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Abstract

We present a framework to describe tiling of triangulated surfaces, possibly
with boundaries. The M-tiles introduced by our framework may be home-
omorphic to a disc or not, and capture both the tiles’ shape and the geo-
metrical and non-trivial topological information of the original mesh. Some
tiling algorithms using a cutting scheme are presented using this framework
to describe each intermediate state of the cutting process. In particular, we
use tiling with a unique tile homeomorphic to a disc to produce an effective
computation of the polygonal schema, and to produce a quadrangulation of
the original mesh with running time O(gn2 log n), where n is the number of
vertices of the mesh, and g the genus. We show that this algorithm produces
the minimal number m = 2g − 1 of quadrangles on a boundaryless mesh.
Finally, we give some application results and variations on the algorithms.

Keywords: Tiling framework, M-tiling, M-tile, cutting surfaces, quadran-
gulation

Résumé

Nous présentons un cadre pour décrire le pavage de surfaces triangulées,
éventuellement à bord. Les M-tuiles introduites par notre cadre peuvent
être homéomorphes ou non à un disque, et capturent à la fois la forme
des tuiles, ainsi que les informations géométriques et topologiques non tri-
viales du maillage original. Des algorithmes de pavage utilisant une approche
découpage sont présentées, nous profitons de ce cadre pour décrire chaque
étape intermédiaire du processus de découpage. En particulier, nous utilisons
un pavage par une unique tuile homéomorphe à un disque pour produire une
méthode effective du schéma poligonal, et pour introduire une quadrangula-
tion du maillage original avec une complexité en temps en O(gn2 log n), où
n est le nombre de sommets du maillage, et g le genre. Nous montrons qe
cet algorithme produit le nombre minimal m = 2g− 1 de quadrangles sur un
maillage sans bord. Enfin, nous présentons quelques résultats applicatifs et
variations sur les algorithmes.

Mots clés : Cadre de pavage, M-pavage, M-tuile, découpage de surfaces,
quadrangulation
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1 Introduction

Triangulated meshes are the most classical way to model a surface of R
3,

whether they are generated from a 3D acquisition or in an abstract way.
This kind of data structure can indeed describe 2-manifolds with or without
boundaries, and with any topological configuration.

In this work, we present a framework to describe tilings of meshes, and
intermediate data structures of the tiling processes. Tiling a surface is the
process of partitioning this surface in regions called tiles. This partitioning
may be produced by cutting the surface [10], i.e. by describing the boundaries
of the tiles, or by performing a segmentation of the surface [16], i.e. by
partitioning the surface.

Applications of such tiling are various, from Computer Graphics (Texture
Mapping) to CAD (reconstruction of parameterized surfaces) or simulation
(for instance by finite elements on quadrangulated surfaces [2]).

The tiling methods are driven by the application, and may use some
topological [18] or geometrical information [19]. They also may impose some
properties on the produced tiles, like their shape [8, 1], their topology [3] or
their semantic properties [20]. Other methods are obviously mixing several
of those caracteristics [6] to produce tilings suitable for the application.

The originality of our approach is to set up a framework to capture geo-
metrical, non-trivial topological information and tiles’ shape manipulated by
the tiling methods. In a first part, we will describe the tile and tiling frame-
work, then we will expose some algorithms based on cutting processes to pro-
duce a unique tile from any 2-manifold non homeomorphic to a sphere. Next
an algorithm to produce tiling with quadrangles will be proposed. Those
tiling methods take into account both topological and geometrical properties
of the surface, using cutting lengths as criterion. Finally, some experimental
results are presented for each algorithm, and some variations on the distance
caracterization are evoked to take into account information like the local
curvature of the surface or the application needs.

2 Cells and Tilings

2.1 Initial Mesh

Definition 1 A 2-mesh M is a 2-manifold simplicial 2-complex (with or
without boundaries). In other words M is a union of 0-simplices called ver-
tices, of 1-simplices called edges and of 2-simplices called triangles, and locally
homeomorphic to a disc or a half disc.
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If the definition of a tiling of a 2-mesh is rather straightforward, the
process we used to compute such a tiling requires the introduction of a topo-
logical framework that defines the cutting of a surface in a mathematical
sense.

2.2 Topological Framework: a Notion of 2-m-cell

It is usual in Computer Graphics to consider cells which are simplices or con-
vex polyhedrons since they have a well-known structure with faces, edges and
vertices. In this classical framework, a cell complex is a set of cells (namely
of polyhedrons) satifying two conditions: (i) any face (of any dimension) of
a cell is included in the complex and (ii) the intersection of two cells is a cell.
It follows from condition (i) that for any cell of dimension k, its sub-cells of
dimension k−1 cover its boundary. The class of cells used in this framework,
the polyedral cells, is nevertheless not sufficient for our purpose (neither are
CW-complexes [25]). We indeed need cells which are not necessarily homeo-
morphic to a disc (we do not exclude for instance cylindric cells, as described
in section 2.4) but detailing such a topological framework in this paper would
require a lot of work and is not the purpose here.

A solution could be to benefit from the theoretical framework provided
by abstract cellular complexes [17]. An abstract cellular complex is a set of
abstract elements called cells, each one having a dimension, and provided by
a relation of partial order to describe which cell is the boundary of another.
The notion of dimension becomes straightforward as well as the boundary
relation if cells are instantiated as compact connex manifolds. It means that
the framework of abstract cellular complexes allows the algorithms to deal
with compact connex manifolds (with boundaries). Conditions (i) and (ii)
must however be considered for defining the notion of m-cellular complex (m
stands for manifold) of a dimension less than two:

Definition 2 An m-cellular complex C (of dimension less than two) is a set
of m-cells with the following properties:

• (dimension condition) 2-m-cells are compact connex 2-manifolds with
boundary, 1-m-cells are simple, closed or opened curves, and 0-m-cells
are points.

