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Abstract

Web Services fall under the so-called emerging technologies category and are
getting more and more used for Internet applications or business transactions.
Since web services are often the foundation of large applications, they need
to be reliable and robust. So, we propose in this paper, a robustness testing
method of statefull web services, modeled with STS (Symbolic Transition
Systems). We analyze the web service observability and the hazard effec-
tiveness in a SOAP environment. Then, we propose a test case generation
method based on the two hazards ”Using unusual values” and ”Replacing
/Adding operation names”, which are the only ones which can be applied.
The Amazon E-commerce web service is taken as example.

Keywords: Robustness testing, Statefull web services, STS, test architec-
ture

Résumé

Les services web font partis des techniques de développement dites émergentes
et sont de plus en plus utilisés aujourd’hui pour construire des applications.
De part leurs natures, ces web services doivent être fiables et robustes. C’est
pourquoi nous proposons, dans cet article, une méthode de test de robustesse
de services web persistants, modélisés par des spécifications symboliques. Une
partie de cet article est réservée à l’analyse de la robustesse en se focalisant
sur l’environnement SOAP, qui réduit le contrôle et l’observation des mes-
sages transmis. Nous en déduisons notamment les aléas qui sont pertinents
pour le test et ceux qui sont ignorés et bloqués par les processeurs SOAP.
Nous générons les cas de test en complétant la spécification et en injectant,
dans les cas de test, des valeurs inhabituelles prédéfinies.

Mots clés : test de robustesse, services web persistants, STS, architecture
de test
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1 Introduction

The web service paradigm is now well established in companies for de-
veloping business applications. These self-contained components offer many
advantages such as, providing interoperability between heterogeneous appli-
cations, externalizing functional code in a standardized way, or composing
choreography and orchestration processes. Interoperability is ensured by
standards proposed by the W3C and the WS-I consortiums. Especially, the
WS-I basic profile gathers the SOAP protocol, which models how invoking a
web service with XML messages, and the WSDL language, which is used to
describe web service interfaces.

Web services constitute often the foundation of large and complex ap-
plications. Consequently, quality and so trustability are essential criteria
which must be taken into account while developing them. Trustability can
be achieved only by following quality processes, like the CMMI process (Ca-
pability Maturity Model Integration). These processes are based on testing
activities performed during the whole software life cycle. Among them, the
robustness testing is a required step when dealing with web services. Indeed,
the latter are distributed in nature, and can be used by different and het-
erogeneous client applications. So, they need to behave correctly despite the
receipt of unspecified events, called hazards.

The purpose of this paper is to tackle the statefull web service robust-
ness. Unlike stateless ones, such services are persistent through a session and
have an internal state which evolves over the sequences of operation calls.
For instance, all the web services using shopping carts or beginning with a
login step are statefull. The Amazon E-commerce web service (AWSECom-
merceService), which is taken as example in this paper, is one of them. We
consider web services as black boxes, from which only the SOAP messages
(requests and responses) are observable (we don’t have access to the code).
So, we model the web service state with a symbolic specification describing
the different states, the called operations and the associated data.

Black box web service testing faces a challenging issue which concerns the
lack of observability, involved by SOAP. A message which is usually directly
observable, like a classical response or a fault, is either no more observable
or is encapsulated and spread to the client over the SOAP protocol. For
instance, according to the SOAP 1.2 specification, exceptions, in object ori-
ented programming, ought to be translated into XML elements called SOAP
faults. But, to be observed, this feature needs to be implemented by hand
in web services.

Consequently, we begin to analyze the web service observability in the
presence of hazards to determine those which are relevant for testing. And
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we show that only few hazards are really interesting, because most of them
are blocked by SOAP processors and are not given to the web service itself.
We also analyze the responses obtained. These analysis lead to the test case
generation method. This one can be summarized by two main steps. First,
the specification is completed to add all the operations which can be called
and to model the unexpected behaviors. Then, test cases are constructed
from the completed specification, by injecting into paths predefined values,
well known for relieving bugs. Test cases are then executed with a specific
test platform, which has been implemented in an academic tool.

This paper is structured as follows: section 2 provides an overview of the
web service paradigm. We give some related works about web service testing
and the motivations of our approach. Section 3 analyzes the web service
robustness over the SOAP layer. Section 4 describes the testing method: we
detail the test case generation and a testing framework. We also describe the
results obtained from the Amazon E-commerce web service. Finally, section
5 gives some perspectives and conclusions.

