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Abstract

We present a simple unified algorithmic process which uses either LexBFS or
MCS on a chordal graph to generate the minimal separators and the maximal
cliques in linear time in a single pass.
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1 Introduction

Generating the minimal separators and the maximal cliques of a chordal
graph is simple with the help of specific search algorithms.

Chordal graphs (which are the graphs with no chordless cycle on four or
more vertices), were characterized by Fulkerson and Gross [7] as the graphs
for which one can repeatedly find a simplicial vertex (i.e. a vertex whose
neighborhood is a clique) and remove it from the graph, until no vertex is
left; this process, called simplicial elimination, defines an ordering α on the
vertices called a perfect elimination ordering (peo). (α(i) denotes the vertex
bearing number i, and α−1(x) the number of vertex x). At each step of the
elimination process, a new transitory graph is defined.

Rose [9] showed that for any given peo α of a chordal graph, any minimal
separator of the graph is defined in the course of the simplicial elimination
process as the transitory neighborhood of some vertex. Moreover, it is easy
to see that in any maximal clique K, the vertex y of smallest number by α

defines K as its transitory closed neighborhood.
In the rest, we will call such vertices generators, and our goal will be

to detect these generators efficiently. We will use graph search algorithms
LexBFS [10] and MCS [11], both tailored to generate a peo of a chordal
graph.

The idea behind this is quite simple. Both algorithms number the vertices
from n to 1 (n is the number of vertices of the graph). Each vertex bears
a label, which may be modified as the algorithm proceeds. At each step, a
new vertex is chosen to be numbered. If the label of this new vertex xi is
not larger that the label of the previous vertex xi+1, then we know that xi

generates a minimal separator of the graph. The vertices of this minimal
separator are the already numbered neighbors of xi. We also know that the
previously numbered vertex, xi+1, generates a maximal clique: xi+1, together
with its already numbered neighbors (excluding xi), define a maximal clique
of the graph.

Thus the labels of algorithms LexBFS and MCS enable the user to detect
these generators as soon as they are numbered. The minimal separators and
maximal cliques can be found “on-line”, without requiring a preliminary pass
of the algorithm to number all the vertices.

The corresponding results have been proved for MCS in two separate
papers. Blair and Peyton [5], while studying how MCS defines a clique tree
of a chordal graph, showed how to generate the maximal cliques (which are
the nodes of the clique tree), using the MCS labels. Kumar and Madhavan
[8] showed how to generate the minimal separators of a chordal graph, given
an MCS ordering.
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However, although a minimal separator and a maximal clique generator
are actually detected at the same step of the algorithm, these results have not
been unified. Moreover, [8] use a peo as input, but the minimal separators
as well as the maximal cliques can be computed during the execution, which
may be an important feature when handling very large graphs, since a global
pre-numbering of the vertices is not necessary or even useful.

LexBFS, as we will show, exhibits the same property as MCS regarding
these generators. Our aim is to present a simple unified single-pass algorithm
which generates the minimal separators and the maximal cliques of a chordal
graph.

The paper is organized as follows: in Section 2, we give some preliminary
results and definitions. In Section 3, we present our main theorem, which
describes how the generators are detected, and discuss its proof for LexBFS.
Section 4 presents our algorithm and provides an example.

2 Preliminaries

In the rest, we will consider all graphs to be connected (for a disconnected
graph, the processes we describe can be applied independently to each con-
nected component).

A graph is denoted G = (V, E), |V | = n, |E| = m. Vertices x and y are
adjacent if xy ∈ E. For X ⊂ V , G(X) denotes the subgraph induced by X.
The neighborhood NG(x) of vertex x in graph G is NG(x) = {y 6= x|xy ∈ E}
(subscripts will be omitted when it is clear which graph we work on). The
closed neighborhood is NG[x] = {x ∪ N(x)}. The neighborhood of a vertex
set X ⊂ V is NG(X) = ∪x∈XNG(x) − X. A subset X of vertices is called
a module if the vertices of X share the same external neighborhood: ∀x ∈
X, N(x)−X = N(X). A clique is a set of pairwise adjacent vertices.

