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Regularization of subsolutions in discrete weak KAM theory

P. BERNARD, M. ZAVIDOVIQUE

November 3, 2012

Abstract

We expose different methods of regularizations of subsolutions in the context of discrete weak
KAM theory. They allow to prove the existence and the density of C1,1 subsolutions. Moreover,
these subsolutions can be made strict and smooth outside of the Aubry set.

1 Introduction

We consider a smooth connected Riemannian manifold M endowed with the distance d(., .) coming
from the Riemannian metric. Fixing a cost function c :M×M → R we study the functions u :M → R

which satisfy
∀(x, y) ∈M ×M, u(y)− u(x) 6 c(x, y),

we call them subsolutions, by analogy with those appearing in Weak KAM theory (see [FS04, Ber07]
for example). We will denote by SS the set of subsolutions, and by SSC = SS ∩ C0(M,R) the
set of continuous subsolutions. These subsolutions are one of the important objects in discrete (in
time) weak KAM theory. Some other aspects of this discrete theory have been discussed in [Gom05,
BB07, Zav12]. This theory is also closely related to the time–periodic weak KAM theory, discussed
for example in [CISM00, Ber08] and many other papers. In many aspects, these various settings
(discrete, time–periodic, autonomous) are similar, but differences appear for some specific questions.
For example, the convergence of the Lax–Oleinik semi–group holds only in the autonomous setting,
see [Fat98, FM00, Ber02, BR05], the Hamilton–Jacobi equation does not have such a nice form in
the discrete setting as in the autonomous setting, see [Gom05]. Some other specific aspects of the
discrete case are discussed in [Zav12]. Concerning the regularity of subsolutions, the existence of C1

subsolutions was obtained in [Zav12] in the discrete setting by an adaptation of the original proof of
Fathi and Siconolfi [FS04]. On the other hand, the proof of the existence of C1,1 subsolutions given
in [Ber07] for the autonomous setting does not extend to the discrete setting. The existence of C1,1

subsolutions was however obtained in [Zav10] by a different method. Our goal here is to extend and
simplify the results of this paper.

Defining, as usual, the discrete Lax–Oleinik operators

T−
c u(x) = inf

y∈M
u(y) + c(y, x), T+

c u(x) = sup
y∈M

u(y)− c(x, y),

we see that a function u is a subsolution if and only if one of the equivalent relations is verified:

u 6 T−
c u or T+

c u 6 u.

Note as a consequence that the functions T−
c u and T+

c u are themselves subsolutions whenever u is a
subsolution. We will use the following hypothesis on c. More concrete hypotheses implying this one
are given below.

Hypothesis 1. For each subsolution u, the functions T−
c u and −T+

c u are locally semiconcave1.

1Throughout the paper, we call semiconcave what is sometimes called semiconcave with a linear modulus.
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Subsolutions do not necessarily exist, and, when they exist, they are not necessarily continuous (the
continuity of subsolutions is discussed in [Zav12]). Under Hypothesis 1, the existence of a continuous
subsolution is implied by the existence of a (possibly discontinuous) subsolution u, just consider the
subsolution T−

c u, which is locally semiconcave hence locally Lipschitz. See also Lemma 2.2 below.

Theorem 1. If Hypothesis 1 holds, then the set of locally C1,1 subsolutions is dense in the set of
continuous subsolutions for the strong topology.

We recall that the strong (or Whitney) topology on C0(M,R) is induced by the basis of open sets:

Oǫ,f = {g ∈ C0(M,R), ∀x ∈M, |f(x)− g(x)| < ǫ(x)}

where f ∈ C0(M,R) and ǫ is a continuous positive valued function on M . For further precisions on
this topology, see [Hir94, Chapter 2]. The existence of C1,1 subsolutions was proved in [Zav10], but
the density is new. In [Zav10], the existence of C1,1 subsolutions is deduced from the following result
of Ilmanen (see [Ilm93, Car01, FZ10, Ber10]):

Theorem 2. Let f and g be locally semiconcave functions on M such that f + g > 0. Then there
exists a locally C1,1 function u such that −g 6 u 6 f .

We will offer a direct proof of Theorem 1, which is inspired from the proof of Ilmanen’s Lemma given
in [Ber10]. Note that Theorem 1 implies Theorem 2. This follows immediately from the equivalence,
for a given function u, between the two following properties:

• the function g + u is bounded from below and −g 6 u− inf(g + u) 6 f ;

• the function u is a subsolution for the cost c(x, y) = g(x) + f(y).

We need to introduce more definitions before we state our other results. The subsolution u is
called free at x if

T+
c u(x) < u(x) < T−

c u(x).

We define the set Au as

Au := {x ∈M, T+
c u(x) = u(x) = T−

c u(x)} ⊂M,

and the Aubry set A as

A :=
⋂

u∈SS

Au ⊂M

where the intersection is taken on all subsolutions. Under hypothesis 1, the sets Au are closed, since
they are defined by the equality T+

c u = T−
c u. The set A is then also closed. Moreover, it makes no

difference to restrict the intersection to continuous subsolutions in the definition of A, by Lemma 2.2
below. We say that the subsolution u is strict at (x, y) if

u(y)− u(x) < c(x, y).

