
HAL Id: hal-00678784
https://hal.science/hal-00678784

Submitted on 14 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigations on a Pedagogical Calculus of
Constructions

Loïc Colson, Vincent Demange

To cite this version:
Loïc Colson, Vincent Demange. Investigations on a Pedagogical Calculus of Constructions. Journal
of Universal Computer Science, 2013, 19 (6), pp.729-749. �10.3217/jucs-019-06-0729�. �hal-00678784�

https://hal.science/hal-00678784
https://hal.archives-ouvertes.fr

Investigations on a Pedagogical Calculus of Constructions

Löıc Colson

(LITA, University Paul-Verlaine – Metz, France

colson@univ-metz.fr)

Vincent Demange

(LITA, University Paul-Verlaine – Metz, France

demange@univ-metz.fr)

Abstract: In the last few years appeared pedagogical propositional natural deduction
systems. In these systems, one must satisfy the pedagogical constraint : the user must
give an example of any introduced notion. In formal terms, for instance in the propo-
sitional case, the main modification is that we replace the usual rule (hyp) by the rule
(p-hyp)

F ∈ Γ

(hyp)
Γ ⊢ F

F ∈ Γ ⊢ σ · Γ
(p-hyp)

Γ ⊢ F

where σ denotes a substitution which replaces variables of Γ with an example. This
substitution σ is called the motivation of Γ .

First we expose the reasons of such a constraint and properties of these “pedagogical”
calculi: the absence of negation at logical side, and the “usefulness” feature of terms at
computational side (through the Curry-Howard correspondence). Then we construct a
simple pedagogical restriction of the calculus of constructions (CC) called CCr. We es-
tablish logical limitations of this system, and compare its computational expressiveness
to Gödel system T.

Finally, guided by the logical limitations of CCr, we propose a formal and general
definition of what a pedagogical calculus of constructions should be.

Key Words: mathematical logic, negationless mathematics, constructive mathemat-
ics, typed lambda-calculus, calculus of constructions, pedagogical system.

Category: F.1.1, F.4.1

1 Introduction and Motivations

1.1 The pedagogical constraint

Recently the articles [Colson and Michel(2007),Colson and Michel(2008),Colson

and Michel(2009)] appeared in print, introducing pedagogical natural deduction

systems and pedagogical typed λ-calculi. The main feature about these systems is

that any proof (or any program)must satisfy the so named pedagogical constraint:

in natural deduction systems (for instance) the rule (hyp) is replaced by (p-hyp)

F ∈ Γ
(hyp)

Γ ⊢ F

F ∈ Γ ⊢ σ · Γ
(p-hyp)

Γ ⊢ F

where σ denotes a substitution which replaces propositional variables of Γ

with an example, and ⊢ σ · Γ stands for the derivations of those substituted

formulas.

The idea of such a constraint is that, in order to assume a set Γ of hypotheses,

one must first provide a “motivation” (the substitution σ under consideration) in

which the set of hypotheses is fulfilled. In doing so, we can always exemplify intro-

duced hypotheses. This is the formal counterpart of the usual informal teaching

practice, consisting in giving examples of objects satisfying the assumed prop-

erties. This last point is a justification of the terminology pedagogical systems,

and the necessity of such a constraint was already observed by [Poincaré(1913)]

[see Section 3.1].

1.2 The pedagogical minimal propositional calculus

In [Colson and Michel(2007)], the minimal propositional calculus over→, ∨ and

∧ has been constrained as previously explained. It is shown in the article that

the resulting calculus (P-MPC) is equivalent to the original one: a judgment

Γ ⊢ F is derivable in the usual system (MPC) if and only if it is derivable in its

pedagogical version (P-MPC).

1.3 The pedagogical second-order propositional calculi

The case of the second-order propositional calculus (Prop2) is considered in

[Colson and Michel(2008)]. Constraining only the rule of hypothesis as above,

one is led to a weakly pedagogical second-order calculus (Ps-Prop
2), where rules

dealing with quantification are the usual ones:

Γ ⊢ F α 6∈ V(F)
(∀i)

Γ ⊢ ∀α.F

Γ ⊢ ∀α.F
(∀e)

Γ ⊢ F [α← U]

The same remark as above holds for this calculus, but it is not stable by

normalization of proofs. Indeed, it is shown that ⊥ → ⊥ is derivable in Ps-

Prop2 (where ⊥ stands for ∀α.α):

1. β ⊢ β (β is motivable)

2.⊢ β → β (→i 1)

3.⊢ ∀β.β → β (∀i 2)

4.⊢ ⊥ → ⊥ (∀e 3)

But a normal form of this proof must end with a (→i) rule of ⊥, which is

impossible since ⊥ is not motivable. Hence the normal form of this proof is not

a proof of Ps-Prop
2.

