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Uniqueness results for weak solutions

of two-dimensional fluid-solid systems

Olivier Glass∗, Franck Sueur†‡

March 13, 2012

Abstract

In this paper, we consider two systems modelling the evolution of a rigid body in an incompressible
fluid in a bounded domain of the plane. The first system corresponds to an inviscid fluid driven by
the Euler equation whereas the other one corresponds to a viscous fluid driven by the Navier-Stokes
system. In both cases we investigate the uniqueness of weak solutions, à la Yudovich for the Euler
case, à la Leray for the Navier-Stokes case, as long as no collision occurs.

1 Introduction

In this paper, we consider two systems modelling the evolution of a rigid body in an incompressible fluid
in dimension two. The two cases correspond respectively to the inviscid case, where the fluid is driven
by the Euler equation, and the viscous case, where it is driven by the Navier-Stokes system. In both
cases we investigate the uniqueness of weak solutions (à la Yudovich for the Euler case, à la Leray for
the Navier-Stokes case).

To model the body-fluid systems, we introduce the following objects. Let Ω a smooth connected
bounded open set in R2, and S0 smooth closed connected and simply connected subset of Ω. We consider
the motion in the domain Ω of a solid occupying at time t the domain S(t) ⊂ Ω, where S(0) = S0.

The motion of this solid is rigid, so that S(t) is obtained by a rigid movement (that is a translation
and a rotation) from its initial position S0. The group of rigid transformations of the plane is the special
Euclidean group, denoted by SE(2). We will denote m > 0 and J > 0 respectively the mass and the
inertia of the body and h(t) the position of its center of mass at time t. We also introduce

`(t) := h′(t),

the velocity of the center of mass and
r(t) := θ′(t),

the angular velocity of the body. The angle θ measures the rotation between S(t) and S0. Accordingly,
the solid velocity is given by

uS(t, x) := `(t) + r(t)(x− h(t))⊥. (1)

A way to represent the rigid motion from S0 to S(t) is to introduce the rotation matrix

Q(t) :=

[
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]
.

Then the position τ(t, x) ∈ S(t) at the time t of the point fixed to the body with an initial position x is

τ(t, x) := h(t) +Q(t)(x− h(0)),
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so that
S(t) = τ(t)(S0).

We denote
h(0) = h0, h

′(0) = `0, θ(0) = 0, r(0) = r0, (2)

the initial values of the solid data.
Let us stress here that, given some initial data, it suffices to know (`, r) to deduce all the other objects

above, since to (`, r) ∈ C0([0, T ];R2 × R) we can associate (h`,r, θ`,r) ∈ C1([0, T ];R2 × R) by

h`,r(t) = h0 +

∫ t

0

`, θ`,r(t) =

∫ t

0

r, (3)

the velocity
u`,rS (t, x) := `(t) + r(t)(x− h`,r(t))⊥, (4)

and

Q`,r(t) :=

[
cos θ`,r(t) − sin θ`,r(t)
sin θ`,r(t) cos θ`,r(t)

]
. (5)

We also deduce the rigid displacement and the position of the solid, let us say τ `,r(t) and S`,r(t) defined
by

τ `,r(t) : x 7→ Q`,r(t)[x− h0] + h`,r(t) ∈ SE(2), and S`,r(t) = τ `,r(t)S0. (6)

Then we define the fluid domain as
F`,r(t) := Ω \ S`,r(t). (7)

We may omit the dependence on (`, r) when there is no ambiguity on the various objects defined above.

In the rest of the domain, that is in the open set

F(t) := Ω \ S(t),

evolves a planar fluid driven by the Euler or the Navier-Stokes equations. We denote correspondingly

F0 := Ω \ S0,

the initial fluid domain. We will consider for each t the velocity field u = u(t, x) ∈ R2 and the pressure
field p = p(t, x) ∈ R in F(t). The fluid will be supposed in both cases to be homogeneous of density 1,
in order to simplify the equations (and without loss of generality). We denote

u|t=0 = u0, (8)

the initial value of the fluid velocity field.
Now to be more specific on the systems under view, we distinguish between the two cases.

1.1 The Euler case

In this case, the fluid equation is the incompressible Euler equation and the body evolves according to
Newton’s law, under the influence of the pressure alone. The boundary conditions correspond to the
impermeability of the boundary and involve the normal component of the velocity. The complete system
driving the dynamics reads

∂u

∂t
+ (u · ∇)u+∇p = 0 for x ∈ F(t), (9)

div u = 0 for x ∈ F(t), (10)

u · n = uS · n for x ∈ ∂S(t), (11)

u · n = 0 for x ∈ ∂Ω, (12)

mh′′(t) =

∫
∂S(t)

p n dσ, (13)

J θ′′(t) =

∫
∂S(t)

p (x− h(t))⊥ · ndσ. (14)
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When x = (x1, x2) the notation x⊥ stands for

x⊥ := (−x2, x1),

n denotes the unit outward normal on ∂F(t), dσ denotes the integration element on the boundary ∂S(t)
of the body.

For this system, one can prove the existence of a solution “à la Yudovich” [33] on a time interval
limited only by the possible encounter of the solid and the boundary ∂Ω. The main assumption is that
the initial vorticity

ω0 := curlu0,

is bounded in Ω.

Theorem 1. For any u0 ∈ C0(F0;R2), (`0, r0) ∈ R2 × R, such that:

div u0 = 0 in F0, u0 · n = (`0 + r0(x− h0)⊥) · n on ∂S0, u0 · n = 0 on ∂Ω, (15)

and
ω0 := curlu0 ∈ L∞(F0), (16)

there exists T > 0 and a solution

(`, r, u) ∈ C1([0, T ];R2 × R)× [L∞(0, T ;LL(F(t))) ∩ C0([0, T ];W 1,q(F(t)))], ∀q ∈ [1,+∞),

of (9)-(14). Moreover, if T < +∞ is maximal, then

dist(S(t), ∂Ω)→ 0 as t→ T−. (17)

Several comments are in order here.
First the notation LL(F(t)) refers to the space of log-Lipschitz functions on F(t), that is the set of

functions f ∈ L∞(F(t)) such that

‖f‖LL(F(t)) := ‖f‖L∞(F(t)) + sup
x 6=y

|f(x)− f(y)|
|x− y|(1 + ln− |x− y|)

< +∞. (18)

For a functional space X of functions depending on the variable x, the notation L∞(0, T ;X(F(t))) or
C([0, T ];X(F(t))) stands for the space of functions defined for each t in the fluid domain F(t), and which
can be extended to functions in L∞(0, T ;X(R2)) or C([0, T ];X(R2)) respectively. In the same spirit, we
will make the abuse of notations [0, T ]×F(t) for ∪t∈[0,T ]{t} × F(t).

The other remark is that the pressure p is uniquely defined, up to a function depending only on time,
by (`, r, u) as a function of L∞(0, T ;H1(F(t))) (see Corollary 2). In particular this gives a sense to the
right hand sides of (13)-(14).

In the case when Ω = R2, the equivalent of Theorem 1 (together with the uniqueness in this particular
case), was proven in [13]. In this particular situation, one can make a rigid change of variable to write
the system in F0, which simplifies the analysis.

We provide in the appendix a proof of Theorem 1 in the case considered here where the system
occupies a bounded domain.

The first main result of this paper is the following.

Theorem 2. The above solution is unique in its class.

1.2 The Navier-Stokes case

We now turn to the case of a viscous fluid.
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In this case, the fluid equation is the incompressible Navier-Stokes equation and the body evolves
according to Newton’s law, under the influence of the whole Cauchy stress tensor. The boundary con-
ditions are the usual no-slip condition for the velocity field. The complete system driving the dynamics
reads

∂u

∂t
+ (u · ∇)u−∆u+∇p = 0 for x ∈ F(t), (19)

div u = 0 for x ∈ F(t), (20)

u = uS for x ∈ ∂S(t), (21)

u = 0 for x ∈ ∂Ω, (22)

mh′′(t) = −
∫
∂S(t)

Tndσ, (23)

J θ′′(t) = −
∫
∂S(t)

Tn · (x− h(t))⊥ dσ, (24)

where the same notations for x, dσ and h are used as in the previous paragraph, and where

T(u, p) := −p Id +2Du with Du :=
1

2
(∇u+∇uT ).

For this system, one can prove the existence of a weak solution “à la Leray” [25, 26], for which the main
assumption is that the initial velocity u0 is square-integrable. To define more precisely what we mean
by a weak solution of (19)-(24), let us define a velocity field globally on Ω by setting

u(t, x) := u(t, x) for x ∈ F(t) and u(t, x) := uS(t, x) for x ∈ S(t), (25)

where uS is given by (1). We will say that u is compatible with (`, r) when u(t, ·) belongs to H1(Ω) for
almost every t and (25) holds with F(t) = F`,r(t) and uS is given by (1). Similarly, for the initial data,
we define a velocity field u0 by setting

u0(x) := u0(x) for x ∈ F0 and u0(x) := `0 + r0(x− h0)⊥ for x ∈ S0.

Now to define the notion of weak solutions that we consider, it will be useful to introduce the density
inside the solid at initial time t = 0 as the function ρS0(x), for x ∈ S0. Accordingly, the mass and the
inertia of the solid satisfy

m =

∫
S0
ρS0(x) dx and J =

∫
S0
ρS0(x)|x− h0|2 dx.

We extend this initial density as a function on the whole domain Ω by setting

ρ0(x) = ρS0 in S0 and ρ0(x) = 1 in F0. (26)

Given a rigid movement (`, r), we define the solid density as:

ρS(t, x) = ρS0((τ `,r(t, ·))−1(x)) in S`,r(t) and ρS(t)(x) = 0 in F`,r(t), (27)

and the density ρ(t, x) in [0, T ]× Ω as

ρ(t, x) = ρS(t, x) in S`,r(t) and ρ(x) = 1 in F`,r(t). (28)

Definition 1 (see [18, 3, 1, 28, 6]). We say that

(`, r, u) ∈ C0([0, T ];R2 × R)× [L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))]

is a weak solution of (19)-(24) with the initial data (2)-(8) if u is divergence free,

u is compatible with (`, r), (29)
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and for any divergence free vector field φ ∈ C∞c ([0, T ] × Ω;R2) such that Dφ(t, x) = 0 when t ∈ [0, T ]
and x ∈ S`,r(t), there holds, when ρ is given by (28):∫

Ω

ρ0u0 · φ|t=0 −
∫

Ω

(ρu · φ)|t=T +

∫
(0,T )×Ω

ρu · ∂φ
∂t

+ (u⊗ u− 2Du) : Dφ = 0. (30)

We will also say that (`, r, u) ∈ C0([0, T ];R2 × R) × [L∞(0, T ;L2(F`,r(t))) ∩ L2(0, T ;H1(F`,r(t)))] is a
solution when (`, r, u) with u defined by (25) is a solution.

Now we have the following existence theorem of weak solutions.

Theorem 3 (see [18, 3, 1, 28, 6]). For any u0 ∈ L2(F0;R2) and (`0, r0) ∈ R2 × R satisfying (15), for
any T > 0, there exists a weak solution

(`, r, u) ∈ C0([0, T ];R2 × R)× [C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω))],

of (19)-(24) with the initial data (2)-(8). Moreover, for any t ∈ [0, T ],

1

2

∫
Ω

ρ(t, ·)|u(t, ·)|2 dx+ 2

∫
(0,t)×Ω

ρ(s, x)Du(s, x) : Du(s, x) dx ds =
1

2

∫
Ω

ρ0(x)|u0(x)|2 dx. (31)

Remark 1. The proof of the existence of such weak solutions can be found in [21, 28]. Note in particular
that the function ρS defined by ρS(t, x) = ρ0((τ `,r(t, ·))−1(x)) in S`,r(t) and ρS(t, x) = 0 in F`,r(t) is a
weak solution of {

∂tρS + div (ρSu) = 0 in (0, T )× Ω,
ρS(0, ·) = ρS0 in S0 and ρS(0, ·) = 0 in F0,

(32)

and hence the unique solution of this system (see [5, Corollary II.1]).
We notice that the notion of weak solutions can be slightly different. In particular, [3] does not express

the solid movement by (29) or ρ by (28), but as follows. The solid density ρS is obtained as the solution
of (32) and then the compatibility condition in [3] reads: u(t, ·) belongs to H1(Ω) for almost every t and

ρSDu = 0.