Obviously, the subsolution u is strict at (x, y) and at (y, x) for each y if it is free at x. We define the
set

Âu := {(x, y) ∈M2 : u(y)− u(x) = c(x, y)}.

We also define
Â :=

⋂

u∈SS

Âu

where the intersection is taken on all subsolutions. Equivalently, if Hypothesis 1 holds, the intersection
can be taken on continuous subsolutions, by Lemma 2.2. This yields that Â is also closed.

Theorem 3. Assume that c satisfies Hypothesis 1. Given a subsolution u, there exists a subsolution
v such that
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• v = u on Au,

• v is smooth and free on the complement of Au,

• v is locally C1,1,

• v is strict at each pair (x, y) where u is strict.

We can then obtain a subsolution which is as smooth, free, and strict as possible:

Theorem 4. If c satisfies hypothesis 1 and admits a subsolution, then there exists a locally C1,1

subsolution which is free and smooth in the complement of A, and strict on the complement of Â.

Observe as a consequence that the projections of Â on both the first and the second factor are
contained in A, (and, under the additional hypothesis 2, each of these projections is equal to A, see
below). Strict C1,1 subsolutions were obtained in [Zav10] under an additional twist assumption. We
will use a simple trick of [Ber07] to obtain directly the general result from Theorem 1. That the
subsolutions can be made smooth outside of A is well-known. It will certainly not be a surprise to
specialists that this can be done without destroying the global C1,1 regularity, although we do not
know any reference for this statement. We prove it using a regularization procedure due to De Rham
[dR73]. This proof also applies to the “classical” (as opposed to discrete) weak KAM theory.

The abstract Hypothesis 1 holds in a more concrete setting, introduced in [Zav12]:

Hypothesis 2. The function c satisfies the following properties:

• uniform super-linearity: for every k > 0, there exists C(k) ∈ R such that

∀(x, y) ∈M ×M, c(x, y) > kd(x, y)− C(k);

• uniform boundedness: for every R ∈ R, there exists A(R) ∈ R such that

∀(x, y) ∈M ×M, d(x, y) 6 R⇒ c(x, y) 6 A(R);

• local semiconcavity: for each point (x0, y0) there is a domain of chart containing (x0, y0) and
a smooth function f(x, y) such that c − f is concave in the chart. (This holds for example if c
is C2 or locally C1,1).

This hypothesis has two important consequences, as was proved in [Zav12]. First, it implies
Hypothesis 1. Second, it implies that the extrema in the definitions of T±

c u(x) are reached for each
continuous subsolution u and each x ∈ M . This in turn implies that the the projection of Â on the
first, as well as on the second, factor are equal to A, which corresponds to the projected Aubry set
introduced in [Zav12]:

Lemma 1.1. Assume that c satisfies Hypothesis 2. Given x ∈ A, there exist y and z such that (x, z)
and (y, x) are in Â.

Proof. Let w be a continuous subsolution which is strict outside of Â (such a solution exists by Theo-
rem 4). Let y be such that T−

c w(x) = w(y)+c(y, x). Since x ∈ A we obtain that w(x)−w(y) = c(y, x).
Hence (y, x) ∈ Âw = Â. The existence of z is proved in the same way, using T+

c .

Finally, let us mention one last setting in which Hypothesis 1 holds :

Hypothesis 3. The function c is locally bi–semiconcave:
for all (x, y) ∈M ×M we can find the following:

• neighborhoods U and V of respectively x and y,

• diffeomorphisms ϕ1 and ϕ2 from Bn to respectively U and V (Bn is the unit ball in R
n),
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• smooth functions f and g from Bn to R,

such that for each x ∈ M , the function z 7→ c
(
x, ϕ2(z)

)
− g(z) is concave and for all y ∈ M , the

function z 7→ c
(
ϕ1(z), y

)
− f(z) is concave.

It is easy to prove, as in [Zav10, Proposition 4.6], that Hypothesis 3 also implies Hypothesis 1
(using that an infimum of equi–semiconcave functions is itself semiconcave).

We thank the anonymous referee for his very careful reading which led to many improvements.

2 Preliminaries

We gather here some useful facts obtained from elementary manipulations of the Lax–Oleinik opera-
tors. Let us first list, without proof, some properties of the operators T±

c .

• Monotony : u 6 v ⇒ T±
c u 6 T±

c v.

• Convexity : Given a sequence un of functions and a sequence an of non–negative numbers such
that

∑
n∈N an = 1, and such that the series

∑
n∈N anT

−
c un,

∑
n∈N anun and

∑
n∈N anT

+
c un are

converging point–wise, we have

T−
c

(∑

n∈N

anun
)
>

∑

n∈N

anT
−
c un , T+

c

(∑

n∈N

anun
)
6

∑

n∈N

anT
+
c un.

The set SS of subsolutions is convex, and it is closed under point–wise convergence. A convex
combination

∑
n∈N anun of subsolutions, with a point–wise convergent sum, is a subsolution; it

is free at x (resp. strict at (x, y)) provided there exists n such that an > 0 and such that un is
free at x (resp. strict at (x, y)).

• We have the equalities T+
c ◦ T−

c ◦ T+
c = T+

c and T−
c ◦ T+

c ◦ T−
c = T−

c .

