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Université Libanaise, Faculté des Sciences Section (1)
Hadath-Beyrouth

Abstract

The generating function method that we had developing has various applications in physics and
not only interress undergraduate students but also physicists. We solve simply difficult problems
or unsolved commonly used in quantum, nuclear and group theory textbooks. We find simply: the
generating function of the harmonic oscillator, the Feynman propagators of the oscillator and the
oscillator in uniform magnetic field. We derive the invariants of SU(2) and the expressions of 3-j
,0-] symbols. We find also the octonions or Hurwitz quadratic transformations. We show that the
cross-product exist only in E; and E;. We determine the {p} representation of hydrogen atom in
three and n-dimensions. We generalize the Cramer's rule for the calculation of the rotational
spectrum of the nucleus. We find the expression of the Hamiltonian in terms of quasi-bosons for
study the collective vibration. We determine the basis and the expressions of 3-j symbols of SU
(3) and SU(n).We find the Schrédinger equation from Hamilton-Jacobi formalism. We present
these applications in independent chapters.

Résumé

La méthode de la fonction génératrice que nous développons a beaucoup des applications en
physique et qui intéressent non seulement les étudiants de la licence mais aussi les physiciens.
Nous résolvons simplement des problémes difficiles ou non résolus en physique quantiques ,
nucléaire et la théorie des groups. Nous trouvons simplement : la fonction génératrice 1’oscillateur
harmonique, les propagateurs de Feynman de 1’oscillateur et 1’oscillateur dans un champ
uniforme. Nous dérivons facilement les invariants et I’expression des symboles 3-j , 6-j de
SU(2). Nous trouvons aussi les transformations de Hurwitz. Nous montrons que le produit
vectoriel existe seulement dans E; et E;. Nous déterminons la représentation {p} de I’atome
d’hydrogéne dans trois et n-dimensions. Nous généralisons la régle de Cramer pour 1’étude de
mouvement rotationnel du noyau. Nous trouvons I’Hamiltonien en fonction des quasibosons pour
I’étude de vibration du noyau. Nous déterminons la représentation et les expressions des
symboles 3-j des groupes SU(3) et SU(n). Nous dérivons aussi I’équation de Schrodinger du
formalisme de Hamilton-Jacobi. Nous présentons ces applications dans des chapitres
indépendants.



Introduction

Quantum, nuclear and groups theories constitutes the background of any physician but
there are still many problems unresolved or some of them resolved by difficult methods
for undergraduates [1-9]. The generating function method, (GFM), that we develop
solves some of these problems in a simple and fits naturally in these courses. But we find
to make our presentation more clear and useful for students in mathematics and physics is
to make a quick historical review of analytical and quantum mechanics.

1. A brief review of analytical mechanics and quantum mechanics

We can represent the study of mechanics by an astronaut in space who looks at a
pedestrian moving on a road. From a distance, he sees the movement is linear or
curvilinear, but when he approaches he finds that the motion is zigzag and see a random
stochastic, and if it approaches more he sees only its form (eyes: spin, ..), and so on.

1.1 The first case: In the first case the equation of the trajectory is determined by
Newton formula. But we know that classical mechanics has the starting point the meeting
of a very rich Tycho Brahe passion for astrophysics and a priest out of the church because
he doing mathematics during the confessions. They worked together until the death of
Tycho Brahe and the results were Kepler's laws and the death of Kepler poverty.

Then Galileo, a mathematics professor, loved dancing and had success. An evening in a
dancing room a breeze has led Chandeliers to a pendulum motion for a very long time.
This was the origin of his discovery of inertial frame and the beginning of his research.

Finally Newton introduced the acceleration and found the equation of the trajectory

F = m¥. Undoubtedly Newton breakthrough the icy ocean of knowledge and allowed
other scientists to swim in it.

The beginning of analytic mechanic [10] was with Lagrange. In France Lagrange (well
respected by Napoleon) generalized Newton's formula on a variety by introducing the
Lagrangian L =T - V = (kinetic energy - potential). And in the same time in Russia
Euler © developed the calculus of variations [11] generalizing Fermat's principle of least
time. After a time, Hamilton starting from Euler‘s variation calculus and Lagrange

function, he introduced the action (S), § = _J:_: Ldt , the principle of least action and

simply deduced the Lagrange’s equations. He also introduced a new function, the
Hamiltonian H (H =T + V) and found the canonical equations. He also discovered the
quaternion and then generalized by Cayley and Grave to octonions, non associative
algebra [12-13], which is very useful in mathematical physics. Hamilton's work was
complemented by Jacobi and finds a new equation, the Hamilton-Jacobi equation.

But this analytical mechanics has led to the fundamental concepts of the physical
system are the concepts of state and the dynamic variables: coordinates of the particles
(¥}, momentum (&), the components of orbital angular momentum (L) and energy (E).

Among the most important applications of mechanics are the harmonic oscillator,
hydrogen atom and gravitation. But it is also important to note that the equation of the
hydrogen atom or gravitation transformed into an equation of the harmonic oscillator to
be resolved.



1.2 The second case: The second case represents the latest approach to quantum
mechanics or "the Lagrangian quantum theory" and it is the path integral introduced by
Dirac and developed by Feynman [14-16]. But the methods of calculations of Feynman’s
propagators are beyond the undergraduate level.

It is also very important to summarize the quantum Hamiltonians [1-7] approaches and
the general formalism of Dirac.
We know that Hamiltonian quantum mechanics originates from a true story:

On a sunny day in Geneva (1885) had escaped from a seller of balloons filled with
hydrogen a number of them flew in the sky and in the night he found an emission of
radiation picked up balloons and after that a Geneva newspaper published the
wavelengths of radiation and then a secondary school teacher found the series known by
his name, the Balmer series.

We must not forget that the problem of black body radiation (stove) was the basis for
the introduction of light quanta by Planck, Einstein and Bohr and was also very important
for the development of quantum mechanics

After much research developed two approaches are equivalent:
The matrix mechanics of Heisenberg and Schrédinger's wave mechanics. The first
formulation requires appearing in any physical theory only physically observable
quantities therefore the concept of the electronic orbit is unfounded at the microscopic
level. But the second has its origin in the work of L. de Broglie who postulated that
wave-particle duality, already predicted by Hamilton, is a general property of
microscopic objects.
However, Schrodinger generalizes this notion of wave field and discovered the equation

of propagation of the wave function, H = {& [:Z;i], and a simple rule of correspondence
for deriving this fundamental equation, ;5=% [:—;]

Schrodinger also showed the equivalence of two methods, but Dirac has established
the general formalism of quantum theory.

Dirac observed two weeks after reading the work of Heisenberg that the coordinates of
the particles and impulses are observable but do not commute. Which implies from the
mathematical point of view we need two wave functions: the first is function of
coordinated and the second of momentum and are deduced from each other by means of
Fourier transformation.

Because the coordinates are hermitian operators led Dirac to introduce the state function
in quantum and the discovery of the delta function that bears his name (Dirac delta
function) and a new formulation of quantum mechanics. In addition he introduced the
ladders, or bosons, operators (&~ .@) for the resolution of the harmonic oscillator, which
play a fundamental role in physics.

Starting from the evolution operator & = eup [(—1I(t — t,)H /)], Heisenberg too,
found that is called the Heisenberg equation of motion.

1.3 The third case: The third cases are the study of elementary particles [15], but we are
interested only in those lectures by the unitary groups which are very important for the
study of rotational invariance and the classification of elementary particles, SU (3).



2. The Generating function and the unsolved problems or solved with Difficult
methods

I observed that the generating function of the harmonic oscillator with complex
parameter G(X, z) [8,17],can be regarded as kernel function with Gaussian measure for
integration, has never been used and may be generalized to simplify the resolution or to
solve many important problems in quantum , nuclear and group theory include:
1. A simple derivation of the generating function of the harmonic oscillator [6].
2. a- Schwinger [18-22] developed a method based on the Heisenberg equations of

motion for calculating the Feynman propagator <(x, t)| exp[—(i/h)H(t—t, )]| X, ,t0> .

b- Schwinger [23-25] also start in his famous study “on angular momentum” to
search operators in terms of bosons operators which generalizes the orbital
angular momentum (L] = (a™)(&F,)(a) took (J) = (a™}(F,,, ) (a),

with (%) and [E.l:} are the Pauli matrices for spin 1 and spin Y.

Bargmann study the Fock space and use it’s isomorphism with the harmonic oscillator to
study the Rotation groups, following Schwinger treatment.
But all these works are difficult to be followed by undergraduate student.
3. Connecting the equation of hydrogen atom and harmonic oscillator was performed
using the quadratic transformations, (Levy-Civita, Kustaanheimo-steifel ,...)[26-29].
Kibler and (al.) have studied these transformations and have made several useful
applications in physics [30-31]. But the momentum representation of hydrogen atom is
not resolved using the Fourier transform except for simple cases [1-7, 32-37].
4. The development of techniques for operators of fermions and the Hamiltonian in
terms of quasibosons operators proved particularly effective to study the collective
Hamiltonian [38-40] and transition operators of even-even nuclei. Two development
methods were used: first the Belyev and al. and the second is the Marumori and al.
unfortunately these developments converge slowly when they converge, and no longer
respect the Pauli principle when they are trunked.
5. The known generalization of the Euler’s angles to classical groups is inconvenient

[41-43] so we must seek a new parameterization.
6- Schwinger's method for the study of angular momentum, known boson method has
been generalized by several authors [44-46] to study the classical groups and in particular
the unitary groups. But the study of unitary groups is facing a major challenge for the
explicit determination of the basis of representations of SU (n) for n> 3. In addition there
are no simple formulas for 3-j symbols of SU (3) and the calculation become intractable
for > 3.

3. The generating function method and some of it is applications

We will present our works on these subjects in a way as simple as possible in seven
chapters and appendix but prerequisites the standard graduate courses.
And we give a simple diagram for the connection between the various applications.

In the first chapter of these lectures we make a quick review of the harmonic oscillator
and we find a new elementary and interesting method for the derivation of the generating
function G(x, z). It has been known that the generating function with complex parameters
z can be written which is the sum of the product of the basis of the oscillator {i4,} and the



basis of the analytic Hilbert space or Fock space F= {z" ;’{ﬂ}, z € €, with du (z) Is the
Gaussian measure. Using the generating function and the orthogonality of Fock space we
calculate simply the normalization of the delta function, the Feynman propagators of the
oscillator and the charged harmonic oscillator in uniform magnetic field [16-22].

In chapter two [47-53] we start from Schwinger’s generating function of D-Wigner
matrix elements and the Fock space for simple treatment of angular momentum. We have
found a simple method to study and to simplifies the calculation of 3n-j symbols (n >2).

We find also two important observations: first we find that the coordinates (X, y, z)
may be written in terms of the SU(2) matrix elements as quadratic form and thereby
calculate the representation {p} of hydrogen.

Second we note that the invariants of 3-j symbols can be calculated in terms of the space
of parameter of the generating functions which will allow us to find the analytic
expression of 3-j symbols of SU (3) and SU (n) groups.

We present in the third chapter the well known problem of sums squares [12-13, 28]
which has-been the origin of the non-associative algebras: the quaternion, the Octonions.
We show a recurrence method which gives all Octonions quadratic transformations
(OQT), or Hurwitz transformations [54], and we show the connection of hydrogen and
oscillators in the general case. We find the relationship between the Pauli, Dirac matrices
and its generalization and the generating functions of Gegenbaeur polynomials.This
generalization leads to a new algebra different from Cayley-Dixon algebra.

The relationship between the inertia tensor and the octonions algebra was emphasized
for the first time in our paper [55]. And we also show by means of the tensor of inertia
and Hurwitz's theorem that the cross-products can bee defined only in Euclidian spaces of
three and seven dimensions [56-57].

The quadratic transformations that we have derived from the theory of angular
momentum are related to OQT allowed us to find the momentum representation of the
hydrogen atom [58-65] in the case of two and three dimensions. The general case N>3
may be done using generating function and the Hankel’s integral of Bessel functions and
we determine the wave function in momentum space with the exact phase factor.

In chapter forth we study collective motions using the Hartree-Fock variation method.
In this method we approximate the ground state of the system by a Slater determinant

|® ;) constructed from the states of nucleons. This wave function is not function of

angular momentum, and the calculation of rotational energy can be done by using the
projection operator [66-78]. But the calculation of rotations spectrum is very long. We
have generalized the Cramer’s rule and so the calculations can be carried out simply by
the Gauss-Jacobi method we derive also the Thouless function [78].

To study collective motions it is important to consider the residual interactions [38].
And the introduction of random phase approximation theory and more generally the
quasibosons developments aim the study of these interactions. We find the generating
function as expansion as product of a Fock space and Hartree-Fock basis. Using the
generating function method we determine the expression of the Hamiltonian Hy, in terms
of quasibosons operators. In many important papers we find that H, was used to study the



vibrations motion of the nucleus, e.g. [79-81]. The great utility of the GFM [82-89]
encourages me after retirement (2005) to expand and develop this method.

In chapter five we generalize the Euler angles for the classical groups. We find for
unitary groups the measure of integration which is the measure of Fock space. To
determine the 3-j symbols of SU (3) we construct the generating function using the
Schwinger method of coupling then we find also a new expression of these symbols in
the case of multiplicity free [43,90-107].

In chapter six we treat the difficult problems with the help of our method and we find
the basis of representations of unitary groups and its 3-j symbols with multiplicity [108-
120]. The objective of this chapter is the graduate students and physicists but we need in
all our works only the well known Gaussian integrals.

In the annex we treat the derivation of classical relativity and Schrodinger equation
using Hamilton and Hamilton-Jacobi formalisms.

The presentation given in these lectures is simple enough to be accessible to
undergraduate students and can serve as a working tool for physicists. And I limit myself
to simple parts of my works that do not require much calculation over each chapter can
be read independently of the others.

* Euler was the son of a Swiss baker and was sent to school early. After a time he asked his teacher to write
a set of numbers and he gives the product directly. The teacher was shocked and at three and half (AM) of
the morning he spent at the bakery telling the father that his son is a genius and he is incapable of educated
the child. He proposed to send the son to be educated by the family of the mathematicians Bernoulli.



The following diagram describe the connection
Between the various applications

Harmonic oscillator
(Generating function)

l

Fock space or
Fock-Bargmann space

Generating function and Feynman
propagators of the harmonic oscillator

On the collective motion of the }
nucleus )

Angular momentum
and Fock space

!

6}, 9, ... Symbols

for SU(2 :
@) Octonions
M algebra
Euler angles, Generating function
and Wigner’s Symbols for SU (3)
multiplicity free l
Cross product in
l n-dimensions
Gel’fand basis of SU(n) and the Momentum representation of
Wigner’s coefficients with multiplicity Hydrogen atom
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*(Generating function method = Generating function + Fock space)
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Chapter One

Generating function of Harmonic oscillator,
Fock space and Feynman propagators

1. Introduction

The harmonic oscillator plays a fundamental role in physics [1-7] and the solution of
Schrodinger equation is well known to students. And as we have already written that
Dirac determines the state of the quantum system and introduced the delta function.
Furthermore, Dirac for solving the equation of harmonic oscillator start from the analogy
between the form of the Hamiltonian of the harmonic oscillator and the product of a
complex number and its complex conjugate and then he introduce the raising and
lowering operators and found the states the oscillator with the new notations.

We know also from the standard quantum mechanics textbooks there are many
important problems [17-22] with resolutions exceed the level of undergraduate’s students
for example: the generating function, the normalization of the delta function, the
Feynman propagators etc...

In this chapter we present a new simple method, closely related to Dirac notations, for
the determination of the generating function. And using this generating function and the
Fock space we determine by an elementary calculation the normalization of Dirac delta
function and the Feynman propagator of harmonic oscillator [18-22].

Then we review the resolution of two-dimensional isotropic charged harmonic
oscillator in uniform magnetic field and after that we calculate the Feynman propagator
in this case.

2. The Harmonic oscillator and
Dirac transformations

In this part we present a brief review of the harmonic oscillator then Dirac notations of
quantum mechanic and Dirac transformation [6].

2.1 The Schrodinger basis of harmonic oscillator
The Schrodinger equation of the harmonic oscillator in one dimension is:

Hy(x) = Ey(x) 2.1)
And H= 2i( p..+m’o’x?) [x,p, ] =ih 2.2)
m

10



Put x=4h/(mw)q, (2.3)

we obtain H=ho(p’ +q°) 2.4)
The solution of Schrodinger equation is
Hu,(q)=Eu,(g)andE, =hw(n+(1/2)). (2.5)
g
With  u,(q)=(x2"nl) 7e 7 H,(q) And u,(x)=((m@)/h)""u,(q) (2.6)

H,(g) is the Hermite polynomial with
H,(-q)=(-1)"H,(q) and u,(q) = (=1)"u,(-q). (2.7)

The generating function is given by [1]:
o ZI'I
G(z,q) = — 2.8
9=, \/Eun((I) (2.8)

2.2 Dirac notations in quantum mechanic
I want to do only a simplistic explanation of Dirac transformation. We know from the
course of linear algebra that any Hilbert space with a basis ;] has a dual space

E; ={f1with fr [f} = [f, f}, and (f,f;) is the scalar product.

We can make a change in the notations by putting:

[f)=1 fil= 1 (2.9)
If |q> is the continuous eigenfunctions of the operator ¢
We write: dlq) =dlq)

The expression of the unitary operator is

I=[|q)dq(q| (2.10)
Similarly, in the Hilbert space the inner product of two functions f and g is then:
(f:2)={718)=(f[la)dala] )

— @.11)
= [(l9)dala]2) =[ 7@ (9)dq

For this expression is valid whatever f and g we can then deduce the famous Dirac's
transformation:

(flla)=r@). {q]g)=2(q) (2.12)

11



2.3 Dirac transformation
1- By definition the Dirac transformation is:

(q|:u, > u,(q)={q|n)

and <6]|f>:f(¢]),
2-The momentum p = —’;—E_ has the eigenfunctions | =
And [lp = dp = p| =

The Dirac transformation from the representation q to p is given by:

% ple m= J = plg = dg = qle =

=lgg iR

EY

L

With = plg ==

.21

And (qlalf)=af (@) <q|p|f>———f(q)

3. The Harmonic oscillator in Dirac notations
and the generating function

3.1 The basis of harmonic oscillator in Dirac notations
1 d 1 d
Let a =—— +_ , a+ _ —_—
ﬁ(q dq) ﬁ(q dq)
we find [a,a”]1=1, [a,a]l=0, [a",a"]=0

We derive from the above expressions a very useful formula:

af (a")|0) = af (“ )|0>

And H= ha)(NJré), N =aa"

In Dirac notations the basis of the harmonic oscillator becomes

n)="=10) - {alm) =, (@)

With (m | n) = and |0> is the vacuum state.

m,n

The energy is given by:  E, = fa(n + %}

And the expressions of the unitary operator and the generating functions are:

f=Z|m w2l

Gzg)=Y. Zf;u,xq) = (gle* |0)

12

(2.13)

(2.14)

3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)



3.2 The generating function of the harmonic oscillator

We will find the expression of the generating function by a new simple method
different from the other methods [1,6] and closely related to Dirac Ladder operators.
Using Dirac transformation and (2.14) we find:

0) =%<q+diq>6<z,q) 3.7)

<q|aeza+

Using also (3.3) we find: <q|aez“+ 0) =2zG(z,q)

By comparison of the above expressions we find:

diG(z,q) — (V22 )G(z.q) (3.8)
q

The solution of this equation is:
2
G(z.q) =cexpl(V2gz =) + 92} (3.9

To determine ¢(z) we use the creation operator, we find:

+ ] d 8
ae™ |0)=—=(qg——)G(z,q9) =—0G(z, 3.10
(g >\/§(q g O &0 =500 (3.10)
Using (2.13) and (3.3) we find:
¢ (2)=-z
After solving this equation we determine the generating function of the oscillator

2 2

G(z.q) =cexpiv2gz ==

1

For t =0 we have G(0,q) = <q|0> =u,(q)and it follows that:c =7 *
So we finally get

n 1 2 2
o Z - zZ
Gzq)=), Fu@=n exp{~/2¢z —"7 -5 (.11

4. The Fock space

In the expression of the generating function we note that the functions ¢, (z)

n

z

(Pn(Z) = \/;

Constitute a basis of analytic Hilbert space that is known by Fock- Bargmann space {F}.

(4.1)

And  (g,|0,) =[0G, @)du(z) = || %ﬁdﬂ() =35, (4.2)

13



du(z) Is the cylindrical measure or Gaussian measure:

du(z) = e D dxdy ,Z=X+1y (4.3)
T
we have also
f(2)= j f(z")e”du(z'") and e = j e“e™du(z) (4.4)

1-We observe also that the images of any wave function, ‘¥, (x)and any operator A

of the space {H}, a function f(z) and an operator A(z) of {F} with:
Af(z) = ['AF(x)! Kx2)d: and Fp(x) = [(Af(z)) ¢, 2)ydu(z) (4.5)
We are dealing with a transformation and a problem in the oscillator basis can be

transformed into a problem in the Fock space of which the resolution is simpler.
2- The generating function |z> is the well known coherent state with:

z)=e]0),  (2]z)=€"
alz)=zz)
And G(z,9)={q|z) (4.6)
The unitary operator is:
1= Z|n><n| = J.|Z>d],l(Z)<Z| 4.7)

3- The transformation from the representation {g} to the representation of the

Harmonic oscillator is:
(a]=[{g]2)dn(=)z| = [ G(z.)dn(=)z| (4.8)

4- The correspondence between the harmonic oscillator and Fock space may be deduced
from the relation (3.3):
a” >z, a—>0o/(%k) 4.9)
The generators of unitary group may be written in terms of raising and lowering
operators of the harmonic oscillator [8-9] therefore we can write these generators in terms
of the variables of Fock space.

