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Abstract

We explain how to organize the atoms resulting from clique minimal separator decomposition
into a metagraph which we call the atom graph, and give an efficient recursive algorithm to
compute this graph at no extra cost than computing the atoms.
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1 Introduction

Clique separator decomposition was introduced by Tarjan in [16] as useful for a divide-
and-conquer approach for hard problems such as minimum fill-in, maximum clique, graph
coloring and maximum independent sets. The process consists in repeatedly finding a clique
separator S of a graph G = (V, E) and decomposing G by copying S into the dif and only
iferent connected components of G − S, obtaining in the end a set of induced subgraphs
having no clique separator called ’atoms’. Tarjan presented an O(nm) time algorithm to
implement this process in O(nm) time by repeatedly testing transitory neighborhoods of a
minimal triangulation H = (V, E + F ) of G, as will be detailed further.

Tarjan left open the problem of unicity; this was solved by Leimer [12], who showed
that using only clique separators which are also minimal separators will result in a unique
set of atoms which are maximally large and in minimum number, as they are exactly the
maximal induced connected subgraphs having no clique separator. Leimer modified Tarjan’s
algorithm to compute this unique decomposition, maintaining the same complexity.

Recently, this decomposition has been applied with good results to graph modelizations
of data, for instance on microarray dataset in yeast, where the atoms were proved to provide
very good gene groupings with respects to their function [9]. Good results have also been
obtained in data from text mining, see e.g.[5]. One of the advantages of this decomposition
is that the subgraphs obtained allow an overlap, so that the modelized objects (such as
genes), can be represented as participating in several groups (such as gene functions).

In these applications, it turns out that not only do the atoms define ’clusters’ which
are highly significant, but that another interesting object is the ’atom graph’ (introduced
in [9]), which is a partial subgraph of the intersection graph of the atoms, with an edge
between two atoms A and B if their intersection separates set A \ B from set B \ A. This
atom graph is a compact representation of large graphs which can yield structural insight:
in [9], this atom graph turned out to be an interval graph which precisely described the
four consecutive temporal classes of genes that coincide with the major biological processes
of sporulation in yeast. The atom graph can also be used for visualization purposes. The
corresponding intersection graph has been studied for chordal graphs as the clique graph [1]
(the atoms in a chordal graph are the maximal cliques), but not for a general graph.

In view of these new applications to large graphs, we investigate how to construct the
atom graph efficiently. Since there are less than n atoms, a straightforward approach will
yield the atom graph in O(n2m). In this paper, we present a recursive O(nm) time process,
thus enabling the construction of the atom graph at no extra cost.

2 Preliminaries

Given a graph G = (V,E), we denote n = |V | and m = |E|. For any subset S of V ,
G(S) denotes the subgraph of G induced by S. For any vertex v of G, NG(v) denotes the
neighborhood of v in G. For a given set of vertices X ⊆ V , NG(X) = ∪v∈XNG(v) \X and
NG[X] = ∪v∈XNG(v)∪X. We will omit the subscripts when there is no ambiguity. For any
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graphs G = (V,E) and G′ = (V, E ′), we say that G ⊆ G′ if E ⊆ E ′. A set of vertices X is
complete or a clique if its vertices are pairwise adjacent. We will say that we saturate a set
of vertices X when we add to the graph all the edges necessary to make X into a clique.

Separation. In a connected graph G = (V,E), a subset S of V is a separator of G
if G(V \ S) is disconnected. For any non-adjacent vertices a and b in V \ S, S is an ab-
separator, or S separates a and b, if a and b are in dif and only iferent connected components
of G(V \ S), called components of S in G. S is a minimal ab-separator if it is an inclusion-
minimal ab-separator, and a minimal separator if there is some pair {a, b} such that S
is a minimal ab-separator. Equivalently, S is a minimal separator if there are at least two
components C1 and C2 of S in G such that N(C1) = N(C2) = S (such components are called
full components). (Minimal) AB-separators are defined in the same way as (minimal) ab-
separators for any disjoint connected subsets A and B of V \S. Given two graphs G = (V, E)
and (H = V, E ′), and a subset S of V , if S has the same components in G as in H, and if,
for each such component C, NG(C) = NH(C), we say that S has the same components and
neighborhoods in G and H.