This motivates the more constrained system P-Prop2 where the (∀e) rule has

been replaced by
Γ ⊢ ∀α.F ⊢ σ · U

(P-∀e)
Γ ⊢ F [α← U]

It is shown about this system that the usual second-order encoding of con-

nectives ∨ and ∧ essentially works but it must be observed that the ∨i (at right

for instance) becomes:
Γ ⊢ A ⊢ σ · B

(∨ir)
Γ ⊢ A ∨B

The main result concerning P-Prop2 is that there exists a translation F 7→ F γ

inspired by the A-translation of [Friedman(1978)] such that: Γ ⊢ F is derivable

in Prop2 if and only if Γ γ ⊢ F γ is derivable in P-Prop2.

1.4 The pedagogical second-order λ-calculus

Through the Curry-Howard isomorphism, previous work about second-order

propositional calculus is extended in [Colson and Michel(2009)] to the second-

order λ-calculus. The system is shown to be stable by reduction (i.e. enjoys the

so-called subject reduction property). An important feature for a λ-calculus is

defined: the usefulness of functions. It means that every typable function in this

pedagogical λ-calculus can be applied to a term: if ⊢ f : A→ B, then there is a

substitution σ such that σ ·A is inhabited. Indeed, pedagogical λ-calculi do not

allow one to write useless programs, which are not needed.

1.5 The calculus of constructions

The calculus of constructions (CC) has been first introduced in [Coquand and

Huet(1984),Coquand(1985)]: it is a λ-calculus which encompasses higher-order

λ-calculi and calculi with dependent types. It is then natural to extend previous

works on “pedagogization” to CC in the aim of obtaining a uniform treatment

of pedagogical λ-calculi.

1.6 Organization of the article

The paper is organized as follows: in section 2 we recall usual notations for

the calculus of constructions (CC); in section 3 we introduce the main criterion

for a subsystem of CC to be pedagogical, we discuss about the impossibility

of a straightforward modification of CC, and we propose a better one; then in

section 4 we show that this restriction meets this criterion; we present some

limitations of it at logical and computational side in sections 5 and 6; finally we

conclude by the first formal definition of a pedagogical subsystem of CC.

2 Background and Notations

In this section, we briefly recall usual definitions and notations about the calculus

of constructions CC.

We try to use x, y, .. as symbols for variables, u, v, w, t, .. to denote terms,

and A,B, .. for types and formulas.

≡ is the syntactical equality of terms 1. We note by β the usual beta-

reduction relation between terms;
∗
 β its reflexive and transitive closure; and

=β its equivalence closure. V(t) is the set of free variables of t. t is said to

be closed if V(t) = ∅. t[x ← u] is the usual substitution of u for x in t; and

t[x1, .., xn ← u1, .., un] is the simultaneous substitution of u1 for x1, u2 for x2,

etc. To shorten notations, we use a vector symbolism: ~t denotes the sequence of

terms t1, .., tn; and ∀~x
~A.B denotes ∀xA1

1 ..∀xAn

n .B.

There are two kinds of judgments: Γ wf means that the environment Γ is

syntactically well-formed, and Γ ⊢ t : A expresses that the term t is of type

A in the environment Γ . Implicitly Γ ⊢ A : κ signifies that there exists κ ∈

{Prop,Type} such that this previous statement holds. Γ ⊢ t : A : κ is the

contraction of Γ ⊢ t : A and Γ ⊢ A : κ. As usual, A→ B is a shortcut notation

for ∀xA.B when x does not appear in B.

Rules of CC are presented in [Fig. 1]: a close presentation can be found

in [Bunder and Seldin(2004)] (without the well-formed judgment), or in [Co-

quand(1986),Barendregt(1992)].

Beta-reduction is known to be confluent and terms of this calculus to be

strongly normalizing [Barendregt(1992)].

In the sequel we shall need the following elementary results (proofs in [Co-

quand(1985),Barendregt(1992)]):

Lemma1. If Γ wf holds, then Type 6∈ Γ (the constant Type never appears in

any well-formed environment). And if Γ ⊢ t : A holds, then Type 6∈ Γ ∪ {t}.

Lemma2. If Γ ⊢ t : A holds, then A ≡ Type or Γ ⊢ A : κ.

Proposition3. (i) If Γ, x : A,Γ ′ wf and Γ ⊢ u : A hold, then Γ, Γ ′[x← u] wf

also holds.

(ii) If Γ, x : A,Γ ′ ⊢ t : B and Γ ⊢ u : A hold, then Γ, Γ ′[x ← u] ⊢ t[x ← u] :

B[x← u] holds.

1 As in [Coquand(1989)], we assume De Bruijn indexes for bound variables and iden-
tifiers for free variables. So there is no need for α-conversion notion.

