
HAL Id: hal-00678738
https://hal.science/hal-00678738

Submitted on 13 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decorated proofs for computational effects: Exceptions
Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude

Reynaud

To cite this version:
Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud. Decorated proofs
for computational effects: Exceptions. [Research Report] Université Grenoble Alpes (UGA). 2012.
�hal-00678738�

https://hal.science/hal-00678738
https://hal.archives-ouvertes.fr

Decorated proofs for computational effects: Exceptions

Jean-Guillaume Dumas∗, Dominique Duval†, Laurent Fousse‡, Jean-Claude Reynaud§.

March 13., 2012

Abstract

We define a proof system for exceptions which is close to the syntax for exceptions, in the sense that

the exceptions do not appear explicitly in the type of any expression. This proof system is sound with

respect to the intended denotational semantics of exceptions. With this inference system we prove several

properties of exceptions. Keywords. Computational effects. Semantics of exceptions. Proof system.

Introduction

In this paper, as in the apparented papers [1, 4, 3], we consider that a computational effect in a language
corresponds to an apparent lack of soundness: the intended denotational semantics is not a model of the
syntax, but it becomes so when the syntax is endowed with relevant decorations ; more precisely, a proof
system can be designed for dealing with these decorations, which is sound with respect to the intended
denotational semantics. In [3] this point of view has been applied to the side-effects due to the evolution of
the states of the memory in an imperative or object-oriented language. In this paper, it is applied to the
effects caused by exceptions. It happens that there is a duality between the denotational semantics of states
and the core part of the semantics of exceptions [2]. The encapsulation of the core part inside the mechanism
of exceptions is a succession of case distinctions; the proof system is extended for dealing with it. Properties
of exceptions can be proved using this inference system and the proofs can be simplified by re-using proofs
on states, thanks to the duality.

To our knowledge, the first categorical treatment of computational effects is due to Moggi [11]; this
approach relies on monads, it is implemented in the programming language Haskell [16, 8]. Although monads
are not used in this paper, the basic ideas underlying our approach rely on Moggi’s remarks about notions
of computations and monads. The examples proposed by Moggi include the exceptions monad TA = A+E

where E is the set of exceptions. Later on, using the correspondence between monads and algebraic theories,
Plotkin and Power proposed to use Lawvere theories for dealing with the operations and equations related
to computational effects [12, 9]; an operation is called algebraic when it satisfies some relevant genericity
properties. The operation for raising exceptions is algebraic, while the operation for handling exceptions is
not [13]. It follows that the handling of exceptions is quite difficult to formalize in this framework; several
solutions are proposed in [15, 10, 14]. In this paper we rather use the categorical approach of diagrammatic

logics, as introduced in [5] and developed in [1].
In Section 1 a denotational semantics for exceptions is defined, where we dissociate the core operations

from their encapsulation. Then a decorated proof system and a decorated specification for exceptions are
defined in Section 2 and it is checked that the denotational semantics for exceptions can be seen as a model
of this specification. In Section 3 we use this framework for proving some properties of exceptions.

∗LJK, Université de Grenoble, France. Jean-Guillaume.Dumas@imag.fr. This work is partly funded by the project HPAC
of the French Agence Nationale de la Recherche (ANR 11 BS02 013).

†LJK, Université de Grenoble, France. Dominique.Duval@imag.fr. This work is partly funded by the project CLIMT of the
French Agence Nationale de la Recherche (ANR 11 BS02 016).

‡LJK, Université de Grenoble, France. Laurent.Fousse@imag.fr
§Malhivert, Claix, France. Jean-Claude.Reynaud@imag.fr

1

Jean-Guillaume.Dumas@imag.fr
Dominique.Duval@imag.fr
Laurent.Fousse@imag.fr
Jean-Claude.Reynaud@imag.fr

1 Denotational semantics for exceptions

In this Section we define a denotational semantics of exceptions which relies on the semantics of exceptions in
various languages, for instance in Java [6] and ML [7]. Syntax is introduced in Section 1.1 and the distinction
between ordinary and exceptional values is discussed in Section 1.2. Denotational semantics of raising and
handling exceptions are considered in Sections 1.3 and 1.4, respectively.

1.1 Signature for exceptions

The syntax for exceptions in computer languages depends on the language: the keywords for raising excep-
tions may be either raise or throw, and for handling exceptions they may be either handle or try-catch,
for instance. In this paper we rather use throw and try-catch, but this choice does not matter. More
precisely, the syntax of our language may be described in two parts: a pure part and an exceptional part.
The pure part is a signature Sigpure, made of types and operations; the Sigpure-expressions are called the
pure expressions. The interpretation of the pure expressions should neither raise nor handle exceptions. We
assume that the pure operations are either constants or unary. General n-ary operations would require the
use of sequential products, as in [4]; in order to focus on the fundamental properties of exceptions they are
not considered in this paper. The exceptional part is made of a symbol Ei for each index i in some set of
indices I, which is declared as: Exception Ei of Pi, where Pi is a pure type called the type of parameters for
the exceptional type Ei (the Pi’s need not be distinct). The exceptional types Ei provide familiar notations
for the raising and handling operations and in Section 1.3 they are interpreted as sets, however we will not
define any expression of type Ei.