Due to the lack of regularity of u, we do not know if this compatibility condition is sufficient to ensure
(29) (see also the discussion in [8, Section 3]).

Remark 2. The energy identity (31) belongs to the folklore in the subject and can be proved proceeding
as in the case of a fluid alone, see for instance [27, p. 87]. The strong continuity in time of u in L2(Ω)
is then a direct consequence of (31).

Let us add a few words on previous references. In the case when Ω = R2, one can again use a rigid
change of variables to prove the existence and uniqueness of such solutions cf. [24, 29, 32]. In the case
considered here where Ω is bounded, this is no longer possible; we refer here to [18, 3, 1, 28] which
establish the existence of solutions “à la Leray” as stated in Theorem 3. Let us also mention the recent
works [6, 7] which establish the existence of solutions “à la Leray” in three dimensions and the papers
[17, 4, 31] where the existence and uniqueness of strong solutions for short times were studied, including
in the three-dimensional case.

The second main result of this paper states that the solution given by Theorem 3 is unique as long
as there is no collision.

Theorem 4. Let T > 0 and (`, r, u) be as in Theorem 3. Assume that for any t ∈ [0, T ], dist(S(t), ∂Ω)) >
0. Let (˜̀, r̃, ũ) be another weak solution of (19)-(24) on [0, T ] with the same initial data. Then (˜̀, r̃, ũ) =
(`, r, u).

This result extends the one in [31] where it was assumed in addition that the initial fluid velocity
is in the Sobolev space H1. Therein it was mentioned that “uniqueness of weak solutions is an open
question, even in the two-dimensional case.” This issue was also mentioned recently in the conclusion of
the paper [2]. Theorem 4 therefore brings an answer to this issue, as long as there is no collision.

It is not known in general whether or not a collision may happen. However the possibility of a
collision is excluded in some particular cases by the results in [20, 19], see also the recent work [11] about
the influence of the boundary regularity. On the other hand the results of [21, 30] prove that such weak
solutions cannot be unique if a collision occurs.
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1.3 Structure of the paper

To simplify the notations and without loss of generality, we will suppose that

h0 = 0.

The paper is organized as follows. In Section 2 we establish a preliminary result on a class of changes of
variables associated to a rigid motion. This result will be useful for the proof of Theorem 2 and for the
one of Theorem 4 as well. Then we proceed with the proofs of these theorems respectively in Section
3 and in Section 4. The structure of these sections is quite the same: we will start by giving some
a-priori estimates satisfied by any solution, respectively in the Sections 3.1 and 4.1, and then we prove
the uniqueness, in the Sections 3.2 and 4.2. Finally, in the appendix, we prove Theorem 1.

2 A basic lemma

Given A ⊂ R2 and δ > 0, we denote

Vδ(A) :=
{
x ∈ R2

/
dist(x,A) 6 δ

}
.

We rely on the following proposition.

Proposition 1. Let Ω and S0 be fixed as previously. There exist a compact neighborhood U of Id in
SE(2), δ > 0 and Ψ ∈ C∞(U ; Diff(Ω)) such that Ψ[Id] = Id and that for all τ ∈ U ,

Ψ[τ ] is volume-preserving, (33)

Ψ[τ ](x) = τ(x) on Vδ(S0) and Ψ[τ ](x) = x on Vδ(∂Ω) ∩ Ω. (34)

Above, Diff(Ω) denotes the set of C∞-diffeomorphisms of Ω.

Proof. The proof is similar to [14, Lemma 1]. First we use that the exponential map exp : se(2)→ SE(2)
is locally a diffeomorphism near the origin of se(2), say on a neighborhood U ⊂ SE(2) of IdR2 . Here se(2)
is the Lie algebra associated to the Lie group SE(2). This exponential map on the space se(2) ∼ R2×R
can be represented as the map which associates to (`, r) ∈ R2 × R the value at time 1 of the solution
τ(t) of following ODE in SE(2):

d

dt
τ(t, x) = `+ r (τ(t, x)− τ(t, 0))⊥ = `+ r (τ(t, x)− t`)⊥ with τ(0, ·) = IdR2 . (35)

Reducing U if necessary, we find U as a compact neighborhood of Id in SE(2) on which ln is a diffeomor-
phism, which contains all the intermediary states τ(t, ·) leading to τ(1) = τ when τ ∈ U and for which
holds for some δ > 0

max
{
|τ(x)− x|, x ∈ S0, τ ∈ U

}
6 δ and max

{
dist(τ(S0), ∂Ω), τ ∈ U

}
> 3δ.

Now given τ ∈ U , we hence associate (`, r) := ln(τ) and the corresponding time-dependent τ(t, x). Let
φ(t, x) a smooth function equal, for each t ∈ [0, 1], to 1 in Vδ(τ(t,S0)) and to 0 outside of V2δ(τ(t,S0)).
We define the following time-dependent vector field on R2:

Vτ (t, x) := ∇⊥
(
φ(x)

(
x⊥ · `+

|x− t`|2

2
r

))
.

Note that
Vτ (t, x) = `+ r (x− t`)⊥ in Vδ(S0) and Vτ (t, x) = 0 in Vδ(∂Ω). (36)

We define Ψ ∈ Diff(Ω) as the value at t = 1 of the flow associated to V , that is

Ψ[τ ] := γ(1, ·),

where γ(t, x) the solution of the ODE:

d

dt
γ(t, x) = V (t, γ(t, x)) with γ(0, ·) = IdΩ .

It is straightforward to see that γ is a smooth function of V and hence that Ψ is a smooth function of
τ . Also, (34) follows from (36). Finally (33) follows from div V = 0.
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We have the next corollary, where we consider SE(2) ⊂ R3 so that we can use the R3 norm on the
elements of SE(2). When we consider a time-dependent family of rigid motions (τ(t))t∈[0,T ], we will
write τt := τ(t, ·).

Corollary 1. Reducing U if necessary one has for some C > 0:,

∀τ, τ̃ ∈ U, ‖Ψ[τ ] ◦ {Ψ[τ̃ ]}−1 − Id ‖C2(Ω) 6 C‖τ − τ̃‖R3 , (37)

and if τt, τ̃t ∈ C1([0, T ];SE(2)), then for all t0 ∈ [0, T ],∥∥∥∥∥
[
d

dt

(
Ψ[τt] ◦ {Ψ[τ̃t]}−1

)]
t=t0

∥∥∥∥∥
C1(Ω)

6 C
(
‖τ̃ ′t0‖R3 ‖τt0 − τ̃t0‖R3 + ‖τ ′t0 − τ̃

′
t0‖R3

)
. (38)

Let us emphasize that {Ψ[τ̃t]}−1 denotes the inverse of Ψ[τ̃t] with respect to the variable x.

Proof. Reducing U if necessary, one has uniformly for τ ∈ U that

‖Ψ[τ ]− Id ‖C2(Ω) 6
1

2
,

so that we have a uniform bound on ‖{Ψ[τ ]}−1‖C2(Ω), and (37) follows from the fact that Ψ is uniformly
Lipschitz on U . In the same way, we have

∀τ, τ̃ ∈ U, ‖∂xΨ[τ ]− ∂xΨ[τ̃ ]‖C1(Ω;R2×2) 6 C‖τ − τ̃‖R3 . (39)

On the other side, denoting

g(t, x) := Ψ[τt](x), h(t, x) := {Ψ[τt]}−1(x), g̃(t, x) := Ψ[τ̃t](x) and h̃(t, x) := {Ψ[τ̃t]}−1(x),

we have
d

dt

(
Ψ[τt] ◦ {Ψ[τ̃t]}−1(x)

)
= ∂tg(t, h̃(t, x)) +

(
∂xg(t, h̃(t, x))

)
∂th̃(t, x).

Since
∂tg̃(t, h̃(t, x)) +

(
∂xg̃(t, h̃(t, x))

)
∂th̃(t, x) = 0, (40)

we have

d

dt

(
Ψ[τt] ◦ {Ψ[τ̃t]}−1(x)

)
= ∂tg(t, h̃(t, x))− ∂tg̃(t, h̃(t, x))

+
{
∂xg(t, h̃(t, x)))− ∂xg̃(t, h̃(t, x))

}
∂th̃(t, x). (41)

Concerning the first term in the right hand side of (41), we use

∂tg(t, y) = [dΨ(τt) · τ ′t ](y) and ∂tg̃(t, y) = [dΨ(τ̃t) · τ̃ ′t ](y), (42)

and the regularity of Ψ. Concerning the second one, we use (39) to estimate the term between brackets
and (40) and (42) to estimate ∂th̃. Our claim (38) follows.

Remark 3. Clearly we could have put any Ck(Ω) norm on the left hand sides of (37) and (38).

3 Proof of Theorem 2

In this section, we consider the inviscid case and prove Theorem 2.
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3.1 A priori estimates

We begin by giving a priori estimates on a solution given by Theorem 1. We suppose that ∂Ω has
g + 1 connected components Γ1, . . . ,Γg+1; we suppose that Γg+1 is the outer one. We add to this list
Γ0 = Γ0(t) = ∂S(t). We denote t the tangent to ∂Ω and ∂S(t) and define

γi0 :=

∫
Γi

u0 · t dσ for i = 1, . . . , g and γ0 :=

∫
∂S0

u0 · t dσ,

and we let

γ := |γ0|+
g∑
i=1

|γi0|.

We have the following a priori estimates on any solution of the system in the sense of Theorem 1.

Proposition 2. Let (`, r, u) a solution of the system in the sense of Theorem 1 in the time interval
[0, T ]. Then one has the following a priori estimates: for all t ∈ [0, T ] and q ∈ [1,+∞],

‖ curlu(t, ·)‖Lq(F(t)) = ‖ curlu0‖Lq(F0),

∀i = 1, . . . , g,

∫
Γi

u(t, ·) · t dσ = γi0 and

∫
∂S(t)

u(t, ·) · t dσ = γ0,

‖u(t, ·)‖2L2(F(t)) +m|`(t)|2 + J |r(t)|2 = ‖u0‖2L2(F0) +m|`0|2 + J |r0|2.

Moreover, for δ > 0, there is a constant C > 0 such that for all T such that dist(S(t), ∂Ω) > δ on [0, T ],
one has for all t ∈ [0, T ] and q ∈ [2,∞),

‖u(t, ·)‖W 1,q(F(t)) 6 Cq
(
‖ω0‖Lq(F0) + |`0|+ |r0|+ γ

)
. (43)

Proof. Given such a solution (`, r, u), the vorticity ω(t, x) := curlu(t, x) satisfies the transport equation

∂tω + (u · ∇)ω = 0 in F(t). (44)

Due to the log-Lipschitz regularity of u, one can associate a unique flow Φ = Φ(t, s, x), and by uniqueness
of the solutions of (44) at this level of regularity, one has ω(t, x) = ω0(Φ(0, t, x)). Since Φ is volume-
preserving (as follows from div u = 0), we obtain the claim on ‖ curlu‖Lq(F(t)). The second conservation
is Kelvin’s theorem, and the third one the conservation of energy.

