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Smoothness of the flow map for low-regularity solutions of the

Camassa-Holm equations

Olivier Glass∗, Franck Sueur†‡

March 13, 2012

Abstract

It was recently proven by De Lellis, Kappeler, and Topalov in [17] that the periodic Cauchy problem for
the Camassa-Holm equations is locally well-posed in the space Lip(T) endowed with the topology of H1(T).
We prove here that the Lagrangian flow of these solutions are analytic with respect to time and smooth with
respect to the initial data.

These results can be adapted to the higher-order Camassa-Holm equations describing the exponential
curves of the manifold of orientation preserving diffeomorphisms of T using the Riemannian structure induced
by the Sobolev inner product H l(T), for l ∈ N, l > 2 (the classical Camassa-Holm equation corresponds to
the case l = 1): the periodic Cauchy problem is locally well-posed in the space W

2l−1,∞(T) endowed with
the topology of H2l−1(T) and the Lagrangian flows of these solutions are analytic with respect to time with
values in W

2l−1,∞(T) and smooth with respect to the initial data.
These results extend some earlier results which dealt with more regular solutions. In particular our

results cover the case of peakons, up to the first collision.

1 Introduction

We consider the Cauchy problem for the Camassa-Holm equations:

{

∂tu− ∂txxu+ 3u∂xu− 2∂xu∂xxu− u∂xxxu = 0,
u(0, x) = u0(x),

(1.1)

where x runs over the line R or the one-dimensional torus T.
This equation has been derived independently by:

• Fokas and Fuchssteiner [18] where it appears as a member of a whole family of bi-hamiltonian equations
generated by the method of recursion operator,

• Camassa and Holm in [5] as a model for the propagation of water waves in the shallow water regime, when
the wavelength is considerably larger than the average water depth (then u represents the velocity, and
also, roughly, the height of the water’s free surface above a flat bottom see [12]),

• Dai [13] as a model for the propagation of nonlinear waves in cylindrical hyperelastic rods (in this case
the function u represents the radial stretch).

This equation attracted a lot of attention for its rich structure:

• it is formally integrable, in the sense that there is an associated Lax pair,

• its solitary waves are solitons, i.e. they retain their shape and speed after the interaction with waves of
the same type,
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• the Camassa-Holm equation possesses not only solutions that are global in time but models also wave
breaking in finite time. Wave breaking is an important physical phenomenon which is not captured by
the other standard shallow water equations, as for example the KdV equation, and therefore makes the
Camassa-Holm equation particularly interesting in that context.

Applying the operator (∂2x−1)−1 to the equation (1.1) we get the following non local form of the Camassa-Holm
equations:

{

∂tu+ ∂x(12u
2 + P ) = 0,

−(∂2x − 1)P = u2 + 1
2 (∂xu)2,

(1.2)

which have a sense in S ′ for all u in L1
loc(R;H1), where H1 denotes the usual Sobolev space of order 1. This space

H1 may appear as a very natural space to study this equation since, formally, the solutions of (1.2) preserves
the H1 norm. Actually one gets a better insight into this time-invariance of the H1 norm by introducing the
quantity

m := u− ∂2xu. (1.3)

This quantity m plays a special role in the theory. It can be compared to the vorticity for the incompressible
Euler equation. Moreover, if the equation is set on R, integrating by parts and using that the relation (1.3) can
be inverted into the formula

u(x) =
1

2

∫

R

m(y)e−|x−y| dy, (1.4)

we obtain that the square of the H1 norm

‖u‖2H1(R) =
1

2

∫

R

∫

R

m(y)m(x)e−|x−y| dx dy (1.5)

can be reinterpreted as an interaction energy.

Yet the well-posedness of the equation (1.2) for initial data u0 in H1 is a difficult issue. The first results
of well-posedness were obtained for smoother data. For instance Constantin and Escher [8] first established
the well-posedness of the equation (1.1) for u0 in the Sobolev space H3(R), by applying Kato’s theory for a
hyperbolic quasi-linear PDE satisfied by m.

It has been subsequently proved by various methods that the problem (1.2) is locally well-posed in the
Sobolev space Hs(R) with s > 3/2 in [31, 26, 28, 14, 15]. These results hold only for a finite time interval, as
it may appear a point where the profile of u steepens gradually and ultimately the slope becomes vertical. In
the context of water waves, this corresponds to the breaking of a wave, see the paper of Constantin and Escher

[9] (see also the recent paper [2]). In [15], Danchin have extended well-posedness to the Besov space B
3
2

2,1(R).

In [28] G. Misiolek proved that (1.2) is locally well-posed in the space C1(T) of continuously differentiable
functions of the one-dimensional torus T. Finally De Lellis, Kappeler, and Topalov [17] recently proved that
the equation (1.2) set on the torus T is well-posed in W s,p(T)∩Lip(T), endowed with the topology of W s,p(T),
provided that 1 6 s < 2 and 1 6 p < +∞. We rephrase their result here, only in the case p = 2, for sake of
simplicity.

Theorem 1 ([17]). Let u0 be in Lip(T). Then there exists T > 0 and a unique solution

u ∈ C((−T, T ), (Lip(T), σH1(T))) ∩ C
1((−T, T ); (L∞(T), σL2(T)))

of (1.2). Moreover for any u0 in Lip(T) there exists T > 0 and a neighborhood V of u0 in (Lip(T), σH1(T)) such
that the map

{

V → C((−T, T ); (Lip(T), σH1(T))) ∩C
1((−T, T ); (L∞(T), σL2(T))),

u0 7→ the corresponding solution u of (1.2)
(1.6)

is well-defined and continuous.

