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Abstract We analyze the geometrical states of granular
materials by means of a fabric tensor involving the coor-
dination number and fabric anisotropy as the lowest-order
descriptors of the contact network. In particular, we show
that the fabric states in this representation are constrained
by steric exclusions and the condition of mechanical equilib-
rium required in the quasi-static limit. A simple model, sup-
ported by numerical data, allows us to characterize the range
of accessible fabric states and the joint evolution of fabric
parameters. The critical state in this framework appears as a
jammed state in the sense of a saturation of contact gain and
loss along the principal strain-rate directions.

Keywords Plastic behavior · Granular fabric ·
Coordination number · Anisotropy · Mohr circle

1 Introduction

The plasticity of granular materials is governed by frictional
contact interactions among a large number of rigid-body
degrees of freedom. The particle velocities are constrained
by steric exclusions and, in the absence of thermal random-
ness, they scale with the driving strain. In a similar vein, the
material is devoid of intrinsic stress scale in the limit of rigid
particles (compared to the applied confining stress), and thus
all internal stresses scale with the confining stress while sat-
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isfying at the same time the condition of static equilibrium
of each particle [6,4]. These features lead to a perfectly plas-
tic behavior in which the instantaneous flow rule is defined
by a strain ratio expressed as a dilatancy angle and the yield
surface by a stress ratio expressed as an effective friction
angle [9]. These angles are unequal (non-associated prop-
erty) due to steric exclusions and, more importantly, they are
strongly dependent on the current state of the material, which
is fully encoded in the geometry of the granular assembly and
evolves with strain (hardening property).

The local geometrical arrangement is nontrivial regarding
its generic disorder both in particle positions and in the force-
bearing contact network, and its evolution involves local non-
affine velocities induced by steric exclusions [3]. However,
a coarse-grained representation of this microstructure is a
key information for any continuum model of granular plas-
ticity based on physical internal variables. This issue is still
far from being settled even when approaching the problem
under simplified assumptions such as spherical particles sub-
jected to homogeneous shearing. The heart of the problem is
whether one may work with the lowest-order descriptors of
the microstructure—possibly at the price of accounting in a
less strict sense for the local constraints. In particular, such
state variables are expected to provide a minimal description
of the reference states such as the critical state and the spec-
trum of isotropic states with its range of packing fractions,
as well as the transients between those reference states.

In this paper, the contact network is portrayed by its low-
est-order representation as a tensor combining the coordina-
tion number and fabric anisotropy. Its evolution in relation
with the velocity field is studied by means of numerical simu-
lations for a few loading paths. The idea is to characterize the
range of accessible fabric states constrained by steric effects
and force balance condition. A simple model is presented that
provides a geometrical interpretation of the critical state.
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2 Tensorial representation of the contact network

The granular microstructure may be described by the contact
network, which is directly linked with the plastic behavior
as it governs both stress transmission and volume change by
shear flow. This granular fabric is disordered in (1) contact
positions, (2) contact orientations, as described by the nor-
mals to the contact planes or the orientations n of the branch
vectors � = � n joining the centers of contact neighbors, and
(3) branch-vector lengths �; see Fig. 2a.

Assuming a statistically homogeneous network, as shown
in Fig. 1, the fabric is thus represented by the set {�α} of
branch vectors and characterized by the probability density
P�n(�) ≡ P�n(�,n). For non-spherical particles, this func-
tion may be replaced by the richer probability density func-
tion of contact vectors, i.e. the vectors joining the particle
centers to the contact points; Fig. 2a. Note that since the
branch vectors �α have no intrinsic polarity, the function
P�n(�) is π -periodic.

The function P�n(�) is obviously insufficient for the
description of individual particle environments (one particle
with its contact neighbors), which involve multicontact distri-
butions constrained by angular hinderances δθ as illustrated
in Fig. 2b [8]. Although such a rich representation would be
required in order to account for the local geometrical con-
straints together with higher order statistical information on
three (and more) grain locations and orientations, the idea
of the proposed approach is to include a minimal geometri-
cal description and to connect it to the mechanical behavior.
A scalar variable that provides the lowest-order description
of the particle environments is the average number of contact
neighbors z (the coordination number), which is a comple-
mentary information to P�n . Additional local constraints will
have to be reintroduced at a later stage from coarse-grained
or average properties.