• (boundary condition) The boundary of any i-m-cell should be covered
by an (i − 1)-sub-complex, 1 ≤ i ≤ 2.

• (coherence condition) The intersection of two m-cells should be an m-
cell of C.
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(a) A 2-m-cell with
one boundary
described by a
closed 1-m-cell
(there is only
one edge)

(b) A 2-m-cell with
one boundary
described by
two 1-m-cells

(c) A 2-m-cell with two bound-
aries described by three 1-m-
cells and two 0-m-cells

(d) A 2-m-cell of genus 2, with
three boundaries, four 1-m-
cells and two 0-m-cells. The
left and the top right 1-faces
do not have 0-faces. The two
bottom right 1-m-cells are nat-
urally defined by the two 0-m-
cells.

(e) A 2-m-cell of genus 2, with one boundary
described by two 1-m-cells

Figure 1: Some 2-m-cells. Their boundaries are described by a structure of
1-complexes.

The second item claims that 2-m-cells have boundaries defined by a struc-
ture of a non-empty 1-complex (Figure 1). It means that each boundary is
decomposed as an alternate sequence of 1-m-cells and 0-m-cells that we call
its edges (1-faces) and its vertices (0-faces). Generally speaking, we call faces
of an i-m-cell the (i − 1)-m-cells, included on the boundary, 1 ≤ i ≤ 2. The
body of an i-m-cell is this i-m-cell minus its boundary.

Non degenerated polyhedrons in dimension 2 are 2-m-cells. In the follow-
ing, a polygon with n edges will be called an n-polygon.

As 2-m-cells are 2-manifolds, they have their own topology. The interior
of an i-m-cell is defined as the entirety less its (i − 1)-faces.
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C M
F

F(C )

0

0

Figure 2: An M-tile described by the 2-m-cell 1(c) and an embedding F on
a 2-mesh of genus 2.

2.3 Tiles and Tilings

An M-tile is defined by embedding a 2-m-cell in a 2-mesh.

Definition 3 Let F be the set of embeddings F : C −→ M of a 2-m-cell C
in a 2-mesh M verifying the following properties:

• F is continuous.

• Let v be a vertex of C. Then F (v) is a 0-simplex of M.

• Let e be an edge of C. Then F (e) is a set of 1-simplexes of M.

• Let b be the body of C. Then F (b) is a set of 2-simplexes of M.

• An embedding is usually injective but we accept in our framework that
two vertices or two edges may have the same image: F should only be
injective on the interior of C (more precisely, we authorize vertices of
the boundary of C to collapse: two such vertices can have the same
image by F . We assume also that if two points x and y of the interior
of edges e and e′ have the same image, then F (e) = F (e′)).

F, F ′ ∈ F are said to be equivalent if and only if for any face, edge or
vertices X of C, F (X) = F ′(X). The equivalence classes of this relation are
called M-tiles. For the sake of simplicity, an M-tile is denoted by one of its
instance (C,M, F ).

An M-tile (C,M, F ) is fully described by the 2-m-cell C and the image
by F of C, its edges and vertices. Choosing some images for each vertex,
edge and 2-m-cell is however not sufficient to define an M-tile, because their
topological consistency will not be guaranted (the topological consistency is
related to the existence of such an F satisfying the conditions of Definition 3).

When C is an n-polygon, the M-tile is a standard tile. Figure 2 shows an
example of an M-tile.
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M
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F(C )
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F(C )1

F(C )2

Figure 3: A M-tiling (C,M, F ) of the 2-mesh M of Figure 2 by an m-cellular
complex with three 2-m-cells

Definition 4 A M-tiling of a 2-mesh M by an m-cellular complex C is an
equivalence class of embeddings F : C −→ M where:

• For all C 2-m-cell of C, F|C represents an M-tile.

• The restriction of F to the union of the interiors of the m-cells that
are not boundaries should be injective (covering the interior of m-cells
is thus forbidden). We assume again that if two points x and y of the
interior of edges e and e′ have the same image, then F (e) = F (e′) (this
condition avoids “T” shape junctions).

• F is surjective.

Two embeddings F and F ′ are said to be equivalent if and only if for any
i-m-cell X of the m-cellular complex C, F (X) = F ′(X).

As in the case of the M-tiles, a M-tiling is fully described by the m-cellular
complex C and the images of each m-cell of C in M.

If the 2-m-cells of C are n-polygons, the M-tiling is a standard tiling of
M. Figure 3 shows an example of a M-tiling.

2.4 Framework Justification

The M-tiles and M-tilings framework will be first used in section 3 to produce
a single tile on arbitrary boundaryless 2-meshes, then in section 4 to produce
quadrangulations.

This framework makes it possible to describe each step of the M-tiles
generation, including the final M-tiles, that are homeomorphic to a disc, as
standard tiles.

But this framework can also manipulate non-trivial M-tiles, and the in-
formation carried out by the embedding (connection between tiles on the
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(a) A pant, surface of genus 0 with
3 boundaries, each of them being
described by a unique 1-face.

(b) A decomposition of a pant by
three cylinders. Each cylinder
has two boundaries, the first one
with a unique 1-face, and the
other with two 1-faces and two
0-faces.

Figure 4: A pant and a corresponding M-tiling with three cylinders.

boundaries, and topological structure) may be used by applications to im-
prove their description and mechanism.