A subset S of vertices of a connected graph G is called a separator if
G(V − S) is not connected. A separator S is called an xy-separator if x and
y lie in different connected components of G(V −S), a minimal xy-separator
if S is an xy-separator and no proper subset of S is an xy-separator. A
separator S is a minimal separator, if there is some pair {x, y} such that
S is a minimal xy-separator. Alternately, S is an minimal separator if and
only if G(V − S) has at least 2 connected components C1 and C2 such that
N(C1) = N(C2) = S; such components are called full components of S in G,
and S is then a minimal xy-separator for any {x, y} with x ∈ C1 and y ∈ C2.

LexBFS [10] and MCS [11] are both linear-time search algorithms which
number the vertices from n to 1, thereby defining a peo. Each vertex x bears
a label which corresponds to the list of numbers of the neighbors of x with
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a higher number than that of x (LexBFS) or to the cardinality of this list
(MCS). Both algorithms are recalled below.

Algorithm LexBFS (Lexicographic Breadth-First Search)[10]

input : A graph G = (V, E).

output: An ordering α of V .

Initialize all labels as the empty string;
for i← n to 1 do

Pick an unnumbered vertex v whose label is maximal under lexico-
graphic order;
α(i)← v ;
foreach unnumbered vertex w adjacent to v do

append i to label(w);

Algorithm MCS (Maximal Cardinality Search)[11]

input : A graph G = (V, E).

output: An ordering α of V .

Initialize all labels as 0;
for i← n to 1 do

Pick an unnumbered vertex v with maximum label;
α(i)← v ;
foreach unnumbered vertex w adjacent to v do

label(w)← label(w) + 1;

3 Main Theorem

We will now present our main theorem, from which our algorithm is derived.
We will need the following definitions:

Definition 3.1 Given a chordal graph G and a peo α of G, for any vertex
x, Madj(x) is the set of neighbors of x with a number higher than that of x:
Madj(x) = {y ∈ N(x)|α−1(y) > α−1(x)}.

Definition 3.2 Given a chordal graph G and a peo α of G, we will call:
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• minimal separator generator any vertex xi with number i by α, such
that Madj(xi) is a minimal separator of G and label(xi) ≤ label(xi+1),
where xi+1 = α(i + 1).

• maximal clique generator a vertex y such that Madj(y)∪{y} is a max-
imal clique of G.

Our main result is the following:

Theorem 3.3 Let α be a peo defined by either LexBFS or MCS, let xi be
the vertex of number i, let xi+1 be the vertex of number i + 1.

a) xi is a minimal separator generator if and only if label(xi) ≤ label(xi+1).

b) xi+1 is a maximal clique generator if and only if label(xi) ≤ label(xi+1)
or i = 1.

We will now discuss the proof of Theorem 3.3. We will first present moplex
elimination, which is a process that explains how both MCS and LexBFS
scan the minimal separators and the maximal cliques of a chordal graph,
then prove Theorem 3.3 for LexBFS.

3.1 Moplex elimination

We will use the notion of moplex, introduced by [1]:

Definition 3.4 [1] A moplex is a clique X such that X is a module and
N(X) is a minimal separator. We extend this definition to a clique whose
neighborhood is empty. A simplicial moplex is a moplex whose vertices are
all simplicial.

[1] proved:

Property 3.5 [1] Any chordal graph which is not a clique has at least two
non-adjacent simplicial moplexes.

From this, they derived a variant of the characterization of Fulkerson and
Gross for chordal graphs by simplicial elimination of vertices:

Characterization 3.6 [1] A graph is chordal if and only if one can repeat-
edly delete a simplicial moplex until the graph is a clique (which we will call
the ’terminal moplex’). We call this process moplex elimination.
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Note that moplex elimination on a chordal graph is a special case of simplicial
elimination, since at each step a set of simplicial vertices is eliminated. Note
also that for a connected graph G, the transitory elimination graph obtained
at the end of each step remains connected.