2 Web Service Overview

2.1 Web service

Web services are ”self contained, self-describing modular applications that
can be published, located, and invoked across the web” [1]. To ensure and
improve web service interoperability, the WS-I organization has proposed
profiles, and especially the WS-I basic profile [2], composed of four major
axes:

– the web service description, expressed by WSDL (Web Services De-
scription Language [3]), defines the web service interface by giving the
available operations, their parameter/response types and the message
structures by describing the complex types used within. WSDL is often
used in combination with SOAP,

– the definition and the construction of XML messages, based on the Sim-
ple Object Access Protocol (SOAP) [4]. SOAP aims to invoke service
operations (object methods) over a network by serializing/deserializing
data (parameter operation and responses). SOAP takes place over dif-
ferent transport layers: HTTP is which mainly used for synchronous
web service calls, or SMTP which is often used for asynchronous calls,

– the discovery of the service in UDDI registries. Web service descriptions
are gathered into UDDI (Universal Description, Discovery Integration
[5]) registries, which can be consulted manually or automatically by
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using dedicated APIs to find dynamically specific web services,
– the service security, which is obtained by using the HTTPS protocol

or XML encryption.
In this paper, we consider black box web services, from which we can only

observe SOAP messages. Other messages, such as database connections and
the web service internal code are unknown. So, the web service definition,
given below, describes the available operations, the parameter and response
types. We also use the notion of SOAP fault. As defined in the SOAP
v1.2 protocol [4], a SOAP fault is used to warn the client that an error has
occurred. A SOAP fault is composed of a fault code, of a message, of a cause,
and of XML elements gathering the parameters and more details about the
error. Typically, a SOAP fault is obtained, in object-oriented programming,
after the raise of an exception by the web service.

Definition 2.1 A web service WS is a component which can be called by
a set of operations OP (WS) = {op1, ..., opk}, with opi defined by (resp1, ...,
respn) = opi(param1, ..., paramm), where (param1, ..., paramm) is the pa-
rameter type list and (resp1, ..., respn) is the response type list.

For an operation op, we define P (op) the set of parameter value lists that
op can handle, P (op) = {(p1, ..., pm) | pi is a value whose type is parami}.
The set of response lists, denoted R(op), is expressed with R(op) = {(r1, ..., rn)
| rj is a value whose the type is respj} ∪ {r | r is a SOAP fault} ∪ {ε}. ε
models an empty response (or no response).

The operation op corresponds to a Relation op : P (op) → R(op). We
denote an invocation of this operation with r = op(p) with r ∈ R(op) and
p ∈ P (op).

The parameter/response types may be simple (integer, float, String...) or
complex (trees, tabular, objects composed of simple and complex types...)
and each one is either finite (integer...) or infinite (String...).

We model the web service state with STS (Symbolic Transition Systems
[6]). STS offer a large formal background (definitions of implementation rela-
tions, test case generation algorithms,...) and are semantically close to UML
state machines. Besides, some tools are proposed to translate an UML state
machine to STS [7]. An STS is a tuple < L, l0, V ar, var0, I, S,→>, composed
of symbols S: inputs, beginning with ”?” are provided to the system, while
outputs, (beginning with ”!”) are observed from it. An STS is composed of a
variable set V ar, initialized by var0. Each transition (li, lj, s, ϕ, %) ∈→ from
the state li to lj, labeled by the symbol s, may update variables with % and
may have a guard ϕ on V ar, which must be satisfied to fire the transition.
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Furthermore, we denote (x1, ..., xn) |= ϕ, the satisfaction of the guard ϕ
according to the values (x1, ..., xn).

The specification example, given in figure 1, describes a part of the Ama-
zon web service devoted for E-commerce (AWSECommerceService), which
offers many features such as searching items, looking for item details, creat-
ing carts, purchasing... Note that we do not include all the parameters for
readability reasons. A symbol table is given in figure 2. This specification
uses a database whose a part, extracted from the Amazon documentation, is
illustrated in figure 3.
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Figure 1: The Amazon AWSECommerceService specification

2.2 Related work on web service robustness testing

There are many research papers concerning web services testing, and
some of them, focusing on robustness, are summarized below. Most of them
consider stateless web services. Robustness is then tested by handling WSDL
descriptions [8, 9, 10] or by injecting hazards into SOAP messages [11, 12].