Colin de Verdière et al. [3] recently proposed an algorithm to decompose
a surface into pants (Figure 4(a)), i.e. into surfaces of genus zero with
three boundaries. This decomposition can be described by our framework,
representing both the decomposition and the embedding between the 2-cells
of genus zero with three boundaries and the original 2-mesh.

Using the precise description of boundaries, with 0-faces and 1-faces that
M-tiles and M-tilings propose, each pant can be decomposed into three cylin-
ders (Figure 4(b)). Each of those cylinders has two boundaries, the first one
with a unique 1-face, and the other with two 1-faces and two 0-faces. Using
an algorithm to build a tiling of 2-meshes by pants, we are able to produce
a tiling by cylinders of any surface.

This example illustrates the large flexibility of our framework, that per-
mits to describe various topological and geometrical segmentation methods,
whilst describing also intermediate steps of the generation algorithms. In the
next sections, we describe an iterative method to build a tiling of any 2-mesh
with quadrangles, using first a tiling with a single tile.

3 Tiling a Mesh with a Single Tile

Let P be an n-polygon, and M a 2-mesh. Tiling M with a single tile
T = (P,M, F ) is not completely straightforward if M is not homeomorphic
to a disc. Thus, a practical approach is based on cutting the mesh into a
disc.
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3.1 Cutting and Tiling

The computation of cuttings is the core of the tiling process provided in this
paper, thanks to the next lemma:

Lemma 1 A tiling T = (P,M, F ) of a 2-mesh M is equivalent to a set Γ
of 1-faces of the mesh, the complement Γ of Γ in M being homeomorphic to
a disc. Γ is called a cutting.

Proof Let T = (P,M, F ) be a tiling. Then images of the edges of P
provide a cutting.

Let us now consider a cutting Γ on M with Γ homeomorphic to a disc.
Tiling M by a unique tile T = (P,M, F ) can be constructed as follow:

• The image of the body of the 2-m-cell of P is defined as Γ ∪ B, where
B is the boundary of the mesh.

• The image of the vertices V of P on M are defined by the set of vertices
of Γ∪B. Using an extension by continuity of the homeomorphism from
Γ ∪ B to the disc, the images of vertices in Γ∪B are on the boundary
of the disc. They naturally define the vertices of the polygon.

• Each edge of P is also described by this homeomorphism.

The polygon generated from the cutting has at least as many vertices
as the cutting. This number can however easily be reduced by removing
the boundary of P whose image takes part in exactly two edges of Γ ∪ B
(Figure 5). According to section 3.3, this reduction is not so insignificant.

In this paper, the 0-faces of M taking part in F (V ) are called multipoints.
This definition naturally extends when F is the embedding associated to a
general M-tiling with more than one M-tile, and with non-polygonal M-tiles.

3.2 Computing a Minimal Length Cutting

Now that we know how to obtain a tile from a cutting, we introduce the
topological process for cutting a mesh into a disc.

Cutting a mesh into a disc is a topological process: the aim is to modify
both the genus and the boundary cardinality until the homeomorphic con-
dition is reached. Given a 2-mesh, there is no canonical solution for this
cutting, and topologically equivalent cuttings may be roughly different when
considered from other criterions. More particularly, if they are assessed with
respect to their length, defined as the sum of the lengths of the 1-faces con-
tained into Γ, Erickson and al. [10] showed that computing the length of the

8



FP

F

M

M

P '
'

Figure 5: An M-tile (P,M, F ) of a 2-mesh M. P is a polygon computed
using the method described in the proof of Lemma 1. The M-tile (P ′,M, F ′)
has been obtained by removing vertices of P whose images take part in
exactly two edges of Γ ∪ B.

minimum cutting of a 2-mesh is NP-hard. They also defined an effective
method, using the Dijkstra algorithm [7], to compute a good approximation
of the optimal cutting in polynomial complexity. The cutting method did
not handle the simple case of meshes homeomorphic to a sphere. Using the
2-m-cell and M-tiling structures defined in section 2, this cutting method can
be structured as an iterative algorithm that selects and cuts along a 1-path,
and relies on the definition of valid 1-paths and valid 1-loops.

Definition 5

• A 1-path of a 2-mesh M is a list of n oriented edges s0, ..., sn−1 when
for each i = {0, ..., n − 2}, the terminal vertex of si is the initial vertex
of si+1.

• A 1-cycle of a 2-mesh M is a 1-path s0, ..., sn−1 where the initial vertex
of s0 is the terminal vertex of sn−1.

• A 1-path in M is valid according to an M-tile (C,M, F ) if it is the
image of a path p : [0, 1] → C by F (it avoids crossing the image of the
boundary of C).

• A valid 1-path of (C,M, F ) between two different boundaries b1 and
b2 is a 1-path in M image of a path p : [0, 1] → C by F , with p(0) ∈ b1

and p(1) ∈ b2.
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M
b1

b2 F
l

m

n o k

C

Figure 6: An M-tile (C,M, F ) of a 2-mesh M. C is a 2-m-cell with two
1-cells b1 and b2. k is a trivial (separating) 1-loop, l is a non-valid 1-path, m
is a valid 1-path between b1 and b2, n is a valid non-trivial separating 1-loop,
and o is a non-separating 1-loop.

• A trivial 1-loop of (C,M, F ) is a 1-cycle in M image of a loop by F
and homotopic to a loop reduced to a point.

• A valid separating 1-loop (resp. non-separating 1-loop) of (C,M, F )
is a 1-cycle in M image of a loop by F that splits (resp. does not split)
C in two connected components.

