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A concentration theorem for the equilibrium
measure of Markov chains with nonnegative

coarse Ricci curvature

Laurent Veysseire

Abstract

In this article, we prove a concentration inequality of the order
of the exponential of a double integral of the coarse Ricci curvature
for the equilibrium measure of a Markov chain, in the case when this
curvature is nonnegative. This is, to the author’s knowledge, the
first concentration result in a discrete setting using a non-constant
curvature instead of its infimum.

Introduction

For a Markov chain on a Polish space, a nonnegative coarse Ricci
curvature means that the distributions after one step of the chain are
closer (in the sense of the W1 distance) than their starting points are
[4]. Remind that the W1 (Wasserstein) metric between two probability
measures is the infimum over the set of couplings between this two
probability measures of the expectation of the distance between the
two points.

In the case when the space is ε-geodesic (see Definition 2), a non-
negative coarse Ricci curvature allows to extend the local attractive-
ness of a point x0 to a global one (see [4] or Lemma 7). The attractive-
ness of a point implies exponential concentration of the equilibrium
probability measure around this point, if the Markov chain does not
spread out too quickly.

One of the simplest example is the random walk on N where we
jump from n to n+1 with probability p and to (n−1)+ with probability
1 − p. In this case, the coarse Ricci curvature is 0. If p < 1

2 , then 0
is attractive and we have exponential concentration. If p ≥ 1

2 , then
we don’t have any attractive point, neither do we have any invariant
probability measure.
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Here we prove that the concentration of the equilibrium measure
around an attractive point behaves at least like the exponential of a
double integral of the coarse Ricci curvature.

We may remark that this is the right behaviour of the invariant
distribution for diffusion processes on the real line, as we see in the
example below.

Example 1 Let us consider a diffusion process on the real line whose
generator takes the form:

Lf =
d2f

dx2
− dV

dx

df

dx

where the energy V (x) is smooth. Then the coarse Ricci curvature is
d2V
dx2

, and the measure e−V (x)dx is reversible. We see that the density
of the invariant measure is exacly a double integral of the coarse Ricci
curvature.

1 The concentration Theorems

We define ε-geodesic spaces as in [4].

Definition 2 Let ε > 0. A metric space (X, d) is said to be ε-
geodesic if for each (x, y) ∈ X2, there exists n ∈ N and a sequence
x = x0, x1, . . . , xn = y ∈ X such that d(xi, xi+1) ≤ ε for each
0 ≤ i ≤ n− 1 and d(x, y) =

∑n
i=0 d(xi, xi+1).

For a Markov chain with transition kernel P on a ε-geodesic space, we
will denote by Kε(x) the local coarse Ricci curvature at x:

Kε(x) := inf
y∈X|0<d(x,y)≤ε

κ(x, y)

Where κ(x, y) := 1 − W1(Px,Py)
d(x,y) is the coarse Ricci curvature between

x and y as defined in [4].
Here we will prove the following concentration result for the equi-

librium measure of Markov Chains:

Theorem 3 Let X be an ε-geodesic metric space and P be the tran-
sition kernel of a Markov chain on X. Assume that:

• there exists ρ > 0 and a point x0 such that x0 is ρ-attractive for
the Markov chain in the sense that

∀x|ε < d(x, x0) ≤ 2ε,W1(δx0 , Px) ≤ d(x0, x)− ρ,

2



• there exists a non-increasing function K : R+ 7→ R+ satisfying:

Kε(x) ≥ K(d(x, x0)),

• there exists s > 0 such that for any x ∈ X, any 1-lipschitz
function f : X 7→ R and any λ ∈ R, we have:

EPx
[
eλf
]
≤ eλEPx [f ]+λ2s2

2 .

Then we have, for every l > 2ε+ ln(2)s2

ρ and any equilibrium measure
π:

Px∼π(d(x, x0) ≥ l) ≤ C0e−
1

2s2
Φ(l)

with

Φ(l) := ρl +

∫ l

2ε

(∫ u

2ε
K(v)dv

)
du

and

C0 =
e

3ε
2s2

max(3ε,ρ+
ln(2)s2

ρ
)− ρ2

4s2
+ 1

2s2

ρ(2ε+
ln(2)s2

ρ
)+
∫ 2ε+

ln(2)s2

ρ
2ε

∫ u
2εK(v)dvdu


1− e−

ρ2

4s2

Remark 4 If K = 0, we obtain exponential concentration, as proved
in [4].