In [8], web service robustness is automatically tested from WSDL descrip-
tions. The method uses the Axis 2 framework to generate a class composed
of methods allowing to call service operations. Then, test cases are generated
with the tool ”Jcrasher”, from the previous class. Finally, the tool Junit is
used to execute test cases. Another method is proposed in [9], which is based
on the WSDL analysis to identify what faults could affect the robustness at-
tribute and then test cases were designed to detect those faults. In [10], we
also proposed a web service robustness testing method, which automatically
assesses the stateless web service robustness by using WSDL description.
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?a ItemSearch<String AWSAccessKeyID,String SearchIndex,String KeyWords>
?d ItemLookUp<String AWSAccessKeyID,String RequestID>
?f CartCreate<String AWSAccessKeyID,String ItemASIN,Integer Quantity>
?h CartAdd<String AWSAccessKeyID,String ItemASIN,Integer Quantity>
?l Purchase<String CartId,String CustomerInfos>
!c ItemSearchResponse<String Errors,String IsValid> [IsValid==”false” &&

AWSAccessKeyID 6= BD.account.KeyID]
!b ItemSearchResponse<String Items,String IsValid> [IsValid==”true” &&

AWSAccessKeyID==BD.account.KeyID]
!e ItemLookUpResponse<String Items,String IsValid> [IsValid==”true” &&

AWSAccessKeyID==BD.account.KeyID]
!i CartCreateResponse<String Errors,String IsValid> [IsValid==”false” &&

(Quantity≥ BD.ItemASIN.Quantity || ItemASIN 6=BD.Item.ASIN)]
!g CartCreateResponse<String CartId,String IsValid> [IsValid==”true” &&

Quantity¡BD.ItemASIN.Quantity && ItemASIN==BD.Item.ASIN]
!k CartAddResponse<String IsValid> [IsValid==”true” && Quan-

tity¡BD.ItemASIN.Quantity && ItemASIN==BD.Item.ASIN]
!m PurchaseResponse<String IsValid> [IsValid==”true”]

Figure 2: Specification symbol table

account
KeyID
”ID”

ItemASIN
ASIN Quantity

”43451” ”5”
”66405” ”30”

Figure 3: The Amazon AWSECommerceService Database
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The method performs random testing improved with the use of the hazard
”Using unusual values”. A tool has been developed and tested on real web
services.

In [11], web service robustness is tested by applying mutations on the
request messages and by analyzing the obtained responses. In [12], fault
injection techniques are employed to create diverse fault-trigging test cases
in order to display possible robustness problems in the web-services code.

Comparing to the previous works, we focus on statefull web services,
which have an internal state modeled with a symbolic specification. In the
past, some works have been proposed on reactive system robustness, modeled
with symbolic specifications too. However, the web service paradigm leads
to new issues: many hazards are blocked by SOAP processors and message
observability is reduced on account of SOAP. So, we begin to analyze the
web service robustness in the presence of hazards and we analyze the SOAP
responses to separate the web service behavior to the SOAP processor one.
As a consequence, we propose a specific specification completion and a new
test case generation algorithm.

3 Web service robustness study

As many works, referring to robustness testing, we consider that a web
service is robust ”if it is able to function properly in the presence of faults
or stressful environments” [13]. This implies that a robust web service must
satisfy its specification despite the presence of hazards. This sentence sounds
classical, however, to give a verdict, we need to focus on the operation ob-
servability, and this is specific to web services.

As in the WS-I basic profile, we consider that a receiver in a web server
is software that consumes a message (SOAP processor + web service). The
SOAP processor is often a part of a more complete framework like Apache
Axis or Sun Metro JAXWS.

3.1 Web service operation observability

We analyzed, in [10], the responses received from stateless web service
operations, in the presence of hazards, to separate the responses generated by
the web service itself to those produced by SOAP processors. An operation is
called through the SOAP protocol, and this is concretely the couple (SOAP
processor, web service) which is really requested. We have observed that
SOAP processors affect the web service observability by generating responses
instead of the web service itself, when it crashes. The same issue is raised
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with statefull services. So, we need to separate the SOAP processor behavior
to the web service one.