Moplex elimination defines an ordered partition (X1, X2, ..., Xk) of the
vertices of the graph into the successive moplexes which are defined in the
successive transitory elimination graphs. We will call this partition a moplex
ordering.

Our basic result is the following:

Theorem 3.7 1 Let G be a chordal graph, let (X1, X2, ..., Xk) be a moplex
ordering of G. At each step i < k of the elimination process finding moplex
Xi in transitory graph Gi,

• NGi
(Xi) is a minimal separator of G.

• Xi ∪NGi
(Xi) is a maximal clique of G.

The terminal moplex Xk is a maximal clique.
There are no other minimal separators or maximal cliques in G.

To prove this, we will first recall the result from Rose [9]:

Property 3.8 [9] Let G be a chordal graph, let α be a peo of G, let S be a
minimal separator of G. Then there is some vertex x such that Madj(x) = S.

From Property 3.8, it is easy to deduce the following well-known property:

Property 3.9 [9] Let G be a chordal graph, let S be a minimal separator of
G. Then in every full component C of S, there is some vertex x such that
S ⊆ N(x) (such a vertex is called a confluence point of C).

Let us now prove Theorem 3.7.

Proof: (of Theorem 3.7) Let us first prove that NGi
(Xi) is a minimal sepa-

rator of G.
In transitory graph Gi, NGi(Xi) is by definition a minimal separator Si of

Gi, with at least two full components C1 and C2, each containing a confluence
point, which we will call x1 and x2. Suppose S is not a minimal separator of
G. Then there must be a chordless path from x1 to x2 in G which contains
no vertex of Si. Let y be the first vertex of this path to be eliminated, at

1The results proved in this subsection were briefly presented in [2].
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step j < i; y must be simplicial in Gj , but this is impossible, since y has two
non-adjacent neighbors on the path.

Thus every NGi
(Xi) (i < k) is a minimal separator of G, and by Property

3.8, all the minimal separators of G have thus been encountered.
Let us now prove that Xi∪NGi

(Xi) is a maximal clique of G, by induction
on i.

Clearly, X1 ∪ NG(X1) is a maximal clique of G. Let us examine Xi ∪
NGi

(Xi): it is a maximal clique of Gi and thus a clique of G. Suppose it is
not a maximal clique of G, and let y be a vertex belonging to a larger clique
of G containing Xi ∪NGi

(Xi). Since NGi(Xi) is a minimal separator of G, y

must belong to the same full component of NGi(Xi) as the vertices of Xi. But
then y belongs to the same maximal clique module as Xi, a contradiction.

The terminal moplex Xk is by definition a clique; suppose it is not a
maximal clique: then it can be augmented with some vertex y, which belongs
to some moplex Xi. By Theorem 3.7, S = NGi(Xi) is a minimal separator
of G. Let C1, ..., Ct be the full components of S in G, and let z be the
confluence point belonging to the moplex of highest number Xj . In Gj , S

cannot be a minimal separator, since all the other full components of S have
been eliminated from Gj . Therefore, Xj ∪ NGj(Xj) must be the terminal
moplex, a contradiction. 2

Note that for a given chordal graph G, there may be many different
moplex orderings, but there is always the same number of moplexes, since
this is the number of maximal cliques of the graph.

With any moplex ordering (X1, X2, ..., Xk), we can associate a peo α by
processing the moplexes from 1 to n and giving consecutive numbers to the
vertices of a given moplex. Using α, we can define the minimal separators
and maximal cliques as vertex neighborhoods:

Property 3.10 Let G be a chordal graph, let (X1, X2, ..., Xk) be a moplex
ordering of G, let α be a peo associated with this moplex ordering. Then in
the course of a moplex elimination, at each step i, processing moplex Xi,

• The vertex x of moplex Xi whose number is the smallest by α defines
a maximal clique {x} ∪Madj(x) of G.