5. The Dirac delta function and the
normalization of the free wave

We want to determine the expression <q'| q> using the generating function of the

harmonic oscillator and the orthogonality of the basis of Fock space.
We write:

(a'la)={a'ltla) = 2, _u (@ (q) =2, u(g) (S, ) xu,(q)

14



Using (4.2) and (3.11) we find:
(a'9) = [ G(z.4"G (= 9)du(z) (5.1)

By replacing G(z,q') and G (z,q) by the expression (3.7) we obtain

] 12 2 =2 2
(da) == [exol-* ST 2z g (5.2)

the arrangement of this expression gives

iy 1 P N2 S
<q|q>—ﬂ\/;e><p( P q')’ [exp(I-2(x L @ra) 1++/2iy(q — ¢"))dxdy

using the change of variables and performing the integration we find that

1 1 _ ,
(@' 4) ==—exp(~=(q—4')) [ exp(+ik(q - ")) dk (5.3)
2r 4
Using the Gauss integral we find that
+oc ] +oc 1 ) ' '
[(lq)da'= == [expl-—(q—¢')’ +ik(q—q")q'dk = 1 (5.4)
i 2r =, 4

But |q> and |q'> are eigenfunctions of the operator ¢ then:

(¢'\ala)=dalq'|a) = a'(a'| ) and (¢~q')q|a)=0

it follows that:
1
exp(— (¢~ 7)) q'|9)={q'|a)

Therefore

+oc

[(a'la)dq'= iLexp[+ik(q —q"Mq'dk = 1 (5.5)

—oC

if we use in (3.3) the free wave Ne'”™ we find from the expression (5.5) the normalization

of the wave function of free particle:N = //+/2n
Finally we write

1 e o
(a'la)=0(g-g"=—_[ " dkand[ 54~ q"dg'=1 (5.6)

We find in a simple and coherent way the Dirac delta function. We deduce also from
(5.1) that the delta function is an even function and we obtain the normalization of the
wave function of free particle without the help of distribution theory [6].

6. The Feynman propagator of the harmonic oscillator
The Feynman propagator of the oscillator was determined by several methods

The first one is the Feynman path integral, the second is the Schwinger method of Green
function, the third is the algebraic method and finally by a direct calculation using the

15



Mehler formula [18-19]. All these methods are difficult for undergraduates and all the
text books gives only the final result. In this section we propose a simple and elementary
method for the calculation of this propagator.

The Feynman propagator of the oscillator is:

i.H(t*'fo) *L-H(t*tu)

K(xt),(x't)))= <x|ei” x'> = <x|e h I| x'>
— e—i(u(t-t(,)/2 an)e—inw(t-to)un (xy) (61)

From the orthogonality of Fock space and (4.2) we deduce that:

1/2
K((x, t), (x’,t() )) — (%wj e—iw(t—ta)/ZIG(e-i(U(t-t,,)/ZZ, q)G(e-iw(t-ta)/2Z,q')d/,l(z) (62)

By replacing the expressions under the integral by (2.14) anda = o(t —¢,) .

We write:
2 12

1/2 a =2 2
mw —ia/2 q +q 5 = . Z°+z" .,
e exp([-———+e ?(zg+2zq')W2 - e""“ldu(z
( ¢ ] f (=" (29 +z2q') 3 ldp(z)

After arrangement we find that:

K((x.0).(x".ty)) =

1/2
= i(m_a)j e’ exp[‘;[(qz +q" Ycosa —2xx']|x E, x E,
T\ 7h 2sina
With E =] exp[—(2¢ 7 cos ) [(x - */Ea (g +q") 1dx
2 4cos—
S a V2 ,
and E, = [expl~(2ie 7 sin (v +—— (g +¢)" 1y
4sin—
2
But
,[g 3 —[g . : 1
2e ? cosg=(1+e”°‘) , 2ie ? sinﬁ:(l—e”“) ande ™'’ = —
2 2 e+1a

we have also

g=+(mo)/nxand [ Ve dz = \ﬁ with Re (a)>0
» »

Using the above expressions and performing the integration after change of variables we
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Find that:

;XEIXEZZTC

’e‘HQ

Finally we obtain the expression of Feynman propagator:

, _ maw i 2 2 3 .
K((q.0).(q ,to))—,/hmsinaeXp[2Sina[(q +q'" )cosa —2qq']] (6.3)

Consequently we do not encounter the difficulties of the method proposed by Holstein
[20] which adopted by all the authors [21-22] and especially the standard books. The
same calculation can be used with the generating function to calculate the propagator of
the cylindrical basis.

Our method may be applied to the calculation of the partition function and other
Feynman propagators [4-5]. We can also do other calculations with the oscillator
representation using the expression (4.8) and Schwinger techniques [23].

: With [l+cosa|>0
2isino

7. The Feynman propagator of charged harmonic
oscillator in uniform magnetic field

7.1 Isotropic charged harmonic oscillator
Considering an isotropic charged harmonic oscillator with electric charge q and mass
i moves in a two-dimensional plane under a uniform magnetic field B perpendiculars to
the plane and the vector potentials have the following form [1-7]:
A, =-By/2, 4,=Bx/2 (7.1)
The Hamiltonian of the system is

1
JHO; (o +yty = Hy = (7.2)
With
1 @’
H,=—(p} +p)+E£2- (" + %) (7.3)
2u 2
And

w=+\o, +o., o, =(ﬂj . (7.4)
2puc
We have also[H,L_]=0.
To determine the eigenfunctions of H,, L, we use the polar coordinates of two

dimensions harmonic oscillators [10].
We put
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X=pcosQ, y=psing (7.5)
0<p<x, 0<p<2r

Using the method of separation of variables we find the solution of Schrédinger
Equation which is the cylindrical basis:

D, (Ap,p) = (%jf_m (Ap)e ™ =

G =|m! ), (70
G —>Li‘:’(,‘,1\ (2P )Ap) ™" e e
With j=n+m and 2= ’%“’
The energy of the system can be given as follows:
E,, =ho(2n+2lm|+1)- mh% (7.7)

With  7=0,1,2,., And |2m|=0,+142,.....

We emphasize that we can build the generating function of the cylindrical basis from the
generating function of Laguerre polynomials but the calculation is more simpler with the
generating function that we will build in part three.

7.2 The generating function of the cylindrical harmonic oscillator
In this part we review the construction of the generating function of the cylindrical
basis of the harmonic oscillator which is the eigenfunctions of (H,,L,).

We know that the Cartesian basis of harmonic oscillator in Dirac notations is

0) (7.8)
This ket is not eigenfunctions of L_ so to obtain the basis which has this property

We must take the transformation [10]

V2 V2

A =—(al —ia’), A =—(a’ +ia’
1 2 ( x y) 2 2 ( X ))

_ +n
n,n,)=a,

The new basis |N V. 2> can be written in the form

|N1’N2>:|j+i71,j—m>:A1*-/*mA;rjﬂn

0,0).

This basis is function of L, and N with the values 2m and 2;.

With H=toN+D-22 1,
2 e

And E —ho2j+1)-mhiE
Lc
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The new generating function may be written in the form:

|G(Z,,ZZ)> =explz, 4] +z,4;] 070>
—explaN2(z, +2,)/ 2 +iai \N2(~z, +2,)/ 2]

0,0)

In term of Cartesian coordinates we write the generating function as:

N\I/2 5 5
- X+ . .
G(tIat2>r):[7j exp[_ﬂz Y +Az,(x+iy)+z,(x—iy)]-z,2,]=

2
‘ ZUm) o (=m)
DT =, (Ap,p) (7.9)
o JG+m)NG—m)!

And Z;ﬁm) ;J*m)
" OO GG

Is a two dimensional Fock-Bargmann spaces [11].

7.3 The Feynman propagator of two-dimensional isotropic charged harmonic
oscillator in uniform magnetic field
In this section, we propose a simple and elementary method for the calculation of
Feynman propagator of two-dimensional charged harmonic oscillator in uniform
magnetic field.

We have:
 H (e, L)
K0, 0, ) =(rle )= (rle " 1)
_ e-im(t-tg) Zn CDjm (F)e—i(2ja—2mﬁ)q)jm(ljv) (710)
With a=owr, f=07 and T =(t—1t,)

From the orthogonality of the basis ¢, (z) and (7.10) we deduce that:
K((F1),(F't,)) = (%}e'im"”) j [(_;(az] bz, F)x
G(az,,bz,,F)|du(z,)du(z,) (7.11)
With a=e' P 2and h=e @2
By substituting the expressions under the integral by (7.11) we write:

=2 | =2
r +I"2

K506, =~ [expl 2

Alaz, (x, +iy,) +bz,(x, +iy,)] = ab(z,Z, + Z,2,)[du(z )dp(z,)
This integral is invariant by changing z, <> z,, and then we can use the well

+Alaz,(x, —iy,) +bz,(x;, —iy,)]+
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known formula:

(iJ J.Hn 1dxidy1‘ eXp(—EtXZ + A[Z + Z’E) = (det(X))_I eXp(AtX—IE)
T =

1 ab
We find that X =
ab 1
And det(X)=1-a’b’ =1-e7"*

By an elementary calculation we find that:
AXTB = Pa?b (7P + 5 +a (x, +iy,)(x, +iv,) +
b (x, = iy,)(x, — iy /(1 - a*b?) (7.12)
Then the propagator may be written:

-io(t-t))

K(70.(7., ) = [%J ol G B ah) 124

(a’ + bz)(xlxz +YY,) - i(a’ _bz)(xlyz — VX )]/(I - azbz)} (7.13)
It is easy to verify the following identities

e’ ] (I+a’b’) . cosa
(I-a’b?) 2Zisina (I-a’h?)  2sina’
And
(a’ +b%) _.cosp (a’ =b?) _sinf
(I—azbz)__l sina (I-a’b’) sina

Substitute these relations in (7.13) we obtain the exact expression of Feynman
Propagator of a charged harmonic oscillator in constant magnetic field:

K(F0,(7'.1,)) { i j ! exp{"““’{ CON@T) (72 4 72) 4

2izh ) sin(wr) ho | 2sin(wr)
_M()ﬁxz+J’1J/2)_Si.n(ﬂ(x1y2_)ﬁx2)}} (7.14)
sin(wr) sin(@r)

I leave the reader to compare between our method and Schwinger’s method,
Reference [18] part B.

It is important to emphasize that the expression (7.14) may be obtained by the
application of the transformation from the coordinates representations to the harmonic
oscillator basis.

20



Chapter two

Angular momentum and Fock —Bargmann space

1. Introduction
2. Schwinger approach for angular momentum
2.1 Preliminary
2.2 The Boson polynomial basis of SU(2)
2.3 Finite rotations and its generating function
2.4 Orthogonality and normalization of D-Wigner matrix elements
2.5 projection operator and the matrix elements of rotation
2.6 Expression of the matrix elements
2.7 Particulars cases of the matrix elements of rotation
3. The spherical harmonic and the quadratic transformation R* - R3
3.1 The generating function of the spherical harmonic
3.2 The quadratic transformation R* — R3
3.3 The connection between hydrogen atom and the harmonic oscillator
3.4 Some applications of the generating function of spherical harmonics
4. The addition of angular momentum
4.1 expression of the integral over the product of three D
4.2 expressions of 3j symbols of SU (2)
4.3 Euler's identity and Regge symmetry of SU(2)
5. The invariant polynomials of the 3-j symbols
5.1 The invariant polynomials and the D-Wigner matrix elements
5.2 The invariant polynomials and the generating function
of spherical harmonics
5.3 Generating function of the invariants of SU(2)
5.4 The Van der Wearden formula for 3j symbols
6. Schwinger’s Approach for the coupling and 6j symbols of SU(2)
6.1 Schwinger’s Approach for the coupling
6.2 The generating function of the 6j symbols of SU (2)
6.3 Symmetry of 6] symbols
7. Appendices

21



Chapter two

Angular momentum and Fock —Bargmann space

1. Introduction

It is well known that the orbital angular momentum L=7Fx p plays a central role in
classical and Quantum mechanics. But in quantum mechanics we can write the
components {L,L ,L_}as quadratic forms in terms of creation and annihilation

operators, and the matrix of spin -1, of the three-dimensional harmonic oscillators.

Schwinger was observed that the use of spin half leads simply for the study of angular
momentum with the help of two dimensions harmonic oscillator basis [23]. But
Bargmann used the isomorphism between the Fock space and the basis of the oscillator to
redo the famous Schwinger‘s work “on angular momentum “in the Fock basis [24-25] but
the calculation of the 3n-j symbols became difficult for n>2.

In this work we use the Schwinger‘s generating function of elements of the matrix of
rotations to determine the generating function of the spherical harmonics and we find a
quadratic transformation R* — R3 very useful in physics [47]. We find using the
Gaussian integral the generating functions: of Gegenbauer, Legendre polynomials and the
characters of SU(2) [54].

In many physical problems we find that the wave functions is not eigenfunctions of
angular momentum therefore we need the finite projection operator to obtain the good
wave function [66-73]. The infinitesimal projection operators is given in the appendix.

We simply deduct the invariant of SU (2), or Van der Warden invariant, which can be
generalized for the determination of Wigner’s symbols of unitary groups [108-113].

We also show that the calculation of generating functions symbols 3n-j can be done

simply by using symbolic computation programs.

2. Schwinger approach for angular momentum

We review the properties of spherical harmonics and the Schwinger basis of SU (2) and
the Wigner’s D- matrix elements.

2.1 Preliminary

Problem: If fand g are two quadratics forms

f="fyata; =(a") (f)a), g=Dg,ala,=(a") (g)a)
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Using the commentator: la;,a,1=0,[a;,a]]1=0,[a,a;]=0,

It’s simple to prove that: [/.g]=(a")(/)Ng)—(g))(a)

Application: if (f)=(g)=S=6/2, G Are the Pauli matrices with spin 1
With

0 —i 0 0 0 i 0 0 0
S;={i 0 0,S,={0 0 0,S,={0 0 —i|
0 0 0 -i 0 0 0 i 0

With: (a+ )t =(a;,a;,a;).
It’s simple to verify that the solid harmonics Y,, (F) 7 = (x, y, z) are eigenfunctions of
L’ and L. with:
LY, (F)= 0l + )Y, (F), and L.Y, (F)=mY,, (F)
2.2 The boson polynomial basis of SU(2)
Schwinger in his work [1] “on angular momentum * use the spin 1 / 2 instead of spin 1

and find the generators of SU(2) or the infinitesimal operators in terms of creation and
destruction operators of two-dimensional harmonic oscillator:

we write:
T + + c a;
J=\a; a;]|—
( ! ? {2j(azj

6 Are the Pauli matrices with spin 1/2:

- - 0 1 0 —i 1 0
S,,=0/2,0,= ; 0,0'22 - ,0; = 0 _1/

J,=J,+iJ,=a;a,,J =J,-iJ,=a,a,,J;=[a;a,-a,a,]/2

We find

And N=[a;a, +ala,]/2=J° = N(N + 1)
We formally write
N =[a,0/0a,+a,0/0a,]/2, J; =[a,0/0a, —a,0/0a,]/2
After the Euler’ theorem the eigenfunctions of J, , N and J” is the homogeneous
functions:

+(j+m) +(j—m)
a a,

0,0
¢<j+m)!(j—m>!| &

im) =
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With jzlml, j=0,1/2,1,3/2, 2,..
We find the Fock Bargmann basis by applying the transformations:

a, >¢&,a, >n, and a, >0/0&,a, > 0/0n

§1+m771—m _ 21
\/(l+m)/(l—m)/’u (<) @1

we denote du(u) by the measure of integration

du(u) = du(&)dp(r) 22)
The conjugate representation of ¢, (z) in the space of Fock-Bargmann is

@ (u)=

0,,2). =CD""0,, ()

2.3 Finite rotations and its generating function
The matrix of rotation [1-7] can be deduced simply from the property RR" = 1.

Using Euler angles we write:

Dj

(m',m)

(Q) — <jm'|RJ|]m> - <jm||e—i\|1Jje—i9JZe—i(pJ3
= e_iwm'd(j;n',m) (8)e ™"

And R (2)=e e e Q= (y,0,p)

jm) 2.3)

Multiplying by @ ;,,. (1)@ ;,, (v)r*/ and after the summation we find the

Generating function of the matrix elements of rotation

2 @ D (2)0 , (V) = exp[ (W)(R, (2)(V)]

d(u,v,2) = exp[(c n)( _;2 j@] 2.4)

with
0 . 0
z; =pexp( (PJ)COS(E), z, = pexp(§, )sm(;)
+ —
Q=(y09), ¢, :(g), P, :(g)
and 0<p<x, 0<@p<2rm, 0<0Zrn, 0Zwy<2r

z, -1z, ) P
— j 7D(jm"m) (Z) = 10 ! D(jm',m) (‘Q)
z,

R.(z) = pR.(£2) = [

It is clear that:
o’ o’

+ D/, =0 2.5
(821821 822622 ) (m',m) (Z) ( )

This expression may be generalized to SU (n) groups.
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2.4 Orthogonality and normalization of D-Wigner matrix elements
We have

[(r.,  @DE (2 duz) = [ p* e dp[ (D) (D, (Q)d()

Withz = (z',z°)and du(z) = du(z")du(z*) .
Using the generating (2.4) we find

[ @3 0, OIXIY 0 (W, (DI DL (D] (2)du=

[Jexpl, u)( __ZZJ[V’j]exp[(x, x)[ __ZJ[y ’Jde<z)=
Z;  Zp \V2 Z;  Zp \D»

_fexp[' @)(R, (2)()+ ()R, (2)(»)]dp(2)
After integration we find that:

IeXp[’ )R (2)))+ ()R, (2)(W)]du(z) =

explu,vi X, ¥, + U, vy X, ¥ = VU X,y — Uy ¥, X, ]

After expansion of (2.7) and it’s identification with (2.6) we find:

I Dy @D (@d(@)=—"

(my,my) : mymy My i
2j,+1

2.5 The finite projection operator

With the help of (2.8) we find that the angular momentum projection operator is:

2j+1

Py =4 | Dl (DR
And the projection of the wave function |V, ) is “I’({n,k)> ;
2j+1

‘LP(m k)> mé)nz

2j+1
8 2
We write the projection operator in the general case by:

L [(D,,, (ORQ)|¥,)d(©)

With
N,y == (D) (O | RQ)|¥, )d(2)

Pl =225 (D)) (@R@A(D) = X aim)leim|

{a} Is a set of quantum numbers.
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This projection operator is called sometimes Hill-Wheeler integral.

2.6 Expression of the matrix elements
From the expansion of the generating function we derive the expression of the matrix
elements of finite rotations in terms of the Jacobi polynomial.

dg;n,,m)(e){((f;”;; ;:8 :Zﬂ (cos(8/2))" " (sin(@/ 2))" ™" P (cos @) (2.11)

2.7 Particulars cases of the matrix elements of rotation
We can derive the expressions of the following particulars cases:

: 2)! _ , 2)! B
o~ Dun (D= (p—{j)q)jm (z,,-2;) d=D[,,,(£2)= (p—if)?/m (2,,2))
: 2)H! - 2 o
a_D(j’”"f) (£2)= ij) qojm'(zl’zz) b_D(jm:—j)(Q) - ‘4]1) ¢jm'(_z2az1)
47[ 1/2
e=Dy, 0 (£2)= (ﬁ) Y, (6.9) (2.12)
Remarque’s:

1- We observe that the expression (e) is a transformation from the four dimensions
to the three dimensions
2- We shall use later this important property to derive the momentum representation of
Hydrogen atom.

3. The spherical harmonic and the quadratic
transformation R* - R3

The relation between the Wigner's D matrix and the spherical harmonics is given by:

Dy (2)= ﬁﬁmﬁ) (3.1)

With: p?=r
We observe that the expression is a transformation from the four dimensions

to the three dimensions but here we shall use the generating function for the derivation
of the transformation.

3.1 The generating function of the spherical harmonic
We find from (2.4) that the generating function of spherical harmonics is:
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J‘ez(m) expl(, uz)(zl __22 J(VI jd,u(v],vz) = exp[m] (3.2)
Z

z, v, 2
ir - -
= Zhn [ﬁ] : /1[¢1m (u)Ylm (7")

a is a vector of length zero,a - @ = 0 and has the components
a,=-u; +u;, a,=—i(u; +u3), a, =2u,u, (3.3)
3.2 The quadratic transformation R* - R3
We obtain the quadratic transformation R ¥ — R’ from (3.2) or terms of coordinates
r =(x,y,z) we find:

X=z,z,+z,z,,y=i(z,Z2,-2,2, ), z2=2,Z,-Z,Z, 3.4)

We can write these expressions in term of spin half as

et f? 7} e 5 )

35
_ _N1 0} z 3:5)
z=(21 z,
0 —I\z,
Ifweput z, =u, +u,, z,=u; +u, we find
Xx=2u; +uu,), y=2-uu, +u,u;), z=uf+u§—uf—uf (3.6)

p:\/;, r=zz,+z,z,,r’ =x"+y’ +z°

The quadratic transformation R* — R? [8-11] or Octonions quadratics transformation
(or Hurwitz transformation) corresponds to the transformation introduced by
Kustaanheimo and Steifel up to permutation on x, y, z and the u;'s . Recently we used it
for the derivation of the momentum representation of hydrogen atom [ch.5].

We also observe that expression (3.5) can be extended to the transformation R® —
R5using the Dirac matrices that we will then make a generalization.

3.3 The connection between hydrogen atom and the harmonic oscillator
A quick calculation shows that the equation of the hydrogen atom

2 2
(_h_A_Ze
2u

VW =EY . (pisthe reduced mass). (3.7

7

That may be written on the basis of harmonic oscillator in the form
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(_Zgﬁu? —4Eii’)¥ = —4Ee’Y (3.8)

With a constraint on the eigenfunctions: aiﬁl’ =0
7

And w=~-8E/u, 4Ze’ =hwn+2)

And the energy is given by:

Ze’ ’
E__2'u(h(n+2)j (3.9

3.4 Some applications of the generating function of spherical harmonics
All calculations that we perform in the Fock Bargmann space can be solved with the
Gaussian integrals in finite dimensions:

n n —t t tn|— -1 tx'p
(/7 )IH5=1dxidyi exp(—z Xz+A'z+zZ B)—(det(X)) exp(A' X ' B) (3.10)

With z =(z,25,...,2,,)

3.4.1 Generating function for Legendre polynomials
We put u, =u, in the formula (3.10) and using (3.13) we find the generating function
of Legendre polynomials.

Jer* dutny = 3" P cos0) = ———
1=0

3.11)
VI=2rcosO+r?