Chordal graphs. A graph is chordal, or triangulated, if it contains no chordless cycle of
length ≥ 4. A connected graph is chordal if and only if all its minimal separators are cliques.
A chordal graph H = (V,E +F ) is called a triangulation of G = (V, E). The set F of edges,
of size |F | = f , which are added to obtain a triangulation is called a fill. A triangulation H
is minimal if no strict subset of F can be added to G to obtain a triangulation.

Property 2.1 [2, 14] Let G be a connected graph, let H be a minimal triangulation of G.
a) Every clique minimal separator of G is a minimal separator of H.
b) Every minimal separator of H is a minimal separator of G, with the same components
and neighborhoods.

Property 2.2 (Unique Chord Property) [15] Let G = (V, E) be a graph, and let H =
(V, E + F ) be a triangulation of G. H is a minimal triangulation of G if and only if each
edge in F is the unique chord of a cycle in H of length 4.

Given a graph G and an ordering π of the vertices of G, a triangulation of G called G+
π is

obtained from G by repeatedly, saturating the neighborhood in the current graph G′ of the
next vertex x in ordering π and remove x from G′. An ordering π is a minimal elimination
ordering (meo) if there is no ordering π′ such that G+

π′ ⊂ G+
π ; in that case G+

π is a minimal
triangulation of G. Given a graph G = (V,E) and an ordering π of V , π(i) will denote the
vertex of number i, and π−1(x) will denote the number of vertex x; the upper neighborhood
of a vertex x will be Madj(x) = {y ∈ V |π−1(y) > π−1(x)}.

3 Construction of the atom graph

In this section, we will present and prove an O(nm) time algorithm to construct the atom
graph.
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Let us first give some useful definitions and properties for atoms.

Definition 3.1 [12] An atom of a connected graph G = (V, E) is an inclusion-maximal
subset of V inducing a connected graph having no clique separator.

Property 3.2 [12] The intersection of two distinct atoms is a clique.

Characterization 3.3 [12] A connected graph is chordal if and only if all its atoms are
cliques.

Property 3.4 [12] For any connected graph G, the graph obtained from G by saturating its
atoms, denoted by G∗, is chordal.

Below, we recall how the clique minimal separator decomposition can be computed on
a graph G [16, 12, 4]:

• Compute a meo π and the associated minimal triangulation H = G+
π of G, and

initialize V ′ as V .

• For i = 1 to n
If Si = MadjH(π(i)) is a clique minimal separator of G, then

– Find the component C of Si in G(V ′) containing π(i);

– Decompose the current vertex set V ′ into C ∪ Si, which is an atom of G, and
V ′ \ C, which becomes the current set V ′.

This process defines a binary decomposition tree, which we call the atom tree:

Definition 3.5 An atom tree of a connected graph G = (V,E) is a labeled binary tree T
recursively defined as follows: if G has no clique separator then T is reduced to a node labeled
with V , otherwise the root of T is labeled with a clique minimal separator S of G, its left
child is a leaf labeled with a subset A of V in the form C ∪ S, where C is a full component
of S in G, such that G(A) has no clique separator, and the subtree T ′ of T rooted at the
right child of its root is an atom tree of G(V \ C). In that case we say that T is defined by
(A, S, T ′).

Property 3.6 [12] Let G be a connected graph, and T be an atom tree of G. Each leaf of
T is labeled with an atom of G, and each atom of G appears once as a leaf label in T .

Example 3.7 Figure 1 gives a LEX M ordering of a graph G, with the corresponding atom
tree.

We now define the metagraph which we call the atomgraph:
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Figure 1: Graph G with an LEX M ordering and the corresponding atom tree. On G, the
fill edges are represented by dashed lines.

Definition 3.8 The atom graph of a connected graph G, denoted by AG(G), is defined as
follows: its vertices are the atoms of G, and its edges are the pairs {A,B} of atoms of G
such that A ∩B is a clique minimal (A \B)(B \ A)-separator.

In turns out that if two atoms are separated, then they are minimally separated:

Property 3.9 Two atoms A and B are adjacent in the atom graph of G if and only if A∩B
separates A \B and B \ A in G.