The WS-I basic profile enables to differentiate the SOAP faults gener-
ated by SOAP processors from those constructed by web services. When a
exception is raised, the web service ought to generate itself a SOAP fault.
In this case, the SOAP fault cause is always equal to ”Remote Exception”.
Otherwise, SOAP faults are generated by SOAP processors.

We deduced from this analysis that a web service operation is robust if
it returns a classical response or a SOAP fault whose the cause is equal to
”RemoteException”. This is formalized in following definition:

Definition 3.1 Let WS be a web service. An operation (resp1, ..., respn) =
op(param1, ..., paramm) ∈ OP (WS), op is robust in the presence of the haz-
ard ”Using unusual values”, if ∀v ∈ P (op), r = op(v) with:

– r = (r1, ..., rn) such as ri = respi,
– or r is a SOAP fault composed of the cause ”RemoteException”.

3.2 Statefull web service robustness analysis

We analyzed in [10], the hazards based on the operation parameter han-
dling. We studied the following hazards: Replacing parameter types, In-
verting parameter types, Adding/injecting parameter types, Delet-
ing parameter types and Using unusual values. We deduced that the
latter is the only one accepted by SOAP processors and really given to web
services. The other ones are always blocked by SOAP processors and become
unnecessary. This hazard, well-known in software testing [14], aims to call
an operation op(param1, ..., paramm) with values (p1, ..., pm) ∈ P (op), such
as each parameter pi has the type parami. But these predefined values are
unusual and may potentially reveal bugs. For instance, null, ””, ”$”, ”*” are
some unusual ”String” values.

We extend here this study for statefull web services. As previously, some
hazards are unnecessary because they are blocked by SOAP processors. We
have studied the following hazards: Changing operation name, Replac-
ing /Adding operation name. Let WS be a web service and STS its
specification:

– Changing operation name: this hazard aims to randomly modify
an operation name op ∈ OP (WS) to op modif such as op modif is not
an existing operation (op modif /∈ OP (WS)). When this hazard is put
into practice, we always receive a SOAP fault composed of the cause
”Client”, which means that the client request is faulty. This hazard
produces requests which are always blocked by SOAP processors since
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these ones do not conform the WSDL description. So, because the test
cannot be performed, we consider that this hazard is useless,

– Replacing /Adding operation names: Let l be a state of the STS
specification with outgoing transitions (l, l1, ”op1(p11, ..., pm1)”, ϕ1, %1),
..., (l, ln, ”opn(p1n, ..., pmn)”, ϕn, %n) modeling operations calls. If it ex-
ists an operation (resp1, ..., respn) = op(param1, ..., paramm) which is
not called from l (op /∈ {op1, ..., opn}), this hazard aims to replace/add
the call of an operation opi ∈ {op1, ..., opn} by op. Since this hazard
satisfy the web service WSDL description, it is not blocked by SOAP
processors. However, when calling op, we can only receive a response
from op. We cannot just replace/add a name. For instance, if we replace
the operation ”itemSearch” to ”AddCard”, in our example of figure 6,
we don’t receive a response from ”itemSearch” but from ”AddCard”.
If the operation op is robust, as defined in the section 3.1, the expected
response from op is either a classical response (r1, ..., rn) where ri has
the type respi, or a SOAP fault whose the cause is ”RemoteException”.
This hazard involves to complete the specification on the operation calls
for each state. This modification is detailed in the test case generation
section (see 4.2).

It exists of course other hazards based on the SOAP message modification,
such as replacing the port name or modifying randomly the SOAP message.
These hazards are usually used for testing web service compositions in order
to observe partner behaviors. Concerning statefull web services, either the
message random modification is equivalent to a previous hazard (parame-
ter, operation modification) or gives an inconsistent SOAP message which
is blocked by SOAP processors. Note that the WS-I basic profile does not
allow overloading of operation so this hazard is not considered.

Consequently, the most relevant hazards for statefull web services are,
calling operations with ”using unusual values” and ”replacing /adding oper-
ation names”.

4 Statefull web service robustness testing method

Like many testing methods, we first set an assumption on the web service
observability to improve the test efficiency. We suppose that web service
operations do not return empty responses. Indeed, without response that is
without observable data, we cannot conclude whether the operation is correct
or crashes and is faulty.