• We have the inequalities
T+
c ◦ T−

c u 6 u , T−
c ◦ T+

c u > u

for each function u.

• If u is a subsolution, then

T+
c u 6 T+

c ◦ T−
c u 6 u 6 T−

c ◦ T+
c u 6 T−

c u (1)

The following criterion for subsolutions is taken from [Zav12]:

Lemma 2.1. Let u be a subsolution and let us consider a function v such that

u 6 v 6 T−
c u,

then v itself is a subsolution.

Proof. The statement follows from the inequalities u 6 v 6 T−
c u 6 T−

c v.

Playing with the Lax–Oleinik operators also leads to:

Lemma 2.2. Let u be a subsolution, then the subsolution

v :=
T+
c u+ T+

c ◦ T−
c u+ T−

c ◦ T+
c u+ T−

c u

4

is free on the complement of Au, equal to u on Au, and strict on the complement of Âu. If Hypothesis
1 holds, then v is locally Lipschitz.
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We then have Av ⊂ Au, but this inclusion is not necessarily an equality.
Proof. To prove that v is free on the complement of Au, we consider a point x at which v is not free,
and prove that x ∈ Au. We either have T+

c v(x) = v(x) or T−
c v(x) = v(x). In the first case, we have

4v(x) = 4T+
c v(x) 6 T+

c ◦ T+
c u(x) + T+

c ◦ T+
c ◦ T−

c u(x) + T+
c ◦ T−

c ◦ T+
c u(x) + T+

c ◦ T−
c u(x)

hence the inequalities

T+
c ◦ T+

c u(x) 6 T+
c u(x) , T+

c ◦ T+
c ◦ T−

c u(x) 6 T+
c ◦ T−

c u(x)

T+
c ◦ T−

c ◦ T+
c u(x) = T+

c u(x) 6 T−
c ◦ T+

c u(x) , T+
c ◦ T−

c u(x) 6 T−
c u(x)

sum to an equality, hence they are equalities. In view of (1) the two last equalities imply that
T+
c u(x) = u(x) = T−

c u(x). The second case is similar. It then follows from Lemma 2.3 below that v
is strict outside of Âu.

The following Lemma allows to reduce strictness questions to freedom questions, and ends the
proof of Lemma 2.2.

Lemma 2.3. Let u, v be subsolutions, such that v is free outside of Au and equal to u on Au, then v
is strict at each point (x, y) where u is strict.

Proof. Let (x, y) be a pair at which v is not strict. Then v(y)− v(x) = c(x, y), hence T−
c v(y) = v(y)

and T+
c v(x) = v(x). Since v is free outside of Au, this implies that both x and y belong to Au. Since

u = v on Au, we conclude that

u(y)− u(x) = v(y)− v(x) = c(x, y)

hence u is not strict at (x, y).

It will also be useful to quantify the freedom of a subsolution u by its leverage function:

Definition 2.4. The leverage function λu :M −→ [0,∞) of the subsolution u is defined by:

λu(x) :=
1

3
min

(
T−
c u(x)− u(x), u(x)− T+

c u(x)
)
.

Note that u is free at x if and only if λu(x) > 0.

Lemma 2.5. Let u be a subsolution and let v be another function such that |u − v| 6 λu, then v is
itself a subsolution. Moreover, if u is free at x then so is v, and if u is strict at (x, y), then so is v.

Proof. By definition, we have

3max{λu(x), λu(y)} 6 max{u(x)− T+
c u(x), T

−
c u(y)− u(y)} 6 c(x, y)− u(y) + u(x).

We conclude that
0 6 max{λu(x), λu(y)} 6 c(x, y)− v(y) + v(x)

hence that
T+
c v(x) + λu(x) 6 v(x) 6 T−

c v(x)− λu(x)

for each x, which implies that v is a subsolution which is free at points where u is free. The last claim
follows from Lemma 2.3.
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3 The uniform case on R
n and the Jensen transforms

In this section we work on M = R
n. A function u : Rn −→ R is called k–semiconcave if u(x)− k‖x‖2

is concave. We make the following more quantitative version of Hypothesis 1 on the cost c:

Hypothesis 1–K. There exists a constant K such that for each subsolution u, the functions T−
c u

and −T+
c u are K–semiconcave.

One setting which implies this condition is the following version of Hypothesis 3:

Hypothesis 3–K. There exists a constant K such that the function x 7−→ c(x, y) is K–semiconcave
for each y and the function y 7−→ c(x, y) is K–semiconcave for each x.

We will use the Jensen transforms which associate, to a function u : Rn → R and a positive real
number t, the functions

J−tu(x) = inf
y∈Rn

(
u(y) +

1

t
‖y − x‖2

)
, J+tu(x) = sup

y∈Rn

(
u(y)−

1

t
‖y − x‖2

)
.

These are nothing but the Lax–Oleinik operators associated to the costs ct(x, y) =
1
t
‖y − x‖2.