3.4.2 Generating function of the characters y(R) of SU (2).
In the generating function of matrix-D we replace (u) by (v) we get after integration:

[expl' DAMdRM) =Y #7>" Djyy (R) =3 7 %(R)

:1/(1—2rcos§cos((p+\|/)+r2) (3.12)

4. The addition of angular momentum

If we consider a system of two particles the conservation of angular momentum imply
that the state of the system is decomposition on the product of the states of one particle.

We have J,=J,+J,
J12|j1m1> zjl(jl +1)|j1m1>a J22|j2m2>=j2(j2 +])|j2m2>

, (4.1)
J; |(]1]2)]?m> =J;(J; +])|(j1j2)j3m>

And
|(J1]2)J3m> = Z mym, <j]m],j2m2 ||(Jz]2)]3m3>|11m1>|12m2>

4.2)
|j1m1>|j2m2> = Z _/.<j1m1,j2m2 ||(J1Jz)]3m3>|(]1jz)]3m>
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D’ (02) :<(j1j2)j3m'|RJj|(j1j2)j3m> *3)

(m3,m3)

The Wigner 3j symbols for angular momentum may be written in terms of the Clebsh-
Gardan coefficients (j,m,, j,m,|(j,j,)j;m;)like that:

j .] .] jj—j,—m . - / i i i
( i 2 3)2(_])J1 J2 2(2]3+]) 1/2<]1m1’]2m2||(]1]2)J3—m3> (44)
m] m2 m3

, 3 3 SR :
With m =-m; =m, + m, and m'=—m; =m, +m,

4.1 expression of the integral over the product of three D’s:
Using the above expressions we write:

<j1m1 |<j2m2 |RJ*‘]1m1>‘]2m2> = D(j;;I,m'I)(Q)DjZ L (£2) =

(my,mjy)

A (A
—\m, my, m; \m, m, my) )

Jm

In multiply by D:,f r )(Q) and perform the integration we find:

i i i Lo J2 T3 1 J2 T3
J1 J2 J3 _
.[dQD(ml ,m']) (Q)D(mzym'z) (Q)D(m3,m'3) (Q) - (mv m'z m.3 j(ml m, m3] 4.5)

This expression is known by Gaunt formula or the integral of the product of three D.

4.2 expressions of 3j symbols of SU (2)

we find first the integral representation of SU (2) and the sets of generalized
hypergeometric functions for 3j symbols. Then we deduce from Euler identity the Regge
[48] symmetry of these symbols.

4.2.1 Integral representation of 3j symbols
Using the Gaunt formula we can calculate the particular case using (4.5) or much
simpler from (3.6):

(.L p /3.j:GDZM%J - QLN@@M‘ | .6)
Ji —Jy Ja— T Uit Js+ DV, + 7, +J5)!
Putm', = j,, m'zz—jzandm; =J,—J -

We deduce the integral representation of 3j symbols:

( j] jz j3 J _ (_1)2(/'2_A/1.)+A/2+m_7 1"3 ‘ .T[(COSQ)Z('jJ_mZ)+] (Sing)Z('jl_m1)+1
mmy my) L =2j)\J-2j) 2 2
% Pj(3(r_n;;irjz»m3*h+jz)(COS 0)1do 4.7)
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with T, = \/(], —m)!(j; +m,)!

4.2.2 Wigner’s expression for 3j symbols
We write the Jacobi polynomials in terms of cot?(#/2) in the expression (4.7)
and after integration we get the Wigner’s expression for 3j symbols:

(]1 J> ]3]:(_])A]Z—j1+m3A(j,m)(;].1+‘].2+m1)'x
m, m, mni (J, = J, +my)!

sE, (= my=js+j, = Jody—m = Lj,—j,+my+1—j;—j,—m;1) (4.8)
4.3 Euler's identity and Regge symmetry of SU(2)
We determine the symmetries of the 3j symbols by new method may be generalized

to other problems . We write the expression of Jacobi polynomials (4.7) in terms of
hypergeometric functions [60] and then we use the Euler identity

F(a,Bi7;2)=(1-z) P F(y—a,y - B;;2) (4.9)
we find

Lﬂdﬁ(sinz(49/2))"(0052(49/2))" LF (n+a+B+1,-nl+ Bicos’(0/2)) =

Ioﬁde(sinz(H/Z)p"a (cos’(0/2))° ,F (~-n—a,l+ B+n;l+ B;cos’(6/2)) (4.10)

To find the symmetries we assume that after transformation we obtain the same
expression but with the new indices.
We find the new indices n',a ,8,p ,o in terms of the old one:
n=n+a,a =-a,f =p,p =p-a,0 =c
In our case we find the Regge symmetry.
(j1 J2 s j:( (Jy+Jj,—m;)/ 2 (Ji+J,+my)/2 Js
m;, m, my (Jy=Jotmy—my)/2 (j,—j,+my—m,)/2 (=j,+],)

j 4.11)

5. The invariant polynomials of the 3-j symbols

Van der Wearden [49] determined the invariant of SU (2), method known to Weyl [9],
and deduces the Wigner 3j symbols of this group. We will determine first the Van der
Wearden invariant using the D-Wigner matrix elements and then the generating function
of spherical harmonics.

5.1 The invariant polynomials and the D-Wigner matrix elements
The integral of the product of three generating functions of D-Wigner matrix elements

G’ = J.Hl;[¢(xi:yiozi)]dﬂ(z1)dﬂ(22) = zH(j,jzjj)(x)H(j,jm)(y) (5.1

J1i2J3
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Using the expression J-exp[a 2+ fzldu(z) = e” for integration we find:

G’ =explx’, ¥ Iy, 1+ [ 1 v 1+ [ 1070 )

Wlth‘x _(é:t’nz)y _(uzb 1) and'] .]]+.]2+]3
After the identification of two sides of (5.1) we find the invariant:

2 390(-24) (=277 1 2 1(/=25)
And H (6 Lx x| ] b’ - 5.2)
T DI =210~ 2),)10 - 2)5)

We denote H . . (x)by the invariant polynomials of SU (2)
And [x°x’],[x’x']s [x'x’] are the elementary invariants of SU (2).
5.2 The invariant polynomials and the generating function of spherical harmonics

I = fexp[—?z +2(aa, v +a,a, T +ayd, - r)ldxdydz (5.3)
With u' :(515771)’”2 =(&2.1,)s u’ =(&3,13),

= i j12 ij_
And a;-a,==2[u'v’] avec [u'u’'1=[{n, —ns,].
After integration we obtain:
I =exp[-2a,a,a,.4, - 2a,0;a,.d; —2a,a,4d,.4,] (5.4)

the development of the integral (5.3) gives
I= Zz“[H( )] j [[exp{—r’}rt*idr]
i=1

[ZH% (u') IH (4940)}111 0d0d (5.5)

m; =l
With L=1,+1, +1,

We use the well-known result of the theory of angular momentum

LN L 1
jHY (0p)sin GG = H((ZI”) [0 ; ;]{ 1 %2 b j (5.6)

m; m, m;

After the integration of (5.5) and the identification with the second member of the
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integral we obtain the Van der Wearden invariant . . (u) of 3-j symbols:

5 ; L 1, 1
H Wz/j)(”) = Z h_[izz(p’f’”’f (u )][m ] m2 ;311
m,- 1 2

J,m1+m2+m3=0 (5.7)

3
This is the same expression as above.

5.3 Generating function of the invariants of SU(2)
We deduce the generating function of 3j symbols of SU (2) from (5.2) by
multiplying it by:
1 (L-215) (L-21,) (L-21)
e K2 R Y i 0
Dr, 1) (0)=[(L+ D] -2 = L )
V@ —=21)(L-21,)(L—-21,)

After summing with respect to j, =/, =0,1/2,1,.. we obtain the Schwinger formula:

(5.8)

T, T, T

Z(pjj(j,jz)(r)[l_[j;l(pj[,m[(ui)](]1 & ZJZeXp 5] é;z 53 (5.9)

oo, m, m,
n, n, 1;

the symmetries of the 3j symbols can be deduced from the invariance of the
determinant: permutation of columns, permutation of rows and transposition .

5.4 The Van der Wearden formula for 3j symbols
The Van der Wearden formula for 3j symbols can be derived simply form (5.2):

I, 1, [ :(—1)2(12711)A(Z,m) (=1, + ) =my)I(L, —m,)!
m, m, m L+ + )= +m)( =1, —m,)!

SE,(AL —my =l +m =1, —m,; [ =1, —m, + 1,1 -1, +m, + I;]) (5.10)
With

(A+1, =)=+, + I+ m ), —m,)!
(=1, + 1)V +1, + 1, + DI = m)L, +m )L, +m,)N(L, —m,)!

A(l,m) = (=1 \/

The method of invariants has been the subject of many studies [24, 49-51] but the
generalization of this method for SU (n) for n> 3 is very difficult.

6. Schwinger’s Approach for the coupling and 6j symbols of SU(2)

We will present the Schwinger’s method very interesting for the determination of the
the many couplings states and we use it later for the determination of SU (3) basis. For
the calculation of 6j and 9j symbols, it is more convenient to follow Bargeman’s method
with a simple change of variables which makes the calculations simpler.
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6.1 Schwinger’s Approach for the coupling
The polynomials invariant of SU (2) has the generating function:

exp[73[zlzzz]+72[ZJ:Z3]+TJ[ZZa23]] = z@j1j2j3 (T)H[jlj_,jj](z) (6.1)

To determine the generating function of the coupling of two angular momentums we
change Z% by — 232 and 232 by z% in the above expression. We obtain the Schwinger's
formula:
G(a,z) = exp[{a;[x, y]+ a,(2y) + &, (x2)} ] =
0 0 0 0 0 0
exp[{a;[—,—1+a,[z, —+z, —]+a,[z, —+z, —]]}exp[(uy) + (vx)]

u v u, 5 ’ v,
With[x, y] = x1y; — %21
This formula can be applied to the calculation of several coupling of angular momentum
where the great interest of this method.

6.2 The generating function of the 6j symbols of SU (2)
The expression of the 6j symbols [6] is given by:

IANANAN

ZI 12 Z3
Y (- 1)( Lol s J( Lol I Lol g J[ Ji s /gJ
s dh 15 My —Hy My \H, —Hy m; \H; —H, my, \m;, m, i,
With help of Fock-Bargmann space and the expression (5.2) we write

; ; ; 2 .390-2j)1+3,.110-2j2)1+1,.270-2J3)
(” /- ’3J=I[11f_@,.m,<x">] SIGH S S
m, m, m, JG+DIG =2 =271 = 2),)!

We need to replace the four 3j symbols by expressions of this form to calculate the
generating function of 6j symbols.

G(z) = [exp[D, + D, + D, + D, Mu(£,&'n.1') (6.2)
We obtain the generating function for the 6j symbols

To avoid the Bargmann complex calculations we make a change of variables n,,n, by M., 7,
we obtain:

Tor Toz T3 Tio Tz Tp Tz Ty Ty T Ty Ty
D, = 51 & 53 D=7, & 7, D,=|7, 772 &l Dy =& 7, 77; >
77; 77; 77; _é?l n, _é?3 _é-?/ _4?2 UE n _é?z _53
Tor To2 Tos T T Tp Tz T Ty T2 Ty Ty
D, = 981 982 %Cs , D, = 77} & ns | D,={n, 77; Sl Dy =& n, 77;' >
7o -& M -4 -& -4 om mo=& -4
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Then the generating function for the 6j symbols may be written in the form:

G(r)= (éjn J.H; dx.dy, exp(—z' Xz) = (det( X))’

This expression can be executed simply with a symbolic program (maple, Scientific
Work,) and we find an expression for the 6] with one summation analogue to Racah
formula:

G(7) = (det(X))™
3 3
det(X) = (g(2))°, g() =1+ a;+D. b,
Ay =TipT20T305 A = TT31T215 Ay = T3T00T 05 A3 =T 3713735

by =TT 1yT55T505 by =ToaT50T 137315 by = Ty3T30T 1575,

6.3 Symmetry of 6j symbols
If we denote as Bargmann done the power of (7, ) by (k) it is simple to observe that

g(7) is invariant by the permutation of rows and columns of:

Tio T T3 kig ky ks
Top T3 Ty - ko ki ky
T2 Top Tp ks, ky o ko (6.4)
Tz T3 Tos ky ks ks
7. Appendices
Appendix 1
The matrix (X) for the 6j symbols
0 0 0o 0 0 0 0 T, 0 0 0 T,
0 0 0o 0 0 0 0 0 T,y  —Ty 0 0
0 0 0o 0 0 0 1y 0 0 0 -1, 0
0 —-75 7, 0 0 0 0 0 0 0 0 0
T3 0 7, 0 0 0 0 0 0 0 0 0
-7y Ty 0o 0 0 0 0 0 0 0 0 0
0 0 0o 0 7, 0 0 0 -1y 0 0 0
0 0 0o 0 0 7, -1, 0 0 0 0 0
0 0 0 7, 0 0 0 -z, 0 0 0 0
0 0 0 0 0 714 0 0 0 0 -1 0
0 0 0 7z, 0 0 0 0 0 0 0 -1
0 0 0o 0 7, 0 0 0 0 -1, 0 0
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Appendix 2
The infinitesimal projection operator

.| imy=JGFm)(jtm+D)| jom+ D), And J.|j+ j)=0.
@)= Cljm), And P,,|®)=C)|jm)

We find the triangular system as in the projection of oscillator

Tk ) = = 4(l—m)!(l+m+k)! . For k= 1.2 .
yk| J7J+| > l;}{Cj (l—m—k)!(l+m)!|Jm>’ or ,2, elc

L 2j+D)!
7o =G0 (r)'(2j+r+1)'

2'+1 '+m J/ m+}"J] m+r
(j—m)! = r‘(2]+r+1)'

One can show that CGC can be presented in the form:

<] " |<] m "(] i)jam >: <j1m1 |<j2m2 |Pm/j n ' >|Jz(]3 _j1)>

rE e <j1j1|<j2(j3_ 1)})]-3;1-3 ]1]1>|]2(]3_J1)>
Using the explicit formulas (3.1) and (3.2) one can easily obtain the final formula of
su(2)-CGC

Appendix 3
The calculus of 9j coefficients is very useful in physics and we present the calculations as
a problem. The 9-j coefficients are:

Ju Jio Jis . . . . . . : . .
. . ol Ju Jiz Jis Joar J22 U2 Jsr T2 Uss
Jor Jx2 I (= Z

. . . altms\Myp My My N\, My, My \Mzp My, Mgy
Jsi J32 s
x( Jiw Ja Ja J( Jiz J2 Uz J( Jiz  Jaz o s J
mp, My My N\, My Mgy N\ My Mg
1. Prove that the generating function is:

[exp X D(E.¢ D du(§)du(&)

2. Use the change of variables 77, — 7, to find the above expression in

the form Exp{-Z'XZ}
Use a symbolic program to find the expression of the generating function.

Note: It’s very important to note that many physical applications [52] have as a starting
point the cylindrical basis therefore we treat these cases in the paper [53].
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Chapter three

Octonions algebra and the cross product in n-dimensions
(Why do we love Octonions?)

1. Introduction
2. The problem of sums squares
2.1 The Hurwitz theorem on sums of squares
2.2 Solution of Hurwitz Problem
3. The Octonions quadratic transformations
3.1 Levi-Civita Transformation
3.2 Octonions Transformations
3.3 Cayley- Hamilton transformation and the Hurwitz’s matrices
4. Pauli, Dirac matrices and Gegenbauer polynomials
4.1 Pauli, Dirac matrices and quadratic transformations
4.2 Gegenbauer polynomials and the quadratic transformations
4.3 New generalization of quadratic transformations and
Generalized Dirac algebra
4.4 the connection of Hydrogen atom and Harmonic oscillator
5. The cross product in n-dimensions and Hurwitz theorem
5.1 Inertia Tensor
5.2 Inertia tensor and the quaternion
5.3 The cross product in n-dimensions
6. The generating matrices and Cartan-Weyl basis
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Chapter three

Octonions algebra and the cross product
in n-dimensions

1. Introduction

It is well known that the old problem of Sums squares [12-13] has been the source of
the well known division algebra R, C, Q = H, O which are very important in mathematics
and physics. The particular quadratic transformations: Levi-Civita and Kutaanheimo -
Steifel can be deduced simply from these algebras [26-29]. Kibler and al. [30-31] have
studied these transformations and made several useful applications. We present a
recurrence method for the determination of all quadratic transformations, Hurwitz or
octonions quadratic transformations, which are derived as a transformation using the
Cayley-Hamilton. In addition we found similar transformations from the theory of
angular momentum [22] and the connection hydrogen atom and oscillator can be
generalized to all these transformations [58-59].

We note that these quadratic transformations are related to the Pauli, Dirac matrices and
generating functions of Gegenbauer polynomials and generalizations of Dirac algebra.

The relationship between the inertia tensor and the octonions algebra was emphasized
for the first time in the paper [55]. And we also show by means of the tensor of inertia
and Hurwitz's theorem that there are only cross-products in the Euclidian space of seven
and three dimensions [55-57].

2. The problem of sums squares

2.1 The Hurwitz theorem on sums of squares
The problem of sums squares is an old problem and Hurwitz find the final solution.

The general question we ask is: For which r=s=n is there an identity

u; +u; +.u)v; +v; +.0))=x] +x; +.x] (2.1)
Where the x’s are algebraically determined by:
X, =2 a,u, (2.2)
ij
From the historical point of view we know that:

1- n=2 is known to Indian Brahmagupta(605?) and to Fermat.
2- n=4 is the Euler’s identity
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3- In 1843, Euler’s identity was rediscovered by Hamilton in his work on quaternion.
4- Graves and Cayley independently found an 8-square Identity.
5- In 1898, Hurwitz proved a theorem that killed this subject:

Hurwitz proved only the dimension constraints n = 1, 2, 4, and 8, it is also the case
that, up to a linear change of variables, the only sum of squares identities in these
dimensions are the ones associated to multiplication in the four classical real division
algebras of dimensions 1, 2, 4 and 8: the real numbers, complex numbers, quaternion’s
and octonions.

R, C, Q, O are the division algebra and play very important role in physics and math.

This problem is very important in numbers theory and it has been the basis of the theory
of spinners, the Cayley-Dixon algebra and Clifford algebra for r#s=n.

2.2 Solution of Hurwitz Problem
For n=2;
u, —u,
U=H, - 2.3)

And Z=UV we find:
Z'Z = (x] +x3) = (u] +u3)(v; +v;)
U=u,l+u,J, J' =-I
U belong to the complex field or the Clifford algebra C(0,1)

u, —u, —u; -—u,
u, u, —u, Uu
2 1 4 3
For n=4 U=H,= (2.4)
us u, u, —u;
u, —u; U, U

=>U=u,l+u,l +u;J +u,K
U belong to the H-field =C (0, 2) or the quaternion's of Hamilton

u, u, u; u, u; U, U, U
-u, u, u, —u; U; —U; —U; U,
—u, -—u, u, u, U, Uy —U; —lU
Forn=8 H,=| + " "W ot Tl T 2.5)
—u; —u; —u, —ug u, U, U; U,
—u, us  —ug U, —u, U, —u, U
-u, uy u; —u, -—-u, u, U, —u,
—ug, —u, u; us; —u, —u; U, U
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It can be developed as a linear combination of Clifford matrices.
8 ¢ .
Hy=u =Y wl, [T, +I,0==2I0(j=238)

We notice that matrices H, are anti-symmetric, orthogonal and the rows and columns are
the components of a vector V (u).

3. The Octonions quadratic transformations

In what follows, we will expose a recurrence method for the determination of the
matrices (H). It’s starting point the transformation of Levi-Civita and the orthogonality of
the matrices (H). We deduce also these transformations from Cayley-Hamilton
transformation.

3.1 Levi-Civita Transformation
For n=2 Levi-Civita introduced the conformal transformation which is an
application of R*> - R”.

2 2 _9
Zy=Up Uy, Z, = LUl

z u u u
That is written ( 1}:[ ! zj( lj:(Hz)(Uz) (3.1
2 —U, U \TU,

3.2 Octonions Transformations
For the generalization of the transformations of Levi-civita we put

U - 2[ " ”](”J = 2(H,)(U")
z, —u, u, \u,
Using the orthogonality of (/,) we find

20 4z, =20 +uy Yuy +uy’)

And if we put zy = (u +uy ) —(uy +uy)

We write
z, U, u, u, u, \ u,
_Z = _Z _”;2 Z u” Z = (H,)(U,) (3.2)
0 —u, U —u, uU; \u,

Thus we find the transformation of R* — R* known by Kustaanheimo-steifel
transformation.

To obtain (H,)and (H,,) we repeat the same process while replacing
(H,),U,") and z, by(H,),U",)" = (us,...,uy) and z; we deduce (H,) then
we adopt the same way for (/) .
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3.3 Cayley- Hamilton transformation and the Hurwitz’s matrices
The Cayley transformation [121-124] for the orthogonal groups O, is:

_I-S,
TI+S,
S, Is a skew symmetric matrix of order n.

(3.3)

In order to obtain O, in terms of the variables {u}: we multiply by u, the numerator
And the denominator of (3.3)

)

Uu.
i=1 !

We multiply also O, byr,. 7, =i’ = Z

To simplify the notation we replace u,S, by S, in the expression of O, () we obtain

2 ull_Sn

O (u)=u
() ul+S,

(3.4)

3.3.1 The transformation R> — R?
For n=2 we have

And simple calculation gives

0, :i(ulz —u; —2u1u2] (3.5)

2 2
r\ 2uu, u; —u

3.3.2 The transformation R* — R’
Using a computer symbolic program we find the Weyl’s expression

O;(u) = (r,1 —2u,S, + 2S§)

ul —ud —ui +u; = 20uyu, +uguy) = 2(ugu, —u,u,) (3.6)
= 2wy, —uyuy)  ul —u; +uy —u; =2, +u,uy)
2(uzu, +uyuy) 2wy —uguy)  uf Fus —uy —u;
In the space of 4-dimensions we derive also the expression
=V ou \ u, 0, u’

With V.=, -u; u,)and0,=(0 0 0).