Estimate (43) is classical in the case of a fluid alone, and is central in the argument of Yudovich [33].
Here, we only need to prove that the constant appearing in the elliptic estimate for the div /curl system
does not depend on the position of the solid, as long as it stays distant from the boundary. Precisely, we
prove the following.

Lemma 1. For any R > 0, there exists C > 0 such that if S = τ(S0) for τ ∈ SE(2) satisfies

S ⊂ Ω and dist(S, ∂Ω) > R, (45)

then any u : F → R2 verifies, for all q > 2:

‖u‖W 1,q(F) 6 Cq
(
‖ curlu‖Lq(F) + ‖ div u‖Lq(F)

)
+ C

(
‖u · n‖W 1−1/q,q(∂F) +

g∑
i=0

∣∣∣∣∫
Γi

u · t dσ
∣∣∣∣ ), (46)

where Γ0 := ∂S and F := Ω \ S.

Above we take as a convention that

‖f‖W 1−1/q,q(∂F) := inf
{
‖f‖W 1,q(F), f ∈W 1,q(F) and f |∂F = f

}
. (47)

That this norm is equivalent to the usual one (for fixed q), comes from the trace theorem and the
existence of a continuous extension operator W 1−1/q,q(∂F)→W 1,q(F).

Once Lemma 1 is established, (43) is a consequence of the previous conservations.
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Note that the equivalent of Lemma 1 in the framework of Hölder spaces is known (see e.g. [15, Lemma
5]):

Lemma 2. In the context of Lemma 1, for λ ∈ N and α ∈ (0, 1), there exists a constant C > 0
independent of τ such that

‖u‖Cλ+1,α(F) 6 C

(
‖ div u‖Cλ,α(F) + ‖ curlu‖Cλ,α(F) + ‖u · n‖Cλ+1,α(∂Ω∪∂S) +

g∑
i=0

∣∣∣∣∫
Γi

u · t dσ
∣∣∣∣
)
. (48)

Proof of Lemma 1. As we explained this is standard in a fixed domain (see in particular [12, 33]). Note
in particular that it is elementary to reduce to the case where

u · n = 0 on ∂Ω ∪ ∂S and

∫
Γi

u · t dσ = 0 for all i = 0 . . . g,

by using the convention (47) and the following functions Hi := ∇⊥ψi, for 1 6 i 6 g, where ψi satisfies −∆ψi = 0 for x ∈ F ,
ψi = 1 on Γi,
ψi = 0 on (∂Ω ∪ ∂S) \ Γi,

so that

curlHi = div Hi = 0 in Ω \ F , Hi · n = 0 on ∂Ω ∪ ∂S and

∫
Γj

Hi · t dσ = δij for 1 6 j 6 g.

For these functions Hi, we have suitable estimates by using Lemma 2.

We notice that the set of τ ∈ SE(2) such that S = τ(S0) satisfies (45) is compact. Hence by a
straightforward compactness argument, and since such a constant C > 0 is well-defined for any fixed
configuration Ŝ = τ̂(S0) satisfying (45), we see that we only need to prove that, given such a fixed
configuration Ŝ, there exists a constant C > 0 for which (46) is valid whenever S = τ(Ŝ), when τ
belongs to some arbitrarily small neighborhood of IdR2 . Now given a fixed configuration Ŝ, we introduce
δ > 0 and ε ∈ (0, δ) such that for any τ ∈ SE(2), ‖τ − Id ‖ 6 ε one has for S := τ(Ŝ):

dist(S, ∂Ω) > 4δ and Vδ(∂Ŝ) is a tubular neighborhood of ∂Ŝ.

We introduce ϕ a cutoff function in C∞0 (R2) such that

ϕ = 1 on V2δ(Ŝ) and ϕ = 0 on R2 \ V3δ(Ŝ).

Now we introduce u1 ∈W 1,q
loc (R2 \S) and u2 ∈W 1,q(Ω) as the solutions of the following elliptic systems:

curlu1 = ϕ curlu in R2 \ S,
div u1 = ϕdiv u in R2 \ S,
u1 · n = 0 on ∂S,∫
∂S u1 · t dσ = 0,

lim|x|→+∞ u1(x) = 0,


curlu2 = (1− ϕ) curlu in Ω,
div u2 = (1− ϕ) div u in Ω,
u2 · n = −u1 · n on ∂Ω,∫
∂Γi

u2 · t dσ = 0, i = 1 . . . g.

(49)

Note that the compatibility condition

−
∫
∂Ω

u1 · ndσ =

∫
Ω

(1− ϕ) div u dx,

comes from ∫
Ω

(1− ϕ) div u dx =

∫
F

(1− ϕ) div u dx,

and the use of the divergence theorem:∫
F

div u dx = 0 and

∫
F
ϕdiv u dx =

∫
F

div u1 dx =

∫
∂Ω

u1 · ndσ +

∫
∂S
u1 · ndσ.
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Moreover, by using Stokes’ formula (in the interior of Γi of in S), the fact that the outer component of
∂Ω is Γg+1 and considering the supports of ϕ and 1− ϕ, one sees that

∀i = 1, . . . , g,

∫
Γi

u1 · t dσ =

∫
∂S
u2 · t dσ = 0.

Using the fact that inequality (46) is true for a fixed geometry and that the problem satisfied by u1

is invariant under rigid movements, we deduce that there exists a constant C > 0 independent of τ
(satisfying ‖τ − Id ‖ 6 ε) and for which

‖u1‖W 1,q(R2\S) 6 Cq
(
‖ curlu‖Lq(F) + ‖div u‖Lq(F)

)
. (50)

and
‖u2‖W 1,q(Ω) 6 Cq

(
‖ curlu‖Lq(F) + ‖ div u‖Lq(F)

)
+ C1‖u1 · n‖W 1−1/q,q(∂Ω). (51)

As a consequence, the right hand sides of (50) and (51) can be estimated by the right hand side of (46).

Now we introduce w : F → R as the solution of
curlw = div w = 0 in F ,
w · n = −u2 · n on ∂S,
w · n = 0 on ∂Ω,∫

Γi
w · t dσ = 0, i = 0, . . . , g.

Note that the compatibility condition between div w and w ·n is satisfied because, relying on the support
of ϕ, one has ∫

∂S
u2 · ndσ =

∫
S

(1− ϕ) div u dx = 0.

We observe that u2 is harmonic in Vδ(∂S). It follows from standard properties of harmonic functions
that for some C > 0 independent of τ small and q > 2 one has (given α ∈ (0, 1)):

‖u2|∂S‖C1,α(∂S) 6 C‖u2‖L2(Vδ(∂S)).

It follows that w ∈ C1,α(F) and using Lemma 2 we deduce that for some C,C ′, C ′′ > 0 independent of
τ small:

‖w‖W 1,q(F) 6 C‖w‖C1,α(F) 6 C ′‖u2‖L2(F) 6 C ′′‖u2‖W 1,q(F).

The conclusion follows since by uniqueness of the solutions of the div /curl system:
curl v = 0 in F ,
div v = 0 in F ,
v · n = 0 on ∂Ω ∪ ∂S,∫

Γi
v · t dσ = 0, i = 0, . . . , g,

=⇒ v = 0,

one has:
u = u1 + u2 + w.

Gathering the estimates above, we get the conclusion.

We have the following consequence of Proposition 2.

Corollary 2. Under the assumptions of Proposition 2 (including that dist(S(t), ∂Ω) > δ on [0, T ]), we
have for some constant C = C(‖ω0‖L∞(F0) + |`0|+ |r0|+ γ) > 0 that uniformly in [0, T ]:

‖u(t)‖H1(F(t)) + ‖∂tu‖L2(F(t)) + ‖∇p‖L2(F(t)) 6 C. (52)

Proof of Corollary 2. The estimate of ‖u(t)‖H1(F(t)) is a direct consequence of Proposition 2. Also, by
Proposition 2, we have that

‖u‖W 1,4(F(t)) 6 C
(
‖ω0‖L∞(F0) + |`0|+ |r0|+ γ

)
. (53)

10



Now we use the decomposition of ∇p (see e.g. [15, Lemma 3]):

∇p = ∇µ−∇

(
(Φi)i=1,2,3 ·

[
`
r

]′)
, (54)

where the functions Φi = Φi(t, x) (known as the Kirchhoff potentials) and the function µ = µ(t, x) are
the solutions of the following problems:

−∆Φi = 0 for x ∈ F(t),
∂Φi
∂n

= Ki for x ∈ ∂S(t),

∂Φi
∂n

= 0 for x ∈ ∂Ω,

where Ki :=

{
ni if i = 1, 2,
(x− h(t))⊥ · n if i = 3,

(55)

and 
−∆µ = tr(∇u · ∇u) for x ∈ F(t),
∂µ
∂n = ∇2ρ {u− uS , u− uS} − n ·

(
r (2u− uS − `)⊥

)
for x ∈ ∂S(t),

∂µ
∂n = −∇2ρ(u, u) for x ∈ ∂Ω,

where uS = uS(t, x) is given by (1) and where ρ = ρ(t, x) is the signed distance to ∂Ω∪ ∂S(t) (which we
define in a neighborhood of ∂Ω ∪ ∂S(t)), chosen to be negative inside F . The function ρ is constant in
time near ∂Ω, and is transported by the solid movement near ∂S(t). Note that the fact the compatibility
condition between ∆µ and ∂

∂nµ is satisfied thanks to

tr(∇u · ∇u) = div ((u · ∇)u), ∇ρ = n on ∂Ω ∪ ∂S,

(11) and (12).
Moreover, using Green’s theorem, (55) and (54), we obtain that the equations for the solid, that is

(13)-(14), can be recast as follows (see also [15, Lemma 4]):

M
[
`
r

]′
=

[∫
F(t)

∇µ · ∇Φi dx

]
i∈{1,2,3}

, (56)

where

M :=M1 +M2, M1 :=

[
m Id2 0

0 J

]
and M2 :=

[∫
F(t)
∇Φi · ∇Φj dx

]
i,j∈{1,2,3}

. (57)

Note that the matrix M2 is symmetric and nonnegative, as a Gram matrix.
Now from Lemma 2, we deduce the boundedness in Cλ,α of the functions ∇Φi independently of the

time. By using Lemma 1 and (53), we obtain that

‖∇µ‖L2(F(t)) 6 C
(
‖ω0‖L∞(F0) + |`0|+ |r0|+ γ

)
. (58)

Hence with (56) we deduce the boundedness of (`′, r′), which together with (54) and (58), gives the claim
on ∇p. The claim on ∂tu follows by using (9).

3.2 Uniqueness: proof of Theorem 2

We now turn to the core of the proof of Theorem 2.
Consider (`1, r1, u1) and (`2, r2, u2) two solutions in the sense of Theorem 1 defined on some time

interval [0, T ]. We associate correspondingly h1 and h2, S1 and S2, etc. By a standard connectedness
argument, it is sufficient to prove the uniqueness on an arbitrary small time interval [0, T̃ ], so that we
allow ourselves to choose T > 0 small. We let τ1 and τ2 in C2([0, T ];SE(2)) the corresponding rigid
movements associated to these solutions. For each t ∈ [0, T ] we introduce ϕt and ψt in Diff(Ω) by

ϕt := Ψ[τ2(t)] ◦ {Ψ[τ1(t)]}−1, ψt := ϕ−1
t ,
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where Ψ is defined in Proposition 1; we have chosen T > 0 small enough so that τ1(t) and τ2(t) belong
to U for all t in [0, T ]. It is easily seen that ϕt is volume preserving and sends F1(t) into F2(t). Now we
define

ũ2(t, x) := [dϕt(x)]−1 · u2(t, ϕt(x)), x ∈ F1(t), (59)

the pullback of u2 by ϕt, which is a solenoidal vector field on F1(t), due to div u2(t, ·) = 0 and the fact
that ϕt is volume preserving (see e.g. [23, Proposition 2.4]). We also define

p̃2(t, x) := p2(t, ϕt(x)), x ∈ F1(t), and ˜̀
2 := d(τ1 ◦ τ−1

2 ) · `2 = Q1 ·Q−1
2 · `2. (60)

Obviously,
u2(t, x) = dϕt(ψt(x)) · ũ2(t, ψt(x)) and p2(t, x) = p̃2(t, ψt(x)) in F2(t).