The reduced distribution P�(�) = ∫
Ω

P�n(�)dn of branch-
vector lengths, where Ω is the space of orientations, reflects
the particle size distribution. The correlation between the
orientations n and lengths � controls the mean branch-vec-
tor length 〈�〉(n) = ∫ ∞

0 � P�n(�,n) d�/
∫ ∞

0 P�n(�,n) d� as
a function of n. Our simulations show that this function in
a moderately polydisperse packing is nearly isotropic even
after extended shear [1]. We focus here on weakly polydis-

Fig. 1 Contact networks in 2D and 3D granular packings

(a) (b)

Fig. 2 a Contact geometry; b A particle environment with angular
exclusions

perse systems where P�n(�,n) ≈ P�(�)Pn(n) and the dis-
tribution of branch length P� is narrow. Thus the orientation
part Pn(n) contains most of the information.

Yet, Pn is too rich to be accessed easily from experiments
or handled theoretically. It is proposed to perform a moment
expansion of this quantity and retain only the lowest-order
terms. The π -periodicity implies 〈n〉 = 0 and therefore the
lowest-order moment is the well-known fabric tensor defined
by [7] F = 〈n ⊗ n〉 ≡ ∫

Ω
n ⊗ n Pn(n)dn, where ⊗ denotes

dyadic product. Since n · n = 1, we have tr(F ) = 1. Hence,
the coordination number z and the fabric tensor can be com-
bined in a single enriched tensor defined by

Gi j = z

2
〈ni n j 〉 ≡ z

2

∫

Ω

ni n j Pn(n)dn, (1)

where the roman subscripts denote vector components. Note
that G is nothing but the fabric tensor per particle while F

is per contact.
The tensor G may easily be evaluated from discrete sim-

ulation data by Gi j = (
∑

α nα
i nα

j )/Np, where nα is the unit
branch vector of contact α and Np is the total number of
particles. In 2D, n is parameterized by its orientation θ with
respect to a fixed frame and we have n = (cos θ, sin θ).
In 3D, using spherical coordinates with azimuth and zenith
angles θ and φ, we have n = (sin θ cos φ, sin θ sin φ, cos θ).
For convenience, we assume here axial symmetry around the
zenith axis so that G and Pn are independent of φ. Let {Gi }
be the principal values and θ = θc = 0 the major principal
direction. We define the following invariants of G in 2D:

pG ≡ G1 + G2

2
= z

4
(2)

qG ≡ G1 − G2

2
= z

4
〈cos 2θ〉 (3)

and in 3D:

pG ≡ G1 + G2 + G3

3
= z

6
(4)

qG ≡ G1 − G3

3
= z

12
〈3 cos2 θ − 1〉 (5)

By symmetry, we have G2 = G3. We note that 3 cos2 θ −1 is
the spherical harmonics function usually denoted Y 0

2 , which
together with Y 0

0 = 1 are the only second-order basis func-
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tions compatible with axial symmetry. The spherical har-
monics expansion is the natural 3D counterpart of the Fourier
expansion in 2D which is easily read in the above definitions.
The average 〈cos 2θ〉 or 〈3 cos2 θ − 1〉 represents the anisot-
ropy and it may be evaluated either from Pn (see below) or
directly from the numerical data.

Given its invariants, the enriched fabric tensor G may be
represented by a Mohr circle in the space of its normal and
tangential projections Gn(m) = Gm ·m and Gt (m) = Gm ·
t , respectively, along arbitrary space direction m parameter-
ized by the angle θ . Simple algebra yields

Gn(θ) = pG + qG cos 2θ, (6)

Gt (θ) = qG sin 2θ, (7)

in 2D and

Gn(θ) = pG + qG{3 cos2 θ − 1}, (8)

Gt (θ) = 3

2
qG sin 2θ, (9)

in 3D.
The representation of the fabric by a second-order tensor

through Eq. (1) keeps only the lowest mode of the Fourier
(2D) or spherical harmonics (3D) spectrum of Pn [5]:

in 2D: Pn(θ) = 1

π
{1 + a cos 2θ + · · · } , (10)

in 3D: Pn(θ) = 1

2π

{
1 + a(3 cos2 θ − 1) + · · ·

}
, (11)

where a is the leading fabric anisotropy. Equation (1) with
the expansions (10) and (11) lead to the following relations:

in 2D: a = 2 〈cos 2θ〉, (12)

in 3D: a = 5

4
〈3 cos2 θ − 1〉. (13)

With this expression of the anisotropy, we see that the
description of the fabric by G is equivalent to a description
by the truncated expansions:

in 2D: E(θ) = z

2
Pn(θ) ≈ z

2π
{1 + a cos 2θ} , (14)

in 3D: E(θ) = z

2
Pn(θ) ≈ z

4π

{
1 + a(3 cos2 θ − 1)

}
.