(env1)
[] wf

Γ ⊢ A : κ x 6∈ V(Γ)
(env2)

Γ, x : A wf

Γ wf
(ax)

Γ ⊢ Prop : Type

Γ, x : A,Γ ′ wf
(var)

Γ, x : A,Γ ′ ⊢ x : A

Γ, x : A ⊢ u : B : κ
(abs)

Γ ⊢ λxA.u : ∀xA.B

Γ, x : A ⊢ B : κ
(prod)

Γ ⊢ ∀xA.B : κ

Γ ⊢ u : ∀xA.B Γ ⊢ v : A
(app)

Γ ⊢ u v : B[x← v]

Γ ⊢ t : A Γ ⊢ A′ : κ A =β A′

(conv)
Γ ⊢ t : A′

where κ stands for Prop or for Type.

Figure 1: Inference rules of CC

3 Pedagogizing CC

3.1 The Poincaré criterion

Let us recall the necessity of the pedagogical constraint —here in the case of

definitions by postulate— by the following quotation:

A definition by postulate has value only when the existence of the

object defined has been proved. In mathematical language, this means

that the postulate does not imply a contradiction, we do not have the right

to neglect this condition. Either it is necessary to admit the absence of

contradiction as an intuitive truth, as an axiom, by a kind of act of faith

—but then it is necessary to realize what we are doing and to remember

that we have extended the list of indemonstrable axioms— or else it is

necessary to construct a formal proof, either by means of examples or by

the use of reasoning by recurrence. Not that this proof is less necessary

when a direct definition is involved, but it is generally easier.

Henri Poincaré – Last thoughts [Poincaré(1913)]

In CC, a definition by postulate of an object xmay be seen as an environment

containing x followed by hypotheses about x. For instance,

Let x be a natural number verifying P (x) and Q(x).

is formally represented in CC by the following environment

x : N, H1 : P (x), H2 : Q(x)

Poincaré pointed out that such a set of hypotheses is an admissible definition

by postulate of x only if we are able to exhibit a natural satisfying both predicates

P and Q. In other words, types P (x) and Q(x) must be inhabited for a given x

(say n) in CC. Namely the following statements must hold:

⊢ n : N ⊢ t1 : P (n) ⊢ t2 : Q(n)

If this is not possible (i.e. there is no such n, t1 or t2) then the definition is

meaningless and should be avoided.

Let us generalize to any environment:

Definition 4 (Poincaré criterion). The environment x1 : A1, .., xn : An is

respectful of the Poincaré criterion only if there exists terms t1, .., tn such that

the following judgments are derivable:

⊢ t1 : A1

⊢ t2 : A2[x1 ← t1]
...

⊢ tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1]

A formal system is said to meet the Poincaré criterion only if every well-

formed environment are respectful of the Poincaré criterion.

3.2 On the naive extension of previous work

In the previous works on pedagogization [see section 1], each environment is

motivated before being used. It is then immediate that each used environment

can be motivated, hence such a system trivially satisfies the Poincaré criterion.

Unfortunately such a simple adjustment can not be performed into CC.

The straightforward extension of the previous work to CC can be summed

up by the following changes:

– remove (env1) and (env2) rules;

– replace (ax) and (var) rules by these ones:

σ · Γ
(ax)

Γ ⊢ o : ⊤ : Prop : Type

σ · (Γ, x : A,Γ ′)
(var)

Γ, x : A,Γ ′ ⊢ x : A

where

– σ is the substitution [x1 7→ t1; . . . ;xn 7→ tn] when Γ ≡ x1 : A1, . . . , xn : An,

and σ · Γ denotes the judgments:

⊢ t1 : A1

⊢ t2 : A2[x1 ← t1]
...

⊢ tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1]

– o and ⊤ are two added constants in order to be able to begin derivations

(like in [Colson and Michel(2009)]).

In this subsection, we refer to this system as P , and index its judgments by p.

P is not a subsystem of CC:

Lemma5. The following derivations hold in P but not in CC:

(a) x1 : Type ⊢p Prop : Type

(b) x1 : Prop, x2 : (λH⊤→x1 .⊤) (λy⊤.y) ⊢p Prop : Type

(c) x1 : N, x2 : (λHx1=0.⊤) (λPN→Prop.λHP 0.H) ⊢p Prop : Type

Proof. Proofs that derivations hold in P are trivial as soon as we exhibit a

motivation:

(a) σ1 := [x1 7→ Prop]

(b) σ2 := [x1 7→ ⊤;x2 7→ o]

(c) σ3 := [x1 7→ 0;x2 7→ o]

And it is easy to see that they are not derivable in CC:

(a) Type appears into an environment, which is forbidden in CC [see lemma 1];

(b) (λH⊤→x1 .⊤) (λy⊤.y) is ill-typed since the function waits for a element of

type ⊤ → x1, but an element of type ⊤ → ⊤ is given instead;

(c) same reason as for (b): the function waits for a proof of x1 = 0, whereas a

proof of 0 = 0 is passed.