Now to write the equation satisfied by ũ2, we compute the partial derivatives of u2 in terms of those
of ũ2. For convenience, we simplify the notations below as follows: an exponent i designates the i-th
component of a vector; we drop the index 2 in u2, ũ2, p2, p̃2 and the index t in ϕt and ψt. Moreover
we use Einstein’s repeated indices convention and omit to write the variables with the following rules
(which include the case where α is void so that there is no partial derivative):

∂αu = ∂αu(t, x), ∂αũ = ∂αũ(t, ψt(x)), ∂αp = ∂αp(t, x), ∂αp̃ = ∂αp̃(t, ψt(x)),

∂αϕ = ∂αϕ(t, ψt(x)), ∂αψ = ∂αψ(t, x). (61)

From
ui = ∂kϕ

i ũk,

we deduce
∂tu

i = ∂kϕ
i ∂tũ

k + ∂kϕ
i ∂lũ

k ∂tψ
l + (∂t∂kϕ

i)ũk + ∂2
klϕ

i ∂tψ
l ũk,

∂ju
i = ∂kϕ

i ∂lũ
k ∂jψ

l + (∂2
lkϕ

i) ∂jψ
l ũk,

∂ip = ∂kp̃ ∂iψ
k.

It follows that

(u · ∇)ui = uj ∂ju
i

= uj(∂kϕ
i ∂lũ

k∂jψ
l + (∂2

lkϕ
i) ∂jψ

l ũk)

= ∂mϕ
j ũm(∂kϕ

i ∂lũ
k∂jψ

l + (∂2
lkϕ

i) ∂jψ
l ũk)

= ∂kϕ
i ũl ∂lũ

k + ũl(∂2
lkϕ

i) ũk,

where we used that
∂mϕ

j ∂jψ
l = δml.

Hence the equation of ũ reads

0 = ∂tũ
i + ũj ∂j ũ

i + ∂ip̃

+ (∂kϕ
i − δik)∂tũ

k + ∂kϕ
i ∂lũ

k (∂tψ
l) + (∂k∂tϕ

i)ũk + (∂2
klϕ

i) (∂tψ
l) ũk

+ ũl ∂lũ
k(∂kϕ

i − δik) + ũl(∂2
lkϕ

i) ũk

+ ∂kp̃ (∂iψ
k − δik).

In the above equation, all the factors between parentheses are small (in L∞ norm) whenever ‖ϕt −
Id ‖C2(Ω) + ‖∂tϕt‖C1(Ω) is small.

Now we define

û(t, x) := u1(t, x)− ũ2(t, x) and p̂(t, x) := p1(t, x)− p̃2(t, x) in F1(t), (62)

ĥ := h1 − h2, θ̂ := θ1 − θ2, ˆ̀ := `1 − ˜̀
2 and r̂ := r1 − r2. (63)

We deduce that
∂tû+ (u1 · ∇)û+ (û · ∇)ũ2 +∇p̂ = f̃ in F1(t), (64)
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with

f̃ i = (∂kϕ
i − δik)∂tũ

k
2 + ∂kϕ

i ∂lũ
k
2 (∂tψ

l) + (∂k∂tϕ
i)ũk2 + (∂2

klϕ
i) (∂tψ

l) ũk2

+ ũl2 ∂lũ
k
2(∂kϕ

i − δik) + (∂2
lkϕ

i) ũl ũk + ∂kp̃2 (∂iψ
k − δik). (65)

Now we proceed by an energy estimate. Multiplying (64) by û and integrating over F1(t), we deduce∫
F1(t)

(∂tû+ (u1 · ∇)û) · û dx+

∫
F1(t)

û · (û · ∇)ũ2 dx+

∫
F1(t)

û · ∇p̂ dx =

∫
F1(t)

û · f̃ dx. (66)

Concerning the first term on the left hand side, using that F1(t) is transported by the flow associated
to u1, we infer that ∫

F1(t)

(∂tû+ (u1 · ∇)û) · û dx =
d

dt

∫
F1(t)

|û|2

2
dx.

For what concerns the second term in (66), we use Proposition 2: there exists a constant C > 0 such
that for any q ∈ [2,∞) one has

‖∇ũ2‖Lq(F1(t)) 6 Cq
(
‖ω0‖L∞(F0) + |`0|+ |r0|+ γ

)
.

It follows that for some C0 = C(‖ω0‖L∞(F0) + |`0|+ |r0|+ γ), one has∣∣∣∣∣
∫
F1(t)

û · (û · ∇)ũ2 dx

∣∣∣∣∣ 6 ‖∇ũ2‖Lq‖û2‖Lq′ 6 C0q ‖û2‖
2
q′

L2 .

Let us turn to the third term in (66). We first note that, due to (33) and (34), one has div û = 0 in
F1(t), u1 · n = ũ2 · n = 0 on ∂Ω, and

ũ2(t, x) · n1(t, x) = (u2 · n2)(t, τ2 ◦ τ−1
1 (x)) = (˜̀

2 + r2(x− h1(t))⊥) · n1(t, x) on ∂S1(t),

where ni is the normal on ∂Si(t), i = 1, 2. It follows that∫
F1(t)

û · ∇p̂ dx =

∫
∂S1(t)

p̂(û · n1) dσ

=

∫
∂S1(t)

p̂(ˆ̀+ r̂(x− h1(t))⊥) · n1 dσ

=

(
ˆ̀

r̂

)
·
∫
∂S1(t)

p̂

(
n1

(x− h1(t))⊥ · n1

)
dσ

=

(
ˆ̀

r̂

)
·
(
mˆ̀′ +mr̂ ˜̀⊥

2

J r̂′
)

=
1

2

d

dt

(
m|ˆ̀|2 + J |r̂|2

)
−mr̂ ˆ̀· ˜̀⊥2 . (67)

We used that

m˜̀′
2 =

∫
∂S1(t)

p̃2n1 dσ +mr̂ ˜̀⊥
2 , J r̃′2 =

∫
∂S1(t)

p̃2(x− h1(t))⊥ · n1 dσ.

We estimate the last term in (67) by

|mr̂ ˆ̀· ˜̀⊥2 | 6 C(`0, r0, u0)[|ˆ̀|2 + |r̂|2]. (68)

Concerning the right hand side in (66), we see that∣∣∣∣∣
∫
F1(t)

û · f̃ dx

∣∣∣∣∣ 6 C‖û(t)‖L2(F1(t))

[
‖ϕt − Id ‖C2(Ω) + ‖∂tϕt‖C1(Ω)

]
×
(

1 + ‖∂tũ2(t)‖L2(F1(t)) + ‖ũ2(t)‖2H1(F1(t)) + ‖∇p̃2(t)‖L2(F1(t))

)
. (69)
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Using Corollaries 1 and 2 we obtain∣∣∣∣∣
∫
F1(t)

û · f̃ dx

∣∣∣∣∣ 6 C(Ψ, `0, r0, u0) ‖û(t)‖L2(F1(t))

(
‖(ĥ, θ̂)(t)‖R3 + ‖(ˆ̀, r̂)(t)‖R3

)
.

Summing up, we obtain that for any q ∈ [2,∞):

d

dt

(
‖û‖2L2(F1(t)) + |ˆ̀|2 + |r̂|2

)
6 C0

(
q‖û‖

2
q′

L2(F1(t)) + ‖û‖2L2(F1(t)) + |ˆ̀|2 + |r̂|2 + |ĥ|2 + |θ̂|2
)
.

Concerning the solid movement, we have

|ĥ′| = |`1 − `2| 6 |`1 − ˜̀
2|+ |`2 − ˜̀

2| 6 C(|ˆ̀|+ |θ̂|), (70)

so
d

dt

(
|ĥ|2 + |θ̂|2

)
6 C

(
|ˆ̀|2 + |r̂|2 + |ĥ|2 + |θ̂|2

)
.

Hence we obtain that

d

dt

(
‖û‖2L2(F1(t)) + |ˆ̀|2 + |r̂|2 + |ĥ|2 + |θ̂|2

)
6 C1

(
q‖û‖

2
q′

L2(F1(t)) + |ˆ̀|2 + |r̂|2 + |ĥ|2 + |θ̂|2
)

6 C1q
(
‖û‖2L2(F1(t)) + |ˆ̀|2 + |r̂|2 + |ĥ|2 + |θ̂|2

) 1
q′
,

by considering T sufficiently small so that the parenthesis in the right hand side is not larger than 1.

Since the unique solution of y′ = Ny
1
q′ with y(0) = ε > 0 and N > 0 is given by

y(t) =

[
Nt

q
+ ε

1
q

]q
,

a comparison argument proves that

‖û‖2L2 + |ˆ̀|2 + |r̂|2 + |ĥ|2 + |θ̂|2 6 (C1t)
q,

and we conclude that ĥ = 0, θ̂ = 0 and û = 0 for t < 1/C1 by letting q → +∞.

4 Proof of Theorem 4

We now turn to the viscous system.

4.1 A priori estimates

We begin by giving a priori estimates on a solution given by Theorem 3. Therefore we assume in the
sequel that (`, r, u) is a solution as given by Theorem 3 on [0, T ], T > 0. Let us call F(t) and S(t) the
corresponding fluid and solid domains, h, θ the associated center of mass and angle, and u given by (25).
We also introduce

ρ(t, x) = ρS(t, x) := ρS0((τ `,r(t, ·))−1(x)) in S(t) and ρ(t, x) = ρF = 1 in F(t), (71)

and
uS(t, x) := `(t) + r(t)(x− h(t))⊥.

We will also use, for T > 0, the notation

FT := ∪t∈(0,T ){t} × F(t).

Moreover we assume that dist(S(t), ∂Ω) > 0 on [0, T ].

The first a priori estimate is the following.
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Lemma 3. There holds
((u · ∇)u, u) ∈ L 4

3 (FT ,R4).

Proof. The proof is left to the reader as it follows classically from the boundedness of Ω, from the Hölder
inequality and from Sobolev embeddings.

The second a priori estimate uses the smoothing effect induced by the viscosity.

Proposition 3. There holds

tu ∈ L 4
3 (0, T ;W 2, 43 (F(t))), (t∂tu, t∇p) ∈ L

4
3 (FT ;R4).

The proof of Proposition 3 is rather lengthy. Therefore we first give a sketch of proof before to go
into the details.

Sketch of proof of Proposition 3. The proof relies in a crucial way on the following auxiliary system with
unknown (l, r, v):

∂v

∂t
−∆v +∇q = g for x ∈ F(t), (72)

div v = 0 for x ∈ F(t), (73)

v = vS for x ∈ ∂S(t), (74)

v = 0 for x ∈ ∂Ω, (75)

ml′(t) = −
∫
∂S(t)

T(v, p)ndσ +mg1, (76)

J r′(t) = −
∫
∂S(t)

T(v, p)n · (x− h(t))⊥ dσ + J g2, (77)

vS(t, x) := l + r(x− h(t))⊥, (78)

where g, g1 and g2 are some source terms and where the fluid and solid domains F(t) and S(t) are
prescribed and therefore not unknown. Actually, F(t) and S(t) are associated to the solution (`, r, u)
above. We keep the notation

h(t) =

∫ t

0

` and uS(t, x) := `(t) + r(t)(x− h(t))⊥.

