.
The presence of roughness at the disk surfaceeirexiperiments and of inadequate mesh
refinement in the numerical solutions can also ttyesffect the number of spiral arms. The
observation of stationary modes in experimentsclvishould however be less unstable than
travelling ones, is also related to wall roughnassshown by several theoretical studies
(Wilkinson & Malik 1983, Mack 1985, Balachandar abt 1992, Pier 2003). Recent
investigations by different authors (Takagi & 112004, White & Saric 2005) have concluded
that the disturbances related to such roughnesseatainly stronger than any perturbations
induced by the turbulent upstream flow capable efiegating the unsteady modes. Such
roughness could also explain the difficulty of atvegg the axisymmetric mode of instability
in cavities since these require particularly cldek surfaces. Nevertheless, these differences
between theory and observations may also be retat@dcorrect predictions by the linear
theory due to the omission of certain terms, sughha curvature of the streamlines. For
example, Malik et al. (1981) using spatial theang &obayashi et al. (1980) using a temporal
theory have shown that linear theories taking iatcount both Coriolis and streamline-

curvature effects give values gfaxin better agreement with observations.

4.2 Instability patterns

In the limit of very thin cavities(3<<1, instability patterns between Regimes | and IlI
(Figure 2) have been considered only by Schouveiler e2801) Figures 3) and Cros & Le
Gal (2002) using, respectively, experimental floiwualizations and image processing. The
single instability pattern reported before turbulens related to negative spirals, denoted
SRIII (Figures 4a) which occur at the periphery of the cavity agtaradius.
As would be expected from linear stability theooy & single disk, the primary destabilization

in the Batchelor regime occurs in the stator bowtlyer in the form of travelling waves
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which disappear at a local radius correspondinfpeccritical Reynolds number in cylindrical
cavities. In an annular cavity, when the inner wads larger than that corresponding to the
critical Reynolds number, the waves persist tohhie and disturbances are transmitted to the
rotor boundary-layer, eventualtyiggering instability. Otherwise, the influence afcentral
hub on the critical Reynolds number is weak sifeelatter is only slightly decreased when
Rnis increasedPoncetet al 2009).

The first instability is characterized by a ciraueave (CR inFigures 3, 5a) propagating
in the flow direction and recognized as a Typen#itability (Pikhtov & Smirnov 1992, Serre
et al. 2004). Lopez & Weidman (1996) showed thaits tktructure, first observed
experimentally by Savas (1983) during spin-dowrgsdoot arise from the interaction of an
external upstream perturbation with the stator blamy layer, but rather a response to the
local structure of the boundary layer. For steadpddtions in rotor-stator cavities, such
vortices have been reported much later both exgatialy (Gauthier et all999, Schouveiler
et al.1999) Figure 5a) and numerically using fully three-dimensional qortations (Serre et
al. 2001) Figure 5b) even for annular cavities.

The most detailed study has been carried out bythBawet al. (1999) who have shown
that this instability has all the properties ofuparcritical bifurcation at Rg=75 with the most
unstable temporal frequenog4, in agreement with numerical solutions, Serrale{2001)
which predict frequencies in the range 1-4 foG between 0.2 and 0.5. It is also noted in this
connection that Lingwood (1997) obtained theordyicathe value 0=1.3 at the
convective/absolute transition for axisymmetriaistures in the Bédewadt layer. Above this
threshold, the instability is linearly convectiveatling to a high sensitivity to external
controlled or uncontrolled forcing (Gauthier et 4099). This result has recently been
confirmed numerically by Poncet et al. (2009) whavdr shown in particular that, in the

experiments, this mode is sustained by noise inrglypermanent circular structures. In the
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literature, these circular waves disappear at sradil corresponding to local Reynolds, e
the range 25-75, depending on the confinementhieslocal Rossby number, Ro.