Theorem 5. Let u be a uniformly continuous subsolution. The function J−t ◦ J+2t ◦ J−tu is finite
and, for t small enough, it is a C1,1 subsolution. Moreover, it converges uniformly to u as t →
0. More precisely, if u is a uniformly continuous subsolution then for t, s < K−1 the functions
J−t ◦ J+(t+s) ◦ J−su and J+t ◦ J−(t+s) ◦ J+su are C1,1 subsolutions which converge uniformly to u as
t, s→ 0. Moreover, we have

T+
c ◦ T−

c u 6 J−t ◦ J+(t+s) ◦ J−su 6 T−
c u , T+

c u 6 J+t ◦ J−(t+s) ◦ J+su 6 T−
c ◦ T+

c u.

Note that the last inequalities imply that J−t ◦ J+(t+s) ◦ J−su and J+t ◦ J−(t+s) ◦ J+su are
subsolutions, by Lemma 2.1. We recall a few properties of the Jensen transforms, most of which
are proved in [Ber10] or [AD00]. Both families of operators J− and J+ are semi–groups. They are
monotonous in the following way:

∀s > t > 0, inf u 6 J−su 6 J−tu 6 u 6 J+tu 6 J+su 6 supu

and in the following one:

u 6 v ⇒ {∀t > 0, J−tu 6 J−tv and J+tu 6 J+tv}.

We call modulus of continuity a continuous function ρ : [0,∞) −→ [0,∞) such that ρ(0) = 0. A
function f is said ρ–continuous if |f(y) − f(x)| 6 ρ(‖y − x‖) for all x and y. Given a modulus of
continuity ρ, there exists a modulus of continuity ǫ such that, for each ρ–continuous function u, the
following properties hold:

• the functions J−tu and J+tu are finite-valued and ρ–continuous for each t > 0,

• J−tu is t−1–semiconcave and J+tu is t−1–semiconvex,

• ‖J−tu− u‖∞ + ‖J+tu− u‖∞ 6 ǫ(t),

• J−t ◦ J+tu > u and J+t ◦ J−tu 6 u,

• the equality J−t ◦ J+tu = u (resp. J+t ◦ J−tu = u) holds if and only if u is t−1–semiconcave
(resp. t−1–semiconvex),

• if u is semiconvex (resp. semiconcave) then J−t ◦ J+tu (resp. J+t ◦ J−tu) is C1,1 (and finite
valued).
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Using these properties, we now prove Theorem 5. Let u be a uniformly continuous subsolution, with
modulus ρ. Since the function u is a subsolution, we have u 6 T−

c u hence T−
c u is finite–valued. Our

hypothesis is that the function T−
c u is K–semiconcave. For s < K−1, we have

u 6 J−s ◦ J+su 6 J−s ◦ J+s(T−
c u) = T−

c u,

where the last inequality follows from the K–semiconcavity of T−
c u and the properties of J−◦J+ listed

above. We conclude that the function J−s ◦ J+su is a ρ–continuous, s−1–semiconcave subsolution.
Similarly, if u is ρ–continuous and t < K−1, then the function J+t ◦ J−tu is a ρ–continuous, t−1–
semiconvex subsolution. Applying this observation to the function J−s ◦ J+su, we conclude that
J+t ◦ J−t ◦ J−s ◦ J+su is a ρ–continuous subsolution. This subsolution is C1,1 since J−s ◦ J+su is
semiconcave. We have the inequality

T+
c ◦ T−

c u = J+t ◦ J−t(T+
c ◦ T−

c u) 6 J+t ◦ J−tu 6 J+t ◦ J−t ◦ J−s ◦ J+su 6 J+t ◦ J−t(T−
c u) 6 T−

c u.

Finally, we have

u 6 J−s ◦ J+su 6 J−s(u+ ‖J+su− u‖∞) 6 ‖J+su− u‖∞ + ‖J−su− u‖∞ + u 6 u+ ǫ(s)

and similarly u− ǫ(t) 6 J+t ◦ J−tu 6 u hence

u− ǫ(t) 6 J+t ◦ J−tu 6 J+t ◦ J−(t+s) ◦ J+su 6 J−s ◦ J+su 6 u+ ǫ(s),

where ǫ is the modulus associated to ρ in the list of properties of J .

4 The general case

In this section, we come back to the general setting and prove Theorem 1. We derive it from the
uniform version using partitions of unity, as was done in [Ber10] for Ilmanen’s Lemma. We fix a
locally finite atlas (φi)i∈I constituted of smooth maps φi : Bn → M , where Bn is the open unit ball.
We assume that all the images φi(Bn), for i ∈ I, are relatively compact in M . Moreover, we consider
a smooth partition of unity (gi)i∈I subordinated to the locally finite open covering

(
φi(Bn)

)
i∈I

. Given
positive numbers ai, bi, i ∈ I, we define the operators

∀x ∈M, Su(x) =
∑

i∈I

[J−ai ◦ J+ai(giu ◦ φi)] ◦ φ
−1
i (x), (2)

∀x ∈M, Šu(x) =
∑

i∈I

[J+bi ◦ J−bi(giu ◦ φi)] ◦ φ
−1
i (x). (3)

The functions in the sums are extended to the whole of M by the value zero outside of the domain
φi(Bn). The sums are locally finite hence well-defined. Theorem 1 follows from:

Theorem 6. Assume that the cost c satisfies Hypothesis 1. Let u be a continuous subsolution and
ǫ : M → ]0,∞) be a continuous function. For suitably chosen positive constants (ai)i∈I and (bi)i∈I ,
the function Š ◦ S(u) is a locally C1,1 subsolution such that |u− Š ◦ Su| 6 ǫ and

T+
c ◦ T−

c u 6 Š ◦ Su 6 T−
c u.