Let us now explain how this system enters into the game. We define

v := tu, q := tp, l := t`, and r := tr. (79)

From the equations (19)-(24) we infer that (l, r, v) is a solution of (72)-(78), in a weak sense which will
be given in Definition 2, with vanishing initial data and with, as source terms,

g := u− t(u · ∇)u ∈ L 4
3 (FT ;R2) and (g1, g2) := (`, r) ∈ L 4

3 (0, T ;R2 × R). (80)

The regularity of g follows from Lemma 3. Then we have the following result about the existence of
regular solutions to the system (72)-(78).

Lemma 4. There exists a unique solution of (72)-(77) on [0, T ] with vanishing initial data which satisfies

v ∈ L 4
3 (0, T ;W 2, 43 (F(t))), (∂tv,∇q) ∈ L

4
3 (FT ;R4), (l, r) ∈W 1, 43 ((0, T );R3). (81)

Lemma 4 is an adaptation of [10, Theorem 2.4]. We will briefly explain how to modify the analysis
in [10] in order to prove Lemma 4.

Finally we will prove a result of uniqueness for weak solutions of the system (72)-(78) so that (l, r, v)
will also satisfy the estimates given by Lemma 4, which achieves the proof of Proposition 3.

The rest of Subsection 4.1 is devoted to the completion of the proof of Proposition 3.
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4.1.1 Notion of weak solutions of the auxiliary system

Similarly to the definition of u in (25), we introduce the vector field g defined on Ω and associated to
g, g1 and g2 by

g(t, x) := g(t, x) for x ∈ F(t) and g(t, x) := g1(t) + g2(t)(x− h(t))⊥ for x ∈ S(t).

Definition 2. Given g ∈ L 4
3 (FT ), (g1, g2) ∈ L 4

3 (0, T ;R2 × R), we say that

(l, r, v) ∈ C([0, T ];R2 × R)× [C([0, T ];L2(F(t))) ∩ L2(0, T ;H1(F(t)))] (82)

is a weak solution of (72)-(78) with vanishing initial data and with source term (g, g1, g2) if defining v
by

v(t, x) := v(t, x) for x ∈ F(t) and v(t, x) := vS(t, x) for x ∈ S(t), (83)

where vS is given by (78), one has:

• the vector field v belongs to L2(0, T ;H1(Ω)) and is divergence free,

• for any divergence free vector field φ ∈ C∞c ([0, T ] × Ω;R2) such that Dφ(t, x) = 0 when t ∈ [0, T ]
and x ∈ S(t), there holds:

−
∫

Ω

(ρv · φ)|t=T +

∫
(0,T )×Ω

(
ρv · ∂φ

∂t
− 2Dv : Dφ

)
+

∫ T

0

∫
∂S(t)

(φ · v)(uS · n) dσ dt

= −
∫

(0,T )×Ω

ρg · φ+

∫ T

0

mrφ l · `⊥. (84)

Let us justify this definition by proving the following result.

Lemma 5. If (l, r, v) is a classical solution of (72)-(78) with vanishing initial data and with source term
(g, g1, g2) then it is a weak solution in the sense of Definition 2.

Proof. We introduce φ as above. In particular, one can describe φ in S(t) as:

φ(t, x) = `φ(t) + rφ(t)(x− h(t))⊥ for any x ∈ S(t).

We multiply the equation (72) by φ(t, ·) and integrate over F(t). This yields∫
F(t)

φ ·
(
∂tv −∆v +∇p

)
=

∫
F(t)

φ · g.

Now we observe that

d

dt

∫
F(t)

φ · v =

∫
F(t)

(∂tφ) · v +

∫
F(t)

φ · (∂tv) +

∫
∂S(t)

(φ · v)(uS · n).

and ∫
F(t)

(
−∆v +∇p

)
· φ = 2

∫
F(t)

Dv : Dφ−
∫
∂S(t)

(T(v, p)n) · φdσ

= 2

∫
Ω

Dv : Dφ+m(l′ − g1) · `φ + J (r′ − g2)rφ,

thanks to (76)-(77).
Hence we get, after integrating in time, using ρ = 1 in the fluid and v(0, ·) = 0:∫
F(T )

ρ(T, ·)v(T, ·) · φ(T, ·) dx−
∫ T

0

∫
F(t)

ρ(∂tφ) · v dx dt−
∫ T

0

∫
∂S(t)

(φ · v)(uS · n) dσ dt

+ 2

∫
(0,T )×Ω

Dv : Dφ+

∫ T

0

[
m(l′ − g1) · `φ + J (r′ − g2)rφ

]
=

∫ T

0

∫
F(t)

φ · g.
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Now using∫
S(t)

ρS(t, x)(x− h(t)) dx = 0, m =

∫
S(t)

ρS(t, x) dx, J =

∫
S(t)

ρS(t, x)|x− h(t)|2 dx, (85)

we deduce

mg1(t) · `φ(t) + J g2(t) rφ(t) =

∫
S(t)

ρ(t, x)φ(t, x) · g(t, x) dx.

On another side, we see that in S(t):

∂tφ(t, x) = `′φ(t) + r′φ(t)(x− h(t))⊥ − rφ(t) `⊥(t).

Using an integration by parts in time and (85), we deduce∫ T

0

[
ml′ · `φ + J r′ rφ

]
dt = −

∫ T

0

[
m l · `′φ + J r r′φ

]
+m l(T ) · `φ(T ) + J r(T ) rφ(T )

= −
∫ T

0

∫
S(t)

ρS v · (∂tφ) dx dt+

∫ T

0

mrφ l · `⊥

+

∫
S(T )

ρ(T, ·)v(T, ·) · φ(T, ·) dx.

Adding the equalities above, we easily obtain (84).

Let us now prove that (l, r, v) given by (79) is a weak solution of the auxiliary system.

Lemma 6. Let (`, r, u) a solution of (19)-(24) as given by Theorem 3, such that dist(S(t), ∂Ω) > 0 on
[0, T ]. Then (l, r, v) given by (79) is a weak solution in the sense of Definition 2 with source terms given
by (80).

Proof. First we easily verify that (l, r, v) satisfies (82) and that v defined by (83) belongs to L2(0, T ;H1(Ω))
and is divergence free. Therefore it only remains to verify (84).

We consider a divergence free vector field φ ∈ C∞c ([0, T ] × Ω;R2) such that Dφ(t, x) = 0 when
t ∈ [0, T ] and x ∈ S(t). We first apply Definition 1 to the test function tφ (instead of φ). This yields:

−
∫

Ω

(ρ v · φ)|t=T +

∫
(0,T )×Ω

ρ u · φ+

∫
(0,T )×Ω

ρ v · ∂φ
∂t

+

∫ T

0

t

∫
F(t)

u⊗ u : Dφ− 2

∫
(0,T )×Ω

Dv : Dφ = 0. (86)

Then we use an integration by parts to get∫
F(t)

u⊗ u : Dφ = −
∫
F(t)

(
(u · ∇)u

)
· φ+

∫
∂S(t)

(φ · u)(uS · n) dσ.

Hence the sum of the second and of the fourth term of (86) can be recast as follows:∫
(0,T )×Ω

ρ u · φ+

∫ T

0

t

∫
F(t)

u⊗ u : Dφ =

∫
(0,T )×Ω

ρ g · φ+

∫ T

0

∫
∂S(t)

(φ · v)(uS · n) dσ dt.

Then it only suffices to observe that the last term of (84) vanishes when (l, r, v) is given by (79) to
conclude the proof.

4.1.2 Proof of Lemma 4

We now turn to the proof of Lemma 4 which is an adaptation of [10, Theorem 2.4]. Therefore we only
highlight the differences with the claim of [10, Theorem 2.4]. Actually [10, Theorem 2.4] is given for
the three-dimensional case but also holds true for the two-dimensional case with the same proof. Also,
another difference is that [10, Theorem 2.4] deals with the “Navier-Stokes + Solid” system. However
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their proof works as well for the system (72)-(77). It is also interesting to mention that the proof of [10,
Theorem 2.4] uses the same kind of change of variables that we introduce in Proposition 1. Thanks to
this change of variable we are led to consider the following system:

∂ṽ

∂t
−∆ṽ +∇q̃ = g̃ for x ∈ F0, (87)

div ṽ = 0 for x ∈ F0, (88)

ṽ = ṽS for x ∈ ∂S0, (89)

ṽ = 0 for x ∈ ∂Ω, (90)

ml̃′(t) = −
∫
∂S0

T(ṽ, q̃)ndσ + g̃1, (91)

J r̃′(t) = −
∫
∂S0

T(ṽ, q̃)n · (x− h(t))⊥ dσ + g̃2, (92)

where g̃ ∈ L 4
3 ((0, T )×F0;R2) and (g̃1, g̃2) ∈ L 4

3 (0, T ;R2 × R),

ṽS := l̃ + r̃(x− h(t))⊥,

and with vanishing initial data.
This system appears when we use the change of variable

ṽ(t, x) := [dϕt(x)]−1 · v(t, ϕt(x)), x ∈ F(t) and l̃ := [dϕt(x)]−1 · l, r̃ = r,

where ϕt = Ψ[τ `,r(t)], Ψ being defined in Proposition 1, and when we put the error terms resulting from
the change of variable in the right hand side as in (64). Then one can look for a solution of the original
system by a fixed point scheme.

For the system (87)-(92) the maximal regularity result [10, Theorem 4.1] can be straightforwardly
adapted into:

Lemma 7. Let q ∈ (1,+∞) and T > 0. For all g̃ in Lq((0, T )×F0;R2), for all (g̃1, g̃2) in Lq((0, T );R3),
there exists a unique solution of (87)-(92) on [0, T ] with vanishing initial data satisfying

ṽ ∈ Lq(0, T ;W 2,q(F0)), (∂tṽ,∇q̃) ∈ Lq((0, T )×F0;R4), (̃l, r̃) ∈W 1,q((0, T );R3). (93)

The proof of this lemma combines maximal regularity of the Stokes problem with inhomogeneous
Dirichlet boundary conditions and some added mass effects, cf. [10, Section 4] and the book of Galdi [9].
Then Lemma 4 can be deduced from Lemmas 3 and 7 (with q = 4

3 ) using the same fixed point procedure
as in [10, Sections 5–7]. One gets a solution for small time T , and a solution defined on a larger time
interval by gluing together such pieces of solutions.

4.1.3 Uniqueness for the auxiliary system

Our next step toward the proof of Proposition 3 is the following uniqueness result for weak solutions of
the auxilliary system.

Lemma 8. Let g ∈ L 4
3 (FT ), (g1, g2) ∈ L 4

3 ((0, T );R3), (l1, r1, v1) and (l2, r2, v2) two weak solutions in
the sense of Definition 2 of (72)-(78) with vanishing initial data and with source terms g, g1, g2. Then
(l1, r1, v1) = (l2, r2, v2).

Proof of Lemma 8. We introduce v1 and v2 by (83). We define

v̂(t, x) := v1(t, x)− v2(t, x) in Ω, l̂ := l1 − l2 and r̂ := r1 − r2,

so that
v̂ = l̂ + r̂(x− h)⊥ in S(t).

We introduce a test function φ as in Definition 2, apply (84) to (l1, r1, v1) and (l2, r2, v2) and make the
difference of the two. We obtain

−
∫

Ω

(ρv̂ · φ)|t=T +

∫
(0,T )×Ω

(
ρv̂ · ∂φ

∂t
− 2Dv̂ : Dφ

)
+

∫ T

0

∫
∂S(t)

(φ · v̂)(uS · n) dσ dt =

∫ T

0

mrφ l̂ · `⊥. (94)
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Now after a standard regularization procedure, we can take φ = v̂ in (94). We infer

−1

2

∫
Ω

ρ|v̂(T, ·)|2 − 2

∫
(0,T )×Ω

|Dv̂|2 +

∫ T

0

∫
∂S(t)

|v̂|2(uS · n) dσ dt =

∫ T

0

mr̂ l̂ · `⊥. (95)

Using the boundary conditions on v̂ and the boundedness of (`, r), one easily sees that∣∣∣∣∣
∫ T

0

∫
∂S(t)

|v̂|2(uS · n) dσ dt

∣∣∣∣∣ 6 C

∫ T

0

(
|̂l(t)|2 + |̂r(t)|2

)
dt.