In order to prove Property 3.9, we use the following lemma:

Lemma 3.10 Let G be a connected graph, let S be a clique of G and let B be an atom of
G. Then B = S or there is a component D of S in G such that B ⊆ NG[D].

Proof: If B ⊆ S then B = S since S has no clique separator. Otherwise let D be a
component of S in G such that B ∩ D 6= ∅. B ⊆ NG[D] because otherwise B ∩ NG(D)
would be a clique (as a subset of clique S) separating any vertex of B ∩D and any vertex
of B \NG[D]. 2

Proof: (of Property 3.9) The condition is obviously necessary. Let us show that it is
sufficient. We assume that A ∩B separates A \B from B \ A. By Property 3.2 A ∩B is a
clique. A\B and B \A are connected, since otherwise A∩B would be a clique separator in
G(A) or in G(B). Let C1 and C2 be the components of A ∩B containing A \B and B \ A
respectively. By Lemma 3.10 A ⊆ NG[C1], so A ∩ B ⊆ NG(C1) and therefore C1 is a full
component of A ∩ B. Similarly, C2 is full, and is distinct from C1 by assumption. Hence
A ∩B is a clique minimal (A \B)(B \ A)-separator. 2

Example 3.11 Figure 2 gives the atom graph of graph G from Figure 1.
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Figure 2: The atom graph of graph G from Figure 1
.

A graph may have several atom trees, depending on the order in which clique minimal
separators and atoms are chosen. However, in any atom tree of any connected graph G, the
leaf labels are exactly the atoms of G (Property 3.6), and we will show that the internal
node labels are exactly the clique minimal separators of G, each clique minimal separator
appearing as an internal node label as many times as it has full components in G, minus
one (Property 3.12). Thus the labels are the same in all atom trees of G, with the same
number of occurrences of each label.

Property 3.12 Let G be a connected graph, and T be an atom tree of G. Each internal
node of T is labeled with a clique minimal separator of G, and each clique minimal separator
of G appears as an internal node of T as many times as it has full components minus one
in G.

In order to prove Property 3.12, we use the following lemma:

Lemma 3.13 Let G = (V, E) be a graph, let S be a clique of G, let C be a component of
S in G, let G′ = G(V \ C), let R be a subset of V \ C and let C1 be the component of R
in G containing C. Then the components of R in G′ are obtained from its components in
G by replacing C1 by C1 \ C if C ⊂ C1 and removing C1 otherwise, i.e. if C = C1, and the
components of R have the same neighborhoods in G and in G′.

Proof: The result is evident if C = C1. We assume now that C ⊂ C1. We have to
show that G(C1 \C) is connected and that NG(C1) = NG′(C1 \C). G(C1 \C) is connected
since a shortest path in G(C1) between two vertices of C1 \ C is also a path in G(C1 \ C)
(otherwise this path would contain two non-consecutive vertices of NG(C) ⊆ S and therefore
would have a chord). NG′(C1 \ C) ⊆ NG(C1) since G′ = G(V \ C). Let us show that
NG(C1) ⊆ NG′(C1 \C). Let x ∈ NG(C1). Let us show that x ∈ NG′(C1 \C). x ∈ R, so x is
a vertex of G′. It is sufficient to show that (C1 \ C) ∩ NG(x) 6= ∅. Let y ∈ C1 ∩ NG(x). If
y 6∈ C then y ∈ (C1 \C)∩NG(x) and we are done. Now if y ∈ C then x ∈ NG(C) ⊆ S, and
as C ⊂ C1, NG(C) ∩C1 6= ∅. Let z ∈ NG(C) ∩C1. As x and z are both in clique S and are
distinct (since z ∈ C1 and x 6∈ C1), z ∈ NG(x), and therefore z ∈ (C1 \ C) ∩NG(x). 2