Given these definitions (illustrated in Figure 6), the global cutting method
is described in Algorithm 1, and the different steps are detailed in the fol-
lowing subsections.

Data: a 2-mesh M non homeomorphic to a sphere
T = (C,M, F ) is an M-tile initialized as M;
while the genus of C is not 0 do

Find c the shortest valid non-separating 1-loop of T ;
Cut T according to c;

while the number of boundaries of C is not 1 do
Find c the shortest valid 1-path of T between two different
boundaries;
Cut T according to c;

Algorithm 1: Global algorithm

3.2.1 Finding a non-Separating 1-loop

Given an M-tile T = (C,M, F ), and a distance d on edges of M, the short-
est non-separating 1-loop is processed by first computing a list of basepoints,
starting points of the potential 1-loops, then by computing the shortest cor-
responding 1-loop.

A list of potential basepoints is first computed using a growing surface.
For this, a point p is selected from the interior of C. Triangles of the 2-mesh
are then added as a growing surface, preserving the original connectivity and
assuming that this growing surface is continually homeomorphic to a disc [14].
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p p

(a) Computation of the list of potential
points (right) using a growing surface
(left) from p.

b b
j

(b) The computation of the shortest non-
separating 1-loop (right) given a base-
point b using a growing surface (left).
j is the junction point used to com-
pute the final loop.

Figure 7: Two steps of the non-separating 1-loop computation.

At the end of this growing process, some boundaries of the resulting surface
are not boundaries of the M-tile. Corresponding paths on the original 2-
mesh M can easily be computed. The points of these paths are the potential
basepoints. In fact, a non-trivial 1-loop has to go through one of these points.

Then for each potential basepoint p, the corresponding shortest non-
separating loop is determined by growing a surface on the 2-mesh, with
respect to the 2-m-cell, starting from p (Figure 7(a)). When two boundary
parts of the growing surface join, the connected components of the comple-
ment of the growing surface is computed. If there is only one connected com-
ponent, the junction point j is included in the non-separating loop, built us-
ing the two paths from p to j according to the growing process (Figure 7(b)).
Otherwise, the growing surface joins at the junction point, and the growing
process continues.

The globally shortest non-separating loop is the shortest of all the non-
separating loops.

If no non-separating loop has been found for the first selected basepoint,
there is no non-separating loop on the M-tile. Thus the genus of the M-tile
is 0, stopping the first iterative process.

3.2.2 Cutting an M-tile

According to the definition of a valid 1-path c of (C,M, F ), there is a path
p : [0, 1] → C such that F (p) = c. Cutting through this 1-path thus consists
in explicitly defining each face of the 2-m-cell of the new M-tile. The body
of the new 2-m-cell is identified as the body of the original 2-m-cell where
p([0, 1]) has been removed. Vertices of the new 2-m-cell are defined by first
defining the pre-vertices of the new 2-m-cell as the vertices of the original
2-m-cell plus the points contained both in p([0, 1]) and in the boundary of the
2-m-cell. The vertices of the new 2-m-cell are the pre-vertices, duplicated if
they take part in p([0, 1]). The neighborhood of the twin vertices defined by
the duplication is located on every side of the cutting path. Then the edges
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Figure 8: Cutting an M-tile according to a path. Left: an M-tile (grey region)
with four edges (black lines), a cutting path (red line), and four pre-vertices
(va, vb, vc and vd). Right: the resulting M-tile with vertices va, vb, and the
new twin vertices (v′

c, v
′′
c ) and (v′

d, v
′′
d).

of the new 2-m-cell are identified as the boundaries of the body between two
vertices of the new 2-m-cell (Figure 8).

This cutting clearly defines a surjective mapping π from the new 2-m-cell
to the original 2-m-cell, with F ◦ π = Fnew, where Fnew is the embedding
associated to the new M-tile. Figure 9 shows a diagram corresponding to the
full iterative process described by Algorithm 1.

3.3 Measuring the Complexity with the Number of

Edges of the Polygon

The number of edges of the final polygon is a criterion to describe the com-
plexity of a tiling. But Algorithm 1 does not constrain this number, it only
focuses on the length of the paths, and another method has thus to be de-
veloped to manage this criterion.

The number of edges of the final polygon does not depend only on the
topology of the surface. Figure 10 illustrates non unicity of the number of
edges of a tiling. Minimizing this number guarantees that the tiling structure
only depends on the topology, the geometry of the surface only impacting on
the location of the paths. Moreover, the multiple tiling process, described in
section 4, depends on this single tiling, and the number of tiles is directly
related to the number of edges of the original cutting. Finally, a cutting
that does not consider the number of edges often produces edges with small
lengths that are not good candidates for e.g. a parameterization of the
surface, which is one of the potential applications proposed here (see 5.2).
For that reason, we are looking for the minimal number of edges of a tiling.
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C0

C1

C2

C3

C4

C5

M
F0

F1

F2

F3

F4

F5

 π 0

π 1

 π 2

 π 3

 π 4

Figure 9: Diagram of the iterative process. (C0,M, F0) is the initial M-tile.
(Ci,M, Fi) is the M-tile computed at the i-st iteration of Algorithm 1, and
πi is the surjective mapping described by the cutting of an M-tile (see 3.2.2).

Figure 10: Two available tilings of a torus. Left: tiling with a 4-polygon.
Right: tiling with a 6-polygon.

13



F(p(0))
1

F(p(1))
1

(a) Projection of a tile
(P,M, F )) on M.