Proposition 5 If closed balls are compact, then under the hypotheses
of Theorem 3, there exists an equilibrium measure.

Remark 6 In the case when
∫∞

0 K(r)dr = ∞, and for some (hence
any) x0 ∈ X, W1(δx0 , Px0) < ∞, then for any ρ > 0, there exists
a ε > 0 large enough such that x0 is ρ-attractive. This is a trivial
consequence of the Lemma below.

Lemma 7 Let X be an ε-geodesic metric space and P be the transi-
tion kernel of a Markov chain such that there exists a non-increasing
function K : R+ 7→ R+ and a point x0 ∈ X satisfying:

Kε(x) ≥ K(d(x, x0)).

Then we have

Ey∼P (x)[d(x0, y)] ≤ d(x0, x)− F (d(x0, x)),

where

F (l) :=

 ρ+
∫ l

2εK(u)du if 2ε ≤ l
ρ if ε < l ≤ 2ε
−J(0) if l ≤ ε

with ρ := infx|ε<d(x,x0)≤2ε d(x, x0)−W1(P (x), δx0) and J(x0) = W1(P (x0), δx0).
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Proof :
If ε < d(x, x0) ≤ 2ε, this is just the definition of ρ. If d(x, x0) ≤ ε,

we haveKε(x0) ≥ 0, soW1(P (x), δx0) ≤W1(P (x), P (x0))+W1(P (x0), δx0) ≤
d(x, x0) + J(x0). If d(x, x0) ≥ 2ε, there exists x1, . . . , xn = x such
that d(xi, xi+1) ≤ ε, ε < d(x1, x0) ≤ 2ε and d(x, x0) = d(x1, x0) +∑n−1

i=1 d(xi, xi+1). We have then

W1(P (x), δx0) ≤W1(P (x1), δx0) +

n−1∑
i=1

W1(P (xi), P (xi+1))

≤ d(x1, x0)− ρ+
n−1∑
i=1

(1−K(d(xi, x0)))d(xi, xi+1)

≤ d(x, x0)− ρ−
n−1∑
i=1

∫ d(xi+1,x0)

d(xi,x0)
K(l)dl

≤ d(x, x0)− ρ−
∫ d(x,x0)

d(x1,x0)
K(l)dl

≤ d(x, x0)− F (d(x, x0)).�

Lemma 8 Let µ be a probability measure on X and s > 0 be such
that for any 1-lipschitz function f , we have the following inequality:

Eµ
[
eλf
]
≤ eλEµ[f ]+λ2s2

2 .

Then, for each C1 function g : R 7→ R such that g′ is Lipschitz and
‖g′‖lip < 1

s2
and for each 1-lipschitz function f , we have:

Eµ
[
eg◦f

]
≤ e

g(Eµ[f ])+
s2g′2(Eµ[f ])

2(1−s2‖g′‖lip)√
1− s2‖g′‖lip

.

Proof :
For each x ∈ X, we have

eg◦f(x) ≤ eg(Eµ[f ])+(f(x)−Eµ[f ])g′(Eµ[f ])+
(f(x)−Eµ[f ])2

2
‖g′‖lip .

Now we use the fact that the Laplace transform of a Gaussian measure
N (M,σ2) is: ∫ ∞

−∞
eλue−

(u−M)2

2σ2
du√
2πσ2

= eλM+λ2σ2

2 .