• The vertex y of moplex Xi whose number is the highest by α defines a
minimal separator Madj(y) of G.
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3.2 Generators of LexBFS

LexBFS defines a moplex ordering and an associated peo: [1] showed that
LexBFS always numbers as 1 a vertex belonging to a moplex (which we
will call X1). They also proved that the vertices of X1 receive consecutive
numbers by LexBFS. These properties are true at each step of LexBFS in
the transitory elimination graph. Therefore, LexBFS defines a moplex elim-
ination (X1, ..., Xk), by numbering consecutively the vertices of X1, then
numbering consecutively the vertices of X2, and so forth:

Theorem 3.11 In a chordal graph, LexBFS defines a moplex ordering.

Note that it is easy to deduce from [5] that MCS also defines a moplex
ordering.

Example 3.12 Figure 1 shows the numbers and labels of a LexBFS execu-
tion on a chordal graph.

moplex minimal separator maximal clique

X1 = {g} {b, c} {b, c, g}
X2 = {a} {b, c, d} {a, b, c, d}
X3 = {d, h} {b, c} {b, c, d, h}
X4 = {c} {b, f} {b, c, f}
X5 = {b, e, f} - {b, e, f}

1

2

6 4

8

7

3

5 c

a

d

g
h

f

e

b

[6,5,4]

[6,5,4]

[]

[8,7]

[7,6]

[6,5]

[8]

[6,5]

Figure 1: Numbers and labels of a LexBFS execution on a chordal graph.

Since the vertices of any transitory moplex Xi are numbered consecutively,
the labels will increase w.r.t. lexicographic order until the entire moplex
has been numbered, and then will stop increasing. More precisely, when
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running LexBFS (numbering the vertices from n to 1), as long as the labels
increase, we are defining a moplex, Xi. When the labels stop increasing
(when numbering vertex y), then we have started a new moplex Xi−1 which
will contain y. Using Property 3.10, we can deduce that LexBFS generates
the minimal separators and the maximal cliques according to Theorem 3.3.

Thus it is easy, using a LexBFS ordering, to define with a single pass

• the minimal separators of G

• the maximal cliques of G

• the corresponding moplex ordering

4 Algorithm

We can now derive from Theorem 3.3 a generalized algorithm to generate
the minimal separators and the maximal cliques of a chordal graph.

In the algorithm below, it is considered that either LexBFS or MCS is
used. “Use i to increment the label of y” is translated as “add i to label of
y” for LexBFS and as “add 1 to the label of y” for MCS. The labels are all
considered initialized at the beginning, as ∅ for LexBFS and as 0 for MCS.

GNUM ← GNUM+{xi} is shorthand for “VNUM ← VNUM+{xi}; GNUM ←
G(VNUM)”. In the same fashion, GELIM ← GELIM − {xi} is shorthand for
VELIM ← VELIM − {xi} ; GELIM ← G(VELIM) ;

Symbol + denotes disjoint union.
Note that for LexBFS, if xi is a minimal separator generator, then the

label of xi gives the separator directly. If, for instance, label(xi) = (9, 7, 6),
then the minimal separator which xi generates will be {x9, x7, x6}.
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Algorithm Minseps-Maxcliques

input : A chordal graph G = (V, E).

output: Set S of minimal separators of G ;
Set S of minimal separator generators of G ;
Set K of maximal cliques of G ;
Set K of maximal clique generators of G ;

init: GNUM ← G(∅); GELIM ← G ;
S ← ∅; S ← ∅ ; K ← ∅ ; K ← ∅ ;
for i =n downto 1 do

Choose a vertex xi of GELIM of maximum label ;
GNUM ← GNUM + {xi} ;
if i ≤ n and label(xi) 6= λ then