⊓⊔

Remark. Those examples involve dependent types. It seems that this naive ex-

tension can work for λω [see [Michel(2008)]].

Remark. The first case can be avoided by enforcing the Ai to be of type Prop

or Type in the definition of σ · Γ .

CC has the advantage that well-formed types are built into the system. So

we just need to find which rules need to be constrained and how in order to

avoid not motivable types (i.e. empty types).

3.3 A simple attempt: CCr

In CC, we are able to introduce ⊥ := ∀AProp.A as an hypothesis if we have

been able to derive ⊥ as a type, which is allowed by the (prod) rule. Actually,

the (prod) rule is the only one able to create vacuity, since other rules construct

types and an inhabitant of it simultaneously. We then impose products to always

be inhabited by replacing the usual (prod) rule of CC by the following more

restrictive one:
Γ, x : A ⊢r t : B : κ

(prodr)
Γ ⊢r ∀x

A.B : κ

This rule may be condensed together with (abs) to obtain a rule with two con-

clusions. So the resulting calculus can be viewed as CC without the (prod) rule.

From now on we will refer to the resulting calculus as CCr, whose judgments

will be indexed by r.

Usual properties of CC from [Coquand(1985)] still hold for this calculus,

especially substitution (prop.3 above), weakening and the well-known “subject

reduction” (stability by reduction). These were formally checked in the Coq

proof assistant by straightforward adaptation of the work in [Barras(1996)].

Example of derivation in CCr

Lemma6. The following rule is derivable:

Γ wfr

Γ ⊢r o : ⊤ : Prop

where o := λAProp.λxA.x and ⊤ := ∀AProp.A→ A.

Proof.

1. Γ wfr (hyp)

2. Γ ⊢r Prop : Type (ax 1)

3. Γ, A : Prop wfr (env2 2)

4. Γ, A : Prop ⊢r A : Prop (var 3)

5. Γ, A : Prop, x : A wfr (env2 4)

6. Γ, A : Prop, x : A ⊢r x : A : Prop (var 5)

7. Γ, A : Prop ⊢r λxA.x : A→ A : Prop (abs+prod 6)

8. Γ ⊢r λAProp.λxA.x : ∀AProp.A→ A : Prop (abs+prod 7)

4 CCr meets the Poincaré criterion

In this section we show that every type (term of sort Prop or Type) in a well-

formed environment of CCr is inhabited. A sketch of the proof is: we first notice

that in CCr every product is inhabited, then, because each closed type reduces

to a product, we can inhabit every type of a well-formed environment (beginning

by its leftmost type, which is closed).

Lemma7. If Γ ⊢r ∀xA.B : T holds, then there exists κ and a term t such that

Γ ⊢r t : ∀xA.B and T =β κ.

Proof. By induction on the derivation: if the last used rule is (prod) then we

build t by (abs) rule, and if it is (conv) then we apply induction hypothesis to

get t. ⊓⊔

Lemma8. If Γ ⊢r B : Type holds, then there exists a term t such that Γ ⊢r t : B

is derivable.

Proof. By cases on the last applied rule; (ax) case is dealt with lemma 6; (var),

(app) and (conv) cases are eliminated using lemmas 1 and 2; (prod) case is trivial

using (abs) rule. ⊓⊔

Indeed, every element of type Type is syntactically of the form ∀~x
~A.Prop, and

then trivially inhabited by λ~x
~A.⊤.

Lemma9. If Γ ⊢r B : ∀~x
~A.Prop holds with B closed, then for all closed terms

w1, . . . , wn verifying

Γ ⊢r w1 : A1

Γ ⊢r w2 : A2[x1 ← w1]
...

Γ ⊢r wn : An[x1, . . . , xn−1 ← w1, . . . , wn−1]

there exists a term t such that

Γ ⊢r t : B ~w

Proof. Let us define by ‖t‖ the length of the longest path of reduction from

the term t to its normal form (which exists because terms of CCr are strongly

normalizing).

We proceed by induction on the lexicographical order of ‖B ~w‖ and the

height of the derivation of Γ ⊢r B : ∀~x
~A.Prop.

Let us deal with non-trivial cases (others being mostly eliminated by lem-

mas 1 and 2):

(abs) If the last rule of the derivation is

Γ, x1 : A1 ⊢r u : ∀xA2

2 . . . ∀xAn

n .Prop : Type

Γ ⊢r λxA1

1 .u : ∀~x
~A.Prop

Let ~w be the above closed terms.