Let us assume that the signature Sigpure is fixed. The expressions of our language are defined recursively
from the pure operations and from the raising and handling operations, as follows.

Definition 1.1. Given a set of indices I and a symbol Ei for each i ∈ I, the signature for exceptions Sigexc
is made of Sigpure together with a raising operation for each i in I and each type Y in Sigpure:

throwY Ei : Pi → Y .

and a handling operation for each Sigexc-expression f : X → Y , each non-empty list of indices (i1, . . . , in)
and each Sigexc-expressions g1 : Pi1 → Y , . . . , gn : Pin → Y :

try{f} catch {Ei1 ⇒g1| . . . |Ein ⇒gn} : X → Y .

1.2 Ordinary values and exceptional values

The syntax for exceptions defined in Section 1.1 is now interpreted in the category of sets. In order to
express the denotational semantics of exceptions, a major point is that there are two kinds of values: the
ordinary (or non-exceptional) values and the exceptions. It follows that the operations may be classified
according to the way they may, or may not, interchange these two kinds of values: an ordinary value may
be tagged for constructing an exception, and later on the tag may be cleared in order to recover the value.
Then we say that the exception gets untagged. Let us introduce a set Exc called the set of exceptions.
For each set X we consider the disjoint union X + Exc with the inclusions normalX : X → X + Exc and
abruptX : Exc → X + Exc.

Definition 1.2. For each set X , an element of X +Exc is an ordinary value if it is in normalX(X) and an
exceptional value if it is in abruptX(Exc). A function f : X + Exc → Y + Exc is said to raise an exception

if there is an element x ∈ X such that f(x) ∈ Exc; propagate exceptions if f(abruptX(e)) = abruptY (e) for
every e ∈ Exc; recover from an exception if there is some e ∈ Exc such that f(e) ∈ Y .

We will use the same notations for the syntax and for its interpretation. Each type X is interpreted as a
set X . Each pure expression f0 : X → Y is interpreted as a function f0 : X → Y , which can be extended as
f = normalY ◦f0 : X → Y +Exc. When f : X → Y is a Sigexc-expression, which may involve some raising or

2

handling operation, its interpretation is a function f : X → Y +Exc which is defined in the next Sections 1.3
and 1.4. In addition, every function f : X → Y +Exc can be extended as [f | abruptY] : X+Exc → Y +Exc,
which is defined by the equalities [f | abruptY] ◦ normalX = f and [f | abruptY] ◦ abruptX = abruptY . This
is the unique extension of f to X + Exc which propagates exceptions.

Remark 1.3. The interpretation of a Sigexc-expression f : X → Y is a function which propagates exceptions;

this function may raise exceptions but it cannot recover from an exception. In Section 1.4, in order to catch
exceptions, we will introduce functions which recover from exceptions. However such a function cannot
be the interpretation of any Sigexc-expression. Indeed, a try-catch expression may recover from exceptions
which are raised inside the try block, but if an exception is raised before the try-catch expression is evaluated,
this exception is propagated. Recovering from an exception can only be done by functions which are not
expressible in the language generated by Sigexc: such functions are called the untagging functions, they are
defined in Section 1.4. Together with the tagging functions defined in Section 1.3 they are called the core

functions for exceptions.

1.3 Tagging and raising exceptions: throw

Raising an exception is based on a tagging process, modelled as follows.

Definition 1.4. For each index i ∈ I there is an injective function ti : Pi → Exc, called the exception

constructor or the tagging function of index i, and the tagging functions for distinct indices have disjoint
images. The image of ti in Exc is denoted Ei.

Thus, the tagging function ti : Pi → Exc maps a non-exceptional value (or parameter) a ∈ Pi to an
exception ti(a) ∈ Exc. This means that the non-exceptional value a in Pi gets tagged as an exception ti(a)
in Exc. The disjoint union of the Ei’s is a subset of Exc; for simplicity we assume that Exc =

∑

i∈I Ei .

Definition 1.5. For each index i ∈ I and each set Y , the throwing or raising function throwY Ei is the
tagging function ti followed by the inclusion of Exc in Y + Exc: throwY Ei = abruptY ◦ ti : Pi → Y + Exc .

1.4 Untagging and handling exceptions: try-catch

Handling an exception is based on an untagging process for clearing the exception tags, which is modelled
as follows.