Proof: (of Property 3.12) Let us show this by induction on the number k of atoms of G. If
k = 1 then G has no clique minimal separator and T has no internal node, so the property
holds. We suppose that it holds if G has k atoms. Let us show that it holds if G has k + 1
atoms. Let T be defined by (A, S, T ′), let C = A \ S and let G′ = G(V \ C). We first show
that any clique minimal separator of G is in G′. We suppose for contradiction that there is
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a clique minimal separator R of G such that R ∩ C 6= ∅. As R is a clique R ⊆ NG[C] = A.
Let C1, ..., Cp be the components of S in G′. G(A) is obtained from G by successively
removing the vertices of Ci for i from 1 to p. As R 6= N(Ci) for each i from 1 to p, (since
N(Ci) ⊆ S and R ∩ C 6= ∅), it follows from Lemma 3.13 applied p times that R has as
many full components in G(A) as in G. Hence R is a clique minimal separator of G(A), a
contradiction. Thus any clique minimal separator R of G is a clique of G′, and therefore by
Lemma 3.13 has as many full components in G′ as in G if R 6= S, and one less if R = S. We
conclude with the induction hypothesis, since G′ has k atoms and the internal node labels
in T ′ are the same as in T , except that S has one occurrence less. 2

To compute the atom graph of G, we will apply our recursive Definition 3.5. We will
use atom tree T defined by (A, S, T ′). Recall that S is a clique minimal separator, A is the
first atom found for T , and T ′ is the remaining subtree. We will recursively compute the
atom graph of G′ = G(V \ (A \ S)) and add atom A and the edges incident to A, which are
defined as follows:

Property 3.14 Given an atom tree of G defined by (A, S, T ′), the atom graph of G is
obtained from the atom graph of G′ = G(V \ (A \ S)) by adding vertex A and edge AB for
each atom B of G′ such that NG′(D) ⊆ B, where D is the unique component of S in G′

such that B ⊆ NG′ [D].

Property 3.14 follows directly from the two lemmas below:

Lemma 3.15 Let G = (V, E) be a connected graph, let A be the set of atoms of G, let T
be an atom tree of G defined by (A, S, T ′), and let G′ = G(V \ (A \ S)). Then AG(G′) =
AG(G)(A \ {A}).

Proof: By Property 3.6, the set of atoms of G′ is the set of leaf labels of T ′, i.e. A \ {A}.
It follows from Lemma 3.13 that for any atoms B and B′ of G′, B ∩ B′ separates B \ B′

and B′ \B in G’ if and only if it separates them in G. Hence by Property 3.9 AG(G′) is an
induced subgraph of AG(G). 2

Lemma 3.16 Let G = (V, E) be a connected graph, let T be an atom tree of G defined by
(A, S, T ′), let G′ = G(V \ (A \ S)), and let B be an atom of G′. Then there is a component
D of S in G′ such that B ∩D 6= ∅, B ⊆ NG′ [D] and the following equivalence holds: AB is
an edge of AG(G) if and only if NG′(D) ⊆ B.

Proof: By Lemma 3.15 B is also an atom of G. There is a component D of S in G′ such
that B ∩D 6= ∅, because otherwise B would be a subset of S and therefore a strict subset
of atom A in G, which contradicts the maximality condition in the definition of an atom.
By Lemma 3.10 B ⊆ NG′ [D]. Let us show that AB is an edge of AG(G) if and only if
NG′(D) ⊆ B, i.e., by Property 3.9, that NG′(D) ⊆ B if and only if A ∩ B separates A \ B
and B \ A. As B ⊆ NG′ [D], A ∩ B = B ∩ NG′(D) and B \ A = B ∩ D. If NG′(D) ⊆ B
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then A∩B = NG′(D). In that case, as D is a component of NG′(D) in G containing B ∩D
but not A \ B, A ∩ B separates A \ B and B \ A. We assume now that NG′(D) 6⊆ B. Let
x ∈ NG′(D) \ B. As x is in A \ B and is adjacent to some vertex in D, the component of
A ∩ B containing A \ B also contains D, and therefore B ∩D = B \ A. Hence A ∩ B does
not separate A \B and B \ A. 2

Property 3.14 yields a recursive algorithm to compute the atom graph:

Algorithm AtomGraph
input : A graph G = (V, E) and an atom tree T of G.

output: The atom graph AG(G) of G.

if T has a unique node then
(A , F )← ({V }, ∅)

else
Let S be the label of the root of T ;
Let A be the label of its left child;
Let T ′ be the subtree of T rooted at its right child;
G′ ← G(V \ (A \ S));
Compute the components C1, C2, ..., Cp of S in G′

as well as the integers |NG′(Ci)| for i from 1 to p
and num(x) for each x in V \ A, with num(x) = i if and only if x ∈ Ci;
(A , F )← AtomGraph(G′, T ′);
foreach B in A do

cpt← 0;
foreach x in B do

if x ∈ S then
cpt← cpt + 1

else
i← num(x)

if cpt = |NG′(Ci)| then
F ← F ∪ {AB}

A ← A ∪ {A}
AG(G)← (A , F );

Complexity of Algorithm AtomGraph.