In the statement above the notation (Lip(T), σH1(T)) and (L∞(T), σL2(T)) means that the space Lip(T) and
L∞(T) are respectively endowed with the topology of H1(T) and L2(T). It is shown in [17, Section 1.2] that
the solution u given by Theorem 1 may not be continuous with respect to time in the space Lip(T), endowed
with its usual strong topology.
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The proof of Theorem 1 relies on the Lagrangian description of the Camassa-Holm equation and on the
observation that the flow map ξ defined from (−T, T ) × T to T by

ξ(t, x) = x+

∫ t

0

u(s, ξ(s, x)) ds (1.7)

and the Lagrangian velocity u(t, ξ(t, x)) are more regular than the Eulerian velocity u(t, x). In particular ξ is
C1 over (−T, T ) with values in Lip(T), endowed with its strong topology.

The aim of this paper is to prove that the flow map of these solutions actually benefits from extra smoothness
properties. In particular we prove the following result concerning the smoothness in time of the flow map.

Theorem 2. Assume that u0 is in Lip(T). Then, with the notations above, ξ belongs to the space Cω((−T, T );Lip(T))
of the analytic functions from (−T, T ) to Lip(T).

As a corollary of Theorem 2 we infer that the flow is also smooth with respect to the initial data.

Corollary 1. With the previous notations, the map
{

V → Cω((−T, T );Lip(T)),
u0 7→ ξ

(1.8)

is of class C∞.

Actually our results cover a more general case that we are now going to describe. Let us first recall that the
Camassa-Holm equation describes the exponential curves of the manifold of orientation preserving diffeomor-
phisms of T using the Riemannian structure induced by the Sobolev inner product H1(T) (see for instance [25]
and references therein).

This can be seen as a counterpart of the celebrated papers [1] and [16] where classical solutions of the
incompressible Euler equations are interpreted as geodesics of a Riemannian manifold of infinite dimension.

In this spirit some higher-order Camassa-Holm equations can be considered using the Sobolev space H l(T),
for l ∈ N, l > 2, instead of H1(T), see for instance [10, 11]. These equations read:

∂tu+ u∂xu = A−1
l Cl(u) (1.9)

where

Al :=

l
∑

j=0

(−1)j∂2jx , Cl(u) := −uAl∂xu+Al(u∂xu) − 2(∂xu)Alu. (1.10)

For these equations we have the following well-posedness result which is a counterpart of Theorem 1.

Theorem 3. Let l ∈ N, l > 1. Let u0 be in W 2l−1,∞(T). Then there exists T > 0 and only one solution

u ∈ C((−T, T ), (W 2l−1,∞(T), σH2l−1(T))) ∩ C
1((−T, T ), (W 2l−2,∞(T), σH2l−2(T)))

of (1.2). Moreover for any u0 inW
l,∞(T) there exists T > 0 and a neighborhood V of u0 in (W 2l−1,∞(T), σH2l−1(T))

such that the map
{

V → C((−T, T ), (W 2l−1,∞(T), σH2l−1(T))) ∩ C
1((−T, T ), (W 2l−2,∞(T), σH2l−2(T))),

u0 7→ the corresponding solution u of (1.9)
(1.11)

is well-defined and continuous.

In the statement above the notation (W 2l−1,∞(T), σH2l−1(T)) and (W 2l−2,∞(T), σH2l−2(T))) stands for the

spaces W 2l−1,∞(T) and W 2l−2,∞(T) endowed with the topologies of H2l−1(T) and H2l−2(T) respectively.
We will sketch the proof of this Theorem in Appendix for sake of completeness. Similarly to the case l = 1

this proof also provides that the flow ξ defined from (−T, T ) × T to T by

ξ(t, x) = x+

∫ t

0

u(s, ξ(s, x))ds

is C1 over (−T, T ) with values in W 2l−1,∞(T).
The next result is the main one of the paper; it shows that the smoothness of the flow map is actually much

better.
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Theorem 4. Assume that u0 is in W 2l−1,∞(T). Then, with the notations above, the flow map ξ is in the space
Cω((−T, T ),W 2l−1,∞(T)).

Then Corollary 1 extends as follows.

Corollary 2. With the previous notations, the map u0 ∈ V 7→ ξ ∈ Cω((−T, T );W 2l−1,∞(T)) is C∞.

Three remarks are in order.

• This extends some earlier results by [10, 11, 23] where the initial data u0 was assumed to be much
smoother.

• Theorem 4 can also be seen as a counterpart of the results of analyticity of the trajectories for the
incompressible Euler equation, see [32], [20] and the references therein. In particular the proof of Corollary
2 follows the same lines as the proof of [20, Corollary 1] and will be therefore omitted here.

• Let us stress that the results above are only local in time, including the existence of solutions “à la
de Lellis-Kappeler-Topalov”. We refer here to the papers [27, 29] about the issue of the finite time blow
up of some classical solutions (with a slightly different regularity) of the higher-order Camassa-Holm
equations. In the case of the Camassa-Holm equations, when l = 1, the issue of wave breaking in finite
time is a longstanding feature, intimately related to the interaction of the peakons. We will discuss this
issue more closely in Section 3.

Finally let us mention here the papers [19] and [30] which deal with the issues of control and of stabilization of
the Camassa-Holm equation.

2 Proof of Theorem 4

This section is devoted to the proof of Theorem 4.