3.3.3 The transformation R® — R’
We also find, using the symbolic program, an analogue expression as above-
mentioned:
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(07)=i(r51—2u,S7 +287) (3.9)
Ts
And in the 8-dimensions space we derive the expression

-V, u, \ V, u, 0, u
With Vo =(ug u; —ug —us u, u; —u,)
And 0,=0 0 0 0 0 0 0).

4. Pauli, Dirac matrices and Gegenbauer polynomials

There is a close link between the Octonions Quadratics transformations and spinor
theory [54-55]. In this regard, we put z, in quadratic form in terms of (V) and (v)

4.1 Pauli, Dirac matrices and the Octonions transformations
a- Pauli matrices and the Transformation R* — R?.

z,=()" (o;)(v) (4.1)
With (v)" = (v,v,) and (o,) denotes the Pauli matrices (11).

(0 1 (0 i (1 0
(61)_ ] 09 (02)_1. 0 H (63)_ 0 —I

b- Dirac matrices and the Transformation R* — R°.
Put(v)' =(v, v, v, v,), then by explicit calculation we find:

2= W), =i 7’
2, =) 2 (v), 2y =i() 7 (1) (4.2)
2, ="'

It is clear that y-matrices are the famous Dirac representation.

o (1 0y , (0 o) 5 (01 43
"o 1) Tlee, of 7 Tl o ‘

Finally we can change the Euclidean by a pseudo-Euclidean space (11) which doesn’t
affect our treatment.
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4.2 Gegenbauer polynomials and the quadratic transformations
We noticed a relationship between the generating function of Gegenbauer polynomials
and the Octonions algebra and this part aims to present this relationship.

a- The Gaussian integral and Levi-Civita transformation
The quadratic transformation R?> — R?is

Y'=u; —u;, xX'=2uu,,r'=u; +u; 4.4)
Put (x, y, z) = (x1, X2, X3)
We write:
U X; +ix ix u
zr'+ixx'+iyy:(u1 uZ)AI( Ij:(uj uz{ T " J[ Ij 4.5)
u, ix, x; —ix, \u,
The Gaussian integral in this case is
1
Jexp[a(x3r'+ix1x'+ix2y')]d,u(u) = (4.6)
\/I—ija +a’r’
The second part is the generating function of Gegenbauer polynomials
We also
X; +ix, X,
;= ) ) =x,l+x,I", +x,T 4.7)
ix, X; —ix,
With I}=r;=-I
b- The Gaussian integral and the quaternion
It is well known that
X, +ix X, +ix
A, = ( A ’J =>" xTL, (4.8)
—X,+ix; X,—Ix; =

With  ,=1,17=I,=1I]=-1
Where (1,13, T, I'1) are representations matrices of the quaternion. We find by a direct
calculation the Gaussian integral

J.exp{a(fl z, )A{jl ﬂ du(u) = ! (4.9)

2 \/1—2x4a+a2r2

with zZ,=u, +iu,, z, =u; +iu,

(ZI Z, )Az(zj
z

o . , .
] =X, I'H+X;X; +X,X, + XX,
2

The second part is the generating function of Gegenbauer polynomials
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c- The Gaussian integral and the Octonions transformations
The R® — R’ is given by
(x, +ix,) = 2(z,z; + 2,2,), (x; +ix,)=2(z,z, - 2,z;)
ro=ul ful us fu, o, =ul fu +ul g (4.10)
X;=F =71, '=r+r,
We consider as previously:
(Z'A,2) = x, 7 +i(X,X, +X,X, + X,;X; + X, X, +X,X;),

Xg +1x; 0 -Xx, +ix, —x,+ix;
0 X, +ix;  —x,—ix; x,+ix
6 5 4 3 1 2 6
A= . . =250 (4.11)
X, +ix, Xx,—ix; X, —Ix; 0 =
x, +ix; —x,+ix, 0 X, —ix;

t is the transpose and (z)' =(z,,z,,2,,z,)

Wealsowrite [, =1, 1) =—1,i<5 I 1, +I,[,=0

The Gaussian integral in this case is:

1

[expla(2) 4,(2)]du(u) = — (4.12)
\/ 1-2x,a+a’r
with Z = ijouzm iy,
We find again that the second member is the generating function of Gegenbauer
Polynomials.
4.3 New generalization of quadratic transformations generalized Dirac algebra
we can generalize A;, A, and A; by writing:
x, +ix, .., A,
An _ ( 2n _2;[1—1) 2 . 1 :zxil_;
- An—] (x2n + len—I )[2"’3
We note that the generalization of the quadratic transformations (5.12) can be
written as:
. 2n-1 '
z'Az=x,u +1(Zi:1 X,X,) (4.13)
. 2 2n 9 2 2n-1 2
With re= X, U= Zi:l ;

A, Are the Pauli matrices for n = 2 and the Dirac matrices for n = 3.

It is also important to note that we deduce a new quadratics transformations and new
algebra different from the Cayley-Dixon algebra for n> 3.
Using a symbolic program we find also:
For n=4
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1

Jexpla(z)' 4,(2)1du(z) = o ara™) (4.14)
And () 4,(2) = x,,r+i(Y " x,x)
For n=5
Jexpla(z) 4y (2)du(z) = ’ @415

(I-2x,a+a’u’)"’
We find also after integration the generating functions of Gegenbauer polynomials:

[du(z)expioz' 4,2} = 111 - 2axc,, — a”r?)" (4.16)

we find also that:
A, =>xT; and IV ==, [T, +1,T,=6, (4.17)

I", are elements of Clifford algebra.

We deduce from the above mentioned that there is a close relationship between the
Clifford algebra and the generating functions of Gegenbauer polynomials
It is important to note that the integration with Grassmann variables of the formula

(4.12) becomes (1 — 2ax,, —a*r*)™ . This result can be considered as the extension of the

generating function of Gegenbauer polynomials.

Our variables { x, } are in the form: x, = Za”zz ;this is not the case of Cayley —Dixon

-
algebra for n>3. Then our algebra is a new algebra which generalized Dirac algebra.

4.4 The connection of Hydrogen atom and Harmonic oscillator
4.3.1 Introduction: We want to prove the important formula

A,y W) f(x)=4id’A,,, f(x) (4.18)
With (n,N)=(2,2),(3,4),(5,8),(9,16).
A, is the Laplacian of SO(n), n=2, 3, 5 and 9.

Solution
We derive the solution With the help of the relations
? 2uifi<n
O3 0,1 < ny and Pot = A (4.19)
Ou; Ou, —2u;ifi>n

We have also x; is a homogenous function in terms of u, and the matrix H, is
orthogonal
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4.3.2 The connection between hydrogen atom and the harmonic oscillator
A quick calculation shows that the equation of the hydrogen atom

T A,0-DIW =W (¢20)
m r

That may be written on the basis of harmonic oscillator in the form

(A, W) =4Ei’) f(u) = 4a f(u)

2
With ’";) = —4E, da=hoCn+v+1),v=L—-1+D/2

2

And the energy is givenby: E, , = —%(n +v+ 1/2)_2

5. The cross product in n-dimensions and
Hurwitz theorem

(4.21)

We demonstrated using an elementary method that the tensor of inertia of a material
point and the cross product of two vectors were only possible in a three or seven
dimensional space [55-57]. The representation matrix of the cross product in the seven

dimensional space and its properties were given.

5.1 Inertia Tensor

The kinetic energy of a particle of mass m=1 which moves in a system in rotation with

angular velocity (@)is:

] - X _i qxq . QX_.
I'=2)- (1) =S (@x7)-(@xF)

X, 0 z -y\o
X |=l-z 0 x |o
X; y —-x 0 \o,

= T:é(w)t(Vg)t(Vs)(a)) and (M)=(V,)'(V;)

We write the inertia matrix as:

=2 2
m, m,, m; 7i—x — Xy —Xxz
_ _ _ =2 _ 2 _
M)=|\m,;, m,, my |= xy ro—y vz
=2 2
m;; m, My —xz -yz -z

5.2 Inertia tensor and the quaternion
The identification of two sides of the equation (5.2) may be written as:
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2 =2
m;,+x" =r m,+xy=0 m;+xz=0

2 =2
m,+xy=0 m,,+y =r my +yz=10

53
m13+XZ:0 m23+yZ:0 m33+22:}72 ( )
with X +y’+z =7

We can express these systems in matrix form as (H,) (H,)=7"1
=2
—X X r 0 0 0
=2
v,y -v v,) yl_|0 7 g 0 54)
-z z 0 0 r 0

xy z 0fN\-x -y —z 0 0 0 0 73
We replace the matrix (V3 )by its expression in (5.1); we deduce the orthogonal and anti-
symmetric matrix:

0 z -y x
-z 0 x vy
(H,)= (5.5)
-x 0 z
-x -y —z 0
With (H,) is the matrix representation of the quaternion
h =xe, — ye, + ze,
2 2 2
e, =—1, e, =—1 e =-1
1 2 3 (56)
€6, =¢;, 6,6;=¢,, €;¢,=¢,
(H,)Is the Hurwitz matrix and e,,e, and e; are the generators of the quaternion
algebra.
5.3 The cross product in n-dimensions
The generalization of the tensor of inertia in an intuitive way is:
m,, m;, .. m, ?2—x12 XX, ... —XX,
- 2
(M) = Moy My e My || = XX, rz_x2 e T, (5.7)
m]n mZn mnn _x1x,, _'x2xn ;:2 _XnZ

2 .
m,+x =r,i=1,...,n

m; +Xx,x; =0,i#jeti,j=1,...,n
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And the matrix system (H,)'(H,)=7"1 takes the form:

- X, X, o0 ... 0
v, ) ol o 0 (5.8)
_xn xn . e cee .
X, x, 0 \-x, ... —=x, 0 0 72
(H,)'(H,)=7"Land h= xe, (5.9)

The generators of the Octonions algebra satisfy:

2 ..
e =—1, ee, =—ee, i,j=1,..7

i joi
Hurwitz showed that we can only build orthogonal and anti-symmetric matrix which lines
are a linear combination of components of a vector only if n=1, 2,4 or 8. Consequently
the matrix (M) is orthogonal if n+1=8, it results that dim( R")=1,3 or 7.
After simple calculus we find the matrix:

0 X, =X, —X; X, X; =X,
-x, 0 —=x; x4 X; =X, X
X X 0 X, =X, —X, —X,
V)= x5 -x, -x, 0 -—-x, x, X (5.10)
-X, —X; X, X, 0 X, =X
-X; X, x, -x, —-x, 0 X
X, —=x, x, -x; X, -x5; 0

Properties of the matrix (V)

a— (V) ==(F)Vy), V) ==F)V>)
b— Exp[-iOV,)]=1-isin@V,)—(-cosO)V,)’
c— (H) ==1, V) ==V, (Hy)' =—1, (V,)' =—(V,) (5.11)

6. The generating matrices and the Cartan-Weyl basis

The adjoint representations of the orthogonal groups are anti-symmetric and the
number of elements is n (n-1)/2. The matrix Hn is anti-symmetric and function of (n-1)
parameters, {u}, and develops in terms of the adjoint representation of SO (n). To
generate the Cartan-Weyl basis we need consequently n/2 matrices, this number is in
agreement with the number of the simple roots of the orthogonal groups.

By analogy with the generating functions we call these matrices by the generating
matrices of the Cartan-Weyl basis and we build it for the cases.
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We start with the link of the Cartan-Weyl basis for the group SO(3),SO(4) and SO(5)
with Hurwitz matrices.

A-Generating matrices of SO(3)

For n=2 H2=u1]+u2§3
For n=3 H,=ul+u,S,+u,S, +u,S, (6.1)

B-Generating matrices of SO(4)
For n=4 we obtain by Cayley transformation two orthogonal matrices

. _ _ _
H;=ul+u,S;+u,S,+u,S,

_ _ (6.2)
H, =u,l+u,T, +u,T, +u,T,
C-Generating matrices of SO(5)
Forn=5 we mustadd only U,, U,, V,, V, to the above-mentioned matrices and
we write
H :u11+u2§3 +L13§2 +u4§1 +u5U, +u6l}2 +u7l7, +u8172
u, u, u, u, u;
-u, u, u, —u; ug 6.3)
= -u; -u, u u, u,
—u, u; —u, U, U
—Us TUg TU; —Ug U
We must change S by T to obtain the other matrix H?
D-The generators of SO (5)
We put
L, =—i(x,(0/0x;)—x,;(0/0x,)) (6.4)
The generators of SO (5) groups are:
S;=Ly+Ly,, S;=Ly+L,, S;=L;,+L;,
T, =Ly, T,=L; =L, T;=L,,—-L;, (6.5)

U,=Ly, U,=L;=xiLy
Vy=Ly;, V.=Ly=*il,;

=L
U,=L;,
V,=L

1 350
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Chapter four

Momentum representation of hydrogen atom
and Octonions quadratic transformations

Part I-On the hydrogen wave function in Momentum-space

1. Introduction

The problem of the hydrogen atom has played a central role in the development of
Quantum mechanics. Schrodinger solved his equation and found the wave function in
terms of coordinates. The problem in momentum space has been reformulated by
Fock [32] and led to an integral form of the Schrodinger equation and the eigenfunctions
are then expanded in terms of spherical harmonics. Despite the importance of Fock’s
work and the interest of many authors [33-37] to study the wave function in momentum
space it must not hide [1-7] that the direct calculation of Fourier transform of the wave
function of coordinates is up till now undone and our aim in this work is to fill this gap.

The wave function of coordinates [6-7] has the formy ,,, (¥) =R, (or)Y,,(0p),0 =2/n.

Where R

angle. The difficulty for the determination of the wave function in momentum space

comes from o and the appearance of the term “r”” in the exponential of the radial part.
We propose to circumvent these problems by using the quadratic transformation and the

generating function method where w = 2/n is a constant for all the elements of the

basis. After calculation of the Fourier transform we found in the expansion of order n

a function and we replace w by 2/nyand then we obtain the analytic expression of the

wave function of hydrogen atom in momentum representation.

(or) is the radial part, Y, (o) is the spherical harmonic and (€2) the solid

nl

2. Generating function of hydrogen atom
in momentum representation

The wave function of hydrogen atom in momentum representation is

- ! —ip.F =\ 7
5Unlm (p) = Wje g y/nlm (I’)dl’
‘//nlm (]7) = e_(wr)/anl (x)yvlm (9¢)’ ’_; = (r7 97 Q))) w = 2/” (21)
: : : an I y(21+1)
With R, (x)1is the radial part R ,(x) = mx L7 (x) (22)
n+i).
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[y A
2 ezl g5t 23)

And x=owr,N, = (D] ,

L7 (r)is the associated Laguerre polynomial. Atomic unit are used through the text.

2.1 The generating function of Laguerre polynomial L/ (r)

The generating function of Laguerre polynomial L7 (r)is:

z

S 9)= 1 e (9

no(n+06)' ’ (1-2)""

d
From the property d_ L(a) (r) = L(a+1) )

z

oc Zn (Z)l+] - r
We deduce that — = = e 2.4
;( +l+])' nl 1( ) (]_Z)Zl+2 ( )

2.2 The generating function of spherical harmonics

(a- r) 4
2 21 1

& Z(ozm (&)Y, (r) (2.5)

With d is a vector of length zero, d.d = 0 and its components

a :_512 +‘§229 a, = 1(51 +‘§2) as; —2§1§2a =
] B §1+m771—m
With (p’””(c’g)_,/(um)!(Z—m)!'

2.3 Generating function for the basis of the hydrogen atom

We multiply v, (¥) by [%]2 ", (0&), and summing with respect to n, /, m

g z(n+1)!
G(z.06.7) = %2”1 do— -1

o wr z" *
Ze CalE - — [11(a)r)z ag,, (& ., (F)

= (n+1+1)!

2", (@EW , (F) =

Substituting (2.4) and (2.5) in the above expression we obtain:

Glral.F) = [ % expl- 2 U*2) _@=@r)

Jr (1-2)° 20-z) (I-2z2)

] (2.6)
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3. The connection of R3 hydrogen atom and R* Harmonic oscillator

We will make a revision of the derivation of the quadratic transformations then we
determine the volume element. A summary of the connection between the wave function
of hydrogen atom and harmonic oscillator is given also.

3.1 The quadratic transformation R* —» R3
Consider the relationship between the well-known Wigner’s D matrix spherical
harmonics polynomials
iz

ip! o (02) =
P (m,())( ) (21+1

Z,=u, +iu,, z, =u; +iu,,

j Yl;(0>¢)a Z:(ZNZZ) (31)

p:\/;, r=z,7z,+z,z,,r =x"+y’ +z°
We write in terms of Euler’s angles or Cayley-Klein parameterization.

i(py) g 1w
zl=u1+iu2=\/;cosEe 2 ,22:u3+iu4:\/;sin3e 2 (3.2)

And D/, (2,,2,,2,,2,) =u*' D}, WOp),j = L1/2,...

(m',m)
It is important to emphasize that the elements of the matrix D are solution of Laplacian
A, .

If we put /=1 in (3, 1) we obtain the quadratic transformation

x=20usu; +ugu,)=2,z, +2,z,, y = 2uu;, —uzu,) =i(z,z, —z2,z,),

33
z=u; +u; —u, —u, =z,Z, - z,7,, 33)
3.2 The volume element
We consider the transformation (u,,u,,u;,u,) = (r,y0p)
With 0<0<m,0=5y,p<27,0<r<oc, —ocSu, <+oc,i=1,.4
And d’ii =|J|drd 6dpdy
The calculation of the Jacobian gives |J | =’ /8)sin® but d°F = r’drdddedy
Therefore Su’dii = didy,
And
. 4 _
[£ Gy 2)d 7 =~ ] f(x(), ), 2 d (34)
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4. The wave functions of hydrogen atom in momentum space

We write first the Fourier transform in the representation (u) and with the help of
Bargmann integral we determine the generating function in momentum representation.
Finally the development of this function gives us the hydrogen atom wave functions in
Momentum space.

4.1 The generating function in {u} representation
We denote the generating function by G(z,a&, p) in the representation {u}. But to

determine the generating function (2.6) we must multiply by 4 / &t to reflect the change in
the measure of integration. We write

-~ 1 i
Tnlm(p): Ie " SU

o' i (F)dF (4.1)

To calculate this expression we must write (4.1) in the (u) representation using the
formula (3.4):

= 4 / -ip.F
y/nlm (p) - ;W'[e Tnlm
In the expression of W , (p) there is the term 4 for that we consider a new generating
function:

G(z,a8,p,f) =

(Fu’du (4.2)

1 i S
QCrn)'”? r(I-z2)°

; L (4.3)
J’eﬂp.f expl| — or(l+z) + aa)z(aJ;) oA 45
2(1-z) 2(1-2)
We assume that > 0 therefore there is no problem of convergence.
We write then: G(z,aé, p)=— 6G(z,a§,[),ﬂ)/8ﬁ|ﬂ=o 4.4)
1
dr 2 Z"

With  G(z,aé,p)=> | — | —a' 45

4.2 The generating function of momentum-space
We can do the integration of (4.3) by a direct calculation with the variables (u) we can
perform the integration using the Gauss formula

(1) [T dv.dy, exp(-Z' Xz + A’z + Z'B) =(det(X))” exp(4' X 'B) (4.6)
pia i=

Withz =.(z,,zz,...,zn)

We have

—ip-r=-ip (z,z, +2251)+Py(2152 —z,z,)-ip.(2,2, —2,Z;),
-7

=a.(z,Z,+2,Z)) +iay(2122 —-z,z,)+a.(z,Z,-2,z,))

(4.7)

Q)

We obtain then
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w(l+z) wz wz 1 oz

+f—ip. +———a —ip+———a . -p +-———a

v | 2072 Potpt s P =y TP gy
- —1i +La + _lLa C()(]+Z)+ﬂ+l, _La
P =y TP T =y (1-2) P 0- "

Because d?=0 we deduce that:

2
o(l+z2) .2 . .
det(X) = + +p +ia a-plo=w/2 4.8
(X) H -2 ﬂ] p T (4.8)
We find therefore the generating functions
z

(4.9)

2
e U+ BU-2) + (=25 + 2iada-f)

In applying the relation (4.4) we find the generating function G(z,0&, p)

40 z(1-27)
V27 [(8(1+2)+ B = 2)) +(1-z2)° p” + 2iadi- p)

G(z,a8,p) = (4.10)

2

4.3 The wave functions in momentum-space
We drive the basis of momentum-space using the formula

dr 1/2 ]

10"10

nloz" I'oa'

G(z,a¢, f?)}

nl

In this case we must take =1/n and to execute the calculations we proceed by step:
1 - Derivation with respect to a

v (+ 1) 141
= (i) —=Ex (45)"" x
0 V27 (4.12)
(1-z")z"" (@p)

[(6(I+2) +(I-2)°p°]" 2'I

10 -
[EWG(Z af,p)}

We have
BU+2)" +(I=2)p* =((p* +8") = 22(p* -8") + 27 (p* +87)

—'2_82
=(p+8)[I-22x+27], x=|EL "2
(p W —2zx+z7], x (132+82}

We deduce that

(AeDt @)™ U=z (@p)
Vo PP+ [I1-2zx+ 271 2'N

=(7) (4.13)

0

10 _
|:ﬁ 6051 G(Z,Ofé:,p):|
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2- Derivation with respect to z
Using the familiar formula for the generating function of Gegenbauer polynomials

(I=2rt+r°)" =3 r"Ca(1) (4.14)
We write
] z Zl+1 oc ) .
[1£22x+)z [+2 z(] 227G ()

— Z n [Cl+2 ( ) Cl+12 3(x)]
Withm +[+1=n, m+ [+ 3 =nand d =1/ n therefore

10" 13 _ o D) (48)""
L,anl,a G(zaﬁp)]} (@) N (2+62),+2><

[Cl+12 () - C1+lz (x )](a p)

(4.15)

- p P, P, ()
Put = b b b b = - b b b —

y (y] yZ yZ y3 y4) [(1—52_’_52) (1—52+52) (Z)2+52) (p2+52)
We obtain y.y = 0.
Thus we find the transformation introduced by Fock.