Web service observable operation hypothesis: We suppose that each web
service operation, described in WSDL files, returns a non empty response.
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Figure 4: Test case generation

The test case generation method is illustrated in figure 4. This one is
mainly based on the two hazards ”Using unusual values” and ”Replacing
/Adding operation names” previously described. First, the specification
states are completed on the operation calls to apply the hazard ”Replac-
ing /Adding operation names”. It is also completed to model the incorrect
behavior (incorrect responses) and the state quiescence (states blocked after
a timeout). So, test cases, generated from the complete specification, will de-
scribe both the correct behavior which will lead to a pass verdict and also the
incorrect behavior which will lead to a fail verdict (faulty implementation).
Taking into account quiescence in web application testing is required since
these ones may hang or crash without returning a response. According to
the observability hypothesis previously given, we consider that web services
are faulty when they are observed as blocked.

Test cases are generated with the ”Using unusual values” hazard which is
expressed by a set of values V . This set contains for each type, an XML list
of values that we use for calling operations. We use predefined values well
known in software testing for relieving bugs (section 3.1).

We denote V (t) the set of specific values for the type t which can be a
simple type or a complex one. Figures 4, and 4 show some values used for the
types ”String” and for ”tabular of ”simple-type”. For a tabular composed
of String elements, we use the empty tabular, tabulars with empty elements
and tabulars of String constructed with V (String).

In the following, we develop the specification completeness, the test case
generation and the elaboration of the final verdict.

4.1 Specification Completeness

As stated previously, we complete the specification to apply the ”Replac-
ing /Adding operation name” hazard and to add the incorrect web service
behavior.
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<type id="String">

<val value=null />

<val value="" />

<val value=" " />

<val value="$" />

<val value="*" />

<val value="&" />

<val value="hello" />

<val value=RANDOM" />

<!-- a random String-->

<val value=RANDOM(8096)" />

</type>

(a) V(String)
<type id="tabular">

<val value=null />

<!-- an empty tabular-->

<val value= null null />

<!--tabular

composed of two empty elts-->

<val value= simple-type />

</type>

(b) V(tabular)

Figure 5:

Let WS be a web service and STS be its specification, with STS =<
L, l0, V ar, var0, I, S,→>. STS is completed by using the following steps:

1. Replacing conditions on database with values,

2. Adding ”pass” verdict into the final states, which means that to
reach this final state, a correct behavior has to be executed,

3. Operation call completion: each state is completed to take into
account the hazard ”Replacing /Adding operation names”. ∀l ∈ L
such as l has the outgoing transitions (l, l1, ”op1(p11, ..., pm1)”, ϕ1, %1),
..., (l, ln, ”opn(p1n, ..., pmn) ”, ϕn, %n), we add: ∀(resp1, ..., respk) = opi

(param1, ..., paramm) ∈ OP (WS) 6= {op1, ..., opn}, (l, li, opi(pi1, ..., pim),
∅, ∅), (li, l, opi return(r), ϕi, ∅), with ϕi = [(r == (c, soapfault), c =
RemoteException)||(r = (r1, ..., rk) has the type (resp1, ..., respk))]. If,
from a state, an unspecified operation is called and if either the ob-
tained response has the expected type or if the response is a SOAP
fault whose the cause is ”RemoteException”, then the web service has
accepted the request and is robust (see Section 3.2).Then, it returns to
the state preceding the request,

4. Incorrect behavior completion: for each state, the specification is
completed on the incorrect response set: ∀l ∈ L such as l has the out-
going transitions (l, l1, ”op return(r1)”, ϕ1, %1), ..., (l, ln, ”op return(rn)
”, ϕn, %n), we add: (1) (l, fail, δ, ∅, ∅), (2) (l, fail, ”op return(r)”, ϕ, ∅),
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with ϕ = [¬(ϕ1||...||ϕn)]. (1) δ models the state quiescence (blocking
state). (2) If the called operation does not return a specified response,
then the web service behavior is incorrect in the presence of hazards
and the operation is not robust.

The STS of figure 6 illustrates a complete specification, obtained from the
one given in figure 1. The dotted transitions represent the call of unspecified
operations. Those illustrated with dashed lines model incorrect responses.
The new symbols are given in figure 7.