Substituting v for x1 in the premise, we obtain (property 3)

Γ ⊢r u[x1 ← w1] : ∀x
A2[x1←w1]
2 . . . ∀xAn[x1←w1]

n .Prop

As ‖u[x1 ← w1] w2 .. wn‖ < ‖(λxA1

1 .u) w1 w2 .. wn‖, and u[x1 ← w1] is

closed (since λxA1

1 .u and w1 are), we can apply induction hypothesis to built a

term t such that Γ ⊢r t : u[x1 ← w1] w2 .. wn from which by (conv) rule we

finally get

Γ ⊢r t : (λxA1

1 .u) ~w

(app) If the last rule of the derivation looks like

Γ ⊢r u : ∀yC .∀~x
~D.Prop Γ ⊢r v : C

Γ ⊢r u v : ∀~x
~D[y←v].Prop

where ~A ≡ ~D[y ← v] and B ≡ u v.

Let ~w be the above terms. Since for every i xi 6∈ V(v), so

Di[y ← v][x1, .., xi−1 ← w1, ..wi−1] ≡ Di[y, x1, .., xi−1 ← v, w1, ..wi−1]

Noticing we have ‖u v ~w‖ = ‖(u v) ~w‖, we can then apply induction hypothesis

of the first premise on the terms v, ~w to obtain t such that

Γ ⊢r t : (u v) ~w

(conv)

Γ ⊢r B : T Γ ⊢r ∀~x
~A.Prop : Type T =β ∀~x

~A.Prop

Γ ⊢r B : ∀~x
~A.Prop

By lemma 2 on Γ ⊢r B : T , we have three cases: T ≡ Type, Γ ⊢r T : Prop or

Γ ⊢r T : Type. By confluency, the definition of beta-reduction, the properties of

subject reduction and uniqueness of types, only Γ ⊢r T : Type remains. Hence

T must be of the form ∀~x
~C .Prop where ~A =β

~C.

Let ~w be the above terms. In order to apply induction hypothesis on the first

premise, it is necessary to show that

Γ ⊢r w1 : C1

Γ ⊢r w2 : C2[x1 ← w1]
...

Γ ⊢r wn : Cn[x1, . . . , xn−1 ← w1, . . . , wn−1]

First let us notice that since ~A =β
~C, then for each i Ai[x1, .., xi−1 ← v1, .., vi−1]

is convertible with Ci[x1, .., xi−1 ← v1, .., vi−1]. Also, because Γ ⊢r ∀~x
~C .Prop :

Type, for each i there exists κ such that Γ, x1 : C1, .., xi : Ci ⊢r Ci+1 : κ.

We can then proceed by induction on n:

1. Γ ⊢r w1 : A1 (hyp)

2. Γ ⊢r C1 : κ

3. A1 =β C1

4. Γ ⊢r w1 : C1 (conv 1 2 3)

5. Γ ⊢r w2 : A2[x1 ← w1] (hyp)

6. Γ, x1 : C1 ⊢r C2 : κ

7. Γ ⊢r C2[x1 ← w1] : κ (prop.3 4 6)

8. A2[x1 ← w1] =β C2[x1 ← w1]

9. Γ ⊢r w2 : C2[x1 ← w1] (conv 5 7 8)
...

Finally, we apply induction hypothesis of the first premise on those now

well-typed ~w to get a term t satisfying

Γ ⊢r t : B ~w

⊓⊔

The two previous lemmas can be summed up by the following statement:

Corollary 10. If Γ ⊢r B : κ holds with B closed, then there exists a term t such

that Γ ⊢r t : B.

So the pedagogical character of the calculus follows, every type of a well-

formed environment is inhabited:

Theorem 11 (Poincaré criterion). If x1 : A1, . . . , xn : An wfr holds, then

there exists terms t1, . . . , tn such that

⊢r t1 : A1

⊢r t2 : A2[x1 ← t1]
...

⊢r tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1]

Proof. By induction on the size of the environment n.

From the derivation x1 : A1, . . . , xn : An wfr, we have ⊢r A1 : κ as a sub-

derivation where A1 is closed. So by corollary 10, we get t1 such that

⊢r t1 : A1

Then by property 3 we have x2 : A2[x1 ← t1], . . . , xn : An[x1 ← t1] wfr. By the

same way, we construct t2 such that

⊢r t2 : A2[x1 ← t1]

and then x3 : A3[x1, x2 ← t1, t2], . . . , xn : An[x1, x2 ← t1, t2] wfr.

...

⊓⊔

This so named “motivation” may be transmitted to the conclusion of judg-

ments:

Corollary 12. If x1 : A1, . . . , xn : An ⊢r u : B holds, then there exists terms

t1, . . . , tn such that

⊢r t1 : A1

⊢r t2 : A2[x1 ← t1]
...