Definition 1.6. For each index i ∈ I there is a function ci : Exc → Pi + Exc, called the exception

recovery or the untagging function of index i, which satisfies: ∀a ∈ Pi ci(ti(a)) = a and ∀b ∈ Pj ci(tj(b)) =
tj(b) for each j 6= i .

Thus, for each e ∈ Exc the untagging function ci(e) tests whether the given exception e is in Ei; if this is
the case, then it returns the parameter a ∈ Pi such that e = ti(a), otherwise it propagates the exception e.
Since it has been assumed that Exc =

∑

j∈I Ej , the untagging function ci(e) is uniquely determined by the
above equalities.

For handling exceptions of type Ei raised by some function f : X → Y + Exc, for i in a non-empty list
(i1, . . . , in) of indices, one provides for each k in {1, . . . , n} a function gk : Pik → Y + Exc (which thus may
itself raise exceptions). Then the handling process builds a function which encapsulates some untagging
functions and which propagates exceptions. The indices i1, . . . , in form a list: they are given in this order
and they need not be pairwise distinct. It is assumed that this list is non-empty, because it is the usual
choice in programming languages, however it would be easy to drop this assumption.

Definition 1.7. For each function f : X → Y + Exc, each non-empty list (i1, . . . , in) of indices in I and
each family of functions gk : Pik → Y + Exc (for k ∈ {1, . . . , n}), the handling function

try{f} catch {Ei1 ⇒g1| . . . |Ein ⇒gn} : X → Y + Exc

is defined as follows. Let h = try{f} catch {Ei1 ⇒ g1| . . . |Ein ⇒ gn}, for short. For each x ∈ X , h(x) ∈
Y + Exc is defined in the following way.

3

First f(x) is computed:

let y = f(x) ∈ Y + Exc.

(1) If y is not an exception, then it is the required result:

if y ∈ Y then h(x) = y ∈ Y ⊆ Y + Exc.

(2) If y is an exception, then:

(a) If the type of y is Ei for some index i in (i1, . . . , in), then y has to be caught according to the

first occurrence of the index i in the list:

for each k = 1, . . . , n,

– Check whether the exception y has type Eik :

let z = cik(y) ∈ Pik + Exc.

– If the exception y has type Eik then it is caught:

if z ∈ Pik then h(x) = gk(z) ∈ Y + Exc.

(b) If the type of y is Ei for some i 6∈ {i1, . . . , in}, then y is propagated:

otherwise h(x) = y ∈ Exc ⊆ Y + Exc.

Equivalently, the definition of h = try{f} catch {Ei1 ⇒g1| . . . |Ein ⇒gn} can be expressed as follows.

(1-2) The function h : X → Y + Exc is defined from f and from a function catch {Ei1 ⇒g1| . . . |Ein ⇒gn} :
Exc → Y + Exc by:

h =
[

normalY | catch {Ei1 ⇒g1| . . . |Ein ⇒gn}
]

◦ f (1)

Y

normal
��

normal

--[[[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[

X
f

// Y + Exc
h

//

=

=

Y + Exc

Exc

abrupt

OO

catch {Ei1
⇒g1|...|Ein⇒gn}

11ccccccccccccccccccccccccccccccccccc

(a-b) The function catch {Ei1 ⇒ g1| . . . |Ein ⇒ gn} is obtained by setting p = 1 in the family of
functions kp = catch {Eip ⇒ gp| . . . |Ein ⇒ gn} : Exc → Y + Exc (for p = 1, . . . , n) which are
defined recursively by:

kp =

{

[

gn | abruptY
]

◦ cin when p = n
[

gp | kp+1

]

◦ cip when p < n
(2)

Let kn+1 = abruptY , then kp = [gp | kp+1] ◦ cip for each p ≤ n.

Pip

normal
��

gp

--[[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[

Exc
cip

// Pip + Exc
[gp|kp+1]

//

=

=

Y + Exc

Exc

abrupt
OO

kp+1

11cccccccccccccccccccccccccccccccccccc

When n = 1 we get try{f} catch {Ei ⇒ g} =
[

normalY |
[

g|abruptY
]

◦ ci
]

◦ f .

Remark 1.8. The handling process involves several nested case distinctions. Since it propagates exceptions,
there is a first case distinction for checking whether the argument x is an exception (which is simply prop-
agated) or not. If x is not an exception, then there is a case distinction (1-2) for checking whether f(x) is
an exception or not. If f(x) is an exception then each step (a-b) checks whether the result of the untagging
function is an exception. All these case distinctions check whether some value is an exception or not, they
rely on disjoint unions of the form T +Exc. In contrast, for each step (a-b) there is another case distinction
encapsulated in the computation of the untagging function, which checks whether the exception has the
required exception type and relies on the disjoint union Exc =

∑

iEi.