4.2 Test case generation

Prior to describe the test case generation, we define a test case with:

Definition 4.1 Let WS be a web service modeled by STS =< L, l0, V ar,
var0, I, S,→>. A test case T is an STS tree where each final state is labeled
by a verdict in {pass, fail}. Branches are labeled either by op(v), ϕ, % or by
op return(r), ϕ, % or by δ where:

– v ∈ P (op), is a list of parameter values used to invoke op,
– r = (c, soap fault) is a SOAP fault composed of the cause c,
– r = (r1, ...rm) is a response
– ϕ is a guard and % an update on V ar,
– δ represents the state quiescence.

Test cases are constructed by using the following algorithm. This one
generates traces in which hazards are injected. For a transition modelling
the call of the operation op, the algorithm constructs a preamble to reach
this transition (lines 4-5). A value set over V is constructed according the
parameter types. If these ones are complex (tabular, object,...), we compose
them with other types to obtain the final values. We also use an heuristic to
estimate and eventually to reduce the number of tests according the number
of tuples in V alue(op). Constraint solvers [15, 16] are also used to generate
the values allowing the full preamble execution. We add op(v1, ..., vm) after
the preamble to call the operation op with unusual values (v1, ..., vn) (line 9).
Then, we concatenate all the executable traces reaching a final state labeled
by a verdict (lines 10-11) (traces whose the conditions can be satisfied).

The constraint solvers allow to construct values satisfying the guards of
a specification path and hence satisfying its execution. We use the solvers
[15] and [16] which works as external servers that can be called by the test
cases generation algorithm. The solver [16] manages ”String” types, and the
solver [15] manages most of the other simple types. Where the data type is
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Figure 6: The Amazon AWSECommerceService specification
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!c ItemSearchResponse<String Errors,String IsValid> [IsValid==”false” &&
AWSAccessKeyID 6= ”ID”]

!b ItemSearchResponse<String Items,String IsValid> [IsValid==”true” &&
AWSAccessKeyID==”ID”]

!e ItemLookUpResponse<String Items,String IsValid> [IsValid==”true” &&
AWSAccessKeyID==”ID”]

!i CartCreateResponse<String Errors,String IsValid> [IsValid==”false” &&
(Quantity≥ 5 || ItemASIN6=”43451”)]

!g CartCreateResponse<String CartId,String IsValid> [IsValid==”true” &&
Quantity¡5 && ItemASIN==”43451”]

!k CartAddResponse<String IsValid> [IsValid==”true” && Quantity¡30 &&
ItemASIN==”66405”]

!m PurchaseResponse<String IsValid> [IsValid==”true”]
?v1 ItemLookUp<String AWSAccessKeyID, String RequestID>

|CartCreate<String AWSAccessKeyID,String ItemASIN, Integer
Quantity> |CartAdd<String AWSAccessKeyID,String ItemASIN,Integer
Quantity> |Purchase<String CartId,String CustomerInfos>

!v2 ItemLookUpResponse<R> |CartCreateResponse<R>
|CartAddResponse<R> |PurchaseResponse<R>
<R>=String| <R>=(c,soapFault)
c=”RemoteException”

!n δ|ItemLookUpResponse<R> |CartCreateResponse<R>
|CartAddResponse<R> |PurchaseResponse<R>
<R>=(c,soapFault) c6=”RemoteException”

!u δ|ItemSearchResponse<R>
[R6=String || (R6=”false” || AWSAccessKeyID==”ID”) && (IsValid 6= ”true”
|| AWSAccessKeyID6=”ID”)]

?p ItemSearch<String AWSAccessKeyID,String SearchIndex,String KeyWords>
|CartAdd<String AWSAccessKeyID,String ItemASIN,Integer Quantity>
|Purchase<String CartId,String CustomerInfos>

!q ItemSearch<R> |CartAddResponse<R> |PurchaseResponse<Resp>
R=String|R=(c,soapFault) c=”RemoteException”

!x δ|ItemSearch<R> |CartAddResponse<R> |PurchaseResponse<R>
R=(c,soapFault) c 6=”RemoteException”

!o δ|ItemLookUpResponse<R>
[R6= String || R6=”true” || AWSAccessKeyID6=”ID”)]

