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We report the experimental observation of a robust horizontal mean flow induced by

internal gravity waves. A wave beam is forced at the lateral boundary of a tank filled

with a linearly stratified fluid initially at rest. After a transient regime, a strong jet

appears in the wave beam, with horizontal recirculations outside the wave beam. We

present a simple physical mechanism predicting the growth rate of the mean flow and

its initial spatial structure. We find good agreement with experimental results.
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Introduction. Stratified fluids support the existence of anisotropic dispersive waves,

called internal gravity waves, which play a major role in astrophysical and geophysical

fluid dynamics1,2. Recent technical advances allowing for accurate visualization3,4 and well

controlled wave generation5,6 in laboratory experiments have provided a renewal of interest

in this field7. Previous laboratory experiments focused mostly on propagative wave beams

in narrow tanks5,6,8 or propagative vertical modes9,10. Here we consider the case of a prop-

agative wave beam in a wide tank, which remains largely unexplored, despite its physical

importance.

A central aspect of wave dynamics is the possible generation of a mean flow due to

nonlinearities involving one or several wave beams. These phenomena have important con-

sequences for geophysical flow modeling, since they imply backward energy transfers, or

large scale transport properties induced by small scale motions. Among all waves, internal

waves are very peculiar because of the specific and unusual nature of nonlinearity. For in-

stance, it has been reported12,13 that in some important cases, the leading nonlinear term

unexpectedly cancels out if one has just one internal wave beam.

King, Zhang and Swinney15 have recently reported the generation of a mean flow by non-

linearities in the presence of internal gravity waves. However, the structure of the observed

mean flow has not been explained, and the underlying mechanism of generation has not yet

been proposed. Here we propose a physical mechanism for such a phenomenon, supported

by strong experimental evidences. There have been numerous theoretical studies of internal

gravity waves-mean flow interactions, see e.g. Refs.13,16,17, but none of them considered the

case of propagative waves with a slowly varying amplitude in three dimensions. We will

show that in our experiments, both viscous attenuation and lateral variations of the wave

beam amplitude play a key role in the generation of the observed mean flow.

The paper is organized as follows. We first present the experimental setup. Then we

provide detailed observations of the wave field and of the mean flow. We finally propose a

mechanism to deduce the spatial structure of the mean flow and the temporal evolution of

its amplitude from the measurements of the wave field.

Experimental setup. We consider a 120 cm long, 80 cm wide and 42.5 cm deep wave tank,

filled with 35 cm of salt water, see Fig. 1(a). The fluid is linearly stratified in density with

a Brunt-Väisälä frequency N =
√

−(g/ρ)∂zρ, where g is the local gravity, ρ the density

of the fluid and z the vertical coordinate. An internal wave generator is placed on one
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side of the tank, see Refs.5,6 for its full presentation and characterization; it is made of a

series of 18 rectangular plates stacked around a helical camshaft. The plates, which are

14 cm wide in the y-direction, oscillate back and forth along the longitudinal horizontal

coordinate x. The phase shifts between successive cams are chosen in order to form a

sinusoidal profile at the surface of the generator. The rotation of the camshaft at a frequency

ω ≤ N generates a moving boundary condition with an upward or downward phase velocity

depending on the sign of the rotation of the helical camshaft. The displacement profile

is X0(t, z) = x0 sin(ωt − mz), with a vertical wavelength λz = 2π/m = 3.8 cm and an

amplitude x0 = 0.5 cm or x0 = 1 cm.

In the experiments, the front face of the wave generator is located at x = 0, centered at

y = 0, z = 15.8 cm. The wave beam is 14 cm wide, 11.4 cm high, corresponding to three

wavelengths. The generator is only forcing the x-component of the internal wave, while the

z component is found to adjust according to the internal wave structure. The propagation

angle θ of the internal wave is varied by changing the rotation rate of the wavemaker motor,

while keeping the Brunt-Väisälä frequency constant between each experiment, namely N =

0.85 rad s−1. Importantly, this experimental set-up leads to a wave amplitude that depends

on the frequency6. Moreover, the axis of the wavemaker camshaft staying always vertical,

the efficiency of the forcing depends significantly on the projection of the plate motion on the

direction of propagation. The wavemaker frequency being varied in the range ω = 0.26N

to 0.50N , corresponding to an angle of propagation θ from 15o to 30o, the amplitude of the

wave is measured experimentally.