2.1 Preliminary material

Let us start with a few remarks.

Rewriting the equation. In the sequel we will simply denote by A the operatorAl defined in (1.10). Following
[7] the equation (1.9) also reads:

∂tu+ u∂xu+ ∂xP = 0, AP = F [u], (2.1)

where F [u] is a differential polynomial in u of order 2l− 1 of the form

F [u] :=
∑

06m1+m262l−1

cm1,m2
(∂m1

x u)(∂m2

x u), (2.2)

where the cm1,m2
are some real numbers.

Denoting the material derivative
D := ∂t + u∂x,

the equation (1.9) takes the form
Du = −∂xP, AP = F [u].

Elliptic operators. Let us consider several operators associated to A.
We define

ξj := e
iπj
l+1 , Λ± := −i∂x ± ξl and Λ̃± := Λ∓

l−1
∏

j=1

(

(−i∂x − ξj)(−i∂x + ξj)
)

. (2.3)

Then Λ± is under the form

Λ̃± :=
∑

06m62l−1

dm∂
m
x , (2.4)
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where the dm are some complex numbers, and

−2i∂x = Λ+ + Λ− and A = Λ+ Λ̃+ = Λ− Λ̃−. (2.5)

Now the operators A and Λ̃± have the following property.

Lemma 1. The operator A is bicontinuous from W 2l,∞(T) to L∞(T). The operators Λ̃± are bicontinuous from
W 2l−1,∞(T) to L∞(T).

In particular this yields that when u ∈W 2l−1,∞(T) then F [u] is in L∞(T) and ∂xP is in W 2l−1,∞(T).

Lemma 1 is an immediate consequence from the following elementary one.

Lemma 2. Let ξ ∈ C \ 2πZ and j ∈ N. Then the operator −i∂x − ξ is bicontinuous from W j+1,∞(T) to
W j,∞(T).

Proof of Lemma 2. It is clear that the operator −i∂x − ξ is continuous from W j+1,∞(T) to W j,∞(T). In order
to prove that it is one-to-one, let us solve the equation in f :

(−i∂x − ξ)f = g, (2.6)

where g ∈ W j,∞(T) is given. The functions f solution to (2.6) are given by

−if(x) = Ceiξx + eiξx
∫ x

0

g(x′)e−iξx′

dx′, (2.7)

for some C ∈ R. Now to be one-periodic the function f must satisfy f(0) = f(1) so that

C(1 − eiξ) = eiξ
∫ 1

0

g(x′)e−iξx′

dx′,

which defines C in a unique way since ξ ∈ C \ 2πZ. Now it is clear from the formula (2.7) that the operator
(−i∂x − ξ) has a continuous inverse from W j,∞(T) to W j+1,∞(T).

A formal identity. We will use the following identity, which details the lack of commutation between Dk and
∂mx , for m ∈ N∗. This approach is inspired by [24].

Lemma 3. For k ∈ N∗, for m ∈ N∗, we have for smooth functions u, ψ ∈ C∞((−T, T ) × T;R),

∂mx D
kψ = Dk∂mx ψ + F k,m[u, ψ] where F k,m[u, ψ] :=

∑

γ∈Bk,m

ck,m(γ) f(γ)[u, ψ], (2.8)

where

Bk,m :=
{

γ = (s, α, β)
/

s ∈ N, 2 6 s 6 k + 1,

α = (α1, . . . , αs) ∈ N
s, |α| = k + 1 − s,

β = (β1, . . . , βs) ∈ (N∗)s, |β| = m+ s− 1
}

,

f(γ)[u, ψ] := ∂β1

x Dα1u · . . . · ∂βs−1

x Dαs−1u · ∂βs

x Dαsψ,

and where the ck,m(γ) are integers satisfying

|ck,m(γ)| 6 (2s)2(m−1) k!m!

α!β!
. (2.9)

Above, for a multi-index α, we used the notations

|α| := α1 + . . .+ αs and α! := α1! . . . αs!.
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Remark 1. The writing of f(γ)[u, ψ] is not unique in the sense that one can have f(γ)[u, ψ] = f(γ′)[u, ψ] with
γ 6= γ′. However, it will be easier in the proof not to regroup identical terms and not to use the commutativity
of the multiplication. We will only rely on Leibniz’s rule and on

∂xD = D∂x + (∂xu)∂x.

Proof of Lemma 3. We proceed by iteration on m.
1. The case m = 1, which corresponds to the commutation between Dk and ∂x is given by the following lemma.
Since it can be straightforwardly adapted from [20, Proposition 6], its proof is omitted.

Lemma 4. For k ∈ N∗, we have in T, for we have for smooth functions u, ψ ∈ C∞((−T, T ) × T;R),

∂xD
kψ = Dk∂xψ + F k[u, ψ] with F k[u, ψ] :=

∑

θ∈Ak

ck(θ) f(θ)[u, ψ],

where

Ak :=
{

θ := (s, α)
/

s ∈ N with 2 6 s 6 k + 1, α = (α1, . . . , αs) ∈ N
s with |α| = k + 1 − s

}

,

f(θ)[u, ψ] := ∂xD
α1u · . . . · ∂xD

αs−1u · ∂xD
αsψ,

and where the ck(θ) are integers satisfying

|ck(θ)| 6
k!

α!
. (2.10)

Hence to conclude in the case m = 1, it suffices to set F k,1[u, ψ] := F k[u, ψ] and to observe that γ :=
(s, α, β) ∈ Bk,1 means exactly that θ := (s, α) belongs to Ak and β = (1, . . . , 1).