⊢r tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1]

and

⊢r u[~x← ~t] : B[~x← ~t]

Proof. Immediate by applying n times the property 3 using the terms obtained

from the theorem. ⊓⊔

Theorem 13 (usefulness). If ⊢r f : ∀xA.B holds, then there exists a term u

such that ⊢r u : A.

Proof. From ⊢r f : ∀xA.B, by lemma 2 we have ⊢r ∀xA.B : κ, then x : A ⊢r B : κ

which implies that x : A wf, and finally by theorem 11 we construct u. ⊓⊔

5 Limitations of the logical power of CCr

To introduce an hypothesis (which is not a variable) in an environment, it is

necessary to first inhabit it. For instance, defining Leibniz equality over a type

A by

x =A y := ∀QA→Prop.Q x→ Q y

it is not possible to prove nor symmetry nor transitivity of this relation over

A (whatever this type is). Indeed, because we are not permitted to derive A :

Prop, x : A, y : A ⊢r x =A y : Prop, we can not introduce x =A y as an hypothesis

and then we are not allowed to use it.

Theorem 14. There is no term u such that ⊢r u : ∀AProp.∀xA.∀yA.x =A y →

y =A x holds.

Proof. Let us suppose such a term u exists. So we have a sort κ such that

A : Prop, x : A, y : A ⊢r x =A y : κ. And because x =A y is a product,

by lemma 7, it is inhabited, say by t. But since CCr is a restriction of CC,

A : Prop, x : A, y : A ⊢ t : x =A y also holds in CC. Then, applying it to N and 0

and 1, we get a proof of 0 = 1 in the empty environment in CC, which is known

to be impossible (by a simple combinatoric discussion about the normal form of

such a term). ⊓⊔

In fact, this calculus does not even natively contain simply typed λ-calculus:

Theorem 15. There is no term u such that

A B C : Prop ⊢r u : (A→ B)→ (B → C)→ (A→ C)

holds.

Proof. Using same arguments as above, if such a u exists, then the following

judgment holds:

A : Prop, B : Prop, C : Prop ⊢r A→ B : Prop

so there is an inhabitant t of the product type A→ B in CCr and hence in CC,

implying by (abs) rule that

⊢ λABCProp.t : ∀ABCProp.A→ B

which can be specialized to ⊤ and ⊥ to obtain a proof of ⊤ → ⊥ and finally a

proof of ⊥ in the empty environment, which is impossible since CC is consistent.

⊓⊔

Actually, every instances of the types in CCr must be inhabited:

Theorem 16. If x1 : A1, .., xn : An ⊢r B : κ holds, then for all terms w1, . . . , wn

such that
⊢r w1 : A1

⊢r w2 : A2[x1 ← w1]
...

⊢r wn : An[x1, . . . , xn−1 ← w1, . . . , wn−1]

there exists a term t such that

⊢r t : B[~x← ~w]

Proof. The proof is trivial by applying n times the substitution property 3, ob-

taining ⊢r B[~x← ~w] : κ, inhabited by corollary 10. ⊓⊔

It is hard to precisely determine the logical expressiveness of CCr. We have

at least simply typed λ-calculus on closed (and then inhabited) types of CCr

(e.g. ⊤, N, etc.). The proof is the same as the one of lemma 21 below.

6 Computational expressivity of CCr

Although the logical strength of CCr seems quite poor, its computational power

is at least that of the Gödel system T. We use the usual well-known way to

define terms, types (except cartesian product), and recursor (from iterator) of

system T in lambda-calculus (see [Girard et al.(1990)]).

Definition 17.

N := ∀AProp.A→ (A→ A)→ A

0 := λAProp.λxA.λfA→A.x

S(n) := λAProp.λxA.λfA→A.f (n A x f)

itT (n, b, (y
T)step) := n T b (λyT .step)

Lemma18. The following rules are derivable:

Γ wfr

Γ ⊢r 0 : N : Prop

Γ ⊢r n : N

Γ ⊢r S(n) : N

Γ ⊢r T : Prop Γ ⊢r n : N Γ ⊢r b : T Γ, y : T ⊢r step : T

Γ ⊢r itT (n, b, (y
T)step) : T

Lemma19. The following reductions hold:

itT (0, b, (y
T)step)

∗
 β b

itT (S(n), b, (y
T)step)

∗
 β step[y ← itT (n, b, (y

T)step)]

Definition 20 (simple types on N). Simple types on N are those obtained

from N and →.

Lemma21. If Γ wfr holds and T is a simple type on N, then there exists a term

t such that Γ ⊢r t : T : Prop.

Proof. By induction on T (as a simple type on N):

– If T is N, then 0 fits.