Velocity fields are obtained using a 2D particle image velocimetry (PIV) system3,18. The

flow is seeded with 10 µm tracer particles, and illuminated by a 532 nm 2W-continuous

laser, shaped into a vertical or horizontal sheet. Respectively, a vertical 35×43 cm2 or

horizontal 33×43 cm2 field of view is acquired by a 8-bit 1024×1024 pixels camera. For each

wavemaker frequency, a set of 600 to 1600 images is recorded, at a frequency of 0.38 to 1.25

Hz, representing 10 images per wavemaker period. PIV computations are performed over

successive images, on 21×21 pixels interrogation windows with 50% overlap. The spatial

resolution is approximately 25× 25 px/cm2. A snapshot of the particle flow is presented in

Fig. 1(b).

Experimental results. We denote u = (u, v, w) = u
′ + u0 the velocity field in Cartesian

coordinates x = (x, y, z), with u
′ the “wave” part oscillating at a frequency ω set by the
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FIG. 1. (Color online) (a) Schematic representation of the experimental set-up. The wave generator

is placed on one side of the tank, defining the origin of the spatial coordinates. The excited

plane internal wave has a frequency ω, an upward phase velocity and propagates with an angle

θ = sin−1(ω/N). (b) Top view of the particle flow in the horizontal plane z = 21.6 cm.

wave generator and u0 the dc-component of the velocity field. The latter corresponds to a

large scale structure of the flow, which will be referred to as “mean flow” in the following

(see Fig. 1(b)).

Selective Fourier filtering of the measured horizontal velocity field allows to extract the

spatial structure of the wave from the mean flow. The wave horizontal velocity field is

obtained using a bandpass filter centered on ω, with a width of 0.014ω and is presented in

Fig. 2(a) and (b). Figure 2(a) shows a vertical slice taken at the center of the generator

(y = 0). We notice the three wavelengths, the amplitude decay in the x-direction, and the

approximately constant amplitude along the z-direction. Figure 2(b) presents a horizontal

slice located around the mid-depth of the generator showing the wave amplitude variations

in the y-direction.

The above experimental observations readily suggest to assume that the imposed wave

(u′, 0, w′) is monochromatic, with an amplitude varying in space, and that it can be expressed

in terms of a stream function as follows

ψ = Ψ(x, y, z) cos (ωt− kx−mz) , u′ = −∂zψ, w′ = ∂xψ , (1)

since the horizontal transversal component v′ is vanishingly small and will be neglected in

what follows. The experimental observations also strongly suggest that the variations of

Ψ(x, y, z) appears on a much larger length scale than the wavelength of the internal wave
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FIG. 2. (Color online) (a) and (b): Experimental wave field, u′, obtained by filtering the horizontal

velocity field at ω. (c) and (d): Experimental mean flow, u0, obtained by low-pass filtering the

horizontal velocity field. The contours represent the amplitude of the wave horizontal velocity field,

U ′. The left panels (a) and (c) present the side view and the right panels (b) and (d) present

the top view. All pictures were obtained for ω/N = 0.26 and a 1 cm eccentricity for the cams.

The wavemaker is represented in grey and the moving plates in black. The dashed line in (a)

(respectively (b)) indicates the field of view of (b) (respectively (a)).

beam.