(b) Projection after merging
the F (p1(0)) and F (p1(1))
vertices according to the
formal approach described
at section.

(c) Projection after merging
two other vertices.

b c

a d

(d) Projection after merging
the last vertices. The tile
is now composed of four
edges.

a
ab

d

c d

c

b

(e) Corresponding
canonical polyg-
onal schema.

Figure 11: Projection of a tile on a mesh, after merging steps according to
the formal approach described at section 3.3.1.

3.3.1 Minimal Number of Edges

The algorithm described in paragraph 3 provides a unique polygonal tile
T = (P,M, F ) from any 2-mesh, but the number of 1-faces is not constrained
by the topology. By minimizing this number, we propose recovering the
canonical polygonal schema of M, and thus to fully caracterize the topology
of the surface [13].

As a formal approach, the minimal number of 1-faces can be computed
using a non-optimal polygonal cutting, because the number of 1-faces of the
polygon can iteratively be reduced. A 1-face f1, described by a path p1 :
[0, 1] → P , where F (p1(0)) 6= F (p1(1)), is first processed. According to the
cutting process, there is a unique 1-face f2 described by a path p2 : [0, 1] → P
and having F (p1) = F (p2). Both f1 and f2 are then removed by merging
p1(0) and p1(1), assuming that other paths such that (F (p1(0)) or F (p1(1))
are terminal vertices are distorted on the 2-mesh to keep their structure
(Figure 11). Given an original 2-mesh with no boundary, this process allows
all the 0-faces of the polygon to have the same image on the 2-mesh, and no
more 1-face can be removed.

This configuration can also be obtained during the generation by mod-
ifying the 1-path selection to use an already single basepoint. Algorithm 2
describes this cutting process, and allows the computation of a single multi-
point b on the polygon:
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Data: a 2-mesh M without boundary, non homeomorphic to a sphere
T = (P,M, F ) is an M-tile initialized as M;
Find c the shortest valid non-separating 1-loop of T ;
Cut T according to c;
Find c the shortest valid 1-path of T between the two different
resulting boundaries, with p(0) = p(1) (where p = f(c));
Let b = p(0);
Cut T according to c;
while T is not homeomorphic to a disc do

Find c the shortest valid 1-path of T having p(0) = p(1) = b and
which does not cut C in two connected components;
Cut T according to c;

Algorithm 2: Cutting with a single point.

Note that this method provides a natural computation of the canoni-
cal polygonal schema 11(e), similarly to the method provided by Colin de
Verdière et al. [4] based on the computation of the shortest homotopical loop
to a given one.

Because of the large number of 1-paths going through b, some mesh mod-
ifications around b have to be applied on the original 2-mesh. A splitting
process is introduced in section 4.2, to avoid tangent paths. For surfaces
with large genus, these modifications can become consequentials.

3.3.2 Intermediate Cutting Method

An intermediate algorithm (Algorithm 3) has been designed to reduce but
not minimize the number of multipoints. It is a modified version of the
original algorithm, that minimizes the creation of multipoints during the
1-path computation process.

Data: a 2-mesh M non homeomorphic to a sphere
T = (C,M, F ) is an M-tile initialized as M;
while the genus of C is not 0 do

Find c the shortest valid non-separating 1-loop of T ;
Cut T according to c;

while the number of boundaries of C is not 1 do
Find c the shortest valid 1-path of T between two different
boundaries minimizing the creation of multipoints;
Cut T according to c;

Algorithm 3: Intermediate cutting method

The 1-path selecting process is achieved by searching for the nearest cou-
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ple regions from a set of regions defined by the set of existing multipoints
and the boundaries of C with no multipoint. If the selected regions are both
multipoints, the 1-path definition is immediate. If only one of the two re-
gions is a multipoint, a new multipoint has to be created on the other region.
Finally, if the selected regions b0 and b1 are both boundaries without mul-
tipoints, a single multipoint is created if their images on M coincides, i.e.
F (b0) = F (b1). Otherwise a multipoint is created on each boundary.

4 Tiling a Mesh with Multiple Tiles

Tiling a mesh with a single tile has numerous applications, e.g. in UV map-
ping [23], where a single map has to be defined for the whole surface, and
some examples of such cuttings will be presented in section 5. However, when
considering applications such as surface parameterization, the shape or the
number of edges of the tiles are essential criterions to describe the quality
of the tiling. This section describes a multiple tiling method, based on the
single tiling process.

4.1 From One to Several Tiles

Given a tiling T = (C,M, F ), where C is composed of a set of polygons, a
tiling T = (C ′,M, F ′) with a single polygonal tile can be easily computed
by iteratively merging the tiles of C, preserving the genus at each step. The
reverse construction, i.e. tiling with multiple polygonal tiles from a unique
tile using a cutting process, is the natural approach described in this section.

Starting from a tiling by a single tile T = (P,M, F ) of a 2-mesh M, as
computed for instance by algorithm 1, 2 or 3, Algorithm 4 generates a tiling
of M with multiple tiles:

Definition 6 A cutting 1-path of a tile T = (P,M, F ) of boundary b is a
1-path in M image of a path p : [0, 1] → P by F , with p(0) ∈ b and p(1) ∈ b,
and ∃x ∈ ]0, 1[ such as p(x) /∈ b.
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Data: a 2-mesh M without boundary, non homeomorphic to a sphere
T = (P,M, F ) is a tile computed with a method described in
section 3;
while T has to be cut do

Select a 2-m-cell C in T ;
Find a cutting 1-path c of T in C;
Cut C according to c;
Update T ;

Algorithm 4: Generic method for tiling by successive cuttings of a
single tile.