4

2 Decorated logic for exceptions

In Section 1 we have introduced a signature Sigexc and a denotational semantics for exceptions. However the
soundness property is not satisfied: the denotational semantics is not a model of the signature, in the usual
sense, since an expression f : X → Y is interpreted as a function f : X → Y + Exc instead of f : X → Y .
Therefore, in this Section we build a decorated specification for exceptions, including a “decorated” signature
and “decorated” equations, which is sound with respect to the denotational semantics of Section 1. For this
purpose, first we form an equational specification by extending the signature Sigexc with operations ti and
ci and equations involving them, in order to formalize the tagging and untagging functions of Sections 1.3
and 1.4. Then we add decorations to this specification, and we define the interpretation of the expressions
and equations according to their decorations. This means that we have to extend the equational logic
with a notion of decoration; the decorations and the decorated inference rules are given in Section 2.1.
In Section 2.2 we define the decorated specification for exceptions and in Section 2.3 we check that this
decorated specification is sound with respect to the denotational semantics of Section 1. In the decorated
specification for exceptions, there are on one side private operations for tagging and untagging exceptions,
which do not appear in the signature for exceptions Sigexc, and on the other side public operations for
raising and handling exceptions, which are defined using the private operations. According to remark 1.3,
an important feature of exceptions is that all public operations propagate exceptions, such operations will be
called propagators ; operations for recovering from exceptions may appear only as private operations, which
will be called catchers.

2.1 Decorations

In order to deal with exceptions we define three decorations for expressions. They are denoted by (0), (1)
and (2) used as superscripts, and their meaning is described in an informal way as follows.

• The interpretation of a pure expression f (0) may neither raise exceptions nor recover form exceptions.

• The interpretation of a propagator f (1) may raise exceptions but it is not allowed to recover from
exceptions; thus, it must propagate all exceptions.

• The interpretation of a catcher f (2) may raise exceptions and recover form exceptions.

Every pure expression can be seen as a propagator and every propagator as a catcher. It follows that every
expression can be seen as a catcher, so that the decoration (2) could be avoided; however we often use it for
clarity.

In addition, we define two decorations for equations. They are denoted by two distinct relational symbols
≡ for strong equations and by ∼ for weak equations. Using the fact that every expression can be seen as a
catcher, their meaning can be described as follows.

• A strong equation f (2) ≡ g(2) is interpreted as an equality of the functions f and g both on ordinary
and on exceptional values.

• A weak equation f (2) ∼ g(2) is interpreted as an equality of the functions f and g on ordinary values,
but f and g may differ on exceptional values.

Clearly every strong equation f ≡ g gives rise to the weak equation f ∼ g. On the other hand, since
propagators cannot modifiy the exceptional values, every weak equation between propagators can be seen
as a strong equation, and a similar remark holds for pure expressions.

Remark 2.1. It follows from these descriptions that every catcher k gives rise to a propagator ▽k with a
weak equation k ∼ ▽k: this propagator ▽k has the same interpretation as k on the non-exceptional values
and it is interpreted as the identity on the exceptional values.

5

In the short note [2] it is checked that, from a denotational point of view, the functions for tagging
and untagging exceptions are respectively dual, in the categorical sense, to the functions for looking up and
updating states. It happens that this duality also holds from the decorated point of view. Thus, most of
the decorated rules for exceptions are dual to the decorated rules for states [3]. The decorated rules for
exceptions are given here in three parts (Figures 1, 2 and 3). For readability, the decoration properties are
often grouped with other properties: for instance, “f (1) ∼ g(1)” means “f (1) and g(1) and f ∼ g”.

The rules in Figure 1 may be called the rules for the decorated monadic equational logic for exceptions.
The unique difference between these rules and the dual rules for states lies in the congruence rules for
the weak equations: for states the replacement rule is restricted to pure g’s, while for exceptions it is the
substitution rule which is restricted to pure f ’s.

X

idX : X → X

X

id
(0)
X

f (0)

f (1)

f : X → Y g : Y → Z

g ◦ f : X → Z

f (0) g(0)

(g ◦ f)(0)
f (1) g(1)

(g ◦ f)(1)

f : X → Y

f ◦ idX ≡ f

f : X → Y

idY ◦ f ≡ f

f : X → Y g : Y → Z h : Z → W

h ◦ (g ◦ f) ≡ (h ◦ g) ◦ f

f (1) ∼ g(1)

f ≡ g

f ≡ g

f ∼ g

f ≡ f

f ≡ g

g ≡ f

f ≡ g g ≡ h

f ≡ h

f ∼ f

f ∼ g

g ∼ f

f ∼ g g ∼ h

f ∼ h

f : X → Y g1 ≡ g2 : Y → Z

g1 ◦ f ≡ g2 ◦ f

f1 ≡ f2 : X → Y g : Y → Z

g ◦ f1 ≡ g ◦ f2

f (0) : X → Y g1 ∼ g2 : Y → Z

g1 ◦ f ∼ g2 ◦ f

f1 ∼ f2 : X → Y g : Y → Z

g ◦ f1 ∼ g ◦ f2

Figure 1: Decorated rules for exceptions (1)

Several kinds of decorated coproducts are used for dealing with exceptions. The rules in Figure 2 are the
rules for a decorated initial type 0, also called an empty type, and for a constitutive coproduct, as defined
below. These rules are dual to the rules for the decorated final type and for the observational product for
states in [3].