Proof. Since the image φi(Bn) is relatively compact and since the atlas is locally finite the set
Ai = {j ∈ I, φj(Bn) ∩ φi(Bn) 6= ∅} is finite, let us denote by ei its cardinal. Setting

ǫi :=

min
j∈Ai

inf
x∈Bn

ǫ
(
φj(x)

)

2max
j∈Ai

ej
,
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we observe that

∀i ∈ I,
∑

j∈Ai

ǫj 6
1

2
inf

x∈Bn

ǫ
(
φi(x)

)
. (4)

Let us make the convention to extend all functions which are compactly supported inside Bn, like
(giu) ◦ φi by the value 0 to the whole of Rn. For each i, we choose a positive constant ai such that

∥∥(giu) ◦ φi − J−ai ◦ J+ai
(
(giu) ◦ φi

)∥∥
∞
< ǫi. (5)

Such a constant exists because the function (giu) ◦ φi is uniformly continuous on R
n. Since T−

c u is
locally semiconcave, the function (giT

−
c u) ◦ φi, extended by zero outside of Bn, is semiconcave on R

n

(see [Ber10]). We can assume by taking ai > 0 small enough that it is a−1
i –semiconcave, so that

[giu] ◦ φi 6 J−ai ◦ J+ai
(
[giu] ◦ φi

)
6 J−ai ◦ J+ai

(
[giT

−
c u] ◦ φi

)
=

[
giT

−
c u

]
◦ φi

on R
n. This implies in particular that the function J−ai ◦ J+ai(giu ◦ φi) is supported in Bn. As a

consequence, the function
[
J−ai ◦ J+ai(giu ◦ φi)

]
◦ φ−1

i , extended by zero outside of φi(Bn), is locally
semiconcave on M , hence the function Su is locally semiconcave, being a locally finite sum of locally
semiconcave functions. By summation, we get

u =
∑

i∈I

(giu) ◦ φi ◦ φ
−1
i 6 Su 6

∑

i∈I

[
giT

−
c u

]
◦ φi ◦ φ

−1
i = T−

c u,

which, by Lemma 2.1, implies that Su is a subsolution. We have |u− Su| < ǫ/2, by (5).
Next, we chose bi such that [giT

+
c ◦ T−

c u] ◦ φi is b
−1
i –semiconvex, which implies that

[giT
+
c ◦ T−

c u] ◦ φi = J+bi ◦ J−bi
(
[giT

+
c ◦ T−

c u] ◦ φi
)

6 J+bi ◦ J−bi
(
[giu] ◦ φi

)
6 J+bi ◦ J−bi

(
[giSu] ◦ φi

)
6 [giSu] ◦ φi.

As above, this implies that J+bi ◦J−bi
(
[giSu] ◦φi

)
is supported on Bn. Note that it is also C1,1 hence

the function
(
J+bi ◦J−bi

(
[giSu] ◦φi

))
◦φ−1

i , extended by zero outside of φi(Bn), is locally C
1,1 on M .

By summation, we obtain that

T+
c ◦ T−

c u 6 Šu 6 Š ◦ Su 6 Su 6 T−
c u,

which implies that Š ◦ Su is a subsolution. This function is locally C1,1 as a locally finite sum of
locally C1,1 functions. Finally, we can assume by possibly reducing bi that

∥∥(giSu) ◦ φi − J+bi ◦ J−bi
(
(giSu) ◦ φi

)∥∥
∞
< ǫi,

which implies that |Š ◦ Su− Su| 6 ǫ/2 hence that |Š ◦ Su− Su| 6 ǫ.

Theorem 7. We assume hypothesis 1. Let Ω ⊂M be an open set and let u be a continuous subsolution
which is free on Ω. Then the subsolution u belongs to the closure, for the strong topology, of the set
of C1,1 subsolutions which are free on Ω and equal to u on Au.

Proof. Let ǫ : M → ]0,∞) be a continuous function. We can chose ai and bi in such a way that
Š ◦ Su is a subsolution which is equal to u on Au, and such that |Š ◦ Su − u| 6 ǫ. However, Š ◦ Su
need not be free on Ω. To preserve the freedom of u, we work with the modified cost

c̃(x, y) = c(x, y)− ψ(y),

where ψ is a smooth bounded function such that 0 6 ψ 6 λu (the leverage function of u), with strict
inequalities on Ω. The associated Lax–Oleinik operator is

T−
c̃ v(x) = −ψ(x) + T−

c v(x).
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Each subsolution for the cost c̃ is thus a subsolution for the cost c, and c̃ satisfies Hypothesis 1.
Moreover, the function u is a subsolution for the cost c̃. We apply Theorem 6 and get a locally C1,1

subsolution w− for the cost c̃, which satisfies |w− − u| 6 ǫ and w− = u on Au. This function then
satisfies