The number of tiles only depends on the number of cutting steps. How-
ever, the number of multipoints depends both on the number of multipoints
of the original single tile and the cutting steps. In fact, each cutting step of
the iterative process defined in Algorithm 4 may either keep unchanged the
number of multipoints, or increase it. If p : [0, 1] → P is the path associated
to the cutting 1-path, the evolution of the number of multipoints depends
on the location of p(0) and p(1). If F (p(0)) and F (p(1)) are multipoints,
there is no increase. On the other hand, if neither F (p(0)) nor F (p(1)) are
multipoints, and if F (p(0)) 6= F (p(1)), the cutting process introduces two
new multipoints. If only one of the two points F (p(0)) and F (p(1)) is a mul-
tipoint, or if they are both multipoints and F (p(0)) = F (p(1)), the cutting
process introduces a new multipoint.

Hence, if the number of multipoints has to be kept constant, then existing
multipoints must be connected in the process.

4.2 Tiling with Quadrangles

Algorithms defined in section 3 produce a single polygonal tile with an even
number of 1-faces. A tiling in quadrangles can now be obtained by following
generic Algorithm 5 under the condition that each cutting step preserves
next Q criterion:

Definition 7 An M-tile T verifies the Q criterion if the 2-m-cell associated
to T is an even n-polygon, with n ≥ 4. A tiling T satisfies the Q criterion if
and only if each of the tiles satisfies it.

It provides a final algorithm for computing a quadrangulation of M.
The shortest 1-path preserving the Q criterion is selected by checking

each of the potential 1-paths that preserve the Q criterion (Figure 12(a)).
For each 0-face a of a given n-polygon, each of the valid 0-faces vi is checked
by computing the shortest path between a and vi (Figure 12(b)).
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Data: a 2-mesh M without boundary, non homeomorphic to a sphere
T = (P,M, F ) is a tile computed with a method described in
section 3;
while T contains a non 4-polygon tile do

Select a non 4-polygon 2-m-cell C in T ;
Find the shortest cutting 1-path c of T in C that preserves the Q
criterion;
Cut C according to c;
Update T ;

Algorithm 5: Tiling by successive cuttings of a single tile.

7

7 8

6

(a) Left: a unsatisfactory cutting
that does not preserve the Q cri-
terion. Right: a suitable cutting.

12 12
a

v0

v1

v2
v3

(b) Example of a 12-polygon. a is
the selected 0-face, and the vi

are the potential extremities of
the cutting path preserving the
Q criterion.

Figure 12: Cutting an even polygon into two even polygons. The number of
edges is indicated in the polygons.
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(a) A hexagonal tile with
six vertices a, b, c, d, e, f

and a stuck cutting be-
tween b and e.

(b) The 2-mesh after the
unsticking process of
the cutting between b

and e.

Figure 13: Illustration of the unsticking process on a simple example: the
path b-e crossing the surface does not have boundary points, except b and e.

This cutting process can provide in some cases unsatisfying quadrangles as
illustrated by Figure 13(a). An unsticking process described in Figure 14(b)
is applied by refining the mesh around the unsatisfying boundary edges or
vertices (new vertices and edges are introduced without changing the surface).
Each boundary 0-face of a cutting path is unstuck by splitting the neighboring
0-faces (Figure 13(a)).

Erickson et al. [10] showed that the cutting produced by Algorithm 1 is
a good approximation of the minimal cutting. Using the minimal length to
produce the quadrangulation from this single tile, we provide a good approx-
imation of the minimal quadrangulation.

Proposition 1 Let M be a 2-mesh of genus g, without boundary, non home-
omorphic to a sphere, and composed of n vertices. A good approximation of
the minimal quadrangulation can be computed in O(gn2 log n) time.

Proof According to [10], cutting a mesh M of genus g with n vertices
is computed in O(gn2 log n) time. Each step of the quadrangulation of the
unique tile is then a cutting of a polygonal mesh according to the shortest
length. Assume that the polygonal tile P has m 0-faces. The shortest path
from each projection of 0-faces on M in P is computed using Dijkstra algo-
rithm which requires O(n log n) time. A cutting of a polygonal tile into two
smaller tiles is done in O(mn log n) time.

Given a polygon with m vertices, m even, we prove by induction that
the number of cuttings that produce quadrangles of this polygon is equal to
m

2
− 2, without introducing any additional vertex. Indeed, the statement is

true for m = 4. For m > 4, the quadrangles’ construction preserving the
Q criterion splits the polygon into two smaller polygons, respectively with p
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(a) A path with a boundary
0-face b.

(b) Intermediate steps of the unsticking process arround b. Each edge (except
boundary ones) containing b are iteratively split adding the bi to go round b.

Figure 14: A path (in red) on a 2-mesh (1-faces on the boundary are described
by bold lines) and the unsticking result.

vertices and q vertices. From the Q criterion, p and q are even, greater or
equal to 4, with p + q = m + 2. The statement implies that the number of

cuttings needed in the two polygons are
p

2
− 2 and

q

2
− 2. The number of

quadrangles is
p

2
− 2 +

q

2
− 2 =

m

2
− 2. The quadrangulation of a unique

tile is then in O(m2n log n) time. Because of the dependance between the
number of vertices of the initial polynom and the genus of the surface, the
global complexity of our algorithm is O(g2n log n).