Let us now consider the low-pass filtered flow, which we call “mean flow”. The width

of the filter used to extract the mean flow is 0.25ω. A strong jet going in the outward

direction from the generator is observed in Fig. 2(c) and (d). This structure is initially

located close to the generator, then grows until it fills the whole plane. We observe that the

jet is precisely produced inside the wave beam. Recirculations on the sides of the tank are

visible in Fig. 1(b) and in Fig. 2(d) through the blue patches. These recirculations clearly
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show that the horizontal mean flow is characterized by non-zero vertical vorticity.

Introducing L the length of the tank and U the characteristic scale of the velocity field, the

horizontal fluid motions (u0, v0, 0) are characterized by an eddy turnover time Tmean = L/U .

A key assumption at this stage is to consider that the eddy turnover time is large with

respect to the wave period, the timescale of the internal wave. This regime, Tmean ≫

2π/ω corresponds to a low Froude number limit U/(NL) ≪ 1 in which vertical motions

are inhibited, allowing to neglect the vertical velocity: w0 ≪ w′, which is supported by

experimental observations.

Interpretation. Using the ansatz (1) motivated by experimental results, it is possible to

go further and propose a modelisation which captures the essence of the physical mechanism

underlying the generation of a strong mean flow by the internal wave beam. Considering

a fluid in the Boussinesq approximation2, the dynamics of the vertical component of the

vorticity Ω = ∇× u is given by

∂tΩz + u · ∇Ωz = Ω · ∇w + ν∆Ωz . (2)

Averaging over a wave period, Twave, with the operator A = (1/Twave)
∫ t+Twave

t
dt′ A(t′),

and assuming that horizontal motions do not depend on the fast time scale so that one has

(u0, v0) ≈ (u0, v0), yields

∂tΩ0z + u0 · ∇Ω0z = ∂y

[

∂xu′
2 + ∂z (w′u′)

]

+ ν∆Ω0z , (3)

where we introduced Ω0z = ∂xv0− ∂yu0, the vertical component of the vorticity of the mean

flow. Nonlinear terms act therefore as a source of vertical vorticity, through the lateral

variations (in the y-direction) of the divergence of the quantity u′u′ex +w′u′ez, in the same

manner as the Reynolds stress tensor in a turbulent flow acts as a source of turbulent

transport.

Using the ansatz (1), the nonlinear term of Eq. (3) can be explicitly computed, which

yields

∂tΩ0z + u0 · ∇Ω0z =
1

2
∂y

[

m2∂x(Ψ
2)− km∂z(Ψ

2)
]

+ ν∆Ω0z , (4)

where it has been assumed that the wavelength is much smaller than typical spatial variations

of the wave amplitude. This scale separation is satisfied in the bulk of the wave region, but

not in its edges. However, this technical hypothesis allows a simple physical understanding

of the dynamics, fully sufficient here.
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A first consequence of Eq. (4) is that nonlinearities cannot be a source of vertical vorticity

Ω0z if the wave field is invariant in the y-direction. In our experiments, the wave generator

occupies only one part of the tank width, so one might expect horizontal variations of the

wave amplitude, which fulfills the necessary condition to observe generation of a horizontal

mean flow associated with non-zero vertical vorticity. A second consequence is that if the

wave field is symmetric in the y-direction then the source term in Eq. (4), resulting from

a derivation of the wave field with respect to y, is antisymmetric in the y-direction. This

is the case in our experiments, because the wavemaker is symmetric with respect to y. A

third consequence is that variations in the x or z directions are necessary to produce vertical

vorticity. Such variations can be due to viscosity, in which case the wave amplitude decays

away from the generator1,19 with a typical lengthscale defined as ℓ. Reference13 reported that

a single wave beam could not generate a mean flow in a two-dimensional (or axi-symmetric)

configuration, with invariance in the y-direction. This is consistent with our finding that

the generation of a mean flow requires variations of the wave-amplitude in the y direction.

Refs.13,14 also showed that a mean flow can be generated by two interacting wave beams,

even if there is no variation of the wave amplitude in the y direction. Again, there is no

contradiction with our results, because the mean flow they describe is associated with zero

vertical vorticity, due to their invariance in the y direction.