(15)

The function E(θ) may assume various shapes with sev-
eral modes of unequal amplitudes depending on the history
or preparation method. Most of time, however, such config-
urations are erased as a result of shearing and the subsequent
shear histories do not induce modes of order higher than two,
so that Eqs. (14) and (15) offer a fair approximation of E(θ).
Figure 3 shows two examples of E in the two samples of Fig.
1 before and after shearing. The distribution is fitted by a sec-
ond-order harmonic approximation, and higher-order terms
may be neglected. In this case, the angular dependence of
Gn(θ) coincides with that of E .

(a)

(b)

Fig. 3 Distribution of branch-vector orientations in 2D a and 3D b
before (circles) and after (triangles) shearing with major principal
strain-rate direction along θ = 0. The solid lines are harmonic fits

In this way, the fabric state at leading order is represented
by G or E(θ), both characterized by the three variables z, a
and θc. The coordination number z is a simple scalar, but
the fabric anisotropy a is associated with the major princi-
pal direction θc of G. When the evolution of the fabric is
studied, it is convenient to consider the “signed” anisotropy
a′ ≡ a cos 2(θ0 − θc) in 2D or a′ ≡ a{3 cos2(θ0 − θc) − 1}
in 3D, where θ0 is a fixed space direction, which may be the
initial value of θc.

3 Evolution with shear strain

The fabric evolution is governed by three elementary “events”:
(1) gain of contact , (2) loss of contact and (3) rotation of
branch vectors. The gain and loss events are discontinuous
whereas the rotation of branch vectors is a continuous advec-
tion of enduring contacts in the angular interval [0, π ]. Let ε̇

be the strain rate tensor. These events occur at different rates
depending on the space direction θ : a gain rate I +(ε̇, θ), a
loss rate I −(ε̇, θ) and a current J (ε̇, θ) of advected con-
tacts, respectively. The evolution of E is thus governed by a
detailed balance equation:

∂ E

∂t
+ ∂ J

∂θ
= I = I + − I − (16)

We expect that I + has its largest value along the direction
of contraction whereas I − is maximal along the direction of
extension. The current J is basically given by the number
density of contacts times the angular velocity in each direc-
tion. The three functions I +, I − and J depend on the velocity
field in the vicinity of the particles. An example of the aver-
aged velocity field is shown in Fig. 4. Without entering the
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Fig. 4 The field of relative velocities from numerical simulations aver-
aged in the vicinity of all particles during simple shear deformation of
a packing of disks along the horizontal direction. The distances are
normalized by the average branch-vector length 〈�〉, which defines the
radius of the mutual exclusion distance between particles represented
by the gray circle in the center

details here, we observe that the far field (uniform velocity
gradient) is modified in the vicinity of the particles within
a distance of the order of the average branch-vector length.
However, this velocity field varies in proportion to the mac-
roscopic velocity gradient although with dependencies on the
fabric tensor itself.

Note that in the absence of J , the relative number E of
contacts in each direction would simply be an accumulation
of the contacts induced by loss and gain and a steady state
would never be reached. However, in the steady state we
have ∂ J/∂θ = I , which means that, the contacts are gained
on the average in the direction of contraction and advected
towards the direction of extension where they are lost. In
this way, the memory of the initial configuration is erased by
shear deformation and the critical state may be described as
a steady shear state in which, in spite of steric exclusions, the
fabric reflects the average strain-rate tensor and may thus be
described to a good approximation by a second-order fabric
tensor or unimodal distributions of contact orientations.

Figure 5 shows the evolution of the fabric parameters z and
a′ during shear as a function of the cumulative shear strain
εq = ε1 − ε2, where ε1 and ε2 are the principal values of the
straintensor, foraninitiallydensesystem z0 = z(εq = 0) = 4
and an initially loose system z0 = 3.3, as well as in the case
where the shear deformation is reversed in the steady state.
Notice that the terms “dense” and “loose” will refer through-
out this paper to the connectivity of the contact network rather
than itspacking fraction.Thenumerical simulationswereper-
formed by means of the contact dynamics method [2]. The
samples are composed of 5,000 disks of weak size polydisper-
sity prepared by isotropic compaction so that a′

0 = a′(εq =
0) = 0. During shear, the average stress p is kept constant
and a constant shear rate ε̇q is applied. We observe an initial
rapid decrease of z in the dense case as a consequence of the
quasi-instantaneous loss of contacts in the direction of exten-
sion.This leadsat thesametimetoanincreasinglylargerstruc-
tural anisotropy a′ with an excess of contacts oriented along