For increasing rotation rate, the axisymmetry of flow is broken and spiral waves,
denoted SRIKigure 3) develop in the stator-layeFigur e 5b, 6) with positive angles ranging
from about 10° to 25° (Serre et al. 2001, Schoevat al. 2001). Experimental (Schouveiler
et al.1999 and Cros et al. 2005) and numerical resutiadét et al. 2009) show that this is a
supercritical Hopf bifurcation. In the literatutbese spiral arms are observed fof.Re0, i.e.

a value slightly larger than for the Type Il axigyetric mode. At these Reynolds numbers,
nearly the whole of the stationary disk boundametas absolutely unstable. At the lowest
rotation rates, the spiral wave pattern can coewist the previous circular wavekiQure 6a)
which are noise sustained: spirals appear arouadpéniphery and circles are observed at
small radii corresponding to lower local Reynoldsmibers, Re According to the linear
stability analysis of the Batchelor flow by San’k&Smirnov (1991) and Serre et al. (2004),
this spiral mode of positive angle is a Type | afmlity.

Both experimental observations and numerical smhgtitypically exhibit spiral patterns
with an azimuthal wavenumbe#, in the range 16-30, depending on the value ofadpect
ratio and rotation rate. Schouveiler et al. (199Bpwed that the wavenumber selection
process of this secondary instability can be regabs resulting from an Eckhaus instability
that selects the number of spiral arms. Thus, tmaber of arms is 18 at threshold but,
depending on the time history of the flow, staté@h 6 to 24 arms may also be obtained.

The rotor layer is less well documented. Experiraéntthe measurements are technically
more difficult than those on the stator and nunadirc the occurrence of instabilities at high
rotation rates involves large computational costs th resolution requirements. Only a few
numerical results exist in the laminar regime. &onular cavities Serre et al. (2001) showed

that the stator-layer instabilities are convectkuh@ the hub and induce disturbances in the
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rotor layer triggering first axisymmetric and latéiree-dimensional convective modes
characterized by a negative anglein the range -7.5° ¢ < -20° (igure 6b). These
convective modes were also numerically observedpgagtral DNS by Viaud et al. (2008) in
the rotor-layer of a cavity with radial throughaftpand showed similar characteristics to the
Type Il instability predicted by Lingwood (1997)d®erre et al. (2004) at the same Rossby

numbers.

4.3 Transition to turbulence

The evolution to higher bifurcations in the rottater cavity has received much less
attention. In the limit of very thin cavitie$<<1 and merged boundary layers, the most
interesting feature observed by Cros & Le Gal (2082hat transition to turbulence occurs
via defect turbulence in the network of negativeadp previously denoted SRIIF{gures 3,
4a). Increasing further the rotation rate leads to {hyg@earance of turbulent domains within a
laminar background as can occur in a narrow-gaplofd&jouette system between two
concentric cylinders. These instabilities, in tbari of turbulent spirals (SWrigures 3, 4b)
periodically located around the disk, may be reldtea turbulent form of the steady solitary
vortex solution calculated by Hoffmann & Busse (@P@n the Ekman-Couette layer. By
increasing progressively the rotation rate, turbulgpots (SPFigures 3, 4c) appear and
finally invade the whole cavity.

In the Batchelor regime, turbulence firstly occurs the stator layer. Transition
mechanisms are difficult to identify in such layelge to the speed at which turbulence
ensues. To our knowledge, the experiment of Craa.gf2005) is the only one to provide
some insight into the evolution and further transg of the stator layer for moderate
Reynolds numbers, Re, up to 73890. The transitiotutbulence seems to be governed by

nonlinear interactions of the circular and spiraldes of the stationary disk flow identified at
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lower rotation rates. These authors reportat, Re=32840, only one period-doubling
bifurcation before its complete destruction by &ition to wave turbulenceNo relation
between the bifurcation and the appearance of pthefeets could be determined, however.
On increasing rotation rates further, a more deyedoturbulence issuing from the former
chaotic waves was observed.