2. Now let us assume that Lemma 3 holds true up to order m and let us prove that it also holds at order m+ 1.
We will proceed in two steps. First we are going to prove an identity of the form (2.8), then we will estimate
the coefficients involved in this expression.

a. First, we observe that, using Lemma 3 at order m and Lemma 4 with ∂mx ψ instead of ψ, we get

∂m+1
x Dkψ = ∂x

(

Dk∂mx ψ + F k,m[u, ψ]
)

,

= Dk∂m+1
x ψ + F k[u, ∂mx ψ] + ∂xF

k,m[u, ψ].

Moreover
F k[u, ∂mx ψ] =

∑

θ̃∈Ak

ck(θ̃) f(θ̃)[u, ∂mx ψ]

and for θ̃ = (s̃, α̃),

f(θ̃)[u, ∂mx ψ] = ∂xD
α̃1u · . . . · ∂xD

α̃s̃−1u · ∂xD
α̃s̃∂mx ψ

= ∂xD
α̃1u · . . . · ∂xD

α̃s̃−1u · ∂m+1
x Dα̃sψ + ∂xD

α̃1u · . . . · ∂xD
α̃s̃−1u · ∂xF

α̃s̃,m[u, ψ],

using again Lemma 3 at order m with α̃s̃ instead of k.
It follows that the commutator of ∂m+1

x and Dk can be described as

∂m+1
x Dkψ −Dk∂m+1

x ψ =
∑

θ̃∈Ak

ck(θ̃) ∂xD
α̃1u · . . . · ∂xD

α̃s̃−1u · ∂m+1
x Dα̃s̃ψ

+
∑

θ̃=(s̃,α̃)∈Ak

∑

γ̃∈Bα̃s̃,m

ck(θ̃) cα̃s̃,m(γ̃) ∂xD
α̃1u · . . . · ∂xD

α̃s̃−1u · ∂xf(γ̃)[u, ψ]

+
∑

γ̃∈Bk,m

ck(γ̃) ∂xf(γ̃)[u, ψ]. (2.11)

We now discuss according to the three terms in the right hand side of (2.11).
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The first kind of terms in the right hand side of (2.11) have the desired form: they can written as f(γ)[u, ψ]
with γ := (s, α, β) where s = s̃, α := (α̃1, . . . , α̃s̃) and β = (1, . . . , 1,m+ 1) ∈ (N∗)s satisfy |α| = k + 1 − s and
|β| = m+ s.

Therefore, it remains to prove the same for the second and third kind of terms in (2.11). Concerning the
third kind of terms in (2.11), using Leibniz’s rule, we see that for γ̃ = (s̃, α̃, β̃) ∈ Bk,m, the term ∂xf(γ̃)[u, ψ]
is a combination of s̃ terms of the form f(γ)[u, ψ] with γ ∈ Bk,m+1, so these terms have also the desired form.
The reasoning for the second kind of terms is analogous.

Consequently we obtain that (2.8) holds true at order m+ 1 for some coefficients ck,m+1(γ).

b. Let us now prove the estimate (2.9) on these coefficients ck,m+1(γ). Let us consider γ ∈ Bk,m+1. According
to the analysis above, a term of the form f(γ)[u, ψ] in F k,m+1[u, ψ] may be originated from one of the three
terms in the right hand side of (2.11). We estimate the contribution to the coefficient ck,m+1(γ) of each of these
three types of terms.

• Terms of the first kind. Let us assume that in the process described above, the term corresponding to
γ = (s, α, β) ∈ Bk,m+1 was created as a term of the form ∂xD

α̃1u · . . . ·∂xD
α̃s̃−1u ·∂m+1

x Dα̃s̃ψ coming from

F k[u, ∂mx ψ], for some θ̃ = (s̃, α̃) ∈ Ak .

Since this term is of the form f(γ)[u, ψ] we have that s̃ = s, α̃ = α and β = (1, . . . , 1,m+ 1). Therefore
the contribution of this kind of terms to ck,m+1(γ) can be estimated by

Na :=
k!

α!
6
k!(m+ 1)!

α!β!
6 (2s)

2(m−1) k! (m+ 1)!

α!β!
. (2.12)

• Terms of the second kind. Now let us assume that the term corresponding to γ = (s, α, β) is originated
as a second term in the right hand side of (2.11), that is, it can be written as a term in

∂xD
α̃1u · . . . · ∂xD

α̃s̃−1u · ∂xf(γ̃)[u, ψ], (2.13)

for some θ̃ = (s̃, α̃) ∈ Ak and γ̃ = (j, α, β̃) ∈ Bα̃s̃,m.

Now we see that since this term is of the form f(γ)[u, ψ], the indices s, α, β and s̃, α̃, β̃, γ̃ are connected
as follows:

– one has s̃− 1 + j = s,

– one has α = (α̃1, . . . , α̃s̃−1, α),

– the multi-index β has the form β := (1, . . . , 1, β), for some β ∈ Nj ,

– moreover β equals to β̃ up to a component for which one adds 1 to β̃i. In other words, if one denotes
for r ∈ {1, . . . , j},

Rr(β) := (β
1
, . . . , β

r−1
, β

r
− 1, β

r+1
, . . . , β

j
),

then for some r ∈ {1, . . . , j}, one has β̃ = Rr(β).