Definition 2.2. A decorated initial type for exceptions is a type 0 such that for every type X there is a
pure expression []X : 0 → X such that every function from 0 to X is weakly equivalent to []X .

It follows that every pure expression and every propagator from 0 to X is strongly equivalent to []X .

Definition 2.3. A constitutive coproduct for exceptions is a family of propagators (qi : Xi → X)i such that
for every family of propagators (fi : Xi → Y)i there is a catcher f = [fi]i : X → Y , unique up to strong
equations, such that f ◦ qi ∼ fi for each i.

This definition means that a constitutive coproduct can be used for building a catcher from several
propagators; this corresponds to the fact that the set Exc is the disjoint union of the Ei’s.

The next property corresponds to remark 2.1.

Definition 2.4. For each catcher k(2) : X → Y there is a propagator ▽k(1) : X → Y , unique up to strong
equations, such that ▽k(1) ∼ k(2) .

6

When 0 is a decorated initial type:

X

[]X : 0 → X

X

[]
(0)
X

f : 0 → Y

f ∼ []Y

When (q
(1)
i : Xi → X)i is a constitutive coproduct:

(f
(1)
i : Xi → Y)i

[fi]
(2)
i : X → Y

(f
(1)
i : Xi → Y)i
[fj]j ◦ qi ∼ fi

(f
(1)
i : Xi → Y)i f (2) : X → Y ∀i f ◦ qi ∼ fi

f ≡ [fj]j

Figure 2: Decorated rules for exceptions (2)

According to the previous rules, for each type X there are two pure expressions idX : X → X and
[]X : 0 → X . It is straightforward to check that they form a coproduct with respect to pure expressions

and strong equations: for each f (0) : X → Y and g(0) : 0 → Y there is a pure expression [f |g](0) : X → Y ,
unique up to strong equations, such that [f |g] ◦ idX ≡ f and [f |g] ◦ []X ≡ g, indeed such a situation implies
that g ≡ []X and [f |g] ≡ f . This pure coproduct, with coprojections idX and []X , is called the coproduct

X ∼= X + 0. In addition, we assume that it satisfies the following decorated coproduct property.

Definition 2.5. For each propagator g(1) : X → Y and each catcher k(2) : 0 → Y there is a catcher

[g | k](2) : X → Y , unique up to strong equations, such that [g | k](2) ∼ g(1) and [g | k](2) ◦ []
(0)
X ≡ k(2) .

The rules in Figure 3 are the rules for the construction of ▽k and for the decorated coproduct X ∼= X+0.
They will be used for building the handling operations from the untagging operations.

k(2) : X → Y

▽k(1) : X → Y

k(2) : X → Y

▽k ∼ k

g(1) :X→Y k(2) :0→Y

[g | k](2) :X → Y

g(1) :X→Y k(2) :0→Y

[g | k] ∼ g

g(1) :X→Y k(2) :0→Y

[g | k] ◦ []X ≡ k

g(1) : X → Y k(2) : 0 → Y f (2) : X → Y f ∼ g f ◦ []X ≡ k

f ≡ [g | k]

Figure 3: Decorated rules for exceptions (3)

2.2 A decorated specification for exceptions

Let L denote the inference system provided by the decorated rules for exceptions (Figures 1, 2 and 3). As for
other inference systems, we may define theories and specifications (or presentations of theories) with respect
to L. They are called decorated specifications and decorated theories, respectively. This approach is based on
the general framework for diagrammatic theories and specifications [5, 1], but no knowledge of this framework
is assumed in this paper. A decorated theory is made of types, expressions, equations and coproducts which
satisfy the decorated rules for exceptions. In this Section we define a decorated specification Σexc, which
may be used for generating a decorated theory by applying the decorated inference rules for exceptions.

7

Definition 2.6. Let Σpure be some fixed equational specification (as in Section 1.1 for simplicity it is assumed
that Σpure has no n-ary operation with n > 1). The decorated specification for exceptions Σexc is made of
the equational specification Σpure where each operation is decorated as pure and each equation as strong
(or weak, since both coincide here), a type 0 called the empty type and for each i in some set I a type

Pi (of parameters) in Σpure, a propagator t
(1)
i : Pi → 0, a catcher c

(2)
i : 0 → Pi and the weak equations:

ci ◦ ti ∼ id : Pi → Pi and ci ◦ tj ∼ [] ◦ tj : Pj → Pi for every j ∈ I, j 6= i.