?z ItemSearch<String AWSAccessKeyID,String SearchIndex,String
KeyWords> |ItemLookUp<String AWSAccessKeyID,String RequestID>
|CartCreate<String AWSAccessKeyID,String ItemASIN,Integer Quantity>

!w ItemLookUpResponse<R> |ItemSearchResponse<R>
|CartCreateResponse<R>
R=String|R=(c,soapFault) c=”RemoteException”

!r δ|ItemLookUpResponse<R> |ItemSearchResponse<R>
|CartCreateResponse<R>
R=(c,soapFault) c 6=”RemoteException”

!t δ|CartCreateResponse<R>
[R6=String || (R 6=”false” || (Quantity¡5 && ItemASIN == ”43451”)) &&
(R6=”true” || Quantity≥5) || ItemASIN6=”43451”)]

!s δ|CartAddResponse< R >
[R6=String || R6=”true” || Quantity≥30 || ItemASIN6=”66405”)]

!j δ|PurchaseResponse<R>) [R 6=String || R6=”true”]

Figure 7: Complete specification symbol table
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complex (object, ...), we need to transform them into a set of simple types
before using constraint solvers.

Figures 8 and 9 illustrate examples of test cases obtained from the com-
plete specification of figure 6. In the first one, the operation ”itemSearch” is
called with the hazards ”&”, ”168.150.13.1” and ”$”. If the response is equal
to ”false” (only possible response with the given hazards) then the verdict is
”pass”, otherwise we get the ”fail” one. In the second test case, the operation
”ItemLookUp” is called instead of ”ItemSearch”. The service is robust if it
responds with an expected response type or with a SOAP fault composed of
the cause ”RemoteException” and if it is always possible to use the opera-
tion ”ItemSearch” to reach a ”pass” state (correct behavior). Otherwise, the
verdict is ”fail” and the web service is not robust.

pass fail fail

ItemSerach("&","168.150.13.1","$")

ItemSearchResponse(IsValid) 
 IsValid="false" 

ItemSearchResponse(IsValid)
 (IsValid <> "false" ||

 AWSAccessKeyID=="ID") &&
 (IsValid <> "true" || 

 AWSAccessKeyID<>"ID")

Î́

Figure 8: Test case 1
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pass

fail

fail

fail

fail

1

2

ItemLookUp("QYH2ZQXA","1112")

Î́
ItemLookUpResponse(IsValid) 

 IsValid=(c,soapFault)
 c<>RemoteException

3

ItemLookUpResponse(IsValid) 
 IsValid=((c,soapFault)
 c=RemoteException)

4

ItemSearch(" ","*",";")

ItemSearchResponse(IsValid) 
 IsValid="false" 

Î́

ItemSearchResponse(IsValid)
 (IsValid <> String ||
 IsValid <> "false" ||

 AWSAccessKeyID=="ID") && 
 (IsValid <> "true" || 

AWSAccessKeyID<>"ID")

Figure 9: Test case 2
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Algorithm:Test cases generation1

Testcase(STS): TC2

foreach transition t = (lk, lk+1, ?ek, ϕk, %k) labeled by an input ?ek =3

op(param1, ..., paramm) do
path p = DFS(l0, lk)4

Solving(p)5

V alue(op) = {(v1, ..., vm) ∈ V (param1)× ...× V (paramm)}6

foreach (v1, ..., vm) ∈ V alue(op) do7

TC = TC ∪ tc with8

tc = p; (lk, lk+1, op(v1, ..., vm), ϕk, %k); t9

with t = t′j; postambule; verdict such as10

∀t′ = (lk+1, lj, aj, ϕj, %j) ∈→, (v1, ..., vn) |= ϕj

and postambule = DFS(lj, lt) is a path between lj and a final11

state lt ∈ L
and verdict labeled in lt12

Solving(postambule)13

end14

end15

Solving(path p):p16

p = (l0, l1, a0, ϕ0, %0)...(lk−1, lk, ak−1, ϕk−1, %k−1)17

foreach (li, li+1, ai, ϕi, %i) with i > 0 do18

(x1, ..., xn) = solver(ϕi) //solving of the guard ϕi composed of the19

variables (X1, ..., Xn) such as (x1, ..., xn) |= ϕi

%i−1 = %i−1 ∪ {X1 = x1, ..., Xn = xn}20

end21

Algorithm 1: Test case generation

4.3 Test case execution

Test cases are generated and then executed with the testing platform,
illustrated in figure 10, which as been implemented in an academic tool. The
tester corresponds to a web service which receives the URL of the web service
to test and its specification. It constructs test cases as described in section
4.2, and then executes them successively. Once test cases are executed, it
analyzes the obtained responses and finally gives a test verdict.