– If T is A → B where A and B are simple types on N, then by induction

hypothesis on A, we get Γ ⊢r A : Prop and by (env2) rule we obtain Γ, x :

A wfr. By induction hypothesis onB, we get Γ ⊢r b : B : Prop, and weakening

it we have Γ, x : A ⊢r b : B : Prop, and finally, by (abs) and (prod) rules,

Γ ⊢r λxA.b : A→ B : Prop.

⊓⊔

CCr does not allow us to derive the usual cartesian product defined by A×

B := ∀CProp.(A→ B → C)→ C. To simulate recursor from iterator, we define

a restricted cartesian product N× T for each T , simple type on N, by encoding

a natural into T .

Lemma22. If Γ wfr holds and T is a simple type on N then there exists two

terms encT and decT such that Γ ⊢r encT : N → T and Γ ⊢r decT : T → N and

for every term n we have decT (encT n)
∗
 β n.

Proof. By induction on T (as a simple type on N):

– If T is N, then we take the identity on N for encT and decT .

– If T is A→ B, we take

encA→B := λxN.λzA.encB x

decA→B := λfA→B.decB (f a)

where a is a term of type A obtained from lemma 21.

⊓⊔

Definition 23. We define the following abbreviations for couples

N× T := (T → T → T)→ T

〈n, t〉T := λfT→T→T .f (encT n) t

π1(c) := decT (c (λxT .λyT .x))

π2(c) := c (λxT .λyT .y)

Lemma24. The following rules are derivable:

Γ wfr

Γ ⊢r N× T : Prop

Γ ⊢r n : N Γ ⊢r t : T

Γ ⊢r 〈n, t〉
T : N× T

Γ ⊢r c : N× T

Γ ⊢r π1(c) : N

Γ ⊢r c : N× T

Γ ⊢r π2(c) : T

Lemma25. The following reductions hold:

π1(〈n, t〉T)
∗
 β n

π2(〈n, t〉T)
∗
 β t

Definition 26. We define recursor from iterator by

recT (n, b, (x
N, yT)step) := π2

[

itT×T (n, 〈0, b〉
T , (zT×T)step′)

]

where

step′ := 〈S(π1(z)), step[x, y ← π1(z), π2(z)]〉
T×T

Lemma27. The following rule is derivable:

Γ ⊢r T : Prop Γ ⊢r n : N Γ ⊢r b : T Γ, x : N, y : T ⊢r step : T

Γ ⊢r recT (n, b, (x
N, yT)step) : T

Lemma28. The following reductions hold:

recT (0, b, (x
N, yT)step)

∗
 β b

recT (S(n), b, (x
N, yT)step)

∗
 β step[x, y ← n, recT (n, b, (x

N, yT)step)]

7 Conclusions and direction for further work

We have seen a simple attempt to pedagogize the calculus of constructions.

It has a good computational power —at least Gödel system T— but lacks of

logical expressivity —does not even natively contain simply typed λ-calculus. A

pleasant aspect is the simplicity of the added constraint, which also emphasizes

that the (prod) rule is responsible for vacuity in CC.

Logical limitations of our calculus CCr suggest a more precise definition for a

calculus of constructions to be pedagogical: in a pedagogical calculus, we should

be able to prove the symmetry of the Leibniz equality, because the non-emptiness

of x =A y can be justified by substituting N to A and 0 to x and y. It means that

we not only need that a well-formed environment guarantees the non-emptiness

of its types by exhibiting an example, but the converse should hold too.

But as it was already pointed out in section 3.2, the direct converse statement

of the Poincaré criterion is not suitable. We then propose the following definition

of a pedagogical subsystem of CC (whose judgments are indexed by p):

Definition 29 (pedagogical subsystem of CC).

P is a pedagogical subsystem of CC if:

1. x1 : A1, . . . , xn : An wfp holds if and only if

(a) x1 : A1, . . . , xn : An wf holds in CC,

(b) and there exist terms t1, . . . , tn such that

⊢p t1 : A1 : κ1

⊢p t2 : A2[x1 ← t1] : κ2

...

⊢p tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1] : κn

2. the system is stable by reduction, namely if Γ ⊢p u : B and u β u′, then

Γ ⊢p u′ : B.

Remark. 1. The left to right side of the equivalence is already known as “the

Poincaré criterion”, and enforces P to be a subsystem of CC. The right to

left side should then be named “the converse of the Poincaré criterion”.

2. The subject reduction must be explicitly stated here since [Colson and

Michel(2008)] defined a “simple pedagogical second-order propositional cal-

culus (Ps-Prop2)” verifying 1 but not 2.

One can show, keeping only the rules of CC necessary to define second order

λ-calculus and adding constraints of the pedagogical second order λ-calculus

of [Colson and Michel(2009)], that we obtain a calculus which is pedagogical

in the new sense just defined. For instance, P-MPC et P-Prop2 [see section 1]

satisfy: it exists F such that Γ ⊢ F if and only if it exists σ such that ⊢ σ · Γ .