-0.2 0.0 0.2 0.4
3.2

3.4

3.6

3.8

4.0

z

dense +
loose +
reverse

(a)

-0.4 -0.2 0.0 0.2 0.4
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

dense +
loose +
reverse

(b)

Fig. 5 The evolution of fabric parameters, coordination number (a)
and “signed” anisotropy (b). Different curves represent different initial
values of the packing fraction

the major principal strain-rate direction θε. A similar mech-
anism is at work in the loose system with a gain of contacts
along θε and an increase of a′. After a transient εq 	 0.1, a
steady state with z∗ 	 3.65 and a∗ 	 0.2 is reached in both
samples. When a reverse strain is applied in the steady state, a′
falls off to zero but then increases in absolute value to reach a∗
in the new shear direction. As for z, its steady-state value z∗ is
reached in the new shear-rate direction after a transient where
z first declines as soon as the shear strain is reversed and then
increases again towards z∗. A similar unmonotonic evolution
is observed when starting from the dense isotropic state: z first
declines to a low value, then increases towards z∗.

4 Accessible fabric states

As a result of local constraints, the fabric parameters do not
take arbitrary values. The accessible range of state parame-
ters contains part of the underlying constraints and it may thus
partially replace the missing information when a low-order
description is used. To illustrate the effect of constraints, let
us consider the truncated Fourier function of E(θ) in 2D and
apply it to thecontactneighborsofa typicalparticle.Theangu-
larexclusions imply that therecanbeatmostoneparticle in the
angular interval [−δθ/2, δθ/2] (see Fig. 2b) [8]:

∫ δθ
2

− δθ
2

E(θ) dθ ≤ 1. (17)

This leads to an upper bound amax on the anisotropy:

a ≤ amax = 2π

sin(δθ)

{
1

z
− 1

zmax

}

, (18)
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where zmax = 2π/δθ is the upper bound on the coordination
number due to angular exclusions. However, the function
E(θ) can not be used to describe the local environments
because of steric exclusions. We introduce here a simple
model based on the fabric tensor G in order to account,
though in a less strict way, for the local constraints.

In a co-rotating reference frame with axes oriented along
θc(εq) and θc(εq)+π/2, the fabric state is defined by its posi-
tion in the space of coordinates z and a. We assume that z is
bounded between two limits zmin and zmax. The upper bound
zmax is dictated by steric exclusions as discussed above. The
lower bound zmin reflects the condition of mechanical equi-
librium. For example, stable particles often involve more than
three contacts in 2D and more than four contacts in 3D. We
first consider exclusively the 2D case. The results for the 3D
system will be given at the end of this section.

We define two limit states: (1) the loosest isotropic state,
characterized by Gt = 0 and Gmin

n = zmin/4, and (2) the
densest isotropic state, characterized by Gt = 0 and Gmax

n =
zmax/4. All accessible fabric states, represented by a Mohr
circle on the (Gn, Gt ) plane as shown in Fig. 6, are enclosed
between these two limit states, so that G1 ≤ Gmax

n and G2 ≥
Gmin

n . Within this range a and z, which describe the current
geometrical state, are independent parameters unless one of
the two equalities G2 = Gmin

n or G1 = Gmax
n occurs, in

which case pG and qG may no more evolve independently.
The condition G2 = Gmin

n implies pG −qG = zmin/4, which
together with Eqs. (3) and (12) yields a = 2(1 − zmin/z).
This limit corresponds to a loss saturation limit where the
mechanical equilibrium implies that no contacts may be lost
along the direction of extension. In the same way, the condi-
tion G1 = Gmax

n implies pG + qG = zmin/4, which together
with Eqs. (3) and (12) yields a = 2(zmax/z − 1). This is
the gain saturation limit where no contacts may be gained
along the direction of contraction. Hence, all accessible fab-
ric states in the space (z, a) belong to a domain defined by

amax(z) = 2 min

{

1 − zmin

z
,

zmax

z
− 1

}

. (19)

The largest anisotropy a� occurs when both conditions
G1 = Gmax

n and G2 = Gmin
n are satisfied simultaneously.

Hence,

a�=amax(z�)=2
zmax − zmin

zmax + zmin with z�=1

2
(zmin + zmax).

(20)

This state corresponds to a Mohr circle touching the line
Gt = tan α Gn where sin α = a�/2, as shown in Fig. 6b.