Finally, let us describe the spatial structure of the nonlinear term of Eq. (4) in our

experimental setup. It is a reasonable approximation to assume ∂z (Ψ
2) ≈ 0 at mid-depth

of the wave field (see Fig. 2(a)) and Ψ(x, y) = Π(y)e−x/ℓ. The typical length scale of viscous

attenuation ℓ can be estimated19 around 20 cm, which means that viscosity will play an

important role in this experiment. The generator induces a symmetric wave field in the y-

direction, maximum at the origin, satisfying ∂y (m
2∂xΨ

2) > 0 for y > 0 and ∂y (m
2∂xΨ

2) < 0

for y < 0. According to Eq. (4), we conclude that the source term induces a dipolar vorticity

structure associated with a horizontal jet going in the outward direction from the wave

generator.

For the sake of simplicity, we have assumed in this paper that the wave field is given, and

we have neglected any feedbacks due to the formation of the mean horizontal flow. Future

work will include a more complete and more rigorous analytical treatment of this problem,

with the appropriate multiscales development.

The horizontal slice shown in Fig. 2(d) is centered on the middle plate of the wavemaker
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(dashed line in Fig. 2(a)), so we can assume ∂zΨ
2=0 in Eq. (4), except at the top and bottom

edges of the wave beam (see Fig. 2(a)). Assuming also that the wave beam is sufficiently

damped by viscosity as its top edge crosses the horizontal slice, we will neglect the term

∂zΨ
2 everywhere.

Assuming finally that the wavelength 2π/m is much smaller than typical spatial variations

of Ψ2, the wave stream function is given by Ψ = U ′/m, where U ′ is the amplitude of the

horizontal velocity field of the wave, u′ = −U ′(x, y, z) sin(ωt − kx − mz). Equation (4)

becomes

∂tΩ0z + u0 · ∇Ω0z =
1

2
∂xyU

′2 + ν∆Ω0z . (5)

For sufficiently short times, the nonlinear term and the viscous term can be neglected, and

one expects that ∂tΩ0z ≃ ∂xyU
′2/2. The experimental determinations of these two terms

are compared in Fig. 3 for t = 106 s. This time is much smaller than the viscous time

(∼ 1000 s) described in the last part of this paper. The magnitude of ∂tΩ0z (Fig. 3(a)) is of

the order of the source term (Fig. 3(b)) and both fields correspond well spatially. The inset

in Figure 3(a) shows a good spatial correlation between both fields. The slope that relates

the two terms is 0.46 (±0.04), although the theory predicts 1. This difference may be due

to contributions of the vertical variations of the wave amplitude in the experiments.
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FIG. 3. Panels (a) and (b) present the top view in the z = 21.6 cm plane at t = 106 s of the two

important quantities entering in Eq. (5): ∂tΩ0z in the left panel and ∂xyU
′2/2 in the right panel.

Both pictures were obtained for ω/N = 0.26 and a 1 cm eccentricity for the cams. The inset in the

left panel presents the 2D-histogram of ∂tΩ0z versus ∂xyU
′2/2 to emphasize the correlation between

both quantities. The dotted line corresponds to the slope 0.46 (±0.04) discussed in the text.
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In order to address the temporal evolution of the mean horizontal flow at mid-depth of

the wavemaker, it is convenient to integrate Eq. (5) over a domain defined as a half-plane of

Fig. 3(b) (domain D+ = [0, Lx] × [0, Ly/2]). This procedure cancels exactly the nonlinear

term, even if it may be locally important. Indeed, using u0 ·∇Ω0z = ∇ · (Ω0zu0), the surface

integral of this term vanishes since Ω0z is zero on the Ox axis and the velocity u0 is zero on

the other edges of the domain. One obtains

∂t
x

D+

dxdy Ω0z =
U ′2(0, 0, z)

2
+ ν

x

D+

dxdy ∆Ω0z . (6)