T−
c w

− = ψ + T−
c̃ w

−
> ψ + w−

hence it is a subsolution for the cost c. Similarly, by applying Theorem 6 with the modified cost
c(x, y) − ψ(x), we get a locally C1,1 subsolution w+ (for the cost c) such that

T+
c w

+
6 w+ − ψ,

|w+ − u| 6 ǫ and w+ = u on Au. We then set w := (w+ + w−)/2 and claim that this locally C1,1

subsolution is free on Ω. This follows from the inequalities

T−
c w >

(
T−
c w

− + T−
c w

+
)
/2 > w + ψ/2,

T+
c w 6

(
T+
c w

− + T+
c w

+
)
/2 6 w − ψ/2,

since ψ is positive on Ω. We also obviously have |w − u| 6 ǫ and w = u on Au.

5 Proof of Theorem 3

We will build successively subsolutions v1, v2, v3 which are all equal to u on Au and free on the
complement Ω of Au. By Lemma 2.3, this also implies that the subsolutions vi are strict where u is
strict. We take

v1 =
T+
c u+ T+

c ◦ T−
c u+ T−

c ◦ T+
c u+ T−

c u

4
,

which is continuous, equal to u on Au and free on the complement of Au by Lemma 2.2.
We then build v2 by applying Theorem 7 to v1, with Ω =M \Au, and get a locally C1,1 subsolution

v2 which is free on Ω and equal to u on Au.
The following mollification result, which will be proved in the Appendix using a procedure due to

De Rham, allows to smooth our subsolution on Ω.

Theorem 8. Let f be a locally Ck,1 function on M and let ǫ :M −→ [0,∞) be a continuous function.
Then, there exists a locally Ck,1 function g :M → R which is smooth on the open set Ω := ǫ−1(0,+∞)
and satisfies, for all x ∈M ,

|f(x)− g(x)| + ‖dxf − dxg‖+ · · ·+ ‖dkxf − dkxg‖ 6 ǫ(x).

More precisely, we apply Theorem 8 to the function f = v2, with k = 1, and with a function ǫ(x)
such that ǫ = 0 on Au, ǫ > 0 on Ω (the complement of Au), and ǫ 6 λv2 (the leverage function of
v2). We get a C1,1 function v3, which is smooth on Ω and is equal to u on Au. Since |v3 − v2| 6 λv2 ,
Lemma 2.5 implies that v3 is a subsolution which is free on Ω. Lemma 2.3 then implies that v3 is
strict where u is strict.

6 Proof of Theorem 4

It is enough to prove the existence of a subsolution u which is free on the complement of A and strict
on the complement of Â. Theorem 3 then implies the existence of a locally C1,1 solution v which is
free and smooth on the complement of A, and which is strict on the complement of Â. We start with:

Lemma 6.1. If c satisfies Hypothesis 1 and admits a subsolution, then there exists a continuous
subsolution w1 which is free on the complement of A.

9



Proof. Let us consider a point x /∈ A. By definition, there exists a subsolution vx such that x /∈ Avx ,
hence, by Lemma 2.2, there exists a continuous subsolution ux ∈ SSC which is free at x. By continuity
of ux, T

−
c ux and T+

c ux we may consider a positive number ǫx and an open neighborhood of x, Ox, on
which the following holds:

∀y ∈ Ox, T−
c ux(y)− ǫx > ux(y) > T+

c ux(y) + ǫx.

The set M \ A satisfies the Lindelöf property (it is a separable metric space). We can thus extract a
countable covering On, n ∈ N of the covering Ox, x ∈ M \ A. Denoting by un and ǫn the continuous
subsolution and positive real number associated to On, we consider a convex combination

w1 =
∑

n∈N

anun,

where an is a sequence of positive numbers such that
∑

N
an = 1 and such that the sum in the definition

of w1 is normally convergent on each compact set. The function w1 is then a continuous subsolution.
For each x /∈ A, there exists n0 ∈ N such that x ∈ On0

, and we have

T−
c w1(x) = T−

c

(∑

n∈N

anun

)
(x) >

∑

n∈N

anT
−
c un(x) > an0

ǫn0
+

∑

n∈N

anun > w1(x).

A similar computation shows that T+
c w1(x) < w1(x).

Lemma 6.2. If there exists a continuous subsolution, then there exists a continuous subsolution w2

which is strict at each pair (x, y) where a strict continuous subsolution exists. Under Hypothesis 1,
the subsolution w2 is then strict outside of Â.

Proof. Since M is separable, the set SSC of continuous subsolutions is also separable (for the
compact–open topology), and we consider a dense subsequence (un)n∈N. Set

w2 =
∑

n∈N

anun (6)

where the an are positive real numbers such that
∑
an = 1 and the sum (6) is uniformly convergent on

each compact subset. The function w2 is a subsolution since it is a convex combination of subsolutions.
If now (x, y) ∈ Âw2

, summing the inequalities

∀n ∈ N, an
(
un(y)− un(x)

)
6 anc(x, y),

gives an equality, therefore all inequalities are equalities and

∀n ∈ N, (x, y) ∈ Âun .