3- Derivation with respect to ¢;,, (a%)

By using the formula (2.5) we get the following expression
10" 10 / (l+1) (46)"

@ (0/ é)— %" o0’ -G(z,a8, p)}(, = (1) e (~2+5z)1+2 X (4.16)

[ - 0l ()
4- The wave functions in momentum space
The comparisons of (4.16) and (4.12) give us the result:

N 32 (U +1)! I+1 [CHIZ 1( x) — C;Tis(ﬂ]
¥ un(P) =) N,a Ton x(49) (57 +5°)"

Y, (P) (4.17)

And with the help of the recurrences formula [10]:
(n+a)Cy5" (x) = (@ = DI, (x) = C,) (¥)]

n+l n+l

We derive finally the wave functions in momentum space:

5Y = (i) N ()! n(46)™ w D’ =
Woum (D) =) N r/l\/_ﬂ_ (~2+5 )1+2 n-i-1 ﬁg 52) i (D)

(4.18)

It is clear that we obtain by an elementary method and direct calculus not only the wave
function in momentum representation but also the phase factor.
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Part II- On the N-dimensional hydrogen atom in
momentum representation

1. Introduction

In a previous part we presented a new and elementary method for the determination of
the wave function in momentum space for two and three dimensions using the generating
function and Octonions quadratic transformations for a direct integration of the Fourier
transform. But Octonions transformations are valid only for N =2, 3, 5 and 9.

In this work we present, the generalization for N>3 by using the technique of generating
function and the Hankel’s integral [60] of Bessel functions and therefore we determine
the wave function in momentum space with the exact phase factor for any order N.

2. The wave function of hydrogen atom in
representation space

In this part we exhibit only the well known wave function solution of the Schrodinger
equation for the hydrogen atoms in N-dimensions [62-63].

2.1 The wave function of hydrogen atom
The Schrodinger equation of the hydrogen atom in N-dimensions space is

(—KAN —iJ‘I’(F):E‘P(F) (2.1
2u r
Where 0 is the reduced mass.
We write 7 = (x,,x,,...,x,) in spherical coordinates as» = (r,6,,0,,...,0,_,,9) .
X, =rsinf,sin@,sind,...sinf,_,cosy
X, =rsin@,sinf,sinf;...sind, _,sing

Xx; =rsind,sinf,sinf,...cosd, ,

Xy =rcosd, (2.2)
With 0<0, <z, j=1,...,.N-2,0<¢p<2nx.

And atomic unit are used through the text.
The method of separation of variables is used for the resolution of the Schrddinger
equation and we write only the solution:

r

lPn,z,{y} (r)= R,, (’”)Yz,{y} Q)= Nn,za)N/z(a)r)le_ﬂLil—;]—vliz (a)r)Yl,{y} (Q,) (2.3)

an:{ (n—1-1)! } =25, = 2
Y200+ (N =3)/2)(n+1+ N - 3)! (n+(N-3)/2)

56



2.2 The radial function
L'“)_ (x) Are the Laguerre polynomials

n—1-1
jo Ce X (L7 (x)) dx =

The generating function of Laguerre polynomials is:

M (2.4)
n!

Zz" L(”“)(x)z—] e I (2.5)
(1-2)

AT () = (<)t L0 ()

d k
But a+k=2[+N-2,n—-k=n-1-1
Consequently ¢ =/+ N -3
We deduce also that
(_Z)l+1

mexp[ X

] ZM 0 ’ f’l-;N]Z (26)

2.3 The angular function
Y, ., (€,) Is the Hyperspherical function

Y, (2)= 1 L€ ”"“’HCa/+”/*’ (cos®,)(sin@, )" 2.7)

Hi=Hjvp

. N-2 (a, +pu ), —u.,,)
With Ay =111, +a,,) |5
w2 " Qo+ 1)

And 2a, = —j—1,1=y12y22...2|y,v_1|= vy ) -

C? (cos @) Is the Gegenbauer polynomial of degree n and parameter a.

3. The momentum representation of N-dimensional hydrogen atom

Using the development of the free wave in space of N-dimensions, the generating
functions of Laguerre polynomials and Hankel’s integral we determine the generating
function of momentum representation and hence the wave function in momentum space.

3.1 The Generating function and the momentum representation
The wave function of hydrogen atom in momentum representation is:

- ] —ip.F
?’,,,,,“,}(m:Wje P (FAF (3.1)
= e o) B e (2,00 (2)
_(272_)N/2 e n—1-1 r 1{p} r r .

dr s defined by:
dr =dxdx, ...dx, =r""dQ, . (3.3)
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We note that ip -7 + 0 r can be regarded as the scalar product of two vectors in Euclidean
spaceE ,,. The first one is a vector of zero lengths (x,,x,,...,x,,ir) and the second

vector is defined by the angles K = (0,6 ,...,0% ) and the length K =/p> + 6

Using the development of the wave function of the free particle in N-dimensions [4]:
N

ip.r = . * —1 N
e’ = (2%)’”%l’Ym(Q)Ym(Q,,)JV(pr)/(pr)2 , vV =l+7—1 (3.4)
We find
- 1 Y -
y1n,l,{y} (p) = W]e Y y1n,l,{;t} (l")dl"
o ¥ (3.5)
= N[ [[(r)e > 1552 (@), (pr)(pr)° r“dr}((—iy Y, (2,)

Multiply by 1/(N,,)z" /(""'?) and do the summation we write first the generating

function for the basis and the generating function with m=constant which is very useful
for the determination of wave function in momentum space.

N
2
-(p? =z -
G(p,z,6,) = ;N—qu’n,z (p) (3.6)
oc o _r E—l
And G(p,z,5) :Zz"[ [ ) e 2 LEN (@), (pr) fpr)? rN‘ldr]
n=0
(_Z)l+] T -yr v+! N
=————\e"J (pryr'dr v=Il+—-1 3.7
TR j () : (3.7)
With y =0z s (3.8)
21—z

3.2 Derivation of the generating function using Hankel’s integral
Using Hankel’s integral[60]:
2vC2p)' (L (v+3/2)

\/;X(j/z +pz)v+3/2 ’

J‘:e’”JV (pr)yr’dr= [Re(v) > —1] (3.9)

We find the generating function as follows:
2" 2yCp)' (I (v+3/2)

(]_Z)zm\u \/;x(p2+]/2)v+3/2

2 AN\ 7 24N+
ep) ras D

1+z

O
\/; (1_2)21+N

N+1

(p’U-z2) +8(I+2)") 2
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(3.10)

N+1 N+I 2

1 N+1
26(2 2 ri+——- +
I A S D N A
p2+§2

Jr(p?+80)" 7 (=-2m+z7) 2

This function is the generalization of the generating function (4.10) of the paper [36], by
a minus sign due to the derivation of (4.9).

3.3 The Wave function in the momentum representation

We have L4 Gipzsy =12 [G(p,z,6)6=6 (3.11)
n!dz" ., ntdz" 1.2
Using the development
(—2)"(1-z2%) N ”% +%
T T D"">2"[C,5 (0-C, 5 (9] (3.12)
(I-2zx+2z°) 2 !
And the formula [16] (n+a)C% " (x) = (a—D[C'*) (x)—C'“)(x)] (3.13)

We find that the expression (3.11) may be written as

25)2p) T+ N s NI

N
Ay
2
—D v (=D 2 2w
Nn,l(25n) :

I+
Ja(p?+8)) 2
Finally we derive the wave function in the momentum representation

N-1

N
12 278532 (8, p) (1 +

)!
L= 1= D+ (N =3)/2)
P (P )__(l){ 2r(n+1+N-3)! } , :
(p™+6,)
CoANP(0Y,(Q,) (3.14)

This hyperphysical function may be written in term of the components of the vector
defined by the angles K'= (—% +26,6},...,6% ) and the length K'= | P> + 57 .
This vector may be derived from K by rotation about the vector perpendicular to the
space E,, with angle of rotation—% +0.

We can also determine the representation {p} by this method if the potential has an
additional term A4/ 7> .
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4. Appendix

Problem:

The Four dimensions of Laplacian have two solutions:

Our objective is to derive the passage formulas between these basis .
1- If we consider the coordinates

X, =\/75ingc0s(1//—(p) X, =\/;cosgcos(l//+(p)

X, =\/;singsin(l//—g0) X, =\/;cosgsin(l//+(o)

Prove that the solution of the Laplacian is: »/ D/, . (w6¢p)

2- If we consider the coordinates
X, =rsin ysinfcosy X; =rsin ycosd
X, =rsin ysindsiny X, =rcosy

Find the solution is the spherical basis Y, (y60y)

nn—1—-1
2n(n+1)!
3- We consider the quadratic transformation

_ _{q+iz x+iyj[z,J . . .
(z , Z, ) ) = qq'+ixx'+iyy'+izz'
-x+iy q-iz )\z,

1/2
Ynlm (l_;) = 21”‘/””1[![ j C:ij—] (COSZ)Ylm (’7)9 17 = (’7: Q)af = (X],XZ,X3).

=qq'+ir -r'
Find the two expressions of the developments, exp[gq-+ixx'+iyy'+izz'|
in terms of spherical and D-matrix elements.

1
z . la ' = ['(21+2) (141
e’ (=siny)? J zsin y) = c,”
(2 27 Jia(zsing) ,,Z:(;l(l+1+]/2)l Ql+2+n) "

(cos y)z"

o i
. i 7 . PR, . %
With e™ =42 Y i j, (k)Y (6 9')Y,, (Op) and J,<p)=1/—2pJL+m(p>

1=0 m=-1
4- Use the two expressions to derive the formula:

Yn]m (“/’) — (_l-)l(n/2)1/2 Z(_])(n—l)/2(21+1)1/2

mim2

-1)/2 -0/2 1
(=72 =002 i
m, m, m e
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Chapter V

On the collective motion of the nucleus
“Microscopic theory”

Introduction

The Hartree-Fock variation method provides an approximate determination of ground
states and ground state energies of quantum mechanical systems, and widely used in
physics and chemistry. In Hartree-Fock method [66-73] we approximate the ground state

of the system by a Slater determinant |®,, ) constructed from the states of nucleons

which are eigenstates of a single particle Hamiltonian called Hartree-Fock Hamiltonian.
This approximation reduces the problem of many interacting particles to one of non-
interacting particles in a field. This wave function is not function of angular momentum,
and the calculation of rotational energy [68] can be done by using the integral
representation of Hill-Wheeler operator. But the calculation of the rotations spectrum is
Very long [70-72].

We have generalized the Cramer’s rule and so the calculations can be carried out
simply by the Gauss-Jacobi method [72].
Using this generalization of Cramer's rule we determine the Thouless function [78] and
we take this function as the generating function of the Hartree-Fock basis.

It is obvious that this approximation neglects much of the interaction forces between
particles. These forces are the residual interaction. To study collective motions it is
important to consider these interactions. And the introduction of random phase
approximation theory and more generally the quasibosons developments aim the study of
these interactions. It is therefore important to express the Hamiltonian in terms of quasi-
bosons and apply the Bogoliubov transformation to determine the frequencies of
collective vibrations. But the methods developed by Belyaev and Zelevinsky [39] and
that of Marumori et al. [40] converge slowly and don’t respect Pauli principal.

For the sake of clarity we did a quick revision of the generating function method and
we apply our method to the well known model in nuclear physics the Lipkin model [81]
or in the SU (2) case we got the same result of Holstein-Primakoff mapping.

We know that the Thouless function is developed on the product of the Hartree-Fock
basis and its image in the Fock space which is an orthogonal basis without normalization.
So that this function to be useful we need to normalize the basis to get the correct
generating function| G(z)> .So using the generating function method we find the

expression of the Hamiltonian in terms of quasi-bosons operators. This Hamiltonian was
used by many others for studying the collective vibrations of the nucleus. We made
reference only to some papers despite the importance of the other works [82-89].
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We have already used also the generating function method for calculating the
Moshinsky-Smirnov coefficients which are very useful for numerical calculations of the
matrix elements of nuclear potential [79].

Part I-Generalization of Cramer's rule and its application to
the projection of Hartree-Fock wave function

1. Introduction

The great recent interest [72-77] to study the projection theory and their application in
nuclear physics leads me to resume my former works on the projection of angular
momentum [72].

Lowdin [69] proposed a formula for the calculation of the spectrum of energy levels,
but this method requires a long calculation and does not take account the conditions of
stability resulting from the minimization of the energy of the system using the Hartree-
Fock theory.

We observe that the calculation of the rotational energy implies the calculation of a
determinant, the overlap of rotation, and a set of determinants which differs from each
other by the change of two columns [72]. This leads us to the generalization of Cramer’s
rule of linear algebra this allowing us to calculate all these determinants by Gauss
elimination method.

This method takes into account the conditions of stability and minimizes the time of
executions. Using this generalization we derive also the Lowdin formula [69] and the
well known Thouless theorem [78].

2. Generalization of Cramer's rule

Let E be a vector space of dimension (n) with basise,,e,,...,€,. d,,d,,...,da, Is asetof

linearly independent vectors, belonging to E. l;l ,152 , ,Z;S , s < n is another set of linearly
independent vectors, belonging to E. We denote by (A) the matrix formed by the
components of the vectors (a,)and det(A4) = det(d,,d,,...,d,) = |(A)| is the determinant

of the matrix (A).
Theorem: Consider the following systems

> x(k,j)=b,, k=12,...5, s<n 2.1)
Jj=1

We find the determinant formed from det (A) by substituting the components of some
vector (a;) by the components of the vectors Ei , (1<i<s)<n by the formula:
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x(L,i,) ... x(Li))
bo,.a)=det(4)] : : (2.2)
x(s,i,) ... x(s,i)

Prove: We will proceed by induction, s = 1 then 2, etc.

det(a,,...,d, ,b,,...,d,

i > g

It is well known from the multilinear algebra that the space A E has only one basic vector
€, N €, AN ... A€, andd Ad, A...And, =det(A)é, né, A...NE.
1-For s = 1 this is the case of Cramer's rule. We shall do a brief revision.

Multiply the two terms of the expression (2.1), the right by A a,,, A... Aa, and the left by

a, A...Ad,, A We obtain:

n
Zx(k,j)c_il/\.../\c?ifl/\ﬁj/\c_i AooANd, =A, N... A, ANb, N AN NG
j=1

i+l . n i+1 . n

The summation in the first member is zero unless j = i, it follows that:

x(k,i)a, A...ANG, =G, A...NG, , Ab, NG, A... NG, (2.3)
then we deduce that
det(A)x(k,i) = det(a, ,...,dl.fl,l;k,sz,...,&n) 2.4)
2-For s = 2, we multiply the two terms of (2.1), the right by
N IR N N AE,. A...AQ,
And the left by ANd, Aeo.Nd, AD A AG,, (2.5)
We obtain:
Z:x(k,j)d1 A NGy NG ANy A NG, =
=1
a, AN...Nd,, /\l;k AN Ao NGy /\b: A...NG, (2.6)

The first member is zero unless j=ior j =1, it follows that

x(k,i)det(G,,...,d,,...,d, 1\, Gy d,) +

Xk, 1) det(a, ...y, G,y eesdy oy sensd, )=

det(a,,...,a, ,b,,d,,,...,4, ,,b, ,d,, ...,a,) 2.7)
in the second term of the first member, we can interchange the order of vectors and we

change the sign, by replacing the expressions of the first member using their value of
(2.4) we get the expression.

. . x(k,i)  x(k,D)
det(A)[x(k,z)x(r,l)-x(k,l)x(r,z)]=det(A)( . j (2.8)
x(r,d)  x(r,0)
= det(d,,...,d, by G,yseery b,y nd,)

3-We assume that (2.2) is true for s-1, we prove that is true for the case s.
Multiply the two terms of system (2.1), the left by
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a, N...NQ; /\l;1 NN /\Z;s_1
and the right by Aa,,, A...Ad,, we obtain a similar expression of (2.7) and the

summation is zero unless j =1i,,i,,...,i .

Using the result of the case s-1 and we note the minors by min, we find:
det(A4)[x(s,7,)min(x(s,7,)) —x(s,i,) min(x(s,i,)) +...+ x(s,i, ) min(x(s,i,)) =

x(1,i) ... x(1,i)
= det(4)| : L | =det(ay,...,d, by, b 0a,) (2.9)

ls
X(S,i]) X(l.‘\,,l's)

3. The projection of the Hartree-Fock wave function

We present at first the basis of Hartree-Fock and then the calculation of the spectrum of
rotations. For the calculation of the spectrum, we applied the projection of the Hartree-
Fock wave function, and the application of Cramer's rule’s generalization.

3.1 The Hartree-Fock basis

the variation method leads to a Hamiltonian called Hartree-Fock Hamiltonian whose
eigenfunctions are the states of particles ﬂ c; >}
We denote the occupied states by «a,,a,,...,a, and b,,b,,...,b,,... the unoccupied

states.
In the second quantization formalism we write the wave functions of the system with the
creation and destruction operators {a;,a,},{b;,b,},] <i, j<n,I <k,l <oc and we choose

the wave function of Hartree-Fock as starting point.

|®,-)=aja;...a’|0) (3.1
We note the states {‘ @/ > = bjai|d) HE >} by particle-hole states| lp— 1h> and the states
{‘d)f]’"> b/bra,a,|®,, >}by the 2particles-2holes states|2 p — 24), etc. All these states

I “m™>i™j

form a basis which we call the Hartree-Fock basis.

3.2 The energy levels using the projection of the Hartree-Fock wave function
The spectrum of energy levels is given in the Peierls-Yoccoz theory [4] by

[ DG @D e [HREO)| D 1 )dQ2
[ D3 (@ |[RQ)| D )dO

(3.2)

i

With H=T + V is the Hamiltonian, T is the kinetic energy and V is the potential energy.

Q = (yPp)Is the solid angle and D/, ,, (Q) =e™™¥*?d/ (p) is an element of rotations

matrix.
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In order to assure that the average value of H is minimal [1-2], the variation method
imposes the condition:

(e [H|Lp —1h) = (@ |HD  a;| @ 1y ) = 0, Vi, j (3.3)
If we introduce the unitary operator of Hartree-Fock basis between H and R of the
expression (® . |HR(Q)|® . )and taking into account the condition (3.3), we find in the

case of axial symmetry:

.[ (*"ji m)(ﬂ)< HF |a.+af'b bee ™ ¢HF>Sinﬂdﬂ
.[d(m m)(ﬂ) HF |e lw‘|®HF>Slnﬂdﬂ

(3.4)

E, =E, +- ;( ij| V7| &l

With  (ij[V7]l) = (ij |V | ki) — (i |V | k)
And <ij |V| kl > are the elements of the potential matrix.
We prove by simple calculation that [2]:
(@l ™| @,y ) = det(d, d,.....d,) With a, =(a,|e~ifJ |a,)
And

(D |a;abbe™ | @, ) =det(d,,...,d,_;, by, G,y poe sy yubyd e d) (3.5)

With

(b,),, ={b,le™"|a, ) 1<m<n,r=k,Ll. (3.6)

According to the preceding theorem, we deduce the final expression of energy.

o (i) (ko )Y
[a,,(B@ w|@’”>(i(1 ;) );(1 ]]_)]smﬂdﬂ

jd(m m) (ﬂ) HF |e_lﬁ]"

1 ~
E,=E, +Zz<ij|V|kl> 3.7
i

. > sin fdf

We performed the calculations of x(k,7) using the Gauss elimination method and the
integration by Gauss method or Gauss-Legendre integration.

4. Derivation of Lowdin formula and Thouless theorem

4.1 Generalization of Cramer's rule and Loéwdin formula
We can extend the definition of variables x(k,i) by

x(k’i)=<(DHF |Rc/:rci|q)HF>/<(DHF |R|(DHF> 4.1
With x(k,i)=0, ifi>n

We find thatx(k,i) = Z c, |R‘ >A and A are the minor of the matrix (A).

We deduce that the one body potential may be written in the formalism of second
quantization:
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(@, |TR|® ) =D {a, [T]e, ) (e, |R\ > @, R D) (4.2)

k

But Z|c ‘ ><c i |is the unitary operator in the space of one particle state.
k=1

Finally (@ [TR|® ) = Y (a,[TR @, ) 4, (@ [R| D ) (4.3)

Following the same method we find for the two body potential

A A,;
A A,JI

The inconvenient of Lowdin formula is the calculation of the elements {<aia ; ‘VR| a.a, >}

ikl

<CDHF|VR|(DHF>=Z< ‘VR|akal>[

}( wr |R| @ ) (4.4)

that require long calculation.

4.2. Generalization of Cramer's rule and Thouless theorem
Let |¥)and|®) be two wave functions such that| W) = U|®), U is an invertible linear

transformation and I is the unit operator of Hartree-Fock basis.

We have UciU™ = Z<cj }U| ¢, )} (4.5)
j
And
)= 0[0) - 10]0) - (0U[0]0)+ T (0 bUD)5a 0]« @0
ik

;<q>|a a’bbU|D)bblaa|d)+..

Applying the theorem we get:

|¥)=U|®) = IU|®)=(oU|®) @)+ <@|U|¢>[;x(k,i)b;ai |¢>}

x(Li)  x(l,))

+<<b|U|cp>LZk; ki) xth i) b/bla, ,|cp>+..}
= <¢|U|@>{1 + (;x(k,i)b;ai ) +5(;x(k,i)bk+ a;) + -JI@ (4.7)
This expression is written in the form
|¥) =U|D) = <(D|U|<D>exp[z x(k,i)b; a, }|<D> (4.8)

In the particular case where (®|U|®) = 1 we obtain the Thouless function [78].
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Part II- Collective vibration of the nucleus, G.F. Method and
quasi-bosons approximation

1. Introduction

We shall be concerned with the approximations and the excited states. But in the
Hartree-Fock theory the residual interaction is neglected. And if one is interested in
collective states then the residual cannot be neglected.

If first we limit the approximation to the Hartree-Fock function and 1p-1h states and then
we solve the Schrodinger equation. This approximation or the Random phase
approximation (RPA) cannot give good results for phenomena involving two or more
particle correlations [38].

The development of techniques for operators of fermions in terms of operators of creation
and annihilation of quasibosons proved particularly effective to study the collective
Hamiltonian and transition operator of even-even nuclei.

Two development methods were used: that Belyaev and Zelevinsky [38] and that of
Marumori and al. [40]. Unfortunately these developments converge slowly when they are
trunked.