By the same way, we can construct more expressive pedagogical restrictions of

CC: a hint is given by [Michel(2008)] where he studies pedagogical propositional

higher order systems. It thus raises the question of formally characterizing a

maximally expressive pedagogical restriction of CC.

References

[Barendregt(1992)] Barendregt, H.: Lambda calculi with types; volume 2 of Handbook
of Logic in Computer Science; 117–309; Oxford University Press, 1992.

[Barras(1996)] Barras, B.: “Coq en coq”; Rapport de Recherche 3026; INRIA (1996).
[Bunder and Seldin(2004)] Bunder, M., Seldin, J. P.: “Variants of the Basic Calculus

of Constructions”; Journal of Applied Logic; 2 (2004), 2, 191–217.
[Colson and Michel(2007)] Colson, L., Michel, D.: “Pedagogical natural deduction sys-

tems: the propositional case”; J.UCS; 13 (2007), 10, 1396–1410.
[Colson and Michel(2008)] Colson, L., Michel, D.: “Pedagogical Second-order Propo-

sitional Calculi”; Journal of Logic and Computation; 18 (2008), 4, 669–695.
[Colson and Michel(2009)] Colson, L., Michel, D.: “Pedagogical second-order λ-

calculus”; Theoretical Computer Science; 410 (2009), 4190–4203.
[Coquand(1985)] Coquand, T.: Une théorie des constructions; Ph.D. thesis; Université

Paris VII (1985).
[Coquand(1986)] Coquand, T.: “An analysis of Girard’s paradox”; Technical Report

531; INRIA (1986).
[Coquand(1989)] Coquand, T.: “Metamathematical investigations of a calculus of con-

structions”; Technical Report 1088; INRIA (1989).
[Coquand and Huet(1984)] Coquand, T., Huet, G.: “A Theory of Constructions”; In-

ternational Symposium on Semantics of Data Types; Sophia-Antipolis, 1984.
[Friedman(1978)] Friedman, H.: “Classically and intuitionistically provably recursive

functions”; Springer, ed., Higher Set Theory; volume 669; 21–27; 1978.
[Gilmore(1953)] Gilmore, P.: “The effect of Griss’ criticism of the intuitionistic logic on

deductive theories formalized within the intuitionistic logic”; Indagationes Mathe-
maticæ; 15 (1953), 162–174, 175–186.

[Girard et al.(1990)] Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and types; Cambridge
University Press, 1990.

[Griss(1946)] Griss, G.: “Negationless intuitionistic mathematics”; Indagationes Math-
ematicæ; 8 (1946), 675–681.

[Griss(1950)] Griss, G.: “Negationless intuitionistic mathematics II”; Indagationes
Mathematicæ; 12 (1950), 108–115.

[Griss(1951a)] Griss, G.: “Negationless intuitionistic mathematics III”; Indagationes
Mathematicæ; 13 (1951a), 193–199.

[Griss(1951b)] Griss, G.: “Negationless intuitionistic mathematics IVa, IVb”; Indaga-
tiones Mathematicæ; 13 (1951b), 452–462,463–471.

[Krivtsov(2000a)] Krivtsov, V. N.: “A Negationless Interpretation of Intuitionistic
Theories. I”; Studia Logica; 64 (2000a), 3, 323–344.

[Krivtsov(2000b)] Krivtsov, V. N.: “A Negationless Interpretation of Intuitionistic
Theories. II”; Studia Logica; 65 (2000b), 2, 155–179.

[Mezhlumbekova(1975)] Mezhlumbekova, V.: “Deductive capabilities of negationless
intuitionistic arithmetic”; Moscow University Mathematical Bulletin; 30 (1975), 2.

[Michel(2008)] Michel, D.: Systèmes formels et systèmes fonctionnels pédagogiques;
Ph.D. thesis; Université Paul-Verlaine – Metz (2008).

[Nelson(1966)] Nelson, D.: “Non-Null Implication”; The Journal of Symbolic Logic; 31
(1966), 4, 562–572.

[Nelson(1973)] Nelson, D.: “A complete negationless system”; Studia Logica; 32 (1973),
41–49.

[Poincaré(1913)] Poincaré, H.: Dernières pensées; Flammarion, 1913.
[Valpola(1955)] Valpola, V.: “Ein system der negationlosen Logik mit ausschliesslich

realisierbaren Prädicaten”; Acta Philosophica Fennica; 9 (1955), 1–247.
[Vredenduin(1953)] Vredenduin, P.: “The logic of negationless mathematics”; Compo-

sitio Mathematica; 11 (1953), 204–277.