By density of the sequence un, we deduce that (x, y) ∈ Âu for each continuous solution u. Under Hy-
pothesis 1, Â is exactly the set of pairs at which no continuous subsolution is strict: Â =

⋂
u∈SSC

Âu

hence, (x, y) ∈ Â.

To finish the proof of Theorem 4, we consider the subsolution u = (w1 + w2)/2. This subsolution
is free on the complement of A because w1 is, and it is strict on the complement of Â because w2 is.
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A Proof of Theorem 8

We prove Theorem 8 using a regularization procedure due to De Rham, see [dR73]. The idea of De
Rham is to construct an action t of Rn on R

n by smooth diffeomorphisms supported on the unit sphere
Bn, in such a way that the induced action on Bn is conjugated to the standard action of Rn on itself
by translations. More precisely, there exists a diffeomorphism h : Bn −→ R

n and diffeomorphisms ty,
y ∈ R

n, of Rn, equal to the identity outside of the open unit ball Bn, such that the map (x, y) 7−→ ty(x)
is smooth and such that

h ◦ ty = y + h

on Bn. This implies that t is an action of the group R
n on R

n, which means that ty ◦ ty′ = ty+y′

for each y, y′. Since t is smooth, t0 = Id, and ty = Id outside of the unit ball, the maps ty converge
uniformly to the identity as y −→ 0, and all their derivatives converge uniformly to the derivatives of
the identity.

Let us give some details on the construction of h and t. We set

h(x) =
h(‖x‖)

‖x‖
x,

where h : [0, 1[ → R+ is a smooth, strictly increasing (h′ > 0) function such that

{
h(r) = r, 0 6 r 6 1/3,
h(r) = exp

(
(r − 1)−2

)
, 2/3 6 r < 1.

We then define ty, for each y ∈ R
n by

{
ty(x) = h−1

(
h(x) + y

)
if x ∈ Bn,

ty(x) = x if x ∈ R
n \Bn.

It is clear from these formula that ty+y′ = ty ◦ty′ . The only issue is the smoothness of t. Differentiating
the previous group property with respect to y′ and taking y′ = 0 yields the following relation:

∂

∂y
ty =

∂

∂y
t0 ◦ ty.

This implies that

ty(x) = x+

∫ 1

0

d

dt
tty(x)dt = x+

∫ 1

0

( ∂

∂y
tty(x)

)
ydt = x+

∫ 1

0

( ∂

∂y
t0
(
tty(x)

))
ydt.

In other words, the map ty is the time-one flow of the vector field Xy(x) := M(x)y, where M(x) =
∂yty(x)|y=0. In order to prove that the map t is smooth, it is enough to observe that the matrix
M(x) depends smoothly on x. This matrix can be computed, recalling that the gradient of the norm
x 7→ ‖x‖ is rx := x/‖x‖:

M(x) = dh(x)h
−1 =

1

h′(‖x‖)
r t
x rx +

‖x‖

h(‖x‖)
(In − r t

x rx).

Since 1/h, 1/h′, as well as all their derivatives go to 0 when ‖x‖ → 1, we conclude that M(x) is
smooth.

We have exposed the construction of h and t. They allow to define a local regularization procedure
with the help of a smooth kernel K1 : R

n → [0,∞). We assume that K1 is supported in the unit ball
Bn, and that

∫
K1 = 1. For η > 0, we set Kη(x) = η−nK1(η

−1x).

Lemma A.1. Let O ⊂ R
n be an open set containing Bn. Given a locally integrable function f : O −→

R and η ∈]0, 1[, we define

fη(x) =

∫

Rn

f
(
ty(x)

)
Kη(−y)dy.

The following assertions hold:

11



1. The function fη is C∞ in Bn, and equal to f outside of Bn,

2. If f is Ck on O, then so are the functions fη, and fη −→ f in Ck as η −→ 0.

3. If f is Ck,1 on O, then so are the functions fη, and lim supη−→0 Lip(d
kfη) 6 Lip(dkf).

4. If, in some open set O′ ⊂ O, f is C l in O′, then so is fη.

Proof. On Bn we have
fη ◦ h

−1 = (f ◦ h−1) ⋆ Kη,

where ⋆ is the convolution. Since the functions Kη are smooth, this implies the first claim. Writing

fη − f =

∫

B(0,η)
(f ◦ ty − f)Kη(−y)dy

and observing that f ◦ ty − f −→ 0 in Ck(Rn,Rn) as y −→ 0
(
because ty −→ Id in Ck(Rn,Rn)

)
yields

the second claim. We will now prove that

lim sup
y−→0

Lip
(
dk(f ◦ ty)

)
6 Lip(dkf), (7)

which yields the third claim in view of the relation

dkxfη =

∫

B(0,η)
dkx(f ◦ ty)Kη(−y)dy.