We intend to show how the generating function method [80] allows the construction of
developments in terms of quasibosons that respect the Pauli principle and are also more
rapidly convergent.

2- The RPA equation of motion

The RPA derives from the well known equations of motion method solving the
harmonic oscillator problem.

2.1 The equation of motion harmonic oscillator
The equation of motion harmonic oscillator in Quadratic form is:

H=caa” + fa*a+’ @.1)
Put: O=xa" —ya [H,0]=-w0O and [H,0']=wO" ,

We obtain:
[a,[H,O0"]]=w[a,0"], And [a ,[H,O']]=w[a",0"] 2.2)

2.2 The RPA equation of motion
In the Hartree-Fock theory the Hamiltonian is

H=H0+Hres (23)
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If we put ZYaa—Zaa

mi—"m =l mi 1

m7i

la,ya. [H,O ]=wla,a,0"), And [a’a,,[H,0"|]=w[a a,,0"] (2.4)

We obtain the usual equations of the RPA:
En =8+ 2 ViV ¥ Vs Z,) = @Y,

mj,in ™ mi mn,ij <~ nj

=020+ 3 T2, 47,,,2,) = (2.5)

in,mj = nj ij ,mn“~ nj mi

We write these equations in the form:

AU eo

3. The generating function method (revision)

3.1 The Generating coordinates Method
The theory of rotational energy is done by Peierls-Yoccoz [68] using the well known
Hill-Wheeler generating coordinate’s method:

¥ (x) = [ f(2)P(x,2)dz
And @(x,z) is the trial function

To study the vibration I was proposing to change the trail function by the generating
function and to use the Fock-Bargmann space for integration.

3.1)

3.2 New Interpretation of the generating function
The generating function of the harmonic oscillator is:

We denote the Fock-Bargmann Space { ; (q)}by {B}, and the Space of waves functions

by {F}.The generating function is given by: {E N }
We have G(z,9)= trace{{B} ®{F }}

And Af (2) = [ £(z)G(z',9)4G(z,9)dg
A is an operator belong to {F} and A(z)belong to {B}

(3.3)

3.3 Generalization of the generating function:
We denote by B the space of orthogonal polynomials P, (z) € B
We consider the transformation:

(3.4)
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And we define the generating function by:

|G(2)) =D P, (2)|m)

The image of the operator A is 21(2)
It is very simple to prove that:
(mldm’)={p, |4 p,)

A

I S
And A" =A4", (AB)=AB)

So our method satisfies the conditions of B-Z and Marumori et al.
Using the formula

Af(2) = [ F@)G(2)]4]G(=")dg (3.5)

We write: A(G(2)| =(G(2)|4 (3.6)

This expression is very useful for computing.

3.4 applications to harmonic oscillator
a- In one dimension harmonic oscillator we have:

H=hw(a"a+1/2) (3.7)
Using AG(z,9)|=(G(z,9)|4,

Wefind d=d/dz, a* =z, ﬁ:hw(zdiu/z)
Z

b- In the three dimensions harmonic oscillator:
_ + + +
H=hw(a,a,+a,a, +a a, +3/2)

A(G(z,9)|=(G(z,q)|4 , = H = ho(z, ai+ z, 9, z, 2. 1/2), (3.8)

Z) Z, Z3

Ry@) =" nen,on) = [ P (2)|Glz.g))u(z)

n,
PEPER
Jntn,!n.!

3.5 Application to Lipkin model

The method that has just been developed will now be applied to the model of Lipkin
[8] to compare our results and some of those previously obtained.
The Hamiltonian of the system studied is written:

1
H=el, +3(Jf +J7) (3.9)
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With [J,,J_1=2J,, [J,.J.]1=2J,

n) of representation is defined by:

J(,|n> = (n—J)|n>
\n)=[(2J =n)(n+D)]n+1)
J_|n)=[(2J —n+Dn]n-1)

And  J™|n)=0 Vn, N=2J

The generating function is:

o)), 2 )

Will determine the images of the operators J,,J ,J
1-Image of J(@(2)|=(D(2)|,

We find that J,(@(Z)| = (Za% —I)D(2)|

Therefore J, =(Z 2. J)
oz

2-Image of J,

JAD(2)|=(@(2)|J

N Z"
+=Zn=0ﬁ<n +_zn1\/_<

Note that J , must be developed in the form:

= 0 2,0 0>
J=alZ+a/l,—+a,Z°(—) +...
+ 0 1 JaZ 2 (aZ)

We have

JAD(2)| =) —D'Z (i-1 |—Zn1\/_<n I[n(2J =n+D]"*

N nw —j=1)

The vectors {|n> } are linearly independents, we deduce that

n—1 _ 7\
S, D gy
S5 - j- 1!

Calculating the coefficientsa , is done by induction

3-Image of J? <q>(Z)| =(0(2)|J]

0
We put =p,Z+p,Z, +,82 (6_Z)2 +...
We find after calculation that:
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n—1[n(2J —n+D]"

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)



:—VZJ’ (Xl :‘\[2._]—1_\]2.],...

(3.15)
=J20(2T = 1), B, =~J(2J =D(2J =2) = [2J (2T - ])....
Our method makes it possible to quickly condense the form of the development.
4. The renormalized Thouless function as generating
function for the many body problem
4.1 The Thouless function is:
|¥)=U|@)=(o|U|®) exp{z x(a,i)b/a, }| @) (4.1)
Put A= ZZW a;b, and (®|U|®) =1
We write: |‘P> =exp[4"]|®), z,, €C
A"
nd [#)= XA 0) )+ Tz l|a>>}
¥ {Z R AT 4.2)
VRN

-We denote the holes by (e, f,...) and the particles (i, ,,..)

4.2 Renormalization of the Thouless function

The generating function may be obtained by the renormalization of Thouless function.
We consider:
Z(a i) Z(a»j)

(0!1)’

, elc...

2 ZB

As a basis of Fock-Bargmann space but we must normalize this basis then

A"
9,0 = XA 10) 40)+| 2, i |0) |+
{ZL f“"“ Ze bibra,a,|®)+. } (4.3)
N2 o Zpp

We write the generating function as:

G2} =P, )= (3 47 ) (4.4)
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And for the applications we use: X (G(Z) = (G(Z)|X

5. The quasiboson development of the Hamilton
5.1. The Hamiltonian of the nucleus is:
H,=0if | D, > is the Hartree-Fock wave Function.

We write

H=E,+H, +(H,,+H,)+H,,+(H, +H,)+H',,+(H, +H;,)
E,=(®,|H|®,) = Zhaaﬂz wpap)! 2

H, = Z(hz/"'Z aua)a a; _Z(haﬁ+z amy
H, Z(h1a+z ﬂaﬁ')a
H, Z(Z zﬁag)a;rb;bﬁaj

iaf
H, Z( ﬁaﬂ)xafb; ;b+/4
iof
H'y=>V, aaaa 4+ V,, bib'bb,/4
ikl apys
Hy, =YV, 4abiaia, 12+ YV, ,a'bbib, 2
ijka ia,pr

(5.1)

5.2-The image of the operators: particles-holes
Using the formula ,21<G(z)| = <G(z)|A we find the image of particles-holes in terms
of {Zij}l

:$ 0
(aja) =27, 67

v

(b b )= sz
j (5.2)

with K, =Z,,, K, Zz 9 9 pp B

iB BB jaip> e
7 oz, 0Z,

The latest development is rapidly converging with o, =1, a, =1 - V2,
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And a, =—-0.048, a; =~ —0.0076.

The general term {¢,} being defined by the recurrence relation:
na,—-nn—-Na,+n(n-0H(n-2)a,+..+(=)"nla, ,=nn, a,=1

Taking into account the correspondence between the Bargmann-Fock space {F} and the
bosons space {B} we write:
Z,—> B, ai—> B,

We find simply the transformation of the operators with the operators of bosons.
+ _ +
(a;a;) = ZBinjy
4

(b3 = X B1.B,,
J

(5.3)
(bya), =a,K,+a,K, +..,
with K, =B,,, K, =Y BB, B, ..
- A
5.3-The image of the operators: two particles-two holes
1—(a/bibsa,), =B, By~ BB B, B,
nmy
2—(bya,b,a;)y =0, BB, +a,Y BB, B, B, +..
e
o, =2, o, =26 =-1,035
The third term coefficient is:
o, = (23 +2-236)~—-0.01
This coefficient is negligible.
3-(ajab,a), =2 BB 4B, +...
1
4- (a:b;bﬂaj)B = _ZBi;B;ﬂBlaBkﬂ
i (5.4)

ny =" ma" nf

5-(bsbyb,by)s =Y BB, B, B

6 —(bibyb,a), =2 B}, B, B, +..
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5.4 The expression of the Hamiltonian in terms of bosons operators

H=E, +Z(ei —e,)B, B, + Z(Vfﬂ,og)Bi;Bjﬂ +

iogf

+ ﬁ > [Zi,aﬂBi;B;ﬂ + hc]+

ij,of
2 ~ 2 ~
V2 SV, BB B, + hc]+£ > V.., B.B.,B,., +ic] (5.5)
2 ijkaf 2 imafy

- + p+ 1 > + p+ D+
- ZV B,B,,B B./’ﬂ_z ZViiﬂleiaBjﬂBlaBkﬂ

ifay =iy ma " my
ijklaf

ijmafly
1 o~ + 1- \/E - + p+ p+
_Z ZVaﬂ,yﬁBmé'BnmeaBnﬂ +W Z[I/ij,aﬂBiaBijkﬂBky +]’lC]

mnofyd ijklafy

Note that the developments of Belyaev-Zelevinsky and Marumori et al. different from
ours by the presence of surplus operators whose action on all elements of the subspace
{B} of bosons is null. Such an operator is for example the following:

0o 0 0

0
+ Z)=0
(8Z 802, OZ, 0L, )/(2)

Or BB, +B,,By=0
Therefore in the generating function method the development of the operators converges
quickly, conserve the commutations relations and the matrix elements ,verify the Pauli
principle and the calculus of the image of the Hamiltonian of fermions in terms quasi-
bosons is elementary and simple. The development will be very rapidly convergent and
therefore very useful [80]. Then the method described here will therefore ultimately to
obtain rigorous development in terms of quasibosons, observables of a system of
fermions, valid up to an order as high as desired.

After 90, the calculations conducting by many authors and the comparison with
experimental results showed the importance of this formula in many body problems [89]
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Chapter VI

On the Euler angles for the classical groups and
The Wigner’s Symbols for SU (3) multiplicity free

1. Introduction

The applications of the SU (n) group theory have occurred in numerous research areas:
nuclear physics, high energy particle theory and experimental nano-scale physics.
Several problems remain under investigation:

a-The parameterization of these groups [41-43],

b-The explicit determination of Wigner’s D-functions is not found [4-6].

c-The Wigner’s 3j coefficients are very important for applications and are not
completely solved despite the extensive efforts made by many authors [44-46].

In this work we start from the order of the classical groups to determine new
recurrences formulas of parameterization and from which we derive the generalization of
Euler’s angles for these groups.

We prove the connection of the measure of SU(n) with the measure of product of
cylindrical basis of harmonic oscillator or the two dimensions Fock-Bargmann spaces.

The basis of the representation of SU (3) was constructed by many authors [93-96] and
we've built the generating function of this basis using Schwinger’s coupling method of
angular momentum in Fock- Bargmann space [91-92].

The invariants for 3j symbols of multiplicity-free are functions of the powers of the
elementary invariants of SU (3) and the normalization is feasible in this case. The
expression of the isoscalar factor in a compact form is found for the first time.

2. The classical groups

We give a quick revision of the properties of classical groups, then we derive from two
kinds of recurrences relations the parameterization of the classical groups and then the
measures of integration on SO (n), SU (n) and the connection of the measure of unitary
groups with the measures of integration in Fock-Bargmann spaces.

2.1 The special orthogonal group SO(n)
The special orthogonal group SO(#n) is the group of nxn orthogonal matrices (A,? )

with unit determinant. They form real compact lie groups of dimension n (n-1)/2.
The real special orthogonal matrices leave invariant the real quadratic form:

2 @.1)
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2. 2 special unitary group SU(n)

The special unitary group of degree n, denoted SU(n), is the group of nxn unitary
matrices (A,II ) with unit determinant. The special unitary group SU(n) is a real matrix of
dimension f(n)=n* — 1.

The unitary group leaves invariant the hermitian form:

;Z"Z" (2.2)

2.3 The symplectic group Sp(n)
This is the Lie algebra of Sp(n), the group of n X n quaternionic matrices (A,f) that
preserve the standard hermitian form on Q":
(X p) =X, + X0+t X, 2.3)

That is, SP(n) is just the quaternionic unitary group, Sp(n) is a real Lie group of
Dimension f(n)=n(2n+1).

2.4 The infinitesimal group generators
The elements A of group G are composed of nonsingular matrices of degree n and can be
expressed in terms of r continuous parameters
A= A(a,,....a,).
Such that the infinitesimal group generators are:

X, =(04/0a,),, (2.4)

We have the important group theory formula:
Of (x) = f('o(x)), x€E,

We have also the important group theory formula:

(2.5)

Uf(2) = f('u(z)), zeC, (2.6)

The generators of unitary group may be written in terms of creations and destruction of n-
dimensional harmonic oscillators as:

Using theses formulas we derive the generators of SU(3) in part five.
3. On the Euler angles for the classical groups

We establish recurrences formulas of the order of the classical groups that allow us to
find a generalization of Euler’s angles for classical groups and the invariant measures of
these groups.
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3.1 Generalization of the Euler parameterization of SO(3)
In Quantum mechanic we write the matrix elements of rotation by

<lm'|R(\|19(p| lm> = <lm'|e_""’L:efi9Lye_""’Lz |lm>
r 1
(1) is a rotation in the space

(2) is a rotation in the dual — space, (3.1)

We observe that for every rotation in the space {| lm>} there is a rotation in the dual

space {<Zm'|} . In this interpretation, we can write the finite transformation of classical

groups in the form:
Al =47 BIA, (3.2)

With m =0, 1 and 2 for orthogonal, unitary and symplectic groups.
In the following we derive two kinds of recurrences formulas

3.1.1 First recurrences relations for the number of parameters
It’s simple to verify the recurrences relations

a) n(n—1) _ (n—-N(n-2) ]
2 2

by n’—1 =[(n-1)°-1] +2n-1 (3.3)

¢) nCn+D)=[(n-DH2(n-D+1]]+4n—-1
We obtain the relation

Nn)=Nn-0H+2"n—-1,m=0,1,2. (3.4)

So the order of the matrix n has parameters more than the matrix of order n-1.
Since the point (0, ...,0,1) is invariant by the group of order n-1 this means that the last

column and the last row are the components of the unit vectors of points on the unit
sphere S™"~1 of the Euclidian space E,,(K),K = R,C,H = Q.

Last
A" = : Col.

Last Row a

nn

3.1.2 Second recurrences relations for the number of parameters
It’s also simple to verify the recurrences relations

a) n(n—1) :2[(n—1)(n—2)]_[(11—2)(;1—3)
2 2 2

by n’—1=2[(n-1)"-11- [(n-2)"-11 +2

c¢) nCn+D)=2[(n-D[2(n—-D+1]]-[(n—-2)[2(n—-2)+1]]+4

1+ 1
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We can write these expressions in the form
Nm)=2Nn—-1)-Nmn—-2)+2" m=0,12.

BrAL

It is quite evident that the parameters of left and right are different.

A7 = A7 B AT B AL B AL

n—1

:A;;n—zBm [A;:H—ZB:IA;:”—Z ]Bm IAm

n—1 n—1*"n-2

[B),4,51=0

In the expression A'=A4",

But

We choose (3.5

Then number of parameters A} of becomes 2(N — 1,m) — N(n — 2, m) + 2™ and the
number of B;* parameters of is 2" . Therefore we find the same result of the recurrence
relation.

Therefore we write A"=4",B" A" ,B"A" ,B" A",
To find A4 we must choose the parameters such that the last line, or the last column, are

m

the components of the vector7 = (x,,x,,...,x, ), 7 o7 = land [B", A" ,]= 0. In this case

the range of parameters is imposed by the range of the variation of the angles of the
vector 7.

It is important to note that every parameterization components of the vector
7 =(x,,X,,...,.x, Jcorresponds to a parameterization of classical groups and therefore the

parameterization is not unique.

3.2- Parameterization of SO(n)

In this case 4" = A" ,B" A" ,, m = 0 the matrix B! is function of one variable and
The expression [B, 4! ,]=0 means that B! leave invariant 4’ ,.
Then we write

I, 0 0
B’=| 0 cos0"! sin®"’ 3.6
n n—1 n—1
0 —sin®") cos0")

If we choose in Exthe spherical coordinates 6,,6,,...6, ,we write
&, =sind _,...sin6,sing,
&, =sinf, _,...sinb, cosb,

&, =sinf,_,...cosb,

&, =sinfd _,cosb
éfn =Cos 69n—1
With 0<6, <2z, 0<60,<m,j=2,..,n—1

The position vector 7 =7" = (x;, X, ,..., X, )
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By use of the polar coordinates (,6,,6,,...,0, ;) defined byx; =r¢;.

We find the Vilenkin’s parameterization [121] for SO(n) and therefore we shall use the
same notations. Any rotation g of the group SO (n) can be set as follows

g=g ™D g0

Where g% = g,(01)..2,(0)) (3.7)
And g, ,)(GEE;) =B’ is the transformation

x,_,=x, 080" +x sin@"} 3.8)
x, =x, ,sin@" +x, cosd";
3.3 Parameterization of SU(n)

In the case of m = 1 the matrix B/ is function of two variables anddet(B,) = 1.

1

The expression [B!, 4! ,]=0 means that B! leave invariant 4! , and the solution is not

unique for n>2. If we parameterize like above the last column by the spherical
Coordinates:
z,=reV & r=1.

—iyf
We write u;{ = (e 0 +zQu/k J ’ uzk (eikal//ik) = Bn2 = gi(eik)di (l//zk)
e 1
I, 0 0
dwhH=l 0 " 0 (3.9)
0 0 e
Where u=u"" u?
And u® =y (y u, (0] w5 u (00 v4,)) (3.10)

We can also consider other useful options (22), for example

K eV 0 ko pk ok 2 k k
u, = 'k u; (91' Wi ):Bn Zgi(gi )di(l/ji )

0 e
d(y!)= (e_w;lﬂ ei(nozwf ]
u=u"" u? (3.11)
Where u® =uy i u (0 p3)a, (0w i) (3.12)
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2 (a] azJ
SU(2) U,=4;,=| _ (3.13)

—a, a
SU(3) U, =A; =A4; [B; 145
a, a, 0! 0 0 |(d, 0 0 b, b, 0
—a, a ollo cos% snZ2 | o d, o0l||-b b 0 (3.14)
0 0 1 0 0 d? 0 0 1
0 —sinv—3 cosﬁ ’
2 2 |
with 0<v, <, djzeiﬁ3,03ﬂ3£7r.

3.4 Parameterization of SO(6)

It’s known that the Lie algebra of SO(6) and the Lie algebra SU(4) are isomorphic.
Therefore, there are a non-singular mapping between the generators of SO(6) and SU(4).
Since such mapping preserves the Lie bracket structure, we can deduce a
parameterization of SO(3), SO(4), SO(5) and SO(6) using the expressions of the
generators (2.5) and the harmonic oscillator basis .

4. The invariant measure on the group SU (n)

the invariant measure is the result of the product of invariants measure on the sphere
S’ "Withn = 1... n. We determine first the invariant measure of the group SO(n) and
then for the group SU (n).

4.1 The invariant measure of the group SO (n) and Euclidean measure
The metric on the sphere S” is:
ds’ =dr’ +r’[ Y d&] ] 4.1)
i=1
By use of the polar coordinates

2 _ 2 2 2 2 1.2 2 2 1a2 r a2 2
dS° =dr°+r°d0, ,+r°sin" 6, _,d0; ,+....+r sin" 0 _,..sin” 6,d0,

Hence
dv, = r("‘”dé = Ar" " sin"? 0, ,..snb,do,..do, ,

We choose the constant A so that the measure on the sphere is equal to one.

oc 1
Since [edx=1/(x)?,

—oC

And in the Cartesian n-dimensional harmonic oscillator we have
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Ie’rz lil][dxi = J.e”'J dr :]:e'jr"]drdé

1 17
=5r(n/2)—njdg =4

(m?
So
A=T(n/2)/(2r""?).
. F(n/Z) 2 )
Finally dv, = P sin" " @ _,...sin0,d0,..do , (4.2)

The invariant measure on the group SO(n) is:

n—=1 k
dg=A,][[[sin’" 6;d6; (4.3)
k=1 j=1
: ~T(k/2
With A”:g 2(nk/2)

The invariant measure of SO (n) is the angular part of product measure of Cartesian
harmonic oscillator.

[[e" d = (li[ e () drydg,
] -+ (4.4)
dé = ]a¢"

The number of parameters of SO(n) is @ = 2°(TT~, i) — n with n is the number
of parameters 7;.

4.2 The invariant measure of the group SU(n) and Fock-Bargmann spaces
By use of the polar coordinates z =(z,,z,,..z,), z, =1Z =re "'&,

The metric on the sphere S°"is:

ds’ =dr’ + rZ[Zn:d(efiw’é)d(eﬂw' &)

ds’ =dzdz =dr’ +r°[ Y. dy, &’ +dEdE]
i=1
Therefore

av, =dz = A([ [ £)sin" 2 6,.,...sin 0,d6,..d6, dy,..dy,
i=1

— A TET T v, @3)

We deduce the connection between the 2n-dimensional cylindrical bases of harmonic
oscillator, the measure of integration of Bargmann spaces of dimension 2n and the

measure on the sphere S 2n=l
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We obtain
e [[dzdz, = [[£dédy, =e " ([ [E)[ Td)] [av,
i=1 i=1 i=1 i=1 i=1
And therefore we note for the following of this work

du(U,) = [ du(z"), du(z"y = e~ [ ] dz} dz;

i=2 i=1

We determine A by observing that

[auw,)= Ie“"rz“drd(c?n) = ér(n)ﬂ—{,jd(&n) =4

And 4= % . Finally:

T
av. = %H; §in" 0, ,...sin0,d0,..d0, dy,..dy, (4.6)
T Cisl

The same arguments for the derivation of the measure of integration of SO (n)
remain valid in the case of SU (n). It follows that the measure of integration of
the group SU (n) must be taken as the angular part of the measure of product of basis
of the cylindrical harmonic oscillators.

duU) = ]e " daz' = ([T ()" dr)dU),
i=1 i=1
With 2 =(z}, 2,2, (r) =22

And dU?) = (f[ dU)) (4.7)

The number of parameters SU (n) is n? — 1 = 21(X™L, i) — (n — 1) with (n-1) is the
number of parameters { r; } and the sum is the dimension of the space. We obtain then
the relationship between the measure of Fock- Bargmann space and the measure on the
This property is very useful for the calculation of the isoscalar factors of unitary groups,
using the Fock spaces , after the introduction of the additional parameters { 7 }.