4.3 Tiling with Minimal Number of Quadrangles

In [15] an algorithm to perform a tiling with 4g quadrangles of a 2-mesh M
of genus g has been described, but does not provide the minimal tiling. In
fact, it is possible with Algorithm 2 to tile a surface with a minimal number
of quadrangles directly related to the genus of the surface:

Proposition 2 Let M be a compact connex 2-mesh without boundary, with
genus g ≥ 1. M can be tiled with a minimal number of quadrangles equal to
2g − 1.

Proof Given a polygon with n vertices, n even, Proposition 1 asserts that
the number of cuttings that produce quadrangles of this polygon is equal to
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Figure 15: Single tile cutting of the mug, a boundaryless 2-mesh of genus 1.

n

2
− 2. The number of induced quadrangles is then equal to

n

2
− 1. More-

over the minimal number of edges for a quadrangle tiling is reached by the
canonical polygonal schema, with 4g vertices, on a 2-mesh of genus g [13].
Thus the minimal number of quadrangles is 2g − 1.

5 Experimental Results and Variations

A C++ implementation of the various algorithms has been performed to illus-
trate the performance and the cutting results. The manipulated structures
allows the cutting to be applied on any triangulated surface, both from real
acquisitions or artificial generated surfaces.

5.1 Experimental Results

Several 2-meshes with various genus and number of vertices have been syn-
thetized to illustrate the O(g2n log n) complexity introduced in Proposition 1.
More specifically, we first apply the algorithms on various synthetic meshes
of genus from one to four, and with various number of vertices, ranging from
768 to 53246. Table 1 summarizes the results. In practice, several improve-
ments were processed to reduce the time complexity. In particular, a modified
truncated Dijkstra algorithm is used to compute the shortest non-separating
cycles. If a non-separating cycle of length li has been found from a basepoint
i, the next non-separating cycles will be kept only if their lengths are greater
than li. During the search of the cycle, the growing process is then stopped
when the distance is greater than li. To take advantage of this truncated
Dijkstra algorithm, an efficient sorting method of the basepoints was also
used.

In this section, various figures have been added to illustrate the cutting
results. Figure 15 is the result of Algorithm 1 on a classical mesh. Figure 16
and 17 present the results on a synthetic surface of genus 2.
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Mesh Algorithm 1 Algorithm 2 Algorithm 3
g Nb of vertices Single tile Quad. Single tile Quad. Single tile Quad.

1

768 0.19 0 0.12 0 0.12 0
3072 0.99 0.03 1.04 0.02 1.04 0.02
12288 11.35 0.32 12 0.32 11.98 0.31
49152 154.99 7.25 169.6 6.89 168.43 6.35

2

830 0.26 0.07 0.16 0.03 0.27 0.03
3326 2.41 0.42 1.6 0.18 2.55 0.24
13310 31.71 3.86 19.51 1.81 32.96 2.38
53246 445.99 70.11 299.78 34.82 499 50.7

3
1724 0.89 0.35 0.55 0.2 0.96 0.2
6908 7.83 3.04 4.22 1.39 8.63 1.56
27644 83.9 32.98 47.51 13.19 96.84 16.54

4
2202 1.55 0.86 1.22 0.79 1.68 0.54
8826 12.8 7.15 7.8 4.13 14.59 4.09
35322 137.84 78.82 91.43 50.88 166.2 44.63

Table 1: Computation times (in sec) of Algorithms 1, 2 and 3 for different
surfaces, varying by their genus and the number of vertices. The single tile
and quadrangulation are processed for each Algorithm.

(a) Tiling with a single tile
using Algorithm 1; 14-
polygon with 4 multi-
points. Length of the
boundaries: 19.4512 u.

(b) Intermediate tiling
with a single tile
using Algorithm 3;
10-polygon with 2
multipoints. Length
of the boundaries:
22.9652 u.

(c) Minimal tiling with a
single tile using Algo-
rithm 2; 14-polygon
with 1 multipoint.
Length of the bound-
aries: 31.7371 u.

Figure 16: Single tile cuttings of a 2-mesh of genus 2, without boundaries
(830 vertices, 1664 triangles).
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(a) Quadrangulation
using Algorithm 5
(Figure 16(a)) with
Algorithm 1; 6 quad-
rangles. Length of the
boundaries: 42.8535 u.

(b) Intermediate quad-
rangulation using
Algorithm 5 (Fig-
ure 16(b)) with
Algorithm 3; 4 quad-
rangles. Length of the
boundaries: 42.9799 u.

(c) Minimal quadrangula-
tion using Algorithm 5
(Figure 16(c)) with
Algorithm 2; 3 quad-
rangles. Length of the
boundaries: 56.0355 u.

Figure 17: Quadrangulations of a 2-mesh of genus 2, without boundaries
(830 vertices, 1664 triangles).

Processing on real meshes confirms that the different methods are not
equivalent. We saw in section 3.3.1 that Algorithm 2 produces a cutting
with a minimal number of edges, then produces a minimal number of quad-
rangles in the final cut. But the cutting with three quadrangles produced
with this method on a surface of genus 2 (Figure 17(c)) has several particular
properties: high distorsion of the quadrangles, acute angles, lengthy bound-
aries (explained in an arbitrary unit u defined by the scale of the object),
etc. Thus, for the considered application, the algorithm selection will be
done according to the specific needs.

5.2 Parameterization

Surface parameterization consists in mapping a surface to a given domain,
which can be a sphere or more often a subset of the plane.

This process is used in numerous applications from texture mapping to
surface extrapolation, remeshing or geometric morphing. Parameterization
methods are spread into two classes of algorithms: the fixed-border and the
free-border methods [12].