Now given γ and j, there is a unique (α̃, α) and at most j different possibilities of β̃ such that this process
can generate at f(γ)[u, ψ] term (according to r). Moreover such a term (2.13) comes with a coefficient
ck(θ̃) cα̃s̃,m(γ̃). It follows that the contribution of these terms to the coefficient ck,m+1(γ) can be estimated
by

Nb :=

s
∑

j=2

j
∑

r=1

ck(s̃, α̃) cα̃s̃,m(γ̃).

Using the previous iterations, Lemma 4 and β̃ = Rr(β) we deduce

Nb 6

s
∑

j=2

j
∑

r=1

(2j)2(m−1) k!

α1! . . . αs̃−1! α̃s̃!

α̃s̃!m!

α! β̃!

6

s
∑

j=2

j
∑

r=1

(2j)2(m−1) k!

α1! . . . αs̃−1!

m!

α!β!
β
r
.
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With α! := α1! . . . αs̃−1!α! and β! = β! we infer

Nb 6

s
∑

j=2

(2j)2(m−1) k!m!

α!β!
|β|.

Now using |β| 6 |β| = m+ s, we obtain

Nb 6 (m+ s)

s
∑

j=2

(2j)2(m−1) k!m!

α!β!
6 s(m+ s)(2s)2(m−1) k!m!

α!β!
. (2.14)

• Terms of the third kind. Now assume that the term corresponding to γ comes from ∂xF
k,m[u, ψ]. In that

case the contribution to the coefficient ck,m+1(γ) can be estimated by

Nc :=

s
∑

j=1

|ck,m(γ̃j)|

such terms, where γ̃j := (s, α, β̃j) with β̃j := Rj(β) = (β1, . . . , βj−1, βj − 1, βj+1, . . . , βs) (assuming
βj > 1). By the induction hypothesis, we get

Nc 6

s
∑

j=1

(2j)2(m−1) k!m!

α!β!
βj 6 (2s)2(m−1) k!m!

α!β!
|β| = (2s)2(m−1) k!m!

α!β!
(m+ s). (2.15)

Finally, gathering (2.12)-(2.15) we obtain

|ck,m+1(γ)| 6 (2s)2(m−1) k!m!

α!β!
(m+ 1 + (s+ 1)(m+ s)) 6 (2s)2m

k!(m+ 1)!

α!β!
,

which concludes the proof of Lemma 3.

Propagation of inequalities. Using the above formal identity, one can prove the following result.

Lemma 5. There exists γ : R+ → R+ a positive decreasing function satisfying lim
L→+∞

γ(L) = 0 such that for

any k ∈ N, if for any j,m ∈ N such that 0 6 m 6 2l − 1 and 0 6 j 6 k − 1 one has

‖∂mx D
ju‖L∞((−τ,τ)×T) 6 4Vm,j, (2.16)

with

Vm,j :=
m!j!

(m+ 1)2(j + 1)2
LjVj+1 and V := ‖u‖L∞(−τ,τ ;W 2l−1,∞(T)), (2.17)

then, for any m ∈ N such that 0 6 m 6 2l− 1,

‖F k,m[u, u]‖L∞((−τ,τ)×T) 6 γ(L)Vm,k. (2.18)

Proof of Lemma 5. Here we simply denote ‖ · ‖ for ‖ · ‖L∞((−τ,τ)×T). First, for any γ := (s, α, β) ∈ Bk,m, one
has, using (2.16),

‖f(γ)[u, u]‖ 6 4s
s
∏

i=1

Vβi,αi
= 4sα!β!

(

s
∏

i=1

1

(αi + 1)2(βi + 1)2

)

Lk+1−sVk+1.

Denoting for α ∈ Ns,

Υ(s, α) :=

s
∏

i=1

1

(1 + αi)2
,
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we therefore obtain, using (2.9),

‖F k,m[u, u]‖ 6
∑

γ∈Bk,m

|ck,m(γ)| ‖f(γ)[u, u]‖,

6 k!m!Vk+1
k+1
∑

s=2

(2s)
2(m−1)

4sLk+1−s
(

∑

α / |α|=k+1−s

Υ(s, α)
)(

∑

β / |β|=m+s−1

Υ(s, β)
)

.

We now use [6, Lemma 7.3.3], which we recall for the reader’s convenience.

Lemma 6 ([6]). For any couple of positive integers (s,m) we have

∑

α∈N
s

|α|=m

Υ(s, α) 6
20s

(m+ 1)2
.

This yields (2.18) with

γ(L) := sup
k

k+1
∑

s=2

(2s)
2(m−1)

1600sL1−s (k + 1)2(m+ 1)2

(k + 2 − s)2(m+ s)2
.

It is straightforward to see that γ(L) → 0 as L→ +∞.

In the sequel we will use the same notation γ : R+ → R+ for some other positive decreasing functions
such that lim

L→+∞
γ(L) = 0, which may change from line to line. Yet these functions will always be, as above,

independent of k.
In particular with some slight modifications left to the reader we also get:

Lemma 7. There exists γ a positive decreasing function, independent of k, with lim
L→+∞

γ(L) = 0 such that for

any k ∈ N, if for any j,m ∈ N such that 0 6 m 6 2l − 1 and 0 6 j 6 k − 1,

‖∂mx D
ju‖L∞((−τ,τ)×T) 6 4Vm,j and ‖∂mx D

jΛ±P‖L∞((−τ,τ)×T) 6 LVVm,j

then, for any m ∈ N such that 0 6 m 6 2l− 1,

‖F k,m[u,Λ±P ]‖L∞((−τ,τ)×T) 6 γ(L)LVVm,k.