5- Generating function of the basis SU(2) cSU(3)

5.1 The basis of the group SU (2) < SU (3)

Let Dy, ,, the space of homogeneous polynomials and V(ffo’y) (z',2z%) is the

orthogonal basis with:
z' = (ZII,Zé,Z;) =($:1,,0,)

2 2 2 2
z :(Z] aZQaZ3):(§2>772702)

(5.1)

The space is homogeneous then
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T,V =(A+u)V>

@ s TV =V (5.2)

(@) (@)
With

T; = z,(0/0z;) (5.3)

The vectors V(fft’o, 0 (z',z?%) are eigenfunctions of the Casimir operator of the second order

T2, the projection of Ton the z axis and the hypercharge Y. The eigenvalue of these
operators are respectively t (t + 1), ¢, and the triple of the hypercharge quantum number
y. The numbers ¢,7, are the isospin and the component of isospin on the z axis.
We have:
YV =V TV =6V
And
TPV =t + W[ (5.4)

the condition of Young tableau on V(z‘)‘ imposes the further condition:

TV i(z',2*) =0 (5.5)
0 0
T+:C12:§%> T7=C21=77%,
. 1
With T, Z_(Cu -Cy)= 2(5%_776_)
Y = Zc -3C,,= 5+,7i_20i
o On oo

The Casimir operator of second order is:
T*=T,(T,+)+T.T
According to the relation (5.3) we have

T:'/'Zéi d +7, d +0; g
1T an, Voo

J J

The expression of V% (z',z?)is given by many other s [94-97]:

9 (4—q)'p!
* (z',z N(Au; 1 qXE:
Vit y)( =N a)=1) ( J(:U q—Rp—(r-K)]

—k k ﬂ* 1,2 1,2 1u—q—k 1,2
Xgp (’ ) " P(A([ )) ( A(Z )) 4 (Ag ))l]
and

A+DNu+p—q+1) (2t—r)

N o) ={——
p-q-(ﬂ—q)!(/l—p)!(ﬂ+p+1)!(/1+ﬂ—q+1)' (20)!r!

}2
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y=-QA+w)+3(p+q), 0<p< A,

H P4
=2 21 0<q<u,
> 5 q=pH
t,=t—r, r=0,1,..2t.

5.2 Generating function of the basis SU(2) cSU(3)

The vectors Vg&‘; (Z1 , 22) belong to the space D, ® D, ® D, which has the basic

Elements ¢, (§,.€,)¢,, (n,,n,)9,,. (5,,6,) and has the generating:
exp[(x’'&)+ (7)) + (x’o)]

The generating functions of the eigenfunctions of T?and T , can be deduced by applying

the Schwinger’s coupling method.
We get the first coupling:
0 0 0 0

I A2 Al A2
Ox; Ox; Ox, Ox;

= exp{[1,6{" ' 3+ 7,(ZEN +7,(Zn")]}

We obtain the second coupling by the application of Schwinger’s coupling method

exp [, ]+T1(Z%)+fz(Zaxiz)}eXp[(xlél)Jr(xzﬂl)

0o 0O 0 0 . 0 . 0
eXp{[lz[a—ﬁgj—agf]ﬂLff(z E)Jﬁzz(z ax—g)}exp{ﬂ(foI)JrTz(ZUI)]}eXP[(XIU)]
= exp[t253“’2’ +tlz[2251(1’2) _2152(1’2)]"'1} Z'[(Z,¢, +Zz771)]+T}Z'1 o]

+z.'2 ZY] [(2162 +ZZT72)]+T;Z'1 0-2]
Nous avons comme puissance de Z',et Z'y :
Z'y > jrmy+j = jy L' jemy = j+

We note in the following the minors by &
54D = (807 481D +8U0k) =20 xzV

5.3 The expression of the generating function of SU(3)
So that the relation (5.5) is satisfied we put Z', =0 in the result of the second coupling
then we get the generating function of the basis vectors V(ﬁ; " (z',2%).

Put X, =7, X,=17,, V,=t,, y,=t,, Z,=& Z,=n
we write the generating function in a compact form
G((x,y,u),z)=exp[ f2" +£.2"]=

2. Pl LV, (0.2 (5:6)

Apttyy
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With [ = Exm,x,), & =(i=né »,) (5.7)

and (1) _ (21,22’23) Z(’/) *(i) XEU) (58)
We have
P (f+8) = NI, (@)](xf x5 77yl yg (& Hoip oty (5.9)
And

(u+p+DHW(u+A—q+1)!
A+DI2Ct+ DA [P A-Dp)g (=)t +1,)(t—1))!

N[(Aw),(a)] = (—1)"\/

We have also:
y=-QA+w+3(p+q), 0<p<A4,

t=ul2+(p-q)/2, 0<g<p,
t,=t—r, r=0,1,.,2t. (5.10)

6. Generating function of the 3j symbols for
Multiplicity-free of SU (3)

6.1 The invariant of the 3j symbols for multiplicity-free ¢, = u, =0.
The invariant of 3j symbols of SU (3) is given by:

2(20 4,0 23”3] GO (1 W0 (2 0 G (29,200 (6.1)
(@) (a)) (a;)) () ()

The conjugate VCC‘[OI‘(VM) is deduced from V“’ by R- Conjugation [6, 7]:
A, p>p=q,q>A=p

And
Va) =DM, (Ca)=(tty)

the invariant are functions of the elementary invariants:
2(1) .(2(3) Xf(j)), 2(1) _2(56), 2(3) _5(56) (62)
consequently we write:

[2(1) _(2(3) X2(5)))]k1(2(3) ‘2(56))“ (E(l) ,2(56))1(3
k,! k,! k!

h=N(k,) (6.3)
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We can determine the constant of normalization by our method [108-109] but it is
simpler in this case to do the direct calculation [50], we write:

ky+k, =4, k, +k;=4,,k 20,
k,=u;, k, +k,=14,, (6.4)
So we have the decomposition:

(/1,,0)®(/12,0)—>Z#3 (A=A, + 2, =21, 1,) (6.5)

the normalization is:

N(k,) :\/ 2p! (A, = )N, — ) 6o

(A + Ay — pt5 + DUA, + A, — a5 + 1))

6.2 The generating function of the 3j symbols for multiplicity-free x, = u, =0.
We find the 3j symbols from the expression (9.1) as:

A0 1,0 A
( 7 2 3H3 j: <h” V(ZI)O)(ZI,O)V&Z)O) (23,0)V;Z3{’3)(z(5),2(56))c> (6.7)
(@) () (a;)

Multiplying this expression by (H itik ") and using (6.7) we write:

G((f.8)0) = [expL/, 2" Jexpl+/, 2 Jexpl £, + 8201+
[ZIE(]) _(2(3) Xf(j))+t22(1) .7 06 +1, 73 -2(56)]}61#(2(1) 73 Z6) —

Z( 2,0 2,0 Au,
() (a;) (a;)
In carrying out the integration over 7,7 7 we find that the quantity in brackets is
written as:

explfs 2D +1, 20 (f, x f)+ (ExZD) - ((tof; +1,£,)x 2] (6.9)

J(N(ki))’(P((ijf)(ﬁ)wfﬁjf)(fg)(pfij’)")(fs,g)( 4 (6.8)

@;

Let h = (t2f3 + t3j71) and using the expression

Z9x(gxzV) =gV -z29)-29(" - g) (6.10)
we find for the third term the result:

hg, +hg, -hg, -hg;
CXP[(E(S)) -h,g, hg, +hg; —h,g; (Z(j))] (6.11)
—h;g, -hg, h,g,+h;g;
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Using the formula the Gaussian integral we find the generating function:

i 6 = -
G = = £ (f, x 6.12
(D= epl L (o, x ) (6.12)

6.3 Expression of 3j symbols of SU (3).
We observe that/ - g = t2f3 - g +t3fl -g.
And

fi 8 =[xy Wu' 1+ 5031 f5-8 =[xy [w'u’ 1+ 1393 ], (6.13)
fs (i x f3) =[x xf [ T+ 60 00x w1+ 0 x o [ ] (6.14)

developing (6.12) first and after that we use (6.13), (6.14) and the generating function of
the 3j symbols of SU(2) we find the expression of 3j symbols of SU (3):

(&0 4,0 ws] (=1)» /7 (=D N (k) y
(@) (a;) (a;)) NI(A,0),(y,00)INI(A,0),(y;00)INI(A; 1) ()]

DA :

X
ke \(us — T+ 2t, —k )T = 2t, — k)21, — i, +k,)!

! }{ bt s ] 6.15)
(ﬂ’z—ﬂj_T"'Zt]'i'k])!(/I]_Zt/_kj)! (t1)0 (tz)() (t3)0

We write the quantity between brackets:
- ! .
(:uj' _T+213)!(T_2t1)!(2t1 _:u3)!(ﬂ*2 —H; _T+2t1)!(2’1 _2t1)!

s, (—p +T =2t -T+2t,,-A,+2t;;2¢, — py + LA, —pu; =T + 2t + ;1) (6.16)

Thus the isoscalar factor expression is found for the first time in this compact form
And which shows the great interest of the generating function method.
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Chapter VII

The Gel’fand basis of SU(n) and the Wigner’s
Coefficients with multiplicity for the canonical basis

1. Introduction

The theory of unitary groups is of great interest in quantum physics, nuclear and
elementary particle. The study of these groups was started in mathematics and several
methods have been proposed: the infinitesimal method developed by Shur, Cartan,
Killing, Weyl, etc. .., and the Weyl global method [108-116] whose starting point the
matrix elements of SU(n). Weyl find the connection between the representation of the
symmetric group and the unitary group. Weyl also find the basis vectors of the
irreducible representation labeled by the highest weights{x], = (&, 4, ,..., h, ]and the

nn

dimension formula. The reduction of the representation with highest weight (4], of U(n)
to U(n-1) with highest weight [#] _, is given in terms of Weyl branching law.

[hl,n 2 hl,nfl 2 h2,n 2 hZ,nf]"' 2 hnf],nfl 2 hnn]

Using the “Weyl’s branching law” Gelfand-Zeitlin introduce the basis of representation
of U (n), function of n(n+1)/2 indices, and later proved the orthogonality of this basis.

Moreover, Cartan has already found that these irreducible representations are
polynomials of the fundamental representations(l,..,0],..,[L..,1], whose number is 2" — /.

In physics the Schwinger’s method [23] of bosons calculus, has been extended to
study the homogenous polynomials basis for the irreducible representation of U(n) by
Bargmann and Moshinsky and other [113]. Biedenharn et al. [44-45] used the Weyl
tableau techniques of construction of some vectors [45] of the Gelfand-Zeitlin basis in
terms of the bosons operators. The maximal and semi-maximal states of SU(n) are
defined by Biedenharn et al.[45], and their importance for the study of the space of
representation was observed by Moshinsky [90] and their extension to kernel and the
branching operators was find in the papers of Louck [114] and Henrich [115] .

Furthermore, Nagel et Moshinsky[46] derive the Gel'fand basis polynomials in terms of
the raising and lowering operators but the calculus[115-116] was very complexes and
difficult to find the number of summations N of these polynomials for n>3,

N=2"-1)—n(n+1)/2[22-23]. After that, Heinrich use the kernel and the branching
operators to determine the polynomials and he is unable to find it for n> 3.
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In other side the Wigner coefficients of SU(3) for the canonical basis were
discussed by many authors[99-107]: Moshinsky observed that the Kronecker product of
k representations of SU(n) could be analyzed in terms of certain representation of
SU(N),where N=k(n-1). Furthermore, a large class considered of theses coefficients, for
example Biedenharn et al. using the canonical unit tensor operator method and Le blanc
and Rowe use the vector coherent state theory [100-105]. The method of invariants
applied by Van der Wearden and finds the generating function of 3-j symbols of SU (2).
This method was generalized by Resnikoff to SU (3) and derives only the results for
multiplicity free. Parakash et al. [107] uses the latest methods and the expression
obtained contains 33 summations and the normalization factor is difficult to calculate.

All theses methods are very complex and the Gel'fand basis of homogenous
polynomials is not found for n>3 and the Wigner coefficients with multiplicity in the
canonical basis are very difficult to calculate.

To solve these important and difficult problems we proposed a simple method [22,118-
120], the generating function method [117], for the calculation of Gel'fand basis
polynomials, the Wigner coefficients and isoscalar factors for SU(n).

Recently the author has returned to these problems [43] and we applied our method to
calculate the Wigner coefficients for multiplicity free. However, in this work we will do a
review of this method and we focus our attention to the practical sides to do the
calculations of Gel'fand basis polynomials, the Wigner coefficients and isoscalar factors
with multiplicity for SU(n). .

The generalization of the generating functions of SU (2) and SU (3) to SU(n) is easy
after our introduction of the binary representations of the vectors of the fundamental
representations. We observe also that there is a connection between the generating
function, the kernel and the branching operators expressed as functions of complex
variables of SU (n). We use these functions and a recurrence method for the
determination of the vectors basis of representation of SU (4). We also use the space of
parameters of the generating function and the invariants method to find an algebraic
expression of Wigner’s coefficient in the general case, multiplicity free or not, and the
isoscalar of SU (3).

This chapter is organized as follows: Part two and three are a simple revision of Gel’fand
basis, The fundamental representations, Matrix elements, Bosons polynomials and kernel
function of SU(n). The next section is devoted to the derivation of the Generating
function of SU(n). We outline the method for calculating the bosons polynomials of
Gel’fand basis vector and we apply it to the case of SU(3) and SU (4) in part 6. In part 7
we present the invariant method for the calculation of Wigner’s coefficients of SU(n) and
we apply it to SU (2). The parts eight are devoted to the derivation of the analytic
function of the 3-j symbols and the Isoscalar factors with multiplicity of SU(3). In the
appendix we give a maple program very useful for the derivation of the generating
function of U(n) and the normalization of Gel’fand basis.

2. Gel’fand basis and the fundamental representations
We summarize in this part the results of the determination of Gel’fand basis of the

irreducible representation and the properties of this basis. By analogy with the theory of
angular momentum, the maximal and the semi maximal of this basis are derived.
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We define also the vectors of the fundamental representations.
Nagel and Moshinsky have found that the states of SU(n) may be written in terms of
raising and lowering as in the SU(2) theory and we also summarize this work.

2.1 The Weyl generators and the Weyl branching law of U(n)
The n° Weyl infinitesimal generators E;, (i, j = 1...n) of the unitary group U(n) obey
the commutation relations
[Eij 9Ekl] = 5jkEil - 51‘1Eki’ (2.1
These generators may be written in terms of creations and destruction of n-dimensional
harmonic oscillators as:

E, =) a/a, (2.2)
i

The irreducible representations of U(n) are labeled by n-integer numbers
[h1n5h2n"“’ hnn]' (23)

When the group U(n) is restricted to the subgroup U(n-1) we find the Weyl branching
law:

>h,, 2. 2h . 2h, .

2.2 Gel’fand basis for SU(n)
Gel’fand and al. [5] extend the Weyl branching law to U(n) and derived the
individual orthogonal states of the representation, called Gel’fand basis |(h)n> :

h,, h,, ... h,,
hln—l t hn—]n—] [h]n [h]n
|(h)n> = e = 0 = [h]}H (24)
h12 hzz " (h)n—2
h]]
Wlth [h]n = [hln th "'hnn]
hi,n 2 hi,n—[ 2 hi+1,n
And hi,n /hi+1,n SU(n)
\Ahi,n—l SU(” - ])

In angular momentum and in particles physics [20] we have the notations:

For SU(2) h,=j+m, h,=j—m
For SU(3)
h,2=[+§+B, hZZ:—I+§+B,h,,:I3+§+B (2.5)
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2.3 The Weyl dimension formula
The dimension of subspaces [4,,] is given by the Weyl formula:

dy, = [H (P — p,n}}/[m!m(n -1 (2.6)

i<j

With p, =h, +n—i

2.4 The maximal and the semi-maximal states
The eigenvalue of the diagonal generators E is:

i i—1
E,.,.|(h)”> = (o,.n|(h)n>, with ®, = (Z h;, —Z hii) 2.7)
Jj=1 Jj=1

We associate to each state ‘h W> a vector or weight vector which has components

o(h) =(®,,(h), ©,,(h),... ®,,(h)) .

A weight o(h") is higher than a weight m(h)if the first nonzero component in the
difference (h') — w(h) is positive.
: [A], [4], :
We note respectively and _ are the states that have the maximum
(max)rﬁ] (mln)nfl
and minimum of weight.
[1],
The vector | [k],, ) is the semi-maximal vector.

(max), ,

2.5 The fundamental representations

We can express an arbitrary irreducible representation of U(n) in terms of a set of
subspace called the fundamental representations [20].
The fundamental representations of U (n) are the irreducible subspaces:

[],0’...’0], []’],...’0], ...’[]’],...,]] (28)

. . f_/% .
The dimension of the subspace [1,1,1,..,1,0,...,0,n] isC? . Then we deduce that the total

number of vector bases of the fundamental representations is2" —1. And we observe that
the weight vectors of these bases were expressed in terms of the binary number and it is
easy to establish a correspondence between these weight vectors and the fundamentals
Gel'fand basis.

We denote these fundamentals basis vectors by‘ A >, i=12---2"-1.

Using the binomials formula C? = C?_, +C""} and a symbolic program (Maple 8 see
appendix1) we derive by recurrence all Gel'fand fundamental representations for n> 2
and the binary representation of the fundamental representations (B.F.R).
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2.6 Explicit expression of Gel’fand basis vectors
Nagel and Moshinsky have found that each vector |h W> of the basis [4,, Jmay be

n

deducted from the vector

> or the vector

> by applying the raising

(min), _, (max),_,

operators R or the lowering operators L and derived the explicit expressions of these

(7],
(max),_,
' . H RY ]n

Wlth LH = H;L —1 \Ru HA— -1 u+1,7» /

N and N 'are the constants of normalization.

operators. We write:

),)= Nﬁnw g

A=2 p=I

(2.9)

It is quite clear that this result is the generalization of the well-known result of angular
momentum [8]. And it is very important to mention that the computation of Gel’fand
basis vectors with this formula is very difficult and complicate for n >3 [115-116].

3. Matrix elements, Bosons polynomials and
Kernel function of SU(n)

After the classification of elementary particles a great effort has been made to study the
matrix elements of unitary groups using the Gel'fand basis and the maximal and semi-
maximal cases of the D-Wigner matrix elements of SU(n) are found. The maximal and
semi-maximal polynomials basis in terms of bosons operators introduced by Biedenharn
et al. [44] or in term of complexes variables are used by many authors [90,113]. Theses
polynomials are functions of minors determinants as variables and it’s extension to the
derivation of the kernel and the branching kernel function is found [115-116].We also
give in term of bosons operators the basis of U (2) and SU (3) which are very useful later

in this work.
oA
(h),
]

" 3.1
) a

3.1 The D-Wigner matrix elements of SU(n)

The application of the unitary transformation to the basis

[
(7

([h])> > (D U,)

()
D([Z) (U,) Are the elements of the matrix of SU(n) .
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The Gel’fand states for which s, =&, , 1<r<s <n, is the state of highest weight.

Dl o U,) = (det(U, )™ H( O R (3.2)

A special result which is immediately avallable from tableau techniques [18] is the so
called semi-maximal case:

1 n—1 _ n B

[h], _ (12..45) \ e 1 =Pt (12..k) [ .

D([h]n_l) () U, = \/ﬁH(u(IZHk)) L H(u(ll.kfl,n)) e (3.3)
(max)”’ k=1 k=1

((11 > ,/f)) (U,) Is the minors constructed from the matrix of (Un).

The normalization is:

N H (pznl pjn)' ﬁ(pin_pj,n—l_l)! (3 4)
t<j (pzn_p]n_l)'Kj (plnl pj,n—l)!

The conjugate representation
Define the transformation

W _sepm e[l
n(h)n>c—Z<D<hV),(,,)<U,,>) ) > (3.5)

(h")
b > (3.6)

T,

The conjugate of the basis states is
h h
By U[ 3 J ]
()], ")/, ).

3.2 The bosons polynomials basis of U(n)

The well known isomorphism between the spaces of Fock - Bargmann with the
harmonic oscillator [17] implies that we can use one or the other of these spaces.
In this work we give the expressions of kernel and branching kernel functions in the
Fock-Bargmann space because the computation in this space is very convenient.
We also give the expressions of known expressions of the bases of SU(2) and SU(3) .

3.2.1 The Fock space
We consider the analytic Hilbert (z,,z,,---,z,), z;, € C, with the Gaussian measure
and the scalar product is:

(f,2) = [f(2)g(2)dn(2) (3.7)
With du(z) = n " exp(- (z,2))] |, d Re(z,)d Im(z,)

3.2.2 The polynomials basis of U(n)
We consider transformation

[, (],
r Az 3.8
() o
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In this representation the Gel'fand basis will be noted by F(

[7],
( h)n}(A(Z))-

h
{I [([ g D(Az) } 1s a homogenous polynomials basis of the space B([h] ) with

(h),

coordinates:

1
Z.

1 2 z,

A(2)=z/,47 (2) =

ijiy

A] k (Z)

iy

1
i

iy iy

A =147 (L), i, j=1,.
(Z_/)9 l»] :]""9

These coordinates are independent vectors [23-24],

And if & =diag(s,,5,,+,3,)

n by the selection of rows 1,2,...,

k
Z.