Recent numerical studies (Séverac et al. 2007, dvVetual. 2008) provide some insight
into transition in the rotor boundary layer. Intréas been stimulated by the experimental
and theoretical studies of Lingwood (1996, 1997)jcwhshowed that the onset of absolute
instability in both the von Karman and Ekman layadgacent to a single disk occurred at a
value of Reynolds number which closely corresponttethat obtained experimentally for
laminar-turbulent transition. This major contritmrti to the turbulent breakdown process
opened the possibility of a direct route towardbdlence. Further related investigations have
been made by Pier (2003), Davies & Carpenter (2008) Viaud et al. (2008). Even if this
characterization in terms of convective and absoailustability is not rigorously applicable in
the context of confined flows, it can bring helpfiasight to the breakdown to turbulence in a
rotor-stator cavity (Serre et al. 2004). At higledb Reynolds numbers (R&00), the rotor-
layer becomes absolutely unstable and the Typesthlility with spiral arms of positive
inclination are observed. High-order LES from Séeeet al. (2007) confirm the presence of
spiral arms in the rotor layer at R400 with all the characteristics of the absolutedy
instability and, just upstream, a turbulent regiocated at a radial position very close that
predicted by Lingwood’s theory assuming parallelM! Further theoretical investigation by
Pier (2003) showed that this saturated Type | albsahode could be overtaken by a direct
route to turbulence through a secondary absolgtalility. Nevertheless, the question of the

transition scenario in the rotor-layer remains open
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5. TURBULENT FLOW

5.1 Statistically-Steady, Axisymmetric View

Until relatively recently, the turbulent flow regarhas been treated, both in experiments
and computations, as though the flow pattern wittha disk cavity were axisymmetric.
Experiments have employed pitot tubes, hot-wire neomaeters and LDA to obtain
circumferential and radial mean velocity profilesda(in the case of hot-wire and LDA
studies) rms turbulence traverses across the es\ati selected radii. The relevant literature
up to the late 1980’s has been comprehensivelywad by Owen & Rogers (1989). Since
then, detailed studies for closed cavities withantinner hub have been reported, among
others, by Itoh et al. (1992) f@=0.08, Cheah et al. (1994) f@= 0.127 and, most recently,
by Poncet et al. (2005a, b) for a narrow annulaitgaG=0.036, as the base case of a study
mainly concerned with the effects of radial throdlglw. Representative profiles from Itoh et

al. (1992) are shown in Figure 7.

The first major experimental and theoretical stuafyturbulent flows in rotor-stator
systems was carried out by Daily & Nece (1960) vdentified the four flow regimes shown
in Figure 2. The most investigated regime has been Regime hérevthe two boundary
layers are separated by a non-viscous core regising the Taylor-Proudman theorem, the
entrainment coefficienK can readily be linked tthe radial pressure gradient at the rotor
which is crucial to the design of thrust bearingencet et al. (2005a) obtain&e0.438 by
direct velocity measurements, which coincides wvilte asymptotic value given by their
analytical modelK appears to be independent of the inter-disk sgdcbut very sensitive to
the core-swirl ratio at the periphery of the caviégr a comparison with available valueof
in shrouded or un-shrouded systems see Randriaraamaiet al. (1997) and Poncet et al.

(2008).
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Clearly, the boundary-layer thickness on the spigrdisk is appreciably less than on the
stator as evidenced by radial and tangential medocities, Figure 7, and the turbulence
intensities. The difference was attributed by I&thal. (1992) to a greater stability of the
radially outward flow in the Ekman layer than tle¢urn flow in the Bodewadt layer. Cheah et
al. (1994), however, suggested the cause was duggally to convection, i.e. to the fact that
fluid in the Bodewadst layer is essentially downatrefrom the Ekman layer. At the Reynolds
numbers of these investigations, there is an amlkecregion near the axis where the Ekman
boundary layer is effectively viscous. Predictihg textent of that region over the range of
geometric and flow parameters of interest has glavehallenging task for computational
modelling.