Theorem 3.17 The atom graph of a connected graph G can be computed in O(nm) time
using Algorithm AtomGraph.

To prove Theorem 3.17, we need to evaluate the sum of the sizes of the atoms as follows:
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Lemma 3.18 Let G = (V, E) be a connected graph, let A be the set of atoms of G. Then
ΣB∈A |B| ≤ n + m.

Proof: We prove this by induction on the number k of atoms of G. If k = 1 then the
property trivially holds. We assume that it holds if |A | = k. Let us show that it holds
if |A | = k + 1. Let T be an atom tree of G defined by (A, S, T ′), let C = A \ S, let
G′ = G(V \ C), and let n′, m′ and A ′ denote the numbers of vertices and edges and the
set of atoms of G′ respectively. By Property 3.6 and induction hypothesis, ΣB∈A |B| =
ΣB∈A ′|B| + |A| ≤ n′ + m′ + |A|. As G(C) is connected, it has at least |C| − 1 edges. As
C is a full component of S in G, there are at least |S| edges in G having an endpoint in S
and the other endpoint in C. It follows that m ≥ m′ + (|C| − 1) + |S| = m′ + |A| − 1, so
m′ + |A| ≤ m + 1 and ΣB∈A |B| ≤ n′ + m + 1 ≤ n + m. 2

Proof: (of Lemma 3.17) An atom tree T of G can be computed in O(nm) time [12]. Let
us show that Algorithm AtomGraph with input G and T can output AG(G) in O(nm) time
too. Components Ci and integers |NG′(Ci)| and num(x) can be computed in O(m) time
by a search in G′, and scanning all atoms of G′ also costs O(m) time by Lemma 3.18. The
number of recursive calls is bounded by n since the number of vertices of the current graph
strictly decreases at each call. Hence Algorithm AtomGraph runs in O(nm) time. 2

4 Some atom graph properties.

We will end this paper by proving several properties of the atom graph.

• We investigate which graphs are atom graphs, and have the following partial result:

Property 4.1 A graph is an atom graph if and only if it is the atom graph of a chordal
graph.

Property 4.1 directly follows from Property 3.4 and Lemma 4.2 below:.

Lemma 4.2 For any connected graph G, G and G∗ have the same clique minimal
separators with the same components and neighborhoods, the same atom trees and the
same atom graph.

In order to prove Lemma 4.2, we need the following lemmas.

Lemma 4.3 Let G and H be two graphs with the same vertices, let S be a clique
minimal separator of G, let C be a full component of S in G, let V ′ = V \ C (resp.
C ∪ S), let G′ = G(V ′) and H ′ = H(V ′). If every clique minimal separator of G is
a clique minimal separator of H, with the same components and neighborhoods then
every clique minimal separator of G′ is a clique minimal separator of H ′, with the
same components and neighborhoods.
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Proof: We first prove it for V ′ = V \ C. Let R be a clique minimal separator of
G′. By Lemma 3.13 R is also a clique minimal separator of G and its components
in G are obtained from its components in G′ by adding the component C if S ⊆ R
and by replacing the component C1 containing S \ R by C1 ∪ C otherwise, with the
same neighborhoods. Hence R is a clique minimal separator of H and has the same
components in H as in G, with the same neighborhoods. By Lemma 3.13 again on H
and H ′, which holds since S is also a clique minimal separator of H and C is also a
full component of S in H, R has the same components in H ′ as in G′, with the same
neighborhoods, and therefore is a clique minimal separator of H ′.
We now prove it for V ′ = C ∪ S. Let C1, ..., Cp be the components of S in G(V \ C)
and H(V \ C). G′ (resp. H ′) is obtained from G (resp. H) by successively removing
the vertices of Ci for i from 1 to p. Thus it is sufficient to apply the preceding result
(for V ′ = V \ C) p times. 2

Lemma 4.4 Let G and H be two connected graphs with the same vertices. If G and
H satisfy the two following conditions,
(a) every clique minimal separator of G is a clique minimal separator of H, with the
same components and neighborhoods,
(b) for every atom A of G, H(A) has no clique separator,
then they have the same clique minimal separators.