The integral in the left-hand side of this equation, which we call I(z, t), can be transformed

as (if we denote C+ the circulation path surrounding the domain D+)

I(z, t) ≡
x

D+

dxdy Ω0z(x, y, z, t) =

∮

C+

dl · u0 ≈

∫ Lx

0

dx u0, (7)

since along C+, the velocity is non zero only on the y=0 axis. In this form, I(z, t) can be

identified as a measure of the jet strength. Equation (6) can then be written as

∂tI(z, t) =
U ′2(0, 0, z)

2
+ ν

x

D+

dxdy ∆Ω0z . (8)

Finally, defining L0 as the smallest characteristic scale, ie along y, of the vorticity Ω0z , the

viscous term may be approximated by −νI(z, t)/L2
0. The jet strength is then solution of a

first order differential equation,

∂tI(z, t) = S −
ν

L2
0

I(z, t), (9)

where S is the source term S = U ′2(0, 0, z)/2. Equation (9) shows that the jet strength

I(z, t) should vary exponentially with time and one gets

I(z, t) =
SL2

0

ν

(

1− e−νt/L2
0

)

. (10)

We observe such an exponential growth in Fig. 4(a), which represents the time evolution

of the quantity I(z, t) for different values of S and z = 21.6 cm. A deviation from the

exponential growth happens at large times when the mean flow reaches the side of the

visualization window, in which case the integral I(z, t) saturates since the approximation

of Eq. 7 is not valid any more. The value of L2
0 is estimated by an exponential fit of the

evolution of I(z, t) as a function of time. Remarkably, one gets the same characteristic scale
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L0 ≈ 4 cm for all experiments, which corresponds to the jet width shown in Fig. 2(d). We

then estimate experimentally the source term in two different ways: the exponential fit (Sfit)

and the measurement of the amplitude of the horizontal velocity field (Sexp = U ′(0, 0, z)2/2).

Sfit is plotted as a function of Sexp in Fig. 4(b). As expected, a linear relation between these

two estimations is obtained. We find Sfit = (0.45± 0.02)Sexp in agreement with the spatial

correlation observed in the inset of Fig. 3(a). However our simple model predicts Sfit = Sexp.

This shows that the present theoretical explanation is valid qualitatively but is not fully

sufficient to estimate quantitatively the strength of the jet.
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FIG. 4. Panel (a) presents the evolution vs time of the quantity I(z0, t), with exponential fits.

Panel (b) shows the value Sfit of the source term estimated from the exponential fits of panel (a)

vs the experimental estimation Sexp of the same source term. The dashed line corresponds to

Sfit = (0.45 ± 0.02)Sexp.

Conclusion. We have reported experimental observations of a strong horizontal mean

flow with non-zero vertical vorticity when a propagative monochromatic wave is forced on

the side of a tank filled with a linearly stratified fluid. We stress here that there is no

such mean flow in absence of internal waves propagation, for example when the generator is

excited at a frequency ω larger than the Brunt-Väisälä frequency N , as in Ref.15.

The key ingredient for the existence of this mean vertical vorticity with a dipolar struc-

ture, associated with a strong horizontal jet flowing outward of the generator is the con-

comitant existence of variations of the wave amplitude in both horizontal directions. In the

transverse direction (y), the variations are simply due to the fact that the wave generator
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is localized in a segment smaller than the tank width. In the longitudinal direction, the

variations of the wave amplitude are due to viscous attenuation. This shows the important

role played by viscosity in the generation of the mean flow in our experiments.

However, we believe that the mechanism given here for the generation of a strong mean

flow by interactions between monochromatic waves has interest beyond the viscous regime:

any physical process that leads to variations of the wave amplitude may lead to the formation

of a robust horizontal mean flow. Such variations in the wave amplitude may be for instance

due to parametric subharmonic instabilities10, wave breaking9, superposition of different

wave beams20 or generation of collimated internal tide beams21. This will be the object of

future work.
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