Definition 2.7. For each i in I and each type Y in Σpure the raising propagator

(throwY Ei)
(1) : Pi → Y

is defined as
throwY Ei = []Y ◦ ti : Pi → Y .

According to remark 1.3, the handling operation try{f} catch{. . . } is a propagator, not a catcher: indeed,
it may recover from exceptions which are raised by f , but it must propagate exceptions which are raised
before try{f} catch{. . . } is called.

Definition 2.8. For each propagator f (1) : X → Y , each non-empty list of indices (i1, . . . , in) and each

propagators g
(1)
1 : Pi1 → Y, ..., g

(1)
n : Pin → Y , the handling propagator

(try{f} catch {Ei1 ⇒g1| . . . |Ein ⇒gn})
(1) : X → Y

is defined as follows.

(A-B) The propagator try{f} catch {Ei1 ⇒g1| . . . |Ein ⇒gn} : X → Y is defined from a catcher H : X → Y

by:
(try{f} catch {Ei1 ⇒g1| . . . |Ein ⇒gn})

(1) = (▽H)(1) : X → Y

(1-2) The catcher H : X → Y is defined from the propagator f : X → Y and from a catcher
k1 = catch {Ei1 ⇒g1| . . . |Ein ⇒gn} : 0 → Y by:

H(2) =
[

id
(0)
Y | k

(2)
1

](2)

◦ f (1) : X → Y

Y

id
��

id

--[[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

X
f

// Y
h

//

∼

≡

Y

0

[]
OO

k1

11ccccccccccccccccccccccccccccccccc

(a-b) The catcher k1 : 0 → Y is obtained by setting p = 1 in the family of catchers kp =
catch {Eip ⇒gp| . . . |Ein ⇒gn} : 0 → Y (for p = 1, . . . , n) which are defined recursively by:

kp = [gp | kp+1] ◦ cip for each p = 1, . . . , n and kn+1 = []Y

Pip

id
��

gp

,,ZZZ
ZZ

ZZ
ZZ

ZZ
ZZ

ZZ
ZZ

ZZ
ZZ

ZZ
ZZ

ZZ
ZZ

ZZ
ZZ

0
cip

// Pip

[gp|kp+1]
//

∼

≡

Y

0

[]
OO

kp+1

11dddddddddddddddddddddddddddddddddd

It will be proved in Lemma 3.2 that since kn+1 = []Y we have [gn|kn+1] ≡ gn. It follows that when n = 1
and 2 we get respectively:

try{f} catch {Ei ⇒ g} ≡ ▽
([

idY | g ◦ ci
]

◦ f
)

(3)

try{f} catch {Ei⇒g | Ej⇒h} ≡ ▽
([

id | [g | h ◦ cj] ◦ ci
]

◦ f
)

(4)

8

2.3 Decorated models

Let Exc be a set and Pi (for i ∈ I) a family of sets with injections ti : Pi → Exc, such that Exc is the
disjoint union of the images Ei = ti(Pi). Then we may define a decorated theory Θexc as follows. A type is
a set, a pure expression f (0) : X → Y is a function f : X → Y , a propagator f (1) : X → Y is a function
f : X → Y + Exc and a catcher f (2) : X → Y is a function f : X + Exc → Y + Exc. For instance, each

injection ti : Pi → Exc is a propagator t
(1)
i : Pi → ∅. The conversion from pure expressions to propagators is

the construction of f1 = normalY ◦f0 : X → Y +Exc from f0 : X → Y and the conversion from propagators
to catchers is the construction of f2 = [f | abruptY] : X + Exc → Y + Exc from f1 : X → Y + Exc.
Composition of two expressions can be defined by converting them to catchers and using the composition of
functions f : X+Exc → Y +Exc and g : Y +Exc → Z+Exc as g ◦f : X+Exc → Z+Exc. When restricted
to propagators this is compatible with the Kleisli composition with respect to the monad X + Exc. When
restricted to pure expressions this is compatible with the composition of functions f0 : X → Y and g0 : Y → Z

as g0 ◦ f0 : X → Z. A strong equation f (2) ≡ g(2) : X → Y is an equality (∀x ∈ X +Exc, f(x) = g(x)), and
a weak equation f ∼ g : X → Y is an equality (∀x ∈ X, f(x) = g(x)); when restricted to propagators both

notions coincide. The empty set ∅ is a decorated initial type and the family of propagators (t
(1)
i : Pi → ∅) is

a constitutive coproduct, because the family of functions (ti : Pi → Exc) is a coproduct in the category of
sets.