Proof: By Property 3.12 it is sufficient to show that any atom tree of G is also an
atom tree of H. We prove this by induction on the number k of atoms of G. If k = 1
then by condition (b) H has also a unique atom and the property holds. We suppose
that it holds if G has k atoms. Let us show that it holds if G has k + 1 atoms. Let T
be an atom tree of G defined by (A, S, T ′). Let us show that T is also an atom tree of
H. Let C = A\S, let G′ = G(V \C) and let H ′ = H(V \C). T ′ is an atom tree of G′,
S is also a clique minimal separator of H and C is also a full component of S in H.
By Lemma 4.3 G′ and H ′ also satisfy condition (a). They also satisfy condition (b)
since every atom A of G′ is also an atom of G by Property 3.6, with H(A) = H ′(A).
By condition (b) H(A) has no clique separator. Hence T is also an atom tree of H,
which completes the proof by induction. 2

Lemma 4.5 Let G and H be two graphs with the same vertices. If G and H have
the same clique minimal separators with the same components and neighborhoods then
they have the same atom trees and atom graph.

Proof: Let us show this by induction on the number k of atoms of G. If k = 1 then
H has also a unique atom since it has no clique minimal separator (and therefore no
clique separator) and the property holds. We suppose that it holds if G has k atoms.
Let us show that it holds if G has k + 1 atoms. Let T be an atom tree of G defined
by (A, S, T ′). Let us show that T is also an atom tree of H and that G and H have
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the same atom graph. Let C = A \ S, let G′ = G(V \ C) and let H ′ = H(V \ C).
T ′ is an atom tree of G′, S is also a clique minimal separator of H and C is also a
full component of S in H. By Lemma 4.3 G′ and H ′ have the same clique minimal
separators, with the same components and neighborhoods. As G′ has k atoms, by
induction hypothesis T ′ is also an atom tree of H ′, and G′ and H ′ have the same atom
graph. As A is an atom of G, G(A) has no clique minimal separator. By Lemma 4.3,
H(A) has no clique minimal separator either. Hence T is also an atom tree of H. To
prove that G and H have the same atom graph, it remains to show that A is adjacent
to the same atoms in both atom graphs. This follows from Lemma 3.16 and the fact
that S has the sames components in G and in H, with the same neighborhoods. By
symmetry, any atom tree of H is also an atom tree of G, which completes the proof
by induction. 2

Proof: (of Lemma 4.2) By Lemmas 4.5 and 4.4 it is sufficient to show that G and
G∗ satisfy conditions (a) and (b) of Lemma 4.4. They satisfy condition (b) since every
atoms of G is a clique of G∗. Let us show that they satisfy condition (a). Let R be
a clique minimal separator of G. By Lemma 3.10 for any atom B of G there is a
component D of S in G such that B ⊆ NG[D]. It follows that saturating the atoms of
G does not modify the components of R and their neighborhoods. Hence R is also a
minimal separator of G∗, with the same components and neighborhoods as in G, and
it is a clique of G∗ since G ⊆ G∗. 2

• We investigate which graphs are “equivalent” regarding atoms and atom graphs. Re-
call that G∗ denotes the graph obtained from G by saturating its atoms and is chordal
(Property 3.4).

Property 4.6 Let G and H be two connected graphs with the same vertices. The
following propositions are equivalent.
1) G and H have the same atom trees,
2) G and H have a common atom tree,
3) G and H have the same atom graph,
4) G and H have the same atoms,
5) G∗ = H∗,
6) (a) every clique minimal separator of G is a clique minimal separator of H with
the same components and neighborhoods, and (b) for every atom A of G, H(A) has
no clique separator,
7) G and H have the same clique minimal separators with the same components and
neighborhoods.
If G and H satisfy these propositions, we say that they are atom-equivalent.