Let us consider a component ∂αx (f ◦ ty) of the differential dk(f ◦ ty), where α = (α1, . . . , αn) is a
multi–index such that |α| =

∑
αi = k. By the Faà di Bruno formula, expressed in terms of partial

differentials (see [CS96] for example), we have

∂αx (f ◦ ty) =
∑

16|λ|6|α|

∂λty(x)f · Bα,λ(dxty, . . . ,d
|α|
x ty),

where the Bα,λ are universal multi–variable polynomials with no constant terms. These polynomials
satisfy the equalities

Bα,α(Id, 0, · · · , 0) = 1 and Bα,λ(Id, 0, · · · , 0) = 0

for all λ 6= α. Since ty −→ Id in C∞, the first of these equalities implies that the function x 7−→

Bα,α(dxty, . . . ,d
|α|
x ty) is converging to 1 in C∞. Concerning the other factor in this term, we have

Lip
(
(∂αf) ◦ ty

)
6 Lip(∂αf)Lip(ty) −→ Lip(∂αf).

We deduce that the upper limit of the Lipschitz constants of the term corresponding to λ = α is not
greater than Lip(∂αf).

On the other hand, for each of the terms with λ 6= α, the function x 7−→ Bα,λ(dxty, . . . ,d
|α|
x ty) is

converging to 0 in C∞ hence the Lipschitz constant of the function

x 7−→ ∂λty(x)f ·Bα,λ(dxty, . . . ,d
|α|
x ty)

is converging to 0. We conclude that

lim supLip
(
∂α(f ◦ ty)

)
6 Lip(∂αf),

which implies (7) hence the third point of the statement.
Regarding the last claim of the statement, we consider the set Ω :=

⋂
y∈B(0,η)

t−1
y (O′), and claim

that Ω is open. Assuming the claim, we observe that the function fη is smooth in Bn and that it is
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C l in Ω. Since the maps ty are all the identity outside of Bn, the set Ω contains O′ − Bn. We have
covered O′ by two open sets, Bn and Ω, such that the fη is C l on each of them, we conclude that this
function is C l on O′.

To prove that Ω is open, we fix x0 ∈ Ω. For each y0 ∈ B(0, η), we have ty0(x0) ∈ O′, hence there
exists an open set Uy0 containing y0 and an open set Ωy0 containing x0 such that ty(x) ∈ O′ for all
(x, y) ∈ Ωy0 × Uy0 . By compactness, there exists finitely many points yi ∈ B(0, η) such that the open
sets Uyi cover B(0, η). The open intersection

⋂
i

Ωyi , which contains x0, is then contained in Ω. Since

this holds for each x0 ∈ Ω, we have proved that Ω is open.

Lemma A.2. Let O be open subsets of Rn and let f : O → R be a Ck,1 function. Given a continuous
function ǫ : O → [0,∞), there exists a function fǫ such that:

1. the function fǫ is C
∞ in the open set {x ∈ O, ǫ(x) > 0} ⊂ O,

2. |fǫ(x)− f(x)|+ ‖dxfǫ − dxf‖+ · · · + ‖dkxfǫ − dkxf‖ 6 ǫ(x) for each x ∈ O,

3. the function fǫ is C
k,1 on O, and Lip(dkfǫ) 6 1 + Lip(dkf).

Proof. Let us denote by F the closed set {ǫ = 0}. The complement of F in O is open, and we
consider a locally finite covering (Oi)i∈N∗ of O \ F by open balls compactly included in O \ F . Since
inf{ǫ(x), x ∈ Oi} > 0. we can construct inductively, using Lemma A.1 a sequence of functions,
(fi)i∈N such that

• f0 = f ,

• for each i ∈ N, the function fi+1 is C∞ in O1 ∪ · · · ∪Oi+1,

• for each i ∈ N, the functions fi and fi+1 are equal in O \Oi+1,

• for each i ∈ N, the function fi+1 is Ck,1 in O, and Lip(dkfi+1) 6 2−i−1 + Lip(dkfi),

• |fi+1(x)− fi(x)|+ ‖dxfi+1 − dxfi‖+ · · · + ‖dkxfi+1 − dkxfi‖ 6 2−1−iǫ(x) for each x ∈ O, i ∈ N,

Each point of O has a neighborhood on which the sequence fi is eventually constant, hence the limit
fǫ := lim fi is well-defined and smooth on

⋃
i

Oi = O \ F . The desired estimates on fǫ follow immedi-

ately from the inductive estimates by summation.

Proof of Theorem 8. We fix a locally finite atlas (φi)i∈N∗ constituted of smooth maps φi :
2Bn → M , where Bn is the open unit ball. We assume that all the images φi(2Bn), i ∈ N

∗ are
relatively compact in M and that the φi(Bn), i ∈ N

∗ still cover M . By Lemma A.2, it is possible to
construct inductively a sequence of functions fi, by iteratively modifying fi ◦ φi+1 on Bn, such that

• f0 = f ,

• for each i ∈ N, the function fi+1 is C∞ in
⋃

j6i+1
φj(Bn) ∩ Ω,

• for each i ∈ N, in M \ φi+1(Bn), the functions fi and fi+1 are equal,

• for each i ∈ N, the function fi+1 is Ck,1 on M ,

• for each i ∈ N, x ∈M , |fi(x)− fi+1(x)|+ · · ·+ ‖dkxfi − dkxfi+1‖ 6 2−i−1ǫ(x).

Each point x ∈M has a neighborhood on which the sequence fi is eventually constant, hence the
limit g = lim fi is well defined, locally Ck,1, and smooth on Ω. The inequality on the differentials
follows by summation from the iterative assumptions.
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