Let us also provide the following technical lemma relying on Leibniz’s rule.

Lemma 8. For any m1,m2 in N, for any k ∈ N, if for any j ∈ N such that 0 6 j 6 k, for i = 1, 2, one has

‖Djfi‖L∞((−τ,τ)×T) 6 5Vmi,j ,

then
∥

∥

∥

k
∑

j=0

(

k

j

)

(Djf1)(Dk−jf2)
∥

∥

∥

L∞((−τ,τ)×T)
6 400VVm1+m2,k.

Proof of Lemma 8. It follows straightforwardly from the following inequality:

k
∑

j=0

(

k

j

)

Vm1,jVm2,k−j = LkVk+2k!
m1!m2!

(m1 + 1)2(m2 + 1)2

k
∑

j=0

1

(j + 1)2(k − j + 1)2

6 2LkVk+2k!
(m1 +m2)!

(m1 +m2 + 1)2

⌊k/2⌋+1
∑

j=0

1

(j + 1)2(k − j + 1)2

6 2LkVk+2k!
(m1 +m2)!

(m1 +m2 + 1)2
π2

6

4

k2

6 16VVm1+m2,k.
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2.2 Core of the proof

Let us consider τ ∈ (0, T ).
We first deal with smooth solutions u of class C∞. We will explain at the end of this section how to extend

the analysis to the solutions tackled in Theorem 4.
First we obtain the following a priori estimates.

Proposition 1. There exists L > 0 such that the following holds true. Let (u, P ) be some smooth functions
satisfying the equation (2.1) on (−τ, τ). Then for any k ∈ N, for any j ∈ N such that 0 6 m 6 2l− 1,

‖∂mx D
kΛ±P‖L∞((−τ,τ)×T) 6 LVVm,k, (2.19)

‖∂mx D
ku‖L∞((−τ,τ)×T) 6 4Vm,k. (2.20)

Let us recall here that the operators Λ± are defined in (2.3) and V , Vm,k are defined in (2.17).

Proof of Proposition 1. We establish (2.19)-(2.20) by induction on k.

1. For k = 0, (2.20) is straightforward. To get (2.19), we observe that

−Λ+P = Λ̃−1
+ F [u] and − Λ−P = Λ̃−1

− F [u].

Now it follows from (2.2) and Lemma 1 that (2.19) at rank 0 holds true for L large enough.

2. Let us now consider k > 0. We assume that (2.19) and (2.20) hold true up to the order k − 1, and aim at
proving them at rank k, for L large enough independent of k.

a. First from (2.1) and (2.5) we infer that

−2iDku = −Dk−1(Λ+ + Λ−)P.

Together with the induction hypothesis, we deduce (2.20) holds true at rank k. It remains to prove that (2.19)
holds true at rank k as well.

b. We begin by estimating DkF [u] in L∞((−τ, τ) × T). Applying Dk to (2.2) and using Leibniz’s rule, we get

DkF [u] =
∑

06m1+m262l−1

cm1,m2

k
∑

j=0

(

k

j

)

(Dj∂m1

x u)(Dk−j∂m2

x u).

Thanks to Lemma 3, we deduce that

Dj∂m1

x u = ∂m1

x Dju− F j,m1 [u, u] and Dk−j∂m2

x u = ∂m2

x Dk−ju− F k−j,m2 [u, u].

Then using Lemma 5 and the fact that (2.20) is true up to rank k, we deduce that for L large enough,

‖Dj∂m1

x u‖L∞((−τ,τ)×T) 6 5Vm1,j and ‖Dk−j∂m2

x u‖L∞((−τ,τ)×T) 6 5Vm2,k−j .

Now using Lemma 8 we deduce

∥

∥

∥

k
∑

j=0

(

k

j

)

(Dj∂m1

x u)(Dk−j∂m2

x u)
∥

∥

∥

L∞((−τ,τ)×T)
6 400VVm1+m2,k.

Now we observe that l being fixed, there exists some constants C1, C2 > 0 such that for any m, k ∈ N with
0 6 m 6 2l− 1,

C1V2l−1,k 6 Vm,k 6 C2V2l−1,k.

It follows that
‖DkF [u]‖L∞((−τ,τ)×T) 6 CVV2l−1,k. (2.21)
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c. Next we estimate Λ̃±D
kΛ±P in L∞((−τ, τ) × T). Applying Dk to the second equation in (2.1) and using

the relations in (2.5), we dget
DkAP = DkΛ̃±Λ±P = DkF [u].

Now, with the identity (2.4) and Lemma 3 we deduce

Λ̃±D
kΛ±P = DkF [u] +

∑

06m62l−1

dmF
k,m[u,Λ±P ]. (2.22)

The first term in the right hand side of (2.22) was estimated in (2.21). To estimate the second one we use
Lemma 7 and modify again γ to get

‖F k,m[u,Λ±P ]‖L∞((−τ,τ)×T) 6 γ(L)LVVm,k.

Thus, modifying again γ(L), we get

‖Λ̃±D
kΛ±P‖L∞((−τ,τ)×T) 6 γ(L)LVV2l−1,k.

d. Finally we use Lemma 1, and deduce that

‖DkΛ±P‖L∞(−τ,τ ;W 2l−1(T)) 6 Cγ(L)LVV2l−1,k.

We choose L large enough to absorb the constant C (independently of k) and deduce that (2.19) holds up
to order k. The proof of Proposition 1 is over.