//xi is a min. sep. generator and xi+1 is a max. clique generator
S ← S + {xi} ; S ← S ∪ {NGNUM

(xi)} ;
K ← K + {xi+1} ; K ← K + {(NGNUM

(xi)− {xi}};

λ← label(xi) ;
foreach y ∈ NGELIM

(xi) do

Use i to increment the label of y ;

GELIM ← GELIM − {xi} ;

K ← K + {x1} ; K ← K + {NG(x1)} ;

The complexity of the above algorithm is the same as for LexBFS or
MCS, which is linear (O(n + m)) time.

Example 4.1 Figure 4 below gives a step-by-step example using MCS.
Set of minimal separators: S = {{c}, {g, h}, {d}}.
Set of minimal separator generators: S = {d, i, e}.
Set of maximal cliques: K = {{a, b, c}, {c, d, g, h}, {g, h, i}, {d, e, f}}.
Set of maximal clique generators: K = {c, h, i, f}.

• When processing vertex x6, x6 = d is defined as a minimal separator
generator for {c} and thus x7 = c is a maximal clique generator for
{a, b, c}.

• When processing vertex x3, x3 = i is defined as minimal separator gen-
erator for {g, h}, so x4 = h is a maximal clique generator, for {c, d, g, h}.

• When processing vertex x2, x2 = h is defined as minimal separator
generator for {d}, so x3 = i is a maximal clique generator for {g, h, i}.
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• At the end, x1 = f is defined a maximal clique generator, for {d, e, f}.
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Figure 2: A step by step execution using MCS. The dashed vertex numbers
represent the minimal separator generators, and the circled vertex sets are
the minimal separators.

4.1 Multiplicity of the generated minimal separators

A minimal separator may be generated several times, depending on the num-
ber of full components it defines:

Property 4.2 Let α be a peo defined by LexBFS or MCS, let S be a minimal
separator, let k be the number of full components of S. Then S has k − 1
generators by α.

11



Proof: In the course of a simplicial elimination process on simplicial ver-
tices, before any vertex s of a minimal separator S can be eliminated, all the
full components of S (except one) must have been eliminated, else s cannot
be simplicial, as s sees the confluence points of each remaining full compo-
nent. The last vertex eliminated from these full components generates S.
When all full components (except one) have been eliminated, S is no longer
a minimal separator. Therefore if S has k full components, it is generated
exactly k − 1 times. 2

Note that [8] gives an O(n + mlogn) process to find the multiplicity of a
minimal separator (with MCS). However, they also prove that with LexBFS,
given the minimal separator generator of lowest number which generates S,
within the subset of minimal separator generators which define a minimal
separator of size |S|, all the generators of S are consecutive. In the course
of an execution of LexBFS, one can store the labels of the generators in
different lists according to the size of the minimal separator they generate.
Then one can run through each list, testing for consecutive occurrences of a
given minimal separator. This can be done in linear time, as by Theorem
3.7, the sum of the sizes of the minimal separators is less than m.

5 Conclusion

In this paper, we present a simple and optimal process which generates the
minimal separators and maximal cliques of a chordal graph in a single pass
of either LexBFS or MCS, without requiring the preliminary computation of
a peo.

Though both LexBFS and MCS yield an optimal linear-time process for
this problem, it is important to note that they define a different set of peos
of a chordal graph [4], and exhibit different local behaviors [3]. It may be
important to use one or the other, depending on the intended application.

We will end this paper by noting that two recently introduced search
algorithms, LexDFS and MNS [6] fail to behave in the same fashion. A
counter-example for MNS is given below (The MNS labels are the sets of
higher-numbered neighbors, compared by set inclusion): when vertex 2 is
numbered, its label is not greater than that of vertex 3; however, Madj(3) =
{3, 4} is not a maximal clique. .
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Figure 3: MNS does not generate the maximal cliques.
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