Also, ∣∣∣∣∣
∫ T

0

mr̂ l̂ · `⊥
∣∣∣∣∣ 6 C

∫ T

0

(
|̂l(t)|2 + |̂r(t)|2

)
dt.

Hence

m|̂l(T )|2 + J |̂r(T )|2 + ‖v̂(T )‖2L2(F(T )) 6 C

∫ T

0

|(̂l, r̂)(t)|2 dt.

So Gronwall’s lemma finishes the proof.

4.1.4 End of the proof of Proposition 3

Let us now complete the proof of Proposition 3.
According to Lemma 6, (l, r, v) given by (79) is a weak solution of the auxiliary system in the sense

of Definition 2 with source terms given by (80). On the other hand Lemma 8 provides a strong solution
of the same system. According to Lemma 5 this strong solution is also a weak solution. Let us stress
in particular that the regularity in (93) with q = 4

3 implies the regularity in (82). According to Lemma
8, these two weak solutions are equal. Therefore (l, r, v) given by (79) satisfy (93) with q = 4

3 , which
implies Proposition 3.

4.2 Uniqueness: proof of Theorem 4

We now turn to the core of the proof of Theorem 4.
We consider (`1, r1, u1) and (`2, r2, u2) two solutions in the sense of Theorem 3 in [0, T ]. By the usual

connectedness argument, we can suppose T arbitrarily small. In particular we consider T > 0 small
enough so that no collision occurs in the time interval [0, T ] for both solutions.

Then we perform the same change of variable than in Section 2, that is, we define ũ2 by (59), and
p̃2, ˜̀

2 by (60). Then, dropping temporarily the index 2 in u2, ũ2, p2, p̃2 and the index t in ϕt and ψt,
using the notations (61) and Einstein’s repeated indices convention, we obtain:

∂2
jjv

i = ∂jψ
m(∂2

mkϕ
i) ∂lṽ

k ∂jψ
l + ∂kϕ

i ∂jψ
m ∂2

mlṽ
k ∂jψ

l + ∂kϕ
i ∂lṽ

k(∂2
jjψ

l)

+ ∂jψ
m(∂3

mlkϕ
i) ∂jψ

l ṽk + (∂2
lkϕ

i) ∂2
jjψ

l ṽk + (∂2
lkϕ

i) ∂jψ
l ∂jψ

m ∂mṽ
k.

Hence we obtain the following equation for ũ2:

0 = ∂tũ
i + ũj ∂j ũ

i + ∂ip̃−∆ũi

+ (∂kϕ
i − δik)∂tũ

k + ∂kϕ
i ∂lũ

k (∂tψ
l) + (∂k∂tϕ

i)ũk + (∂2
klϕ

i) (∂tψ
l) ũk

+ ũl ∂lũ
k(∂kϕ

i − δik) + (∂2
lkϕ

i) ũl ũk + ∂kp̃ (∂iψ
k − δik)

− ∂jψm(∂2
mkϕ

i) ∂lũ
k ∂jψ

l − (∂kϕ
i∂jψ

m∂jψ
l − δikδjmδjl)∂2

mlũ
k − ∂kϕi ∂lũk(∂2

jjψ
l)

− ∂jψm(∂3
mlkϕ

i) ∂jψ
l ũk − (∂2

lkϕ
i) ∂2

jjψ
l ũk − (∂2

lkϕ
i) ∂jψ

l ∂jψ
m ∂mũ

k
]
.

Once again, all the factors between parentheses in the above equation are small (in C1 norm) whenever
‖ϕt − Id ‖C3(Ω) + ‖∂tϕt‖C1(Ω) is small.

Now, with the same notations (62)-(63) as in Section 2, we obtain the following equation:

∂tû+ (u1 · ∇)û+ (û · ∇)ũ2 +∇p̂−∆û = f̃ in F1(t), (96)
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with the i-th component of f̃ given by

f̃ i = (∂kϕ
i − δik)∂tũ

k
2 + ∂kϕ

i ∂lũ
k
2 (∂tψ

l) + (∂k∂tϕ
i)ũk2 + (∂2

klϕ
i) (∂tψ

l) ũk2

+ũl2 ∂lũ
k
2(∂kϕ

i − δik) + (∂2
lkϕ

i) ũl2 ũ
k
2 + ∂kp̃2 (∂iψ

k − δik)

−∂jψm(∂2
mkϕ

i) ∂lũ
k
2 ∂jψ

l − (∂kϕ
i∂jψ

m∂jψ
l − δikδjmδjl)∂2

mlũ
k
2 − ∂kϕi ∂lũk2(∂2

jψ
l)

−∂jψm(∂3
mlkϕ

i) ∂jψ
l ũk2 − (∂2

lkϕ
i) ∂2

jjψ
l ũk2 − (∂2

lkϕ
i) ∂jψ

l ∂jψ
m ∂mũ

k
2 .

On the other hand, the boundary conditions (21)-(22) become

ũ2 = ˜̀
2(t) + r2(t)(x− h1(t))⊥ for x ∈ ∂S1(t),

ũ2 = 0 for x ∈ ∂Ω.

The solid equations (23)-(24) for the second solid are now recast as (writing again n1 for the normal on
∂S1):

m˜̀′
2 = −

∫
∂S1(t)

T(ũ2, p̃2)n1 dσ +mr̂ ˜̀⊥
2 ,

J r′2(t) = −
∫
∂S1(t)

T(ũ2, p̃2)n1 · (x− h1(t))⊥ dσ.

Observe that the quantities above make sense for almost every t > 0 thanks to Proposition 3.
Now we define ˆ̀, r̂ and û, p̂, ĥ, θ̂ as in (62)-(63). Taking the difference of the equations of ˜̀

2 and r2

with the equations for the first solid we obtain:

û = ˆ̀(t) + r̂(t)(x− h1(t))⊥ for x ∈ ∂S1(t), (97)

û = 0 for x ∈ ∂Ω, (98)

mˆ̀′ = −
∫
∂S1(t)

T(û, p̂)n1 dσ +mr̂ ˜̀⊥
2 , (99)

J r̂′(t) = −
∫
∂S1(t)

T(û, p̂)n1 · (x− h1(t))⊥ dσ. (100)

Now we proceed by an energy estimate. Multiplying (96) by û and integrating over F1(t), we deduce
that for almost every positive t (using the regularity provided by Proposition 3):∫

F1(t)

(∂tû+ (u1 · ∇)û) · û dx+

∫
F1(t)

û · (û · ∇)ũ2 dx+

∫
F1(t)

û · ∇p̂ dx−
∫
F1(t)

û ·∆û dx

=

∫
F1(t)

û · f̃ dx. (101)

Proceeding as in Section 2, we have∫
F1(t)

(∂tû+ (u1 · ∇)û) · û dx =
d

dt

∫
F1(t)

|û|2

2
dx,∫

F1(t)

û · ∇p̂ dx =

(
ˆ̀

r̂

)
·
∫
∂S1(t)

p̂

(
n1

(x− h1(t))⊥ · n1

)
dσ.

For the third and fourth term in (101), we have

−
∫
F1(t)

û ·∆û dx = 2

∫
F1(t)

Dû : Dû dx−
∫
∂S1(t)

(Dû · n1) · û dσ

= 2

∫
F1(t)

Dû : Dû dx−
(

ˆ̀

r̂

)
·
∫
∂S1(t)

(
Dû · n1

(x− h1(t))⊥ · (Dû · n1)

)
dσ,
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thanks to (97)-(98). Thus∫
F1(t)

û · ∇p̂ dx−
∫
F1(t)

û ·∆û dx = 2

∫
F1(t)

Dû : Dû dx−
(

ˆ̀

r̂

)
·
∫
∂S1(t)

(
T(û, p̂)n1

(x− h1(t))⊥ · T(û, p̂)n1

)
dσ,

= 2

∫
F1(t)

Dû : Dû dx+
1

2

d

dt

(
m|ˆ̀|2 + J |r̂|2

)
−mr̂ ˆ̀· ˜̀⊥2 . (102)

thanks to (99)-(100). The last term in the right hand side of (102) is estimated as in (68).

Now for the second term in (101), we will use the following lemma.

Lemma 9. There exists C > 0 such that for any t ∈ (0, T ), for any w ∈ H1(F1(t)) vanishing on ∂Ω
and any ε > 0,

‖w‖L4(F1(t)) 6
C

ε
‖w‖L2(F1(t)) + ε‖∇w‖L2(F1(t)).

Proof of Lemma 9. A classical interpolation argument gives that for any t ∈ (0, T ), for any w ∈ H1(F1(t)),

‖w‖L4(F1(t)) 6 C‖w‖1/2L2(F1(t))‖w‖
1/2
H1(F1(t)).

Since the Poincaré inequality holds for w ∈ H1(F1(t)) vanishing on ∂Ω, we deduce that for such w,

‖w‖L4(F1(t)) 6 C‖w‖1/2L2(F1(t))‖∇w‖
1/2
L2(F1(t)). (103)

We deduce the claim.

It follows that we can estimate the second term in (101) by∣∣∣∣∣
∫
F1(t)

û · (û · ∇)ũ2 dx

∣∣∣∣∣ 6 ‖∇ũ2‖L2 ‖û‖2L4 6 C‖∇ũ2‖2L2‖û‖2L2 +
1

4
‖∇û‖2L2 ,

where the norms above are over F1(t).

Let us now turn to the estimate of the right hand side in (101). The estimate is given in the following
lemma.

Lemma 10. For some constant C > 0 depending on the geometry only and defining the function B ∈
L1(0, T ) by

B(t) := ‖ũ2‖L∞(0,T ;L2(F1(t)))(1 + ‖∇ũ2(t, ·)‖L2(F1(t)))

+ ‖ũ2‖1/2L∞(0,T ;L2(F1(t)))‖∇ũ2(t)‖1/2L2(F1(t))‖t∇ũ2(t)‖L4(F1(t))

+
(
‖t∂tũ2‖L4/3(F1(t)) + ‖tũ2‖W 2,4/3(F1(t)) + ‖t∇p̃2‖L4/3(F1(t))

)4/3
,

one has the following estimate on the right hand side:∣∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃ dx dt

∣∣∣∣∣ 6 1

4

∫ T

0

∫
F1(t)

|∇û|2 dx dt

+ C

∫ T

0

B(t)
[

max
τ∈[0,t]

‖û(τ, ·)‖2L2(F1(t)) + max
[0,t]
|(ĥ, θ̂, ˆ̀, r̂)|2

]
dt. (104)

Proof of Lemma 10. In what follows, C > 0 denotes various positive constants depending on the geom-
etry and which can change from line to line. We cut f̃ into pieces which are to be estimated separately.
Precisely, we denote

f̃ = f̃1 + f̃2 + f̃3 + f̃4 + f̃5,
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with

f̃1 := (∂k∂tϕ
i)ũk2 + (∂2

klϕ
i) (∂tψ

l) ũk2 −
∑
j

[
∂jψ

m(∂3
mlkϕ

i) ∂jψ
l ũk2 + (∂2

lkϕ
i) ∂2

jjψ
l ũk2

]
,

f̃2 := ∂kϕ
i ∂lũ

k
2 (∂tψ

l)−
∑
j

[
∂jψ

m(∂2
mkϕ

i) ∂lũ
k
2 ∂jψ

l + ∂kϕ
i ∂lũ

k
2(∂2

jψ
l) + (∂2

lkϕ
i) ∂jψ

l ∂jψ
m ∂mũ

k
2

]
,

f̃3 := (∂2
lkϕ

i) ũl2 ũ
k
2 ,

f̃4 := ũl2 ∂lũ
k
2(∂kϕ

i − δik),

f̃5 := (∂kϕ
i − δik)∂tũ

k
2 + ∂kp̃2 (∂iψ

k − δik)−
∑
j

(∂kϕ
i∂jψ

m∂jψ
l − δikδjmδjl)∂2

mlũ
k
2 .