The models of a decorated specification Σ with values in a decorated theory Θ are defined as kinds of
morphisms from Σ to Θ in [1]: a model maps each feature (type, pure expression, propagator, catcher,
decorated initial type, constitutive coproduct, . . .) of Σ to a feature of the same kind in Θ. When Θ is the
theory Θexc we recover the meaning of decorations as given informally in Section 2.1. When in addition Σ
is the specification Σexc we get the following result.

Theorem 2.9. The decorated specification for exceptions Σexc is sound with respect to the denotational

semantics of Section 1, in the sense that by mapping every feature in Σexc to the feature with the same name

in the decorated theory Θexc we get a model of Σexc with values in Θexc.

Proof. For the tagging and untagging operations this is clear from the notations. Then for the raising
operations the result is obvious. For the handling operations the result comes from a comparison of the steps
(1-2) and (a-b) in Definitions 2.8 and 1.7, while step (A-B) in Definition 2.8 corresponds to the propagation
of exceptions by the handling functions, as in remark 1.8.

3 Proofs involving exceptions

As for proofs on states in [3], we may consider two kinds of proofs on exceptions: the explicit proofs involve
a type of exceptions, while the decorated proofs do not mention any type of exceptions but require the
specification to be decorated, in the sense of Section 2. In addition, there is a simple procedure for deriving
an explicit proof from a decorated one. In this Section we give some decorated proofs for exceptions, using
the inference rules of Section 2.1. Since the properties of the core tagging and untagging operations are dual
to the properties of the looking up and updating operations we may reuse the decorated proofs involving
states from [3]. Starting from any one of the seven equations for states in [12] we can dualize this equation
and derive a property about raising and handling exceptions. This is done in this Section for two of these
equations.

On states, the annihilation lookup-update property means that updating any location with the content
of this location does not modify the state. A decorated proof of this property is given in [3]. By duality we
get the following annihilation untag-tag property, which means that tagging just after untagging, both with
respect to the same exceptional type, returns the given exception.

Lemma 3.1 (Annihilation untag-tag). For each i ∈ I: t
(1)
i ◦ c

(2)
i ≡ id

(0)
0

.

Lemma 3.1 is used in Proposition 3.3 for proving the annihilation catch-raise property: catching an
exception by re-raising it is like doing nothing. First, let us prove Lemma 3.2, which has been used for
getting Equation (3).

9

Lemma 3.2. For each propagator g(1) : X → Y we have [g | []Y]
(2) ≡ g(1).

Proof. Since [g| []Y] is characterized up to strong equations by [g| []Y] ∼ g and [g| []Y]◦ []X ≡ []Y , we have to
prove that g ∼ g and g ◦ []X ≡ []Y . The weak equation is due to the reflexivity of ∼. The unicity of []Y up to
weak equations implies that g ◦ []X ∼ []Y , and since both members are propagators we get g ◦ []X ≡ []Y .

Proposition 3.3 (Annihilation catch-raise). For each propagator f (1) : X → Y and each i ∈ I:

try{f} catch {Ei ⇒ throwY Ei } ≡ f .

Proof. By Equation (3) and Definition 2.7 we have try{f} catch {Ei ⇒ throwY Ei } ≡ ▽([idY | []Y ◦ ti ◦ ci] ◦
f). By Lemma 3.1 [idY | []Y ◦ ti ◦ ci] ≡ [idY | []Y], and the unicity property of [idY | []Y] implies that
[idY | []Y] ≡ idY . Thus try{f} catch {Ei ⇒ throwY Ei } ≡ ▽f . Finally, since ▽f ∼ f and f is a propa-
gator we get ▽f ≡ f .

On states, the commutation update-update property means that updating two different locations can be
done in any order. By duality we get the following commutation untag-untag property, which means that
untagging with respect to two distinct exceptional types can be done in any order. A detailed decorated
proof of the commutation update-update property is given in [3]. The statement of this property and its
proof use semi-pure products, which were introduced in [4] in order to provide a decorated alternative to
the strength of a monad. Dually, the commutation untag-untag property use semi-pure coproducts, which
generalize the decorated coproducts X ∼= X + 0 from Definition 2.5. The coproduct of two types A and B

is defined as a type A + B with two pure coprojections q
(0)
1 : A → A + B and q

(0)
2 : B → A + B, which

satisfy the usual categorical coproduct property with respect to the pure morphisms. Then the semi-pure

coproduct of a propagator f (1) : A → C and a catcher k(2) : B → C is a catcher [f |k](2) : A + B → C

which is characterized, up to strong equations, by the following decorated version of the coproduct property:
[f |k] ◦ q1 ∼ f and [f |k] ◦ q2 ≡ k. Then as usual, the coproduct f ′ + k′ : A + B → C + D of a propagator
f ′ : A → C and a catcher k′ : B → D is the catcher f ′ + k′ = [q1 ◦ f | q2 ◦ k] : A +B → C +D. Whenever
g is a propagator it can be proved that ▽ [f |g] ≡ [f |g]; thus, up to strong equation, we can assume that in
this case [f | g] : A +B → C is a propagator; it is characterized, up to strong equations, by [f | g] ◦ q1 ≡ f

and [f | g] ◦ q2 ≡ g.