Throughout the 1980’s flow modelling within the dgvwas based on axisymmetric
RANS computations with some form of isotropic edaseosity model. The early studies of
Chew (1985) employed the form of mixing-length hyyasis used earlier by Koosinlin et al.
(1974) for flow on spinning free disks. The firgipdication of a two-equation model to a
rotating disk system appears to have been thatosian et al. (1976). Like Chew (1984)
some years later, they used the two-equdtianmodel. These first attempts were relatively
unsuccessful, however, because of the use of sitogkaw wall functions to bridge the
viscosity-affected sublayers next to the disksfalet, the velocity vector parallel to the disks
undergoes strong skewing across the sublayer &0 hardly surprising that any formula
assuming the direction of the velocity in the fuilybulent near-wall region to be the same as
the wall-shear-stress vector should exhibit serjnesliction errors. Later, in place of wall
functions, lacovides & Theofanopoulos (1991) blehdewo-equation modelling of the fully
turbulent region with the mixing-length hypothesisross the sublayers. A more elaborate
modelling was adopted by Morse (1988) who adoptex ltaunder-Sharma (1974) “low-

Reynolds-number” form of th&-& model over the complete cavity. His results digpth
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significant improvements over mixing-length schent@sugh, to avoid a tendency for the

boundary layer on the rotor to display a too ldageinar-like region, he later (Morse 1991)

partly replaced, in the sublayer “damping” funcgpthe local turbulence Reynolds number,
I/ ve, by the conventional normalized wall distang'e, This route was subsequently adopted
by several other workers of the period though, lasd(1994) remarked, the introduction of
the wall-normal distance was “prejudicial to thexgeality of application”.

By the 1990s it was acknowledged that for moreabddi predictions one should abandon
linear eddy-viscosity schemes. A first step by lades & Theofanopoulos (1991) was the
modelling of the stress field by an ASM (effectielh non-linear eddy viscosity model)
though this was applied only in the fully turbuleagion with the mixing-length hypothesis
being retained across the sublayers. Later, howéa@rvides & Toumpanakis (1993) moved
to a full second-moment closure (solving transmmtiations for all six Reynolds stresses)
including the sublayers. Closure at this level espnted an important conceptual advance
because then the direct effects of rotation onitldesidual Reynolds stresses were directly
accounted for (whereas there is no Coriolis fonce¢he turbulence energy). Perhaps the most
valuable discovery to emerge from the lacovidesaumpanakis (1993) work, however, was
that corrections to the transport equation fofdeveloped in other work to dampen the
excessive length scales in separated flows) aldddemarked improvements in disk-cavity
flows.

Elena & Schiestel (1993) also adopted second-moriesture for their first rotor-stator
studies but concluded that the wall-proximity cotiens employed in their model,
(developed much earlier for external boundary layer plane surfaces), were unsuitable for
internal flows. It was timely, therefore, that axngype of second-moment closure had by then
begun to be used in complex flows — one that sadisthe two-component limi{TCL),

Lumley (1978), a state that is asymptotically remchas one approaches a wall.. The
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application of the TCL constraint to modelling mesrain effects on the pressure-strain
correlation proved crucial (Launder & Li 1994) besa then pressure-reflection impacts from
the wall were, to a large extent, embedded in #scbmodel rather than having to be added
as an empirical correction. The first applicatidragrototype form of the model to rotating
flows by Launder & Tselepidakis (1994) led Elene&&hiestel (1996) (see also Elena 1994)
to adopt and further refine the model for a ranfdisk-cavity studiesFigure 8 compares
their prediction of the closed cavity of Itoh et &992) with the measured behaviour:
agreement with the data is markedly better thah wieir earlier model (Elena & Schiestel
1993). Very satisfactory computed behaviour was edported by Elena (1994) for the wider
cavity of Cheah et al (1994). Recently Haddadi &¢& (2008), from the same research
group, have applied the model to the very narrosk diavity of Poncet et al. (2005b),

G=0.036, including cases with radial through-flow.