Proof: 1) ⇒ 2) follows from the fact that each connected graph has at least one
atom tree.
2) ⇒ 4) and 3) ⇒ 4) are evident.
Let us show that 4) ⇒ 5). Every edge e of G is contained in an atom of G because at
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each step of the decomposition represented by an atom tree of G, e is contained either
in atom A = C ∪S or in G(V ′ \C), where V ′ is the vertex set of the current subgraph
of G. Hence G∗ is obtained from the graph (V, ∅) by saturating the atoms of G, and
so is H∗.
5) ⇒ 6) follows from Lemma 4.2 6) ⇒ 7) is Lemma 4.4, and Lemma 4.5 is 7) ⇒ (1)
∧ 3)), which completes the proof of the equivalence of propositions 1) to 7). 2

From 4.6, We can deduce that every graph H that is atom-equivalent to G is contained
in G∗ since H ⊆ H∗ = G∗. However a graph G1 such that G ⊆ G1 ⊆ G∗ is not
necessarily atom-equivalent to G, and also that two chordal atom-equivalent graphs
G and H are necessarily equal, since in that case, by Characterization 3.3, G = G∗ =
H∗ = H.

• [7] showed that some clique graphs are not chordal. This also holds for atom graphs,
as shown by the counterexample below:

A

B

G

D

F

E

CI 

H

A

BD

E

C

F G

I H

Figure 3: A graph G and its non-chordal atom graph.

We do not know how to characterize chordal atom graphs, but we have the following
partial result.

Property 4.7 Let G be a connected graph. If each component of each clique minimal
separator of G is full then the atom graph of G is chordal.

Proof: We assume for contradiction that each component of each clique minimal
separator of G is full but that the atom graph of G is not chordal. Let H = G∗.
By Lemma 4.2 each component of each clique minimal separator of H is full and the
atom graph of H is not chordal. Let µ be a chordless cycle in the atom graph of H
of length at least 4, let T be an atom tree of H, and let A be the vertex of µ (which
is an atom of H) that comes first in T , i.e. such that the node of T labeled with A is
at the shortest distance from the root of T . Let T ′ be the subtree of T rooted at the
parent in T of the node labeled with A, let H ′ = (V ′, E ′) be the subgraph of H such
that T ′ is an atom tree of H ′, let S and T” such that T ′ is defined by (A, S, T”), let
C = A \ S, and let H” = H ′(V ′ \C). By Lemma 3.13 every clique minimal separator
of H ′ is a clique minimal separator of H, so its components in H are full, and by
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Lemma 3.13 again its components in H ′ are full too. Moreover by Lemma 3.15 µ is
also a chordless cycle in the atom graph of H ′.
Let B and B′ be the neighbors of A in µ. By Property 3.14 there are components
D and D′ of S in H” such that B ⊆ NH”[D], B′ ⊆ NH”[D

′], NH”(D) ⊆ B and
NH”(D

′) ⊆ B′. As all components of S in H ′, and therefore in H”, are full, NH”(D) =
NH”(D

′) = S ⊆ B ∩ B′. It follows that D = D′, since otherwise B ∩ B′ would be
equal to S and would separate B \B′ and B′ \B in H ′, so that BB′ would be a chord
of µ in the atom graph of H ′. As B ⊂ B ∪ B′ and B ∪ B′ is connected, B ∪ B′ has
a clique separator and therefore is not a clique of H ′. Let a and b be two vertices of
B ∪B′ that are not adjacent in H ′, and let R be a minimal ab-separator of H ′. As B
and B′ are cliques of H ′, one of a and b is in B \ B′ and the other is in B′ \ B, and
B ∩B′ ⊆ R. As B ∩B′ does not separate B \B′ and B′ \B in H ′, B ∩B′ ⊂ R. As H ′

is chordal, R is a clique, so R is a clique minimal separator of H ′ with C as a non-full
component, since NH′(C) = S ⊆ B ∩B′ ⊂ R, a contradiction. 2

This is the case in particular for K1,3 − free graphs.

5 Conclusion

We have presented a recursive algorithm to compute the atom graph at no extra cost than
computing the atoms, as well as some properties of this atom graph.

In [7], it is shown that clique graph recognition is NP-complete. We leave open the
question of deciding whether a graph is a clique graph or not.
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