Figure 7 shows the joint evolution of a and z in a simulated
biaxial compression of two initially isotropic samples with
coordination numbers z0 = 3.1 and z0 = 3.7. In both sim-
ulations, the fabric tends to the critical state with z� 	 3.35
and a� 	 0.24 and coinciding with the state of maximum

(a) (b)

Fig. 6 a Fabric state represented by a Mohr circle. L1 and L2 are the
limit isotropic states. b The critical state on the fabric plane. The cone
represents the limit of maximum anisotropy reached when the Mohr
circle touches the limit states in the critical state

2.8 3.0 3.2 3.4 3.6 3.8

z

0.0

0.1

0.2

0.3

a

Fig. 7 Fabric evolution in the (z, a) space. The solid lines represent
the limits states predicted by Eq. (19)

anisotropy in the model. Remarkably, the anisotropy of the
dense packing reaches and then follows closely a limit line
given by Eq. (19). The values of zmax and zmin were obtained
from the those of z� and a� using Eq. (20). In the case of the
loose sample, the path remains entirely inside the accessible
domain and the boundary is reached only at the critical state.

This description provides a geometrical interpretation of
the critical state. The gain and loss saturation lines meet at
the critical state. In this sense, the critical state corresponds
to a fully saturated state where both contact gain along the
direction of contraction and contact loss along the direction
of extension are saturated although the shearing continues to
induce gain and loss of contacts in different directions. From
this viewpoint, the critical state simply reflects the limit iso-
tropic states. The critical-state anisotropy a� increases with
zmax − zmin. The shape, size and frictional characteristics of
the particles may therefore influence a� via zmin and zmax.
Figure 8 shows az as a function of z for five different simu-
lations with the same sample of 13,000 disks with z0 = 3.72
but different values ofμ.1 According to (19), the limit states
in this representation are straight lines. The data follow dif-
ferent gain-saturation limit lines with zmax varying between
3.7 and 3.8, and reach a peak state followed by a critical state
in which z� decreases as μ increases whereas a� increases
nearly as 1/z�. Since zmax varies slightly with μ, the dom-

1 See www.http://cgp-gateway/ref011 for animation videos.
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Fig. 8 Fabric evolution in the space (z, az) for different values of the
friction coefficient μ and the same initial isotropic state. The dashed
lines are approximate fits to the reference lines predicted by the model

inant effect of increasing μ is to allow for lower values of
zmin and thus larger values of a�. It is to be noted that a small
systematic deviation from the linear law is observed in the
final approach to the critical point. Such a small effect may
well be due to the truncation of Pn to second order, as, at
maximum anisotropy, our (angularly) local interpretation of
E from its first two moments becomes fragile.

The accessible fabric states may be modeled also in 3D by
means of the Mohr circle on the fabric plane. It can be shown
that, under axial symmetry, the critical state is characterized
by

z∗ = 1

3
(zmax + 2zmin), (21)

a∗ = 5

2

zmax − zmin

zmax + 2zmin . (22)

For example, for the typical values zmin = 4 and zmax = 6 of
a sphere packing, we get z� 	 4.6 and a� 	 0.35, which are
plausible critical state values in 3D. It is obvious that z can
take much larger values, but such states are not reachable by
shearing. When a packing with a high value of z is sheared,
the accessible range of fabric parameters, as defined by the
model, may be reached from the outside, but the subsequent
evolution is likely to take place only inside this range. Various
protocols might be designed for the estimation of zmax and
zmin as limit values of the range of accessible fabric states. In
this respect, our model may also be regarded as an executive
framework in which those values are simply determined from
the (z, a) data and interpreted as state-independent parame-
ters characterizing a granular material.

5 Conclusion

In this paper, a general framework for fabric evolution was
presented with the guiding idea that a physical plastic model
of granular materials should be based in the first place on

low-order parameters pertaining to the granular microstruc-
ture but accounting more or less strictly for steric exclusions
and mechanical equilibrium of the particles. We introduced
a fabric tensor that, by combining the coordination number
and fabric anisotropy, allows for a simple tensorial repre-
sentation of the fabric states by means of Mohr circles. We
also briefly discussed how low-order fabrics are induced by
homogeneous shearing, and numerical data of fabric evolu-
tion were presented for loose and dense isotropic states and
reversed strains from the critical state. Finally, a model was
introduced for the range of accessible fabric states. Assum-
ing limit values of the coordination number, reflecting the
local constraints, this model predicts in a simple way limit
lines and an upper bound on the fabric anisotropy. It pro-
vides also a geometrical interpretation of the critical state as
a “saturated” state reflecting particle-scale constraints.
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