Free border parameterizations produce mappings with good properties
with respect to specific applications, e.g. conformal mapping for UV-mapping [21].
Parametrization provides in practice a pair of coordinates usually denoted
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(a) Surface parameterization on a
unique M-tile (Figure 16(a)) us-
ing the ABF method.

(b) Texture mapping using the pa-
rameterization 18(a).

Figure 18: Surface parameterization and texture mapping of a unique M-tile
(Figure 16(a)) using the ABF method.

(u, v) for any vertex of the mesh. However it must start from a decompo-
sition of the mesh in one or several tiles depending on the purpose of the
user. Two of these methods, Angle Based Flattening (ABF) [22] and Circle
Packing [5], have been applied on the unique tiles produced in section 3, and
Figure 18 illustrates the results for the ABF algorithm.

Fixed border parameterizations, described in [12], allow the boundary of
the planar mesh to be constrained. Figure 19 shows an example of such a
parameterization using the Discrete Conformal Map [9].

A natural application of these parameterization methods is surface recon-
struction [11] since the domain of parameters used in CAD surfaces is usually
fixed to the square [0; 1] × [0; 1]. It follows that by applying a parameteri-
zation step to a quadrangle, we obtain the pair of parameters of each vertex
which can be afterwards used in a fitting step [24].

The patches produced by the Algorithm 5 then allow the reconstruction of
the whole surface by taking into account the constraints of junctions between
the patches, expressing them on the control points, and by minimizing the
differences between the vertices and the points.

5.3 Using non-Euclidean Distances

The tiling algorithms for cutting a 2-mesh in a single tile (Algorithms 1, 2
and 3) or in a quadrangle (Algorithm 5) all use the Dijkstra algorithm to
compute the shortest paths according to the geodesic distance. Thus the
only requirement to compute these cuttings is a non-negative cost function
on the edges, seen as a pseudo-distance d (section 3.2.1).
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Figure 19: Parameterization of a quadrangle from Figure 17(a) using the
Discreate Conformal Map method.

Because of the standard embedding of the surface on R
3, the obvious cost

function for edges is the Euclidean distance dE between two vertices of an
edge in R

3 (Figure 20(a)). This distance is a good generic method, but other
choices, guided by application, are possible.

One of the approaches to define a new distance for each edge is to mod-
ify the Euclidean distance using a multiplicative coefficient for each edge:
dm(e) = dE(e)m(e), for each edge e of M. The smallest is m(e), the most
e will be a favored edge. This mapping of multiplicative coefficients can be
extracted from many information sets.

In a UV mapping application, this mapping might be drawn on the mesh
by the computer graphics designer to optimize the cutting according to know-
how, or automatically computed according to the camera location. This
manual map thus describes the areas wherein the cuttings are suitable or
not.

An automatic method can also be used to generate this mapping, cutting
along the edges with higher local curvature. Crossing over flat parts of the
mesh is then avoided. For a given edge e, let α(e) ∈ [−π, π] be the angle
between the normals of the two triangles containing e. If α(e) = 0, e takes
part in a flat area, and m(e) should reach the maximum. Otherwise, the
highest is |α(e)|, the smallest dm should be. Thus, m(e) = m′(α(e)) may
be defined by an increasing function for α(e) in [−π, 0] and by a decreasing
function for α(e) in [0, π].

Let c ∈ [0, 1], we define dm,c(e) = dE(e)(1 − c
|α(e)|

π
). This peacewise

linear multiplicative function has the desired properties, and its variation on
the Euclidean distance is driven by the parameter c: the high c is, the more
the curvature is taken into account. For example, Paget used in [21] such
a modified distance, but did integrate their distance on a cutting algorithm
with non optimal use of their distance and the topological properties, as we
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(a) Tiling in a single tile
using the Euclidean
distance.

(b) Tiling in a single tile
using the local curva-
ture information with
the modified distance
dm,0.6.

Figure 20: Tiling in a single tile of a 2-mesh of genus 4 with 1370 vertices.

propose here. Figure 20(b) illustrates the cutting results driven by this new
distance. It produces more intuitively cuttings on non-smooth surfaces.

6 Conclusion and Future Work

We have developed the M-tiling concept, a global framework for surface tiling,
and proposed several algorithms, handling both geometrical and topological
properties. This framework allows the manipulation of non-trivial tiles, and
non-trivial junctions between tiles, using the precise description of bound-
aries, given by 0-faces and 1-faces. An existing cutting method in a single tile
has been described using this framework, producing tiles with short-length
boundaries. Some extensions have been proposed to take into account the
number of points of the resulting polygonal tile. Then we described a method
to produce quadrangles using the single tile cutting, and finally, some exper-
imental results were presented and we discussed some potential extensions of
the algorithms.

The algorithms that we have described in this article focus on the length
of the tiles’ boundaries, and on the number of vertices of the polygons. Since
we shed light on potential applications in parameterization, and since this
domain has numerous applications in surface reconstruction or texture map-
ping, our first further improvements will concentrate on this field. The con-
straints of length and number of vertices introduced in this article are indeed
not sufficient in the case of complex surfaces. Thus, we aim at computing
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as regular as possible quadrangles to make the the use of Bézier patches eas-
ier. By regular, we mean as less distorsion as possible. This will imply an
additional constraint on the cutting process, and we think to extend our al-
gorithms for pants [4] or limb tiles [20]. Since the framework we proposed is
generic, it could be also used to provide uniform descriptions of segmentation,
cutting and tiling results, as well as intermediate steps of the corresponding
algorithms. The improvements we will propose thus only need to redefine the
algorithms in this framework, e.g. building an effective method to cut pants
(section 2.4) that takes advantage of the precise description of boundaries.
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