End of the proof of Theorem 2. We still suppose in a first time that u is smooth. Now from the definition of ξ
we infer that

∂k+1
t ξ(t, x) = Dku(t, ξ(t, x)).

As mentioned above, the proof of Theorem 3 provides that the flow ξ is C1 over (−τ, τ) with values in
W 2l−1,∞(T). Thus we infer the following estimates for the flow map: there exists L > 0 such that for any
k ∈ N,

‖∂k+1
t ξ‖L∞(−τ,τ ;W 2l−1,∞(T)) 6

k!Lk

(k + 1)2
‖u‖k+1

L∞(−τ,τ ;W 2l−1,∞(T))
. (2.23)

(One can again choose L large enough to absorb the constants depending on m.) In particular this yields the
analyticity in time of ξ in the case where u is a C∞ solution.

Let us finally briefly explain how to deduce the result for the general flows considered in Theorem 4. Let
u0 be in W 2l−1,∞(T). By convolution there exists a sequence of smooth functions (un0 )n∈N which satisfies
‖un0‖W 2l−1,∞(T) 6 ‖u0‖W 2l−1,∞(T) and converges to u0 in H2l−1(T).

To these initial data un0 one associates the corresponding smooth flows (ξn)n∈N for which the previous
analysis can be applied. In particular the estimates (2.23) hold true when one substitutes ξn instead of ξ in
the right hand side. But due to the convergence of un0 to u0 in H2l−1(T), we deduce with (1.11) that the
corresponding solutions un converge to the limit solution u in C([−τ, τ ],W 2l−1,∞(T)). It follows that the flows
(ξn)n∈N converge uniformly to ξ (locally in time). Hence passing to the limit when n → +∞ we obtain that
ξ satisfies the estimates (2.23) as well, and consequently belongs to the space Cω((−T, T ),W 2l−1,∞(T)) of the
analytic functions from (−T, T ) to W 2l−1,∞(T). This concludes the proof of Theorem 2.

3 A concluding remark

The Camassa-Holm equation possesses solutions of a soliton type, which, because of their shape (at the peak,
the derivative is discontinuous), have been given the name of peakons. When the equation is set on the whole
line, a single peakon is given by

uc(t, x) = ce−|x−ct|, (3.1)

11



with c > 0, whereas it is called an antipeakon when c < 0. The traveling speed is then equal to the height of
the peak. By taking a linear combination of peakons one obtains what is called a multipeakon solution.

u(t, x) =

n
∑

i=1

pi(t)e
−|x−qi(t)|. (3.2)

Then the positions q(t) := (qi(t))16i6n and the amplitudes p(t) := (pi(t))16i6n of the crests are determined in a
non-linear fashion by the interaction. Actually plugging the ansatz (3.2) into Eq. (1.2) we obtain the following
system of ordinary differential equations:

q̇i =

n
∑

m=1

pje
−|qi−qj |, ṗi =

1

2

n
∑

j=1

pipjsign(qi − qj)e
−|qi−qj |. (3.3)

When u is given by the ansatz (3.2), then m, defined in (1.3), is equal to the following combination of Dirac
masses:

m =

n
∑

i=1

2pi(t)δqi(t) (3.4)

and therefore the energy defined in (1.5) is given by

‖u‖2H1(R) = 2
∑

16i,j6n

pi(t)pj(t)e
−|qi(t)−qj(t)|. (3.5)

Since the energy is time-independant we obtain that the system (3.3) reads

q̇i = ∂pi
H, ṗi = −∂qiH, (3.6)

with Hamiltonian

H(p, q) :=
1

2

∑

16i,j6n

pi(t)pj(t)e
−|qi(t)−qj(t)|, (3.7)

It is straightforward that solutions of (3.3) are analytic with respect to time up to the first collision.
Higher peakons move faster than the smaller ones, and when a higher peakon overtakes a smaller, there

is an exchange of mass, but no wave breaking takes place, in the sense that the solution remains Lipschitz.
Furthermore, the qi(t) remain distinct. However, if some of the pi(0) have some opposite signs, for instance
when one peakon and one antipeakon meet, wave breaking may occur.

The problem of continuation beyond wave breaking was recently considered by Bressan and Constantin [3]
improving earlier results on the H1 theory (see the introduction of [3] for more about the history of this theory).
They reformulated the Camassa-Holm equation as a system of ordinary differential equations taking values in a
Banach space. This formulation allowed them to continue the solution beyond the collision time, giving a global
conservative solution for which the energy is conserved for almost all times. Holden and Reynaud proceed in the
same way but with a different set of variables which simply corresponds to the transformation between Eulerian
and Lagrangian coordinates see [22, 21]. In the context of peakon-antipeakon collisions they considered the
solution where the peakons and antipeakons “passed through each other”. Local existence of the ODE system
is obtained by a contraction argument. Furthermore, their clever reformulation allows for a global solution
where all singularities disappear. Going back to the original function u, one obtains a global solution of the
Camassa-Holm equation. In addition to the solution u, one includes a family of non-negative Radon measures
µt with density (u+u2x)dx with respect to the Lebesgue measure. The pair (u, µt) is associated to a continuous
semigroup and in particular, one has uniqueness and stability. Very recently, Bressan and Fonte [4] constructed
a semi-group of conservative solutions for the Camassa-Holm equation which is continuous with respect to a
distance J , defined in term of a optimal transportation problem, which is intermediate between H1 and L1.
The semi-group is actually constructed as the uniform limit of multi-peakon solutions.