The tester executes each test case by traversing the test case tree: it
successively calls an operation with parameters and waits for a response while
following the corresponding branch. If a branch is fully executed, a local
verdict ”pass” or ”fail” is obtained. We also set that quiescence (blocking
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Figure 10: Test platform

state after a timeout) is observed after a timeout of 60s. For a test case t, we
denote the local verdict trace(t) ∈ {pass , fail }. The final verdict is given
by:

Definition 4.2 Let WS be a web service and TC be a test case set. The
verdict of the test over TC, denoted V erdict(WS)/TC is

– ”pass”, if for all t ∈ TC, trace(t) = pass.,
– ”fail”, if it exists t ∈ TC such as trace(t) = fail.

We applied this method and executed test cases on two versions of the
AWSECommerceService service (see figures 11, 12). Roughly 30 percent of
the tests provide unexpected responses. With the hazard ”Using unusual
values”, and despite that all the tests satisfy the WSDL description, we
sometimes obtain SOAP faults composed the cause ”Client”, meaning that
the request is incoherent. However, these results may be altered of account
of security rules (firewalls,...). We have also received unspecified messages
corresponding to errors composed of a wrong cause. For instance, we obtain
the response ”Your request should have at least 1 of the following parameters:
AWSAccessKeyId, SubscriptionId.” when we use ”CartAdd” with a quantity
equal to ”-1”, or when we search for a ”Book” type instead of the ”book”
one, whereas these two parameters are correct. We have also observed the
same situation with the hazard ”Replacing /Adding operation names” only
when we replace the operation ”CreateCard” by another one. So, according
to our robustness definition, this service seems to crash and to be not robust.
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09/03 09/10
Number of tests 100 100
Using unusual values 75 75
Replacing/Adding operation names 25 25
Fails 34 34
Unspecified response 28 28
Unspecified SOAP fault 6 6
SOAP fault with cause 6= ”RemoteException” 6 6

Figure 11: Test results on the Amazon AWSECommerceService services

ItemSearch ItemLookup CartCreate CartAdd
Number of tests 35 25 20 20
Using unusual values 29 19 14 13
Replacing/Adding
operation names 6 6 6 7
Fails 29 1 2 2
Unspecified messages 28 0 0 0
Unspecified SOAP faults 1 1 2 2

Figure 12: Detailed Test results

5 Conclusion

The WS-I basic profile, which gathers the SOAP protocol and the WSDL
language among others, reduces the web service observability. This lack of
observability leads to new issues for robustness testing. We have shown, in
this paper, that few hazards can be really used (only the hazards ”Replac-
ing name/Adding operation” and ”Using unusual values”) and that the web
service behavior needs to be separated from the SOAP processor one to fi-
nally conclude on the web service robustness. We have proposed a robustness
testing method which takes a symbolic specification and applies the previous
hazards by completing the specification behavior and by injecting unusual
values into the test cases.

Some perspectives can be considered, especially in relation to the set of
unusual values V . This one can be manually modified but stays static during
the test case generation. It could be more interesting to propose a dynamic
analysis of the parameter types to build a list of the most adapted values for
each web service. Furthermore, to avoid a test case explosion, the values of V
are randomly chosen. A better solution would be to choose these parameters
according to the operation description. It could also interesting to analyze
the values raising the more errors while testing and to set a weighting at each
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of them.
We have also assumed that the messages sent and received by web ser-

vices are only SOAP messages. However, services can be connected to other
servers, as databases. So, a web service could be considered as a gray box
from which, any type of message could be observed.

Finally, this work can lead to the study of security testing which covers
many aspects such as integrity, authentication or availability which depends
on robustness. In the same way as this method, an observability analysis is
required to determine the kind of security issues which can be detected and
the responses from which a verdict can be established. A new specification
completion should be proposed too.
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