So, taking λ = f(x)− Eµ[f ], M = g′ (Eµ[f ]) and σ2 = ‖g′‖lip, we get:

eg(f(x)) ≤ eg(Eµ[f ])

∫ ∞
−∞

eu(f(x)−Eµ[f ])e
− (u−g′(Eµ[f ]))2

2‖g′‖lip
du√

2π‖g′‖lip
.
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Integrating this inequality with respect to µ and using our assumption
yields:

Eµ
[
eg◦f

]
≤ eg(Eµ[f ])

∫ ∞
−∞

e
u2s2

2 e
− (u−g′(Eµ[f ]))2

2‖g′‖lip
du√

2π‖g′‖lip
= eg(Eµ[f ]) e

s2g′2(Eµ[f ])
2(1−s2‖g′‖lip√
1− s2‖g′‖lip

as needed.�

Theorem 9 Let X be a ε-geodesic metric space and P be the tran-
sition kernel of a Markov chain. Assume that there exists a non-
increasing function K : R+ 7→ R+ and a point x0 ∈ X satisfying:

Kε(x) ≥ K(d(x, x0))

and that there exists s > 0 such that for any x ∈ X, any 1-lipschitz
function f : X 7→ R and any λ ∈ R, we have:

EPx
[
eλf
]
≤ eλEPx [f ]+λ2s2

2 .

Let F be defined as in Lemma 7. Then, for every pair (α, d0) ∈ R2
+

satisfying:

• d0 ≥ 2ε

• F (d0) > s2K(d0)
2

• α < 1
s2K(d0)

• Cα,d0 :=
e
−αF (d0)2

(
1− αs2

2(1−αs2K(d0))

)
√

1− αs2K(d0)
< 1

we have the following concentration inequality for any equilibrium
measure π of the Markov chain and any l ≥ d0:

Px∼π(d(x, x0) ≥ l) ≤ C ′α,d0
Cα,d0

1− Cα,d0
e−α(ϕ(l)−ϕ(d0))

where ϕ(l) =
∫ l

0 F (u)du, and C ′α,d0 := e
α1J(x0)+ε>d0−F (d0)

∫ J(x0)+ε
d0−F (d0)

sup(F (d0),F (u))du
.

Proof : we set ψ(x) = αϕ(x) if x ≥ d0 and ψ(x) = α(ψ(d0) −
(d0 − x)F (d0)) if x < d0. Under our assumptions, ψ is convex and
increasing, and we have ‖ψ′‖lip = αK(d0) < 1

s2
. Our goal is to bound

the quantity Ex∼π
[
eψ(d(x,x0))1d(x,x0)≥d0

]
. We have:

Ex∼π
[
eψ(d(x,x0))1d(x,x0)≥d0

]
= Ex∼π

[
Ey∼Px

[
eψ(d(y,x0))1d(y,x0)≥d0

]]
≤ Ex∼π

[
Ey∼Px

[
eψ(d(y,x0))

]]
.
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Using Lemma 8 with µ = Px and g = ψ, and Lemma 7, we get:

Ex∼π
[
eψ(d(x,x0))1d(x,x0)≥d0

]
≤

Ex∼π

e
ψ(d(x,x0)−F (d(x,x0)))+

α2s2F (d0)
2

2(1−αs2K(d0))√
1− αs2K(d0)

1d(x,x0)<d0

+
e
ψ(d(x,x0)−F (d(x,x0)))+

α2s2F (d(x,x0))
2

2(1−αs2K(d0))√
1− αs2K(d0)

1d(x,x0)≥d0

 .
The function l 7→ l − F (l) is nondecreasing on [0, ε] and on (ε, d0),
and ψ is an increasing function. Then, for d(x, x0) < d0, we have
ψ(d(x, x0) − F (d0)) ≤ ψ(max(J(x0) + ε, d0 − F (d0)) = ln(C ′α,d0) +

α(ϕ(d0)− F 2(d0)).
For d(x, x0) ≥ d0, we have ψ(d(x, x0)−F (d(x, x0))) ≤ ψ(d(x, x0))−

αF 2(d0). So we get:

Ex∼π
[
eψ(d(x,x0))1d(x,x0)≥d0

]
≤ C ′α,d0Cα,d0eαϕ(d0)+Cα,d0Ex∼π

[
eψ(d(x,x0))1d(x,x0)≥d0

]
.