• Concerning f̃1, using Corollary 1 we deduce that∣∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃1 dx dt

∣∣∣∣∣ 6 C‖ũ2‖L∞(0,T ;L2(F1(t)))

∫ T

0

max
τ∈[0,t]

‖û(τ, ·)‖L2(F1(t)) max
[0,t]
|(ĥ, θ̂, ˆ̀, r̂)| dt

6 C‖ũ2‖L∞(0,T ;L2(F1(t)))

∫ T

0

(
max
τ∈[0,t]

‖û(τ, ·)‖2L2(F1(t)) + max
[0,t]
|(ĥ, θ̂, ˆ̀, r̂)|2

)
dt.

• Concerning f̃2, using Corollary 1 one has for almost every t:∣∣∣∣∣
∫
F1(t)

û · f̃2 dx

∣∣∣∣∣ 6 C‖∇ũ2(t, ·)‖L2(F1(t))|(ĥ, θ̂)(t)| ‖û‖L2(F1(t)).

We fix
B1(t) := ‖∇ũ2(t, ·)‖L2(F1(t)) ∈ L2(0, T ) ⊂ L1(0, T ),

and have ∣∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃2 dx dt

∣∣∣∣∣ 6 C

∫ T

0

B1(t)
(

max
τ∈[0,t]

‖û(τ, ·)‖2L2(F1(t)) + max
[0,t]
|(ĥ, θ̂)|2

)
dt.

• Concerning f̃3: one has for almost every t > 0, using (103):∣∣∣∣∣
∫
F1(t)

û · f̃3 dx

∣∣∣∣∣ 6 C‖ũ2(t, ·)‖2L4(F1(t))|(ĥ, θ̂)(t)| ‖û‖L2(F1(t))

6 C‖ũ2(t, ·)‖L2(F1(t))‖∇ũ2(t, ·)‖L2(F1(t))|(ĥ, θ̂)(t)| ‖û‖L2(F1(t)).

Using again the function B1, we have∣∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃3 dx dt

∣∣∣∣∣ 6 C‖ũ2‖L∞(0,T ;L2(F1(t)))

∫ T

0

B1(t)
(

max
τ∈[0,t]

‖û(τ, ·)‖2L2(F1(t))+max
[0,t]
|(ĥ, θ̂)|2

)
dt.

• Concerning f̃4: we first note that thanks to Proposition 3, we have

t∇ũ2 ∈ L4/3(0, T ;W 1,4/3(F1(t))) ↪→ L4/3(0, T ;L4(F1(t))).

On another side we infer from Corollary 1 that for some constant one has

‖1

t
(∂kϕ

i
t − δik)‖C3(Ω) 6 C‖(ˆ̀, r̂)‖L∞(0,t). (105)

Using (103) and (105) we deduce that∣∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃4 dx dt

∣∣∣∣∣ 6 C

∫ T

0

‖ũ2(t)‖L4(F1(t))‖t∇ũ2(t)‖L4(F1(t))‖(ˆ̀, r̂)‖L∞(0,t)‖û(t, ·)‖L2(F1(t)) dt

6 C

∫ T

0

‖ũ2(t)‖1/2L2(F1(t))‖∇ũ2(t)‖1/2L2(F1(t))‖t∇ũ2(t)‖L4(F1(t))‖(ˆ̀, r̂)‖L∞(0,t)‖û(t, ·)‖L2(F1(t)) dt.
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We introduce
B2(t) := ‖∇ũ2(t)‖1/2L2(F1(t))‖t∇ũ2(t)‖L4(F1(t)) ∈ L1(0, T ),

as a product L4(0, T )× L4/3(0, T ), and deduce∣∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃4 dx dt

∣∣∣∣∣ 6 C‖ũ2‖1/2L∞(0,T ;L2(F1(t)))

∫ T

0

B2(t)
[
‖(ˆ̀, r̂)‖2L∞(0,t) + ‖û(t, ·)‖2L2(F1(t))

]
dt.

• Concerning f̃5: we use again (105) and we introduce

b(t) := ‖t∂tũ2(t)‖L4/3(F1(t)) + ‖tũ2(t)‖W 2,4/3(F1(t)) + ‖t∇p̃2(t)‖L4/3(F1(t)),

which belongs to L4/3(0, T ) thanks to Proposition 3. One deduces that∣∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃5 dx dt

∣∣∣∣∣ 6 C

∫ T

0

b(t)‖(ˆ̀, r̂)‖L∞(0,t)‖û(t, ·)‖L4(F1(t)) dt.

Hence, with 2bµν 6 b2αµ2 + b2(1−α)ν2 for µ, ν ∈ R, b > 0 and α ∈ (0, 1), we deduce that∣∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃5 dx dt

∣∣∣∣∣ 6 C1

∫ t

0

b(t)2/3‖û(t, ·)‖2L4(F1(t)) dt+ C

∫ t

0

b(t)4/3‖(ˆ̀, r̂)‖2L∞(0,t) dt.

We specify the constant C1 for later use. For the first term, one writes∫ T

0

b(t)2/3‖û(t, ·)‖2L4(F1(t)) dt 6 C

∫ T

0

b(t)2/3‖û(t, ·)‖L2(F1(t))‖∇û(t, ·)‖L2(F1(t)) dt

6 C

∫ T

0

b(t)4/3‖û(t, ·)‖2L2(F1(t)) dt+
1

4C1

∫ T

0

‖∇û(t, ·)‖2L2(F1(t)) dt.

So one has∣∣∣∣∣
∫ T

0

∫
F1(t)

û · f̃5 dx dt

∣∣∣∣∣ 6 1

4

∫ T

0

‖∇û(t, ·)‖2L2(F1(t)) dt+C

∫ T

0

B3(t)
[
‖û(t, ·)‖2L2(F1(t))+‖(ˆ̀, r̂)‖2L∞(0,t)

]
dt,

with B3 := b(t)4/3 ∈ L1(0, T ).

Summing up all the estimates above, we deduce (104).

Back to the proof of Theorem 3. We extend û(t, ·) inside F1(t) by ˆ̀+ r̂(x−h1(t)). We obtain that û(t, ·)
is a L2(0, T ;H1(Ω)) divergence free vector field, vanishing on ∂Ω. Therefore∫

F1(t)

|∇û|2 dx 6
∫

Ω

|∇û|2 dx = 2

∫
Ω

|Dû|2 dx = 2

∫
F1(t)

|Dû|2 dx.

Now we take into account the vanishing initial condition for (ˆ̀, r̂, û) to deduce that for any T > 0
sufficiently small,

m|ˆ̀(T )|2 + J |r̂(T )|2 + ‖û(T )‖2L2(F1(T )) 6 C

∫ T

0

B(t)
[

max
τ∈[0,t]

‖û(τ, ·)‖2L2(F1(t)) + max
[0,t]
|(ĥ, θ̂, ˆ̀, r̂)(t)|2

]
dt.

Proceeding as in (70) we get

d

dt

(
|ĥ|2 + |θ̂|2

)
6 C

(
|ˆ̀|2 + |r̂|2 + |ĥ|2 + |θ̂|2

)
.

Hence using B(t) ∈ L1 and Gronwall’s lemma concludes the proof.
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5 Appendix. Proof of Theorem 1

In this appendix, we will use the letter η for the fluid flow and τ for the solid flow.
To (`, r) ∈ C0([0, T ];R2 × R) we can associate h`,r, θ`,r, u`,rS , τ `,r and F`,r by (3), (4), (5), (6) and

(7). We also introduce
ϕ`,r := Ψ(τ `,r),

where Ψ was defined in Lemma 1. We can ensure that τ `,r belongs to the set U of definition of Ψ by
choosing T suitably small.

We may omit the dependence on (`, r) on the above objects when there is no ambiguity.
As in Section 3.1 we suppose that ∂Ω has g+ 1 connected components Γ1, . . . ,Γg+1 and that Γg+1 is

the outer one; and we denote by Γ0 = Γ0(t) = ∂S(t), by t the tangent to ∂Ω and ∂S(t) and we define

γi0 :=

∫
Γi

u0 · t dσ for i = 1, . . . , g and γ0 :=

∫
∂S0

u0 · t dσ.

We will use the following variant of Lemma 1.

Lemma 11. For any R > 0, there exists C > 0 such that if S = τ(S0) for τ ∈ SE(2) satisfies (45) then
any u : Ω \ S → R2 satisfying

div u = 0 in Ω \ S, u · n = 0 on ∂Ω and u · n = (`+ rx⊥) · n on ∂S,

where (`, r) ∈ R2 × R, verifies (setting again Γ0 := ∂S):

‖u‖LL(Ω\S) 6 C
(
‖ curlu‖L∞(Ω\S) +

g∑
i=0

∣∣∣∣∫
Γi

u · t dσ
∣∣∣∣+ |`|+ |r|

)
. (106)

Proof. It is a direct consequence of Lemma 1 and Morrey’s estimates. It can also be established directly
by following the lines of the proof of Lemma 1.

5.1 With a prescribed solid movement

We first prove the following result, which concerns the Euler system with a prescribed solid movement
of S(t) inside Ω, and gives existence of a solution as long as no collision occurs.

Proposition 4. Let T > 0 and a regular closed connected subset S0 ⊂ Ω and define F0 := Ω \ S0.
Consider (`, r) ∈ C0([0, T ];R2 × R) such that

for any t ∈ [0, T ], dist
(
τ `,r(t)[S0], ∂Ω

)
> 0. (107)

Consider u0 ∈ C0(F0;R2) satisfying (15) and (16). Then the problem (9)-(10)-(11)-(12) (with S(t) :=
τ `,r(S0) and F(t) := Ω \ S(t)) admits a unique solution

u ∈ L∞(0, T ;LL(F(t))) ∩ C0([0, T ];W 1,q(F(t)))], ∀q ∈ [1,+∞).

Proof of Proposition 4. We use Schauder’s fixed point theorem in order to prove the existence part. Let
(`, r) be fixed so that (107) holds. We deduce τ(t), ϕ(t), S(t) and F(t) as previously. We will also use,
for T > 0, the notation

FT := ∪t∈(0,T ){t} × F(t).

We let

C :=
{
w ∈ L∞((0, T )×F0) / ‖w‖L∞((0,T )×F0) 6 ‖ω0‖L∞(F0)

}
.

We endow C with the L∞(0, T ;L3(F0)) topology. Note that C is closed and convex.
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Now we define T = T `,r : C → C as follows. Given w ∈ C, we define ω : FT → R2 by

ω(t, x) = w(ϕ(t)−1(x)), (108)

which belongs to L∞(0, T ;L∞(F(t))). Next we define u : FT → R2 by the following system

curlu = ω in FT ,
div u = 0 in FT ,
u · n = 0 on [0, T ]× ∂Ω,
u(t, x) · n = uS(t, x) · n for t ∈ [0, T ] and x ∈ ∂S(t),∫

Γi
u · t dσ = γi0 for all i = 1 . . . g,∫

∂S(t)
u · t dσ = γ0,

(109)

with uS defined in (4). According to Lemma 11, u belongs to L∞(0, T ;LL(F(t))).
Consequently we can define the flow η(t, x) associated to u in a unique way. This flow sends, for each

t, F0 to F(t). Finally, we let
T (w) := ω0 ◦ η(t, ·)−1 ◦ ϕ(t). (110)

It is trivial that T (C) ⊂ C. It remains to prove that T is continuous and that T (C) is relatively compact
in L∞((0, T );L3(F0)).