The investigation of the explicit example of the collision of a peakon and of an antisymmetric antipeakon
reveals that the analyticity of the trajectories of the crests still holds even through the collision if one selects
the conservative scenario after the collision with an appropriate labelling. Indeed if one look at the collision
at (t, x) = (0, 0) of a peakon p1(t)e−|x−q1(t)| with p1(t), q′1(t) → c1 when t → −∞ and of an antipeakon
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p2(t)e−|x−q2(t)| with p2(t), q′2(t) → c2 when t→ −∞, for some c1 > 0, c2 < 0, then one has to glue together the
trajectories

q1(t) = ln

(

c1 − c2
c1e−c1t − c2e−c2t

)

, q2(t) = − ln

(

c1 − c2
c1ec1t − c2ec2t

)

,

for t < 0 with some trajectories of the form

q̃1(t) = ln

(

c̃1 − c̃2
c̃1e−c̃1t − c̃2e−c̃2t

)

, q̃2(t) = − ln

(

c̃1 − c̃2
c̃1ec̃1t − c̃2ec̃2t

)

,

for t > 0. If one looks for the solutions which verify that
∫

R
u(t, y)dy and ‖u(t, ·)‖H1(R) are time independent,

then one must have {c̃1, c̃2} = {c1, c2}, that is, with the arbitrary choice that c̃1 < c̃2, c̃1 = c1, c̃2 = c2.
It then remains to choose if one prolongs (q1(t), q2(t))t<0 by (q̃1(t), q̃2(t))t>0 or (q̃2(t), q̃1(t))t>0. Yet since
limt→0− q

′′
1 (t) = c1c2 and limt→0+ q̃

′′
2 (t) = −c1c2, the only choice which yields analytic trajectories for t running

over the full line is the first one.
It should be therefore interesting to determine whether Theorem 2 could be extended to the H1 conservative

theory or not. Let us stress here that Theorem 1 contains the case of the periodic counterpart of the peakon
given in (3.1) : the so-called periodic peakons which are of the form

uγ(t, x) = γ
∑

n∈Z

e−|x+n−ct|, (3.8)

where γ is chosen in such a way that the height of the crest of the peakon is the same as the speed of the crest,
that is such that uγ(t, ct) = c (cf. [17, Section 2.1]).

Appendix. Proof of Theorem 3

In this appendix we give a sketch of proof of Theorem 3. We will follow closely the method of [17].

Definition 1. Let us define Dl the Banach manifold given by the union of the following two charts:

U0 := {ξ(x) = x+ f(x)/ f ∈W 2l−1,∞(T) : |f(0)| < 1/2, essinf f ′ > −1},

Ul := {ξ(x) = x+ f(x)/ f ∈W 2l−1,∞(T) : 0 < f(0) < 1, essinf f ′ > −1}.

Let us introduce here a few notations. We denote by Rξv the right translation v ◦ ξ of v by ξ and by Pξ the
conjugate RξPRξ−1 of a nonlinear operator P . We also define the directional derivative of Pξ in direction w as

follows: let t 7→ ξt be a C1-path with values in Dl such that ξ0 = ξ and ( d
dtξt)|t=0 = w. Then we define the

directional derivative

DwPξ(f) :=
d

dt
|t=0(Pξtf).

We introduce
f(ξ, v) := −

(

A−1∂xFl

)

ξ
[v] = −(A−1∂x)ξh, with h := (F)ξ[v].

It is sufficient to prove that f is C1 in a neighborhood of (Id, 0) in Dl ×W 2l−1,∞(T) (see [17, Theorem 2]).
Then by scaling properties we can infer that the ODE Cauchy problem

(ξ, v)′(t) = (v, f(ξ, v)), (ξ, v)(0) = (Id, u0),

admits a local-in-time solution in Dl ×W 2l−1,∞(T) for any u0 ∈ W 2l−1,∞(T).
Since

A−1∂x = 2i(Λ̃+ + Λ̃l,−),

this follows from the two next propositions.

Proposition 2. Let ξ0 ∈ C \ 2πZ and j ∈ N. Then the mapping

ξ ∈ Dl 7→ (−i∂x − ξ0)−1
ξ ∈ L(W j−1,∞(T),W j,∞(T))

is of class C1.
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This can be proved in the same way as [17, Proposition 3].

Proposition 3. The map h is C1 from Dl ×W 2l−1,∞(T) to L∞(T).

Sketch of proof. The proposition follows easily from the formula:

(∂x)ξ =
1

ξ′(x)
∂x, Dw(∂x)ξ = −

w′

(ξ′(x))2
∂x,

and from the fact that Fl[u] is a differential polynomial in u of order 2l− 1. With these formulas, one deduces
that h(ξ, v) is Gâteaux-differentiable, and that the differential is continuous, so that h is indeed of class C1.

Once the problem is solved in Lagrangian variables one use the following lemma to deduce the existence
part of Theorem 3 by considering u(t, x) := v(t, ξ(t, ·)−1(x)).

Lemma 9. If ξ is in Dl then ξ is a homeomorphism and ξ−1 is in Dl. Moreover the following map

W 2l−1,∞(T) ×Dl → H2l−1(T), (u, ξ) 7→ u ◦ ξ,

is continuous.

The previous lemma simply follows from Faà di Bruno’s formula. Note that the uniqueness in Eulerian
variables is inferred from the one in Lagrangian variables, cf. [17, Proposition 5].
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