And then, since Cα,d0 < 1, we finally obtain:

Ex∼π
[
eψ(d(x,x0))1d(x,x0)≥d0

]
≤
C ′α,d0Cα,d0

1− Cα,d0
eαϕ(d0).

Now we just have to use the Markov inequality to derive the desired
inequality.�

Remark 10 In the previous proof, we didn’t fully use the hypoth-

esis F (d0) > s2K(d0)
2 . In fact, for a fixed d0, ln(Cα,d0) is a con-

vex function of α on the interval [0, 1
s2K(d0)

). We have C0,d0 = 1

and ∂
∂α ln(Cα,d0)|α=0 < 0 if and only if F (d0) > s2K(d0)

2 . So if

0 < F (d0) ≤ s2K(d0)
2 , there doesn’t exist any α such that Cα,d0 < 1

and so the theorem wouldn’t tell us anything at all.

Remark 11 If K(d0) ≤ 1
2 have C 2

s2
,d0
≥ 1, so we must have α < 2

s2
.

Under the hypothesis that κ(x) −−−→
x→∞

0 and F (x) −−−→
x→∞

+∞, we can

find for any 0 < α < 2
s2

a d0 such that Cα,d0 < 1. Of course we need
a greater d0 when α gets closer to 2

s2
.

One way to choose α and d0 is given by the following proof of
Theorem 3:
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Proof of Theorem 3: we use Theorem 9 with α = 1
2s2

and d0 =

2ε + ln(2)s2

ρ . We only have to check that in this case, Cα,d0 ≤ e−
ρ2

4s2

and C ′α,d0 ≤ e
3ε
2s2

max(3ε,ρ+
ln(2)s2

ρ
)
.

We have

ln(Cα,d0) =

(
−α+

α2s2

2(1− αs2K(d0))

)
F 2(d0)− 1

2
ln(1− αs2K(d0)).

Since K(d0) ≤ 1, we have −α + α2s2

2(1−αs2K(d0))
≤ − 1

4s2
. We have

F (d0) ≥ ρ+ ln(2)s2

ρ K(d0), and then F (d0)2 ≥ ρ2 + 2 ln(2)s2K(d0). Us-

ing the concavity of ln on [1
2 , 1], we get ln(1−αs2K(d0)) ≥ − ln(2)K(d0).

Thus we get:

ln(Cα,d0) ≤ − 1

4s2
(ρ2 + 2 ln(2)s2K(d0)) +

ln(2)

2
K(d0) = − ρ2

4s2
.

For C ′α,d0 , we have

ln(C ′α,d0) =
1

2s2
1J(x0)+ε>d0−F (d0)

∫ J(x0)+ε

d0−F (d0)
max(F (d0), F (u))du

≤ 1

2s2
((J(x0) + ε)− (d0 − F (d0)))+ max(F (d0), F (J(x0) + ε)).

By the triangular inequality for W1, we have J(x0) ≤W1(δx0 , P (x))+
W1(P (x), P (x0)) ≤ W1(δx0 , P (x)) + d(x0, x), for any x because the
coarse Ricci curvature is nonnegative. If we take x such that ε <
d(x0, x) ≤ 2ε, we have J(x0) ≤ 2d(x0, x) − ρ ≤ 4ε − ρ. We have

F (d0) ≤ ρ + ln(2)s2

ρ , so d0 − F (d0) ≥ 2ε − ρ and then ((J(x0) + ε) −
(d0 − F (d0)))+ ≤ 3ε. And finally, F (J(x0) + ε) ≤ F (5ε − ρ) ≤ 3ε.
Putting that together give us the desired bound for C ′α,d0 .�
Proof of Proposition 5: We take α and d0 as in the proof of Theo-
rem 3. We consider the sequence of probability measures Pnx0 . Then,
doing as in the proof of Theorem 9, we have :

Ex∼Pn+1
x0

[eψ(d(x,x0))1d(x,0)≥d0 ] ≤ C ′α,d0Cα,d0+Cα,d0Ex∼Pnx0 [eψ(d(x,x0))1d(x,0)≥d0 ].