5.2 Three- Dimensional, Time-dependent View

The treatment of the turbulent flow regime as statlly stationary implicitly assumed
that the coherent structures present in the lanaindrtransitional modes either disappeared or
were “drowned out” by intense fine-scale turbulen@aven (2000) first suggested that,
sometimes, the flow within the disk cavity might e steady. Summarizing research at Bath
University on cavities with through-flow, he notétat their usual RANS model failed to
converge for certain ranges of parameters and fieduhat some form of organized large-
scale structure may have been present in the dtiual

The first computations of the rotor-statorkdeavity which treated the flow as unsteady
were the DNS explorations of Lygren & Andersson0O®0 To achieve a sufficiently fine
mesh to resolve the smallest eddies, only a sefttiie flow was covered, with boundary

information being transferred from one side of #ector to the other. The conditions
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approximated one of the tests by Itoh (1995) vtk 0.08. Agreement with the experimental
(circumferentially averaged) velocity profiles welese but no spiral vortices, analogous to
those reported by Serre et al. (2001) in lamireméitional flows, were found in the near-wall
boundary layers. Subsequently, Czarny et al. (2@@2)ied out simple flow-visualization
experiments in a rotating water table for emptyoratator disk-cavities. These displayed
traces of the near-disk spirals, but also quitexpeeted large-scale vortices in the core region
where the mean flow rotates at roughly half theedpef the rotorFigure 9. Moreover, the
pattern revealed by the dye trace showed 5, 3enld&s — or even none - depending upon the
aspect ratio of the cavity and the rotor speedp<Cbf the rotating flow structures may be
viewed on the following Manchester University websi
http://tmgflows.mace.manchester.ac.uk/index.html.

Wu & Squires (2000) were the first to apply LESthe statistically three-dimensional
turbulent boundary layer over a single rotatingkdiBheir results supported the observations
of Littell & Eaton (1994) regarding the mechanisprtemoting sweeps and ejections which
play a role in shear-stress production. Anderssadoyren (2006) performed wide-gap and
narrow-gap simulations to investigate the degrethide-dimensionality in both Ekman and
Bodewadt layers foRe < 1.6x1C°. Their results also support the conclusion ofellit&
Eaton (1994), that the mean flow three-dimensityalifects the near-wall vortices and their
ability to generate shear stresses. The first Lifulation in an enclosed rotor-stator cavity
was reported by Séverac et al. (2007) using a igda@nishing-viscosity approach up to
Re=10°. Their results compare very favourably with LDV asarements in a cavity of the
same proportions and highlight more specificallatthhe three-dimensionality of both
boundary layers is much greater than in the idedlsystem studied by Andersson & Lygren
(2006). While, as seen igure 10, coherent near-wall vortices were accurately répced

by these simulations, Séverac et al. (2007) didfiindtthe large-scale core vortices that were
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plainly evident in the experimentRecently, the probable reason for this failure éragrged.
Rather than mapping a complete empty cavity, whiohld have posed major computational
problems (due to the excessive concentration okesidtat the spectral scheme inevitably
produced at the axis), the computations adoptecranular configuration with the inner
cylinder radius= 30 % of that of the outer disk and frictionlessowéver, in a recent
unpublished extension of the experiments of Czanngl. (2002), the present authors have
found that when the circular disk was convertecamoannulus by the insertion of a hub
cylinder to matchhe configuration of Séverac et al (2007), the oigad structures shown in
Figure 9 for the empty cavity were absent. It appears tifatinclusion of the inner cylinder
blocks the transfer via the pressure field of algiformation essential to the creation of the
large-scale structures.

Meanwhile, Craft et al. (2008) have reported thageensional URANS computations in
the search for organized rotating structures. Tisé fesults, using a very fine near-wall grid
to resolve accurately the low-Reynolds-numiBes model, found Ekman and Bédewadt
spirals but, again, no organized large-scale sirastsuch as those reported by Czarny et al.
(2002). Subsequently, however, while retaining khkemodel in the core of the flow, they
adopted a new analytical wall function to bridge gemi-viscous wall layer that permitted
skewing of the wall-parallel velocity vector acrabe sublayer. This development allowed a
much greater density of grid points over the rem@irof the cavity. The results from these
computations (Zacharos 2009, Craft et al. 2008)amdy reproduced the near-wall spirals,
Figure 11a, but also large-scale two- or three-lobed stristun the core of the flovkigure
11b,c. However, agreement with the observed behavioless than it might appear; for the
structures exhibit a progressive evolution in tirtiee three-lobed version collapsing to two
lobes and, thereafter, decaying to what, at theogénlde computed time evolution, appears to