Lemma 3.4 (Commutation untag-untag). For each i, j ∈ I with i 6= j:

(ci + idPj
)(2) ◦ c

(2)
j ≡ (idPi

+ cj)
(2) ◦ c

(2)
i : 0 → Pi + Pj

Proposition 3.5 (Commutation catch-catch). For each i, j∈I with i 6=j:

try{f} catch {Ei⇒g | Ej⇒h} ≡ try{f} catch {Ej⇒h | Ei⇒g}

Proof. According to Equation (4): try{f} catch {Ei ⇒ g | Ej ⇒ h} ≡ ▽([id | [g | h ◦ cj] ◦ ci] ◦ f) Thus, the
result will follow from [g | h ◦ cj]◦ci ≡ [h | g ◦ ci]◦cj. It is easy to check that [g | h ◦ cj] ≡ [g | h]◦ (idPi

+cj),
so that [g | h ◦ cj] ◦ ci ≡ [g | h] ◦ (idPi

+ cj) ◦ ci . Similarly [h | g ◦ ci] ◦ cj ≡ [h | g] ◦ (idPj
+ ci) ◦ cj hence

[h | g ◦ ci] ◦ cj ≡ [g | h] ◦ (ci + idPj
) ◦ cj . Then the result follows from Lemma 3.4.

References

[1] César Domı́nguez, Dominique Duval. Diagrammatic logic applied to a parameterization process. Math-
ematical Structures in Computer Science 20, p. 639-654 (2010).

[2] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud. A duality between
exceptions and states. Accepted for publication in MSCS. arXiv:1112.2394.

[3] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud. Decorated proofs
for computational effects: States. Accepted for presentation at ACCAT’12. arXiv:1112.2396.

10

[4] Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. Cartesian effect categories are Freyd-
categories. Journal of Symbolic Computation 46, p. 272-293 (2011).

[5] Dominique Duval. Diagrammatic Specifications. Mathematical Structures in Computer Science 13,
p. 857-890 (2003).

[6] James Gosling, Bill Joy, Guy Steele, Gilad Bracha. The Java Language Specification, Third Edition.
Addison-Wesley Longman (2005). docs.oracle.com/javase/specs/jls/se5.0/jls3.pdf.

[7] Robert Harper. Programming in Standard ML. www.cs.cmu.edu/ rwh/smlbook/book.pdf.

[8] The Haskell Programming Language. Monads. www.haskell.org/haskellwiki/Monad.

[9] Martin Hyland, John Power. The Category Theoretic Understanding of Universal Algebra: Lawvere
Theories and Monads. Electronic Notes in Theoretical Computer Science 172, p. 437-458 (2007).

[10] Paul Blain Levy. Monads and adjunctions for global exceptions. MFPS 2006. Electronic Notes in The-
oretical Computer Science 158, p. 261-287 (2006).

[11] Eugenio Moggi. Notions of Computation and Monads. Information and Computation 93(1), p. 55-92
(1991).

[12] Gordon D. Plotkin, John Power. Notions of Computation Determine Monads. FoSSaCS 2002. Springer-
Verlag Lecture Notes in Computer Science 2303, p. 342-356 (2002).

[13] Gordon D. Plotkin, John Power. Algebraic Operations and Generic Effects. Applied Categorical Struc-
tures 11(1), p. 69-94 (2003).

[14] Gordon D. Plotkin, Matija Pretnar. Handlers of Algebraic Effects. ESOP 2009. Springer-Verlag Lecture
Notes in Computer Science 5502, p. 80-94 (2009).

[15] Lutz Schröder, Till Mossakowski. Generic Exception Handling and the Java Monad. AMAST 2004.
Springer-Verlag Lecture Notes in Computer Science 3116, p. 443-459 (2004).

[16] Philip Wadler. The essence of functional programming. POPL 1992. ACM Press, p. 1-14 (1992).

11

http://docs.oracle.com/javase/specs/jls/se5.0/jls3.pdf
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.haskell.org/haskellwiki/Monad

	Denotational semantics for exceptions
	Signature for exceptions
	Ordinary values and exceptional values
	Tagging and raising exceptions: throw
	Untagging and handling exceptions: try-catch

	Decorated logic for exceptions
	Decorations
	A decorated specification for exceptions
	Decorated models

	Proofs involving exceptions