From that, we can conclude that there exists C < +∞ such that for
all n, we have EPnx0 [eψ(d(x,x0))] < C. So the sequence Pnx0 is tight,

and then, so is the sequence πn = 1
n+1

∑n
i=0 P

i
x0 . Because closed

balls are compact, we can extract a weakly convergent subsequence
πθ(n), and we denote by π its limit. The W1 distance metrizes the
weak convergence on the set of probability measures on X satisfying
E[eψ(d(x,x0))] < C (see [6]). Thus the subsequence πθ(n) converges to π
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for the W1 distance. Furthermore, we have W1(πn, Pπn) ≤ C′

n+1 with
C ′ <∞ a constant. We have then

W1(π, Pπ) ≤W1(π, πθ(n)) +W1(πθ(n), Pπθ(n)) +W1(Pπθ(n), Pπ).

The nonnegative coarse Ricci curvature implies that P contracts the
W1 distance ([4]), so the third term of the right hand side is at most
the first one. We have already seen that the first two terms tend to 0
when n tends to +∞. So the right hand side tends to 0 when n tends
to +∞. Thus W1(π, Pπ) = 0, and then π is an invariant measure.�

2 Some examples

Let us see which concentration we can get with Theorem 3 and The-
orem 9 in some examples below.

Example 12 (Discrete time M/M/k queue (see, for example [2]))
Let 0 < n0 < k be two integers. We consider here the Markov chain
on integers with transition kernel:

p(n, n+ 1) =
n0

n0 + k

p(n, n) =
(k − n)+

n0 + k

p(n, n− 1) =
min(n, k)

n0 + k

p(n,m) = 0 if |n−m| > 1.

The origin x0 we will consider to apply Theorem 3 is n0, the only
point at which the probability to jump at left equals the probability
to jump at right (that is why we chose n0 integer). Hoeffding’s Lemma
(see [3]) states that for a random variable X such that a ≤ X ≤ b

almost surely, we have E
[
eλ(X − E[X])

]
≤ e

λ2(b−a)2
8 . So we can take

s = 1 in theorem 3. To compute the coarse Ricci curvature, we remark
that if x < y, the measure Py dominates stochastically the measure
Px, and thus the W1 distance between them is the difference of their
expectations. For x < y, the coarse Ricci curvature K(x, y) is then

1
n0+k if y ≤ k, k−x

y−x
1

n0+k if x < k < y and 0 if x ≥ k. If we take ε = 1,

we have ρ = 1
n0+k , and K(r) =

1r<k−n0
n0+k .

Applying Theorem 3 should give a Gaussian then exponential con-
centration, but, as ρ is very small, d0 is large (2 + (n0 + k) ln(2)). If

k−n0 ≤ 2 ln(2)n0+2
1−ln(2) , we get only the exponential part. If k is too large,
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d0 is large too, and the gaussian-then-exponential bounds starts far
away from n0. We can try to take a larger ε to get a better ρ. In-
deed, we get ρ = min(ε,k−n0)

n0+k , but we pay that by a worse curvature

K(r) = 1
n0+k min(1,max(0, k−n0−r

ε )). We distinguish 3 cases depend-
ing on how k − n0 is tall with respect to n0.

When k − n0 is between
√
n0 and n0, the equilibrium measure is

well approximated by a Gaussian between 0 and k.

n
0
k

The optimal ε is O(
√
n0), the coefficient of the Gaussian part of the

concentration inequality is O( 1
n0

), which is good, and the coefficient

of the exponential part is O(k−n0
n0

), like the right one.
When k − n0 is o(

√
n0), the mass of [0, k] under the equilibrium

measure is negligible with respect to the one of [k,∞).

n
0
k

The optimal ε and d0 are O(k − n0), this time, we have no Gaussian
part because d0 is too large (and indeed, there is no Gaussian part in
the equilibrium measure), and the coefficient of the exponential part
is about one half of the right one.

When k−n0 is greater than n0, the equilibrium measure is almost
the Poissonian one with parameter n0, the density of the equilibrium
measure is illustrated below:
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n
0

k

The optimal ε and d0 are O(
√
k), the coefficient appearing in the

Gaussian part is O( 1
k ), instead of an expected 1

n0
, and the coefficient of

the exponential part is O(1), which is clearly not optimal, so Theorem
3 gives a rather bad concentration inequality.