be a flow heading to axisymmetric form. By contrh& structures visualized by Czarny et al.
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(2002) were assuredly permanent. Zacharos (20089preed whether the introduction of a
second-moment closure in the core (in place ofatidy viscosity model) might alter the
picture. It did, only then no organized structumesre formed even in the initial phase.
Clearly, the issue of resolving fully the obsenfklv structure in a rotating disk cavity has

some way still to run!
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Figurel: Schematic diagram of an annular rotor-statortgaamclosed by an inner hub and an
external shroud.

Figure 2: Map of the four flow regimes proposed by DailyNece (1960). Merged boundary
layers: 1 (laminar) and Il (turbulent). Unmergédundary layers: Il (laminar) and IV
(turbulent).

Figure 3: Transition diagram bgchouveileret al (2001). Curves A and B (broken lines) separate

the mixed base flow (Bf from the basic flows with separate boundary lay@&s) and with ‘joined’

boundary layers (Bjf, respectively. Curves 1 indicate the threshotu<circular rolls (CR). Curves 2,

1', 1", indicate the thresholds for spiral rolls (SRBR(I) and (SRIlI), respectively. Curve$ @nd 3

indicate the thresholds for solitary waves (SW) amBulent spots (SP), respectively. Curvesithe

threshold for the simultaneous disappearance ddphral rolls (SRIII) and the solitary waves (SW).

Figure 4. Instability patterns observed in torsional Coaetows: (a) SRIIl patterns, (b)
turbulent spirals and (c) turbulent spots (Cros&&al 2002). The disk rotates clockwise.

Figure 5: Circular waves of Type Il instability in the statboundary-layer: (a) Experimental
visualization of Gauthier et al. (1999) and (b) DidSults of Serre et al. (2004).

Figure 6: Three-dimensional modes of instability: (a) cottise of the CR and SRI patterns

in the stator boundary-layer by Gauthier et al9&)9 18 spiral arms obtained by DNS in an
annular cavity by Serre et al. (2001).

Figure 7: Mean velocity profiles in turbulent flow for fowadii (From Itoh et al. 1992).=h; w=Q; (a)
circumferential velocity; (b) radial velocity.

Figure 8: Stress-transport computations of Itoh cavityrffrelena & Schiestel 1996): (a) radial mean
velocity (b) tangential mean velocity.

Figure 9: Flow visualization of vortex structure in cavitgre (from Czarny et al. 2002). Lower disk
rotates clockwise, upper disc (stator) transpainbtos show ink trace from injection at mid-height

cavity forG=0.195: (a) Re = 1.74 x}0(b) Re = 1.60x10
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Figure 10: Flow structures in the rotor boundary layer; LB§SSéverac et al. (2007) f@=0.143: (a)
Re = 1G; (b) Re = 4 x18 (c) Re = 16. Disk rotates counter-clockwise.

Figure 11: Unsteady RANS computations of flow near statorator-stator cavities (from Craft. et al
2008) (a)G = 0.08; Re=1% (b) G=0.195; Re= 0.9x10 20 revolutions from start; (c§5=0.195;

Re:0.9x16; 50 revolutions from start.

32



stationary wall
rotating wall

Figurel: Launder et alAnnual Rev. Fluid Mech.
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Figure 2: Launder et alAnnual Rev. Fluid Mech.
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Figure 3: Launder et alAnnual Rev. Fluid Mech.
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Figure 4: Launder et alAnnual Rev. Fluid Mech.
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Figure 5: Launder et alAnnual Rev. Fluid Mech.
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Figure 6: Launder et alAnnual Rev. Fluid Mech.
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Figure 8: Launder et alAnnual Rev. Fluid Mech.
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Figure 11: Launder et al\nnual Rev. Fluid Mech.
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