Let us begin with the continuity. We consider (wn) ∈ CN converging to w ∈ C for the L∞(0, T ;L3(F0))
norm. We associate un and ηn corresponding to wn in the above construction, and accordingly u and
η corresponding to w. Using (109), Sobolev imbeddings and Lemma 1, it is not difficult to see that the
velocities un converge to the velocity u in L∞(0, T, L∞(F(t))). Also, from Lemma 11 we deduce that for
some C > 0,

‖u‖L∞(0,T ;LL(F(t))), ‖un‖L∞(0,T ;LL(F(t))) 6 C.

This involves the uniform convergence of η−1
n to η−1. The convergence of ϕn to ϕ comes from the

continuity of Ψ. From this we can deduce that

T (wn) −→ T (w) in L∞((0, T );L3(F0)).

Indeed, if ω0 ∈ C0(F0), this can be straightforwardly deduced from the uniform continuity of ω0 and
(110). The general case can be inferred by using the density of C0(F0) in L∞(F0) for the L3(F0)
topology.

Now let us prove the relative compactness of T (C) in L∞(0, T ;L3(F0)). This is a consequence of the
following lemma.

Lemma 12. Let C > 0, α ∈ (0, 1) and ω0 ∈ L∞(F0). Then the set

A(ω0) :=
{
ω0 ◦ ψ(t, x) for ψ ∈ Cα([0, T ]×F0;F0) such that ‖ψ‖Cα 6 C and ψ is measure-preserving

}
,

is relatively compact in L∞(0, T ;L3(F0)).

Proof of Lemma 12. We prove the total boundedness of A(ω0). Let us be given ε > 0. There exists
ω1 ∈ C0(F0) such that

‖ω1 − ω0‖L3(F0) 6 ε.

Due to the continuity of ω1, it is a direct consequence of Ascoli’s theorem that A(ω1) is relatively compact
in C0([0, T ]×F0), and hence in L∞(0, T ;L3(F0)). We deduce the existence of ψ1, . . . , ψN as above such
that

A(ω1) ⊂ B(ω1 ◦ ψ1; ε) ∪ · · · ∪B(ω1 ◦ ψN ; ε),

where the balls are considered in the space L∞(0, T ;L3(F0)). One sees that

A(ω0) ⊂ B(ω1 ◦ ψ1; 2ε) ∪ · · · ∪B(ω1 ◦ ψN ; 2ε),

which concludes the proof of the lemma.
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Back to the proof of Proposition 4. Using again Lemma 11, we see that we have uniform log-Lipschitz
estimates on the velocities u as w ∈ C. This implies uniform Hölder estimates on the flows η that we
constructed for w ∈ C. So we conclude by Lemma 12 that T (C) is relatively compact.

Hence we deduce by Schauder’s fixed point theorem that T admits a fixed point. One checks easily
that the corresponding u fulfills the claims.

Finally, the uniqueness is proved exactly as in Yudovich’s original setting for the fluid alone; alterna-
tively, one can use the proof of uniqueness established in Subsection 3.2 with (`1, r1) = (`2, r2).

5.2 Continuous dependence on the solid movement

Now we prove that the solution constructed in Subsection 5.1 depends continuously on the solid movement
(`, r).

Precisely, given T > 0 and (`, r) as in Subsection 5.1, we denote u`,r the unique corresponding solution
u given by Proposition 4, and ω`,r := curlu`,r the corresponding vorticity. We associate then

ũ`,r := u`,r ◦ ϕ`,r and ω̃n := ω`,r ◦ ϕ`,r.

We have the following Proposition.

Proposition 5. Let T > 0, (`n, rn) ∈ C0([0, T ];R2 × R)N and (`, r) ∈ C0([0, T ];R2 × R) such that
(`n, rn) and (`, r) satisfy (107) and

(`n, rn) −→ (`, r) in C0([0, T ];R2 × R) as n→ +∞.

Then
ũ`n,rn −→ ũ`,r in C0([0, T ]×F0) as n→ +∞. (111)

Proof of Proposition 5. Following Subsection 5.1, we see that (ũ`n,rn) is relatively compact in C0([0, T ]×
F0). Also, the sequence (ω̃`n,rn) is weakly-∗ relatively compact in L∞((0, T ) × F0). To prove (111), it
is hence sufficient to prove that the unique limit point of the sequence (ũ`n,rn , ω̃`n,rn) in the space
C0([0, T ]×F0)× [L∞((0, T )×F0)− w∗] is (ũ`,r, ω̃`,r).

Now consider a converging subsequence of (ũ`n,rn , ω̃`n,rn). For notational convenience, we still denote
this subsequence (ũn, ω̃n), and call (ũ, ω̃) the limit. We associate the functions wn, ηn, w, η corresponding
to (`n, rn, ũ

n, ω̃n) and (`, r, ũ, ω̃) as in Subsection 5.1.
By uniqueness in Proposition 4, to prove

(ũ, ω̃) = (ũ`,r, ω̃`,r),

is it sufficient to prove that (ũ, ω̃) corresponds to a solution of Proposition 4 with prescribed solid
movement (`, r). For that, we observe that the relation

wn(t, ·) = ω0 ◦ ηn(t, ·)−1 ◦ ϕ`n,rn(t).

passes to the L∞((0, T ) × F0) weak-∗ limit (or to the L∞(0, T ;Lp(F0)) one, p ∈ [1,∞)) since ũ`n,rn

converges uniformly to ũ, so the corresponding flows converge uniformly (using again the uniform log-
Lipschitz estimates). So we infer

w(t, ·) = ω0 ◦ η(t, ·)−1 ◦ ϕ`,r(t).

On the other side, it is not difficult to pass to the limit in (109), so that in particular

curl
(
ũ ◦ (ϕ`,r(t, ·)−1)

)
= w(t, ·) ◦ (ϕ`,r(t, ·)−1).

Hence we deduce that (ũ, ω̃) is indeed a solution of Proposition 4 with solid movement (`, r). The
convergence (111) follows.
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5.3 Endgame

Let us now proceed to the proof of Theorem 1. Once again we are going to use Schauder’s fixed point
theorem.

Let d := d (S0, ∂Ω) > 0 and C > 0. We introduce

D :=
{

(`, r) ∈ C0([0, T ];R3)
/
‖(`, r)‖C0([0,T ];R3) 6 C

}
,

where T > 0 is chosen such that CT (1 + diam(S0)) 6 d
3 . Observe that this condition yields in particular

that τ `,r satisfies

dist
(
τ `,r(t)(S0), ∂Ω

)
>
d

3
for any t ∈ [0, T ]. (112)

Note that D is closed and convex.
Now we construct an operator A on D in the following way. To (`, r) ∈ D, we associate, as in

Subsection 5.1, Q(t), S(t), F(t) and u as the fixed point of the operator T `,r. We also consider the
Kirchhoff potentials Φi as in (55) and the mass matrix M as in (57). Then, we define A(`, r) := (˜̀, r̃),
where for any t ∈ [0, T ],[

˜̀

r̃

]
(t) =

[
`0
r0

]
+

∫ t

0

M−1(s)

([∫
F(s)

u · [(u · ∇)∇Φi] dx

]
i∈{1,2,3}

−
[
Bi(s)

]
i∈{1,2,3}

)
ds,

with

Bi(s) :=

[
`
r

]
·
∫
∂S(s)

(u · ∇Φi)

[
n

(x− h(s))⊥ · n

]
dσ.

Due to the boundedness of ‖∇Φi‖C1,α , M−1 under the condition (112) and the one of ‖u‖∞, shrinking
T if necessary, we have that A(D) ⊂ D.

Now, let us prove that A has a fixed point in D. That A(D) is relatively compact in C0([0, T ];R3)
follows from Ascoli’s theorem. That A is continuous follows from Proposition 5 and the convergence for
all t, under the assumptions of Proposition 5:

Φ`n,rni ◦ ϕ`n,rn −→ Φ`,ri ◦ ϕ
`,r in C2(F0) as n→ +∞.

This convergence can be deduced from the compactness of the sequence (∇Φ`n,rni ) in C1(F0) (due to
Lemma 2) and the fact that Φ`,r ◦ϕ`n,rn ◦ (ϕ`,r)−1 converges to a function satisfying the correct system
(55) in the limit (use for instance the computations of Subsection 3.2). Therefore we can apply Schauder’s
theorem which proves the existence of a fixed point.

To see that a fixed point of the operator A corresponds to a solution of (1)-(14) it is sufficient to
observe that, thanks to an integration by parts, the solid equations can be recast as

M
[
`
r

]′
=

[∫
F(t)

u · [(u · ∇)∇Φi] dx

]
i∈{1,2,3}

−
[
Bi
]
i∈{1,2,3} .

Observe that this reformulation is slightly different from (56) and is obtained by using (9) and an
integration by parts instead of (54). This establishes the existence part of Theorem 1.

Finally, that the lifetime can be uniquely limited by a possible encounter of the body with the
boundary follows by contraposition, as a positive distance allows to extend the solution for a while,
according to the previous arguments.

Remark 4. Mixing the techniques of [16] and the ones of [15], one could prove some results about the
regularity in time of the flows associated to the solutions given by Theorem 1. More precisely, consider a
solution (`, r, u) given by Theorem 1, then the corresponding fluid velocity field u is log-Lipschitz in the
x-variable; consequently there exists a unique flow map η continuous from R×F0 to F(t) such that

η(t, x) = x+

∫ t

0

u(s, η(s, x))ds.
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Moreover there exists c > 0 such that for any t, the vector field η(t, ·) lies in the Hölder space

C0,exp(−c|t|‖ω0‖L∞(F0))(F0).

If one assume that the boundaries ∂S0 and ∂Ω are Ck+1,ν , with k ∈ N and ν ∈ (0, 1), then the flow (τ, η)
are Ck from [0, T ] to SE(2) × C0,exp(−cT‖ω0‖L∞(F0))(F0). If one assume that the boundaries ∂S0 and
∂Ω are Gevrey of order M > 1, then the flow (τ, η) are Gevrey of order M + 2 from [0, T ] to SE(2) ×
C0,exp(−cT‖ω0‖L∞(F0))(F0). In particular in the case where M = 1, we see that when the boundaries are
real-analytic, then the flows (τ, η) belong to the Gevrey space G3.
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l’hydrodynamique. J. Maths Pures Appl. 12 (1933), 1–82.

[27] P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. Oxford Lecture
Series in Mathematics and its Applications 3, 1996.

[28] J. A. San Martin, V. Starovoitov, M. Tucsnak, Global weak solutions for the two-dimensional motion
of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002), no.
2, 113–147.

[29] D. Serre, Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl.
Math. 4 (1987), no. 1, 99-110.

[30] V. N. Starovoitov, Nonuniqueness of a solution to the problem on motion of a rigid body in a viscous
incompressible fluid. J. Math. Sci. 130 (2005). (4):4893–4898.

[31] T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid
system in a bounded domain. Adv. Differential Equations 8 (2003), no. 12, 1499–1532.

[32] T. Takahashi, M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite
cylinder in a viscous fluid. J. Math. Fluid Mech. 6 (2004), no. 1, 53–77.

[33] V. I. Yudovich, Non-stationary flows of an ideal incompressible fluid, Z̆. Vyčisl. Mat. i Mat. Fiz. 3
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