Example 13 (Discrete time Ornstein Uhlenbeck) Let 0 < α ≤
1 be a real parameter. Here we consider the Markov Chain on R given
by the transition kernel:

Px = N ((1− α)x, 1).

It is shown in [1] that in the Gaussian case, we can take the
variance of the distribution for s2. So we take s2 = 1, and for ev-
ery ε > 0, the curvature is constant K = α. We have ρ = ε −√

2
π

(
e−

(1−α)2ε2
2 +

∫ (1−α)ε
0 e−

x2

2 dx

)
≥ −

√
2π + αε. Theorem 3 ap-

plied with ε =

√
2 ln(2)α+

√
8
π

α gives us Gaussian concentration with

coefficient α
4 instead of α(2−α)

2 (so we have a loss of a factor between

2 and 4), and d0 = O(
√

1
α)

The bad behaviour of s2 prevents to easily generalize Theorem 3 or
Theorem 9 to continuous time. The following example of a continuous
time processes, whose generator merges a diffusive part and a jump
part, shows that a generalization of those theorems does not hold,
even if the jump rate is uniformly bounded.

Example 14 Consider a continuous time process on R+ with a linear
drift towards 0 and a random jump to the right of size 1 and rate 1.
The generator of this process is given by Lf(x) = −αxf ′(x) + f(x +
1)− f(x), with α > 0 a constant which quantifies the drift.

In this example, the coarse Ricci curvature is α. Indeed, using
the coupling of the processes Xt and Yt starting at x and y such that
Xt and Yt jump at the same times shows that the law of Yt is the
translation of the law of Xt by (y−x)e−αt. If something like Theorem
3 or Theorem 9 did hold, we would have Gaussian concentration. But
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actually there is only Poissonian concentration. Let us prove there is
Poissonian concentration and no better. We denote by Xt the value
of the process at the time T . Let T1, T2, . . . be the successive times of
the jumps. For all T > 0, let N(T ) be the number of jumps between
0 and T . We have

XT = e−αTX0 +

N(T )∑
i=1

e−α(T−Ti).

If we take X0 = 0 then E[XT ] ≤ T , and since the coarse Ricci curva-
ture is greater than α > 0, there exists an unique invariant probability
measure π (see [5]).

Now take X0 with the law π. Then X1 has the law π, and is
greater than e−αN(1), which has a Poissonian concentration since
N(1) follows precisely a Poisson law of parameter 1. So we cannot
have a better concentration than a Poissonian one.

It remains to prove that π has Poissonian concentration. We take
X0 = 0. Let us consider the Laplace/Fourier transform of XT , that
is GT (λ) := E[eλXT ] for λ ∈ C. N(T ) has the law P(T ), and the
repartition of the Ti’s knowing N(T ) is the one of N(T ) independent
random variables uniformly distributed in [0, T ]. So we have:

GT (λ) =

∞∑
k=0

T ke−T

k!

(
1

T

∫ T

0
eλe−αtdt

)k

=

∞∑
k=0

e−T

k!

(∫ T

0

( ∞∑
n=0

λne−nαt

n!

)
dt

)k

= e
∑∞
n=1

[
−λne−nαt

nαn!

]T
t=0

= e
I(λ)−I(λe−αT )

α

with I(λ) =
∑∞

n=1
λn

nn! =
∫ λ

0
(ez−1)dz

z . We see that GT (λ) tends to a
limit G(λ), which is the Laplace/Fourier transform of π, when T tends
to +∞.

We have G(λ) = e
I(λ)
α . An integration by parts gives us I(λ) =

eλ−λ−1
λ +

∫ λ
0

ez−z−1
z2

dz, so I(λ) ∼ eλ

λ . For l > 1, we use the Markov

inequality on eln(l)X and get:

Pπ[X ≥ l] ≤ e
I(ln(l))
α
−l ln(l),

and we have I(ln(l))
α ∼ l

α ln(l) = o(l ln(l)). So we have Poissonian con-
centration.
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