DA (z) = det(2) (3.9)
k

..,n} are the minors constructed from the matrix

[ and columns i,,i,,...,i,.

We have F(([h] D(A(§ N =575 .5“’"—0)"11“[([}1] B(Az)
() (),

And o, =h,  +..+h,, <Z

Ai,[i]> = Az{;ili (2)

(3.10)

3.3 The kernel and the branching kernel function of SU(n)
We give only the analytical expressions of kernel function and the branching kernel

functions of unitary groups [115].

3.3.1 The kernel function is:

K"(A(2), Au)) = (4,)" & (zu

e=h ,—h

i+1,n°

-2l ol fom

A (2) = (A, ()" (AL () (A ()"

i<n—1I,and e, =h,

And A, —(H(p,,,) X(]_[ H(p,n Pin)

j=1 k=j+1

3.3.2 The branching kernel function is:

R, (A(2),A(u)) = |: :| H(Ag(kk i (2 )" H(Ag(kn 1)n(Za”))L,;

n -1

[A],

= Z Fn [h]n—] (AZ)]:)7—

(h),-2 (l’l)
n-2
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With Li=h,, ~h, ,Li=h,, R'=h,  —h., . 1<j<n-1
-1
And A:—] = An(H(pin] _pjn)!H(pin _pjn—I +I)'J/(H(pm _pjn)!(pinfl _pjn])!J
i<j i<j i<j

3.4 The SU(2) and SU(3) basis in terms of bosons expansion
The expressions of U (2) and SU (3) in the base of the harmonic oscillator are well
known [114].

3.4.1 The bosons expansion of U(2)

h h
( 12h 22 )|0> =N, (AZ hys (Aﬁ Doz —hys (A;)hu_hzz (Aé)hlz_hu 0> (3.13)
11
1/2
With N :{ (h12 _hzz +1)!
2
(h;;, —h,)W(h,, —h, )k, +D(hy,)!
3.4.2 The bosons expansion of U(3)
h13 h23 0 1
h12 h22 |0> — (NS) 2 (Ag)hzz (Aﬁ)hzs—hzs (Aﬁ)hu—hzs (Alz)hl.’—hu (Ag)hls—hzz
hy, (3.14)
A A2
XzFJ(hzz _h23:h11 _h12|h11 _hzs +]| A’iéé]
With
(N )_é _ {(hu _hzz)!(hu _hzs)!(hzz _hzz +])!(h13 _hzs +])!
5 =
(hu _h23)!(h12 _hzz)!(hm +])!(h22)!

(3.15)

!
% (h12 _hu)!(hu _h23)!(h23 _hzz)!:|2
(h13 _hzz +])!(hm _h12)!

4. Generating function of SU(n)

We observe that the parameters and their powers in the generating function of the
basis of SU(2) and SU(3) are linked to the raising and lowering operators and their
powers, then we generalized it by an empirical way [39] to SU(n) basis. And we derive it
also using the kernel function.

Our introduction of the binary fundamental representation basis (B.F.R) is very useful
for the calculations of the generating function and the invariance, which is connected
with the complement of binary numbers [118-120].

This generating function is practical for the derivation of the invariant polynomials of
SU(n) from the Gel’fand basis of unitary group SU(3(n-1)).
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4.1 The generating function of SU(2) and SU (3)
We write only the generating functions of SU (2) and SU (3) then, we deduce simply
the generating function of SU (n).

4.1.1 The generating function of SU(2)

[4],
2&¢mwmwr@0%m»me% + 40x3)] 4.1)
hyy 2
With g, = and (k. (1) ="

Ny = )Ry

4.1.2 The generating function of SU(3)
The generating function of SU (3) may be written in Fock-Bargmann basis
in the form:

h3
Zgwfmwxnwf{[]}A@»=

2 ),
exp[Ay; + (A x525 + AT yz3) + (A ysy; + Axyy5) + Aix;] (4.2)
. 3 S iz R
Wewite ¢ (o) =] [TTl=M" 0" @3)
/=2 m=1

We find this generating function using Schwinger’s approach of angular momentum.

4.2 The generating function of SU(n)
The generalization of (4.2) to the generating functions of SU (n) is immediate and in
the representation of Fock-Bargmann [6-7] we write

z&wmwmwmﬁs}m%w%zwwammwﬁ (4.4)
And o (.G =TTl o @.5)

(=2 m=I

We will calculate A ,:1(2) by the introduction of the binary fundamental representation

and then we use two simple rules for the calculation of ¢! (x, ) , the constant will be
calculated later.

4.2.1 The binary fundamental representation (B.F.R) of A;,[i]

We associate to each miner 4112,[l a table of n-boxes numbered from 1 to n.

We put "one" in the boxes i,,i,,...,i, and zeros elsewhere.
I 2 .0 .

Ag=4>r=l0 0 ... 1 .. 1 .. 0) “.6)
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It’ is very important to mention from the fact that the B.F.R. A‘;’[i] is anti-

symmetric then there are a connection between this basis and the Fock space of the
second quantization hence the theory of unitary group plays an important role in physics.

4.2.2 Calculus of coefficients ¢/ (x, y)
The coefficients ¢;"'(x, ) may be written as product of parameters y! = y(A,u) and

x5 =x(A,u) . We determine the indices of these parameters by using the following

rules:
a- We associate to each "one" which appeared after the first zero a parameter y(A, L)

whose index A are the number of boxes and ¢ the number of "one" before him, plus one.
b- We associate to each zero after the first "one" a parameter x(A,u) whose index A is
the number of boxes and £ the number of "one" before him.

4.3 The generating function and the kernel function of SU(n)
We have K" (A(z),A(u)) = A" A (zu”)

. An (hll)' .
In multiply by ———— and by summing we find

ele,l---e !
4, (hu)! e N _ N2

Zmﬁ (zu )= (Zk:fn,m (Z)if(n,m (u™*))

Replace 4, (u*) by ¢/ (x, ) and summing with respect to h,, we find:

A )

Z Ao exp{z A, (z)} @.7)

hy €1°

4.4 Invariance by complementary of binary numbers (R-reflexion).
We know that each binary number has a complement then we deduce that A"n’[i] (z) has

—k . . .
a complement A, fij(z) , Therefore the B.F.R. is invariant by the transformation

n [,](Z) - A" [i] (Z) (4.8)

- For SU (2) we have the transformationg,, — (-1 ) ¢, , taken into account that the

complement of [0 1]is [1 0] and conversely.
- For SU (3) we also deduce the R-Conjugation of Gell-Mann (Resnikof¥)

y

/ 2—t, A
(o = D7V

(t,—ty,—y)

(4.9)

The expression of complement ¢"! may be deduced from ¢ by changing y(/,m) by
z(¢ ,-m+/ ) and z(/ ,m) by z(/ ,-m+ (), and then the expression (4.5) is invariant by this
transformation. We call this property of invariance by reflection or complementarily invariance.
We also note that in the basis of U(n) the complement of[/,/,---,1] is |O> in the oscillator basis

and 1 in the Fock-Bargmann space.
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4.5 The generating functions of SU(3), U(4) and U(5)

We find simply by a direct calculation of rules a and b or using the results of the
symbolic program (appendix1) the generating functions of U(4) and U(5) which are very
useful for later.

4.5.1 The generating function of SU(3)
We write the generating function in a manner useful for computations

h
2g3¢)3 (h,uv ,(.X', J’)F{[ ]3 J(A(Z)) =
™ (h);
expisy; +(A457x; + A7 y)z5 +( Ay + Ax;)y; + Axs]. (4.10)
4.5.2 The generating function of U(4)
h
Zg4¢4 (h,(p"(x,y))['{[ Je :|(AZ)
" (h),
(A5 + Ax3) 3 + Ax )y, + Ayxy + (4.11)

= exp| (45305 + Ax3)x; + A4597) 5 +(A5y; + 45x3) y5 + Ayyxg)xg +

(A5522 + A5x:)x; + A5 3)x] + A5 v) + 455
4.5.3 The generating function of U(5)

h 5
Zg5¢5(h,¢5(x,y))rjﬁhi }(Az)

(A + A5y y) + Ax)y) + Ax )i+ Ax] +

(A535 + A0533) 5 + Ay x )y + A5 X)) x5

(395 + Ayx5)x5 + 4,37 y] + (A, 95+ Ayyx3)ys + Ay x3)x]) s +
(553 + ApssX3)XT + Ay yi + (A5 95+ Ay x3)y5 + Aysx3)x7))x5 +
(Ay3093 + Agy5X3)X5 + A5 35 + A5 y7)XS +

_((4343’5 + A234x§ )x32 + A124J’32 )xj + A123y1f )yf + A1234y;

(4.12)

= exp

5. The Gel’fand basis vectors of U(n)

We will calculate by recurrence the polynomials of the irreducible
representations of SU (n) using the branching kernel function. We consider the base of
U (2) as a starting point, then we presents the recurrence method and we determine the
bases of the groups U (3) and U (4).

5.1 The Gel’fand basis of U(2).
We have I(hy,)= A 1h,)!
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h, h,
And r( ”h ] M1? At g A (5.1)
11

In the notation of angular momentum [20] we write:
j+m=h,—hy,, j—m=h,—h,.
5.2 The recurrence method for the calculation of U(n) Polynomials
By considering the product of coefficients of y' = y(n,i)and x| = x(n,i),i=1,---,n

appearing in the generating function of SU (n) we find the branching kernel.
We have

B y 1/2 )
R, (A(2),0" " (x,9)) = {A,’f,}

n—1

Tt zem )" H(A,;g': (20" (5.2)
r) [l (@, ( "’J((p“(x ») (5.3)
i, (),
(),
— (|h
But T, [([h} ]«o (%) =N, 8" (h,(x, )P, (]) (5.4)

AndP,(1)=1.
After identification of the two sides of (5.4) we find the polynomial representations of the
irreducible of U(n)

(1], j \/A
I Az)=N, P (A 5.5
((h)n1< =N, Ny = S (5.5)

5.3 Calculation of P_(1)

By replacing (5.4) in (5.5) we identify the results and then we do the summation for the
convenience of calculations, we find the expression:

H(AZ'"(}f i (9" (a,0),0"" (x, )" H(AZ"'(}!’ o (9 (@,),0" (x, 1) = (5.6)

Z¢" (hyv’(a’b)l)n (1)(0” I(h,uv’(x’y)
(h)y-y

But ¢ (e = [TT I 0 |26 e [ Tl oy

(=2 m=1 m=1

And ¢"" (h,(a,b))¢"" (h,(x,y)) = ¢"" (h,(ax,by))
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If we put u = ax and v = by we find after identification of the two sides of
The expression (5.6) :

n-l . k
[T @50 o™ ) T (A5, L™ wv)™ =
k=1 k=1

> P(De" " (h,,.(u,v) (5.7)

(1)1

The constants N and P, (/) are functions of Gel'fand indices of U(n).
The expression (5.7) is very important for the computing of P, (/) .

5.4 Calculation of P_(1) for n=3, 4, 5.
We will compute P3 (1), P4 (1) using the formula (5.7).

1-Calculation of P, (/)
Using (5.7) we find:
vy +xp)" 7 (g +ap) e = (g +ag) (5.8)
We deduce from the above expression P;(/)=C ,fl’;:,}l’z”

2- Calculation of P, (1)

We will compute P4 (1) using the formula (5.7).
(O vl ) IR (0] ] ) )
59
= > P9, (w,7) (>)
(M)
After development of the first member and the identification with the second member we
find P, (1)

(L4,D)+ R(4.2)! (L(4,2) + R4, (L3, + R(3,2))!

B CEDNRGD RGNLG.2) LCIRED)!

(5.10)

3- Calculation of P; (1)
We will compute P5 (1) using the formula (5.7).
() + vl )+l 0RO
vy +uy)us +v))vy + (v +uy)vs +up)ug) 0D x (5.11)

I, IN2 203, 3N\R(S, 3
((vy +uy)us +v;)u +V4)R(5 DO = Z P5(])(/74(hﬂva(”sv)
(1)1

After development of the first member and the identification with the second member we

find P;(1)
p.(1)= LEDHRED! (LED+RE! (LEA+REI!
T REAULED)! (RE2))LE2)!H(R(E3)ILE3))!
(L(4,2) + R(4,3)! (L(4,]) + R(4,2))! (L(3,)) + R(3,2))!
(R(3,2)I(L(3,2)! (RG,)ILE.D)! (R(2,1))I(L(2,1))!

(5.12)
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6. The Gel’fand basis of U(3) and U(4)

We will determine the polynomials basis of SU (3) and SU (4).

6.1 The Gel’fand basis of U(3)
We know that P,(/) =1 so we can do the calculations with the aid of (5.5) and (5.6).

In this case, we write

R} (A(2),97)) = \/%[(A, (2)y; + 4,(2)x;)y;1" 7" 4, (2) " " 61

4, (Z)h”_hzj (yf )" (A (Z))é +4,; (Z)xé )xj ]hzj_hﬂ A5 (Z)hﬁ

Using (5.5) we find:

R (A(Z) (1) )) zr[(h) J(A(Z)) X(N X (yéy;)hz >—hy, (x2y3 )h/z*hu (y32)h22 ) (62)
h[[
After identification we ﬁnd the expression of the vector basis of U(3):
[A]; j s sy
(A( )) C 127123 C 123722
((h) A2 i+] hzn(hzz ) (63)

XAI Ah12*h23 lA?/j*hle%z*%j AJ Ah23*h27 ]A}Iljsz
We find the same expression already found in paper [19, 23].

6.2 The Gel’fand basis of U(4)
We have

[A];
RI(A(z r A 6.4
(A2),0) = [(h) j( (NI ((h) j((ﬁ) (6.4)

(h),
This is also written in the form

R} (A(2),p) = 1/ ((A,yz + A,x3) yy + Aixs) x (4 x

x (4373 +A§§x2)x3 A2y x (A2yh+ AZXé)ys' + A X))
X ((All34YZ Al22334 2)X "'A1124Y3)R4 X (A1123 (A112233t b (6.5)

b-the “bosons” polynomial of the irreducible representations of U(4)
by the development of (6.5) and using (5.5) we find the relation between the indices:

i+i1=R317 j+j1:L§= Lﬁ,—i—Rj—i—i,:Lg, Lj—i—Rj—j—j]:R;,
k+k =L, —i,(+0, =L —j,m+m =R; —i,n+n =R, - j (6.6)
k+{+m+n=R]

We find that the number of indices five which is the exact number.
Finally the bosons polynomial is:
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r[P Ny =y, 5 EMENRDURDL 67
“\[h]; L N K Ut )
(A" () (A ()™ X (A2 () (A3
(42" (A2 (A () () < (A < (420
With N, is the normalization constant.

It is clear that our method is the only one who can solve this problem from the practical
point of view.

7. The Wigner’s symbols and the invariants of SU(n)

In this section we give the definition of invariant and its connection with the Wigner
coefficients. By using the binary representation of invariants and the parameter space we
show that our method gives the Van der Wearden’s result of SU(2).

7.1 The Wigner’s symbols
The direct product of two representations may be reduced according to the formula

(181 1= Y. (P11, (7.1)
Where (p) is the multiplicity or the number of time the representation is contained in
[A'1®[h%].
3 1 2 3 1 2
With ‘[h3]> =Z<[h,] (A7) [h3]> ) [h1]>[h21> 72)
), @ een], lah/ e

The coefficients in this expression are the Clebsh-Gordan coefficients.

! [2°1\ |[A']
The vector —z s ; (7.3)

dhj () (h”) P (h7) ¢

Is an invariant by unitary transformation with unity norm in the product of trois spaces.
When we replace it with the above mentioned:
hi
[ ]> (7.4)

[2'] [A°] [#] 3
H(P) = Z[ J Hi:] (hl)
L [h3]> (7.5)

() () ()
('] 4] [hf]} 1 <[hf] [7°]
(') (W) (")), Jd,, \(#) ()| (R

Are Wigner’s 3j symbols of SU (n) and p is the indices of multiplicity.

H,, is the generalization of the Van der Wearden’s invariant of the group SU(2). These

invariants has the following

The coefficients (

(1,2,3) _ _
Iy H(p) =H <H(p) ‘H(p')> - 5(p),(p') (7.6)
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These properties mean that the invariant polynomial is function of elementary
invariants. We choose H , as subspace of SU(3 (n-1)) which are function of the

compatible elementary invariants.

n'1, A1, [ 3 B, Vs
H(p)(¢,,¢z,¢3)=z[[ 1, 7], 1 LJFL%E ]njw):

), (), (), ('),
A1s0-n V(s
C(nf){(h)jw)]( ¢) (7.7)

We note for the remainder of the variables by xi (A ,1t) ,yi (A1), Nisq,, P, (1)
Li(h ,p), Ri(A, p).

7.2 The elementary invariants’4 (z) and *¢.

We determine the elementary scalars °A (z) which are the basic elements of the

Gel'fand basis of the SU (3 (n-1)). These scalars are formed of three rows of tables,
Where each row of (n-1) boxes and ¢, “one” and zero elsewhere.

o, Satisfies the following conditions
3
0<a,<n—-1, Y a, =n (7.8)
i=1

7.3 The Wigner’s coefficients of SU(2)
We will apply the formula (7.7) for the determination of 3-j symbols.

7.3.1 The Invariants in the Gel'fand basis
We find for SU (2) the three elementary scalars

11 0

, 1o

. o1 (7.9)

The parameters {x, y} that are not in the {¢;""'(x, ) } of elementary scalars must have
the power null. We put y; = xj =0then /; = h,; = h;, and the invariants H , are the
Gel'fand bases:

by hy (7.10)
h]]

We can write this expression in term of well known quantum numbers of angular
momentum:
hyy=Js, hyy=hyy=Jp by =hyy =J,
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7.3.2 The elementary invariants in the space of parameters {* 4; }
The elementary invariants in the space of parameters are:

1
ZI Zz

11 0= =AAL -AA =>E(1,2)= (7.11)

x1(2,1) x2(2,1)

Zz Zz

10 I=> M4 - M4 =>E5(1,3) =

x1(2,1) x32,1)

0 1 1= &4 -L£A =>5(23)= (7.12)

x2(2,1) x3(2,])

7.3.3 The generating function of 3-j symbols of SU(2)
The expression (7.7) in the case of SU (2) becomes:

h12 h12 0

h1 hz h3 hi 0 )
Z(h]f hIZZ hljJszn( ’ ](S¢l):1—; hy,  hy (S¢3) (7.13)
Y\ M My

h111 h
11

We obtain the well known expression of Van der Wearden with p=1.

Z[h,’z n, hfzJHs (i(2.1)" " (i 2, 1))”’ )
hyy B R =Rk

VA4
i X (B2 (B3 (5 2.3)"

s

To simplify the notations we write: u’ = (xi(2,1), yi(2,1)).
Then we find the generating function of SU(2) or the well known Van der Wearden
invariant of SU(2):

2IT.e (uf)](jj . j3J= i el g
m, m, m, J(J+1)!<J—21,)!<J—212)!<J—2j3)
We have: J=j1+j2+j3 and P1=J-2j1, P2=J-2j2, P3=J-2j3.

(7.14)
(',

m;

8. The 3-j symbols and the Isoscalar factors of SU(3)

We deduce that the Gel’fand pattern is reduced to 7 indices variables:
The invariants polynomials are formed from one term or monomials and function of
compatible product of elementary invariant scalars.

8.1 The Invariants of the Gel'fand basis

We find for SU (3) seven scalar elementary compatible, which are represented by the
following tables:
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701100 , o001 ]

1100 0

710010 , oo 111 0

oo 1011

70 1 0 1 0

(8.1)
The parameters {x, y} that are not present in the elementary scalars ¢ (x,y) must have
the power null.

We find:
k, :h34 _h33> kz :h335 k3 =h), _h23> k4 =h,, _h33>
k5 = (h13 - h24 )— (hzz - hzs ), k6 = h35 - hzs’ k7 = (h23 - h34 )— (hzz - h33) (8.2)

The basis of Gel'fand for the invariants is:

hy, hy; h; 0 0 0
his hys hy 00
I, hyy hy hy 0 _s Fé([h]zsj (8.3)
his hy o hy (h)g
hy, hy,
hy,

8.2 Calculus of the invariants in the space of parameters * ¢,
To determine the images of invariants in the space of parameters we write

a-[l 0 1 10 0=

4
Z

1 3
Z i
2l 2 2= AL AL+ AL =W = yI(3,1)x2(3,2)5(1,2) + x1(3,1)y2(3,2)
z; 7z
We apply the same method for the calculation of the image of the invariants.

b-1l 1 1 0 0 0=W’=-y23,)xI(3,2)5(1,2)+x2(3,1)y1(3,2)

|1 00 0 1 =W =yI3,)x332)5(1,3)+xI(3,1)y3(3,2)

d- |1 1 0 0 1 0|=W"=-y33,)xI(3,2)5(1,3)+x3(3,1)y1(3,2)

-0 0 1 1 1 0|=>W’ =y23,)x33,2)5(2,3)+x2(3,1)y3(3,2)

£17 0 1 0 1 0/=W°=-y33,1)x2(3,2)5(2,3)+x3(3,1)v2(3,2)

gl 0101 0=

W =x3(3,1)y1(3,1)y2(3,)E(1,2) - x2(3,1) y1(3.1)y3(3,)E(L,3)
+x1(3,1)y2(3,))y3(3.1)5(2,3)

(8.4)
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8.3 The generating function of 3-j symbols of SU(3)
The expression (7.7) is written in this case as:

h' h’ h’ 3 h' S 4 4 1k,
Z([ ]3 [ ]3 [ ]3JHi=11—~3([ ]3}( ¢z):N6H[Wz], (8.5)

() (h7); (), (h");

The development of the second side is
7

V[T & !)Z(h,)j 16" 22" 213 22,37 ]x
3 /

TTlcxice,my” ice,my® |

(=2 m=2

(8.6)

a-We have

Hf,r{[h ks J(Sw): (H(N;‘)P; (1)}HH[<xi(&m»” it m)* 8.7)

(hi )3 (=2 m=1

b-The development of the second side of (8.5) and the identification with the first
member lead to a system of equations (Appendix2). The number of indices is
fifteen so we have a system of fifteen equations which has the solution:

i, = R3(3,1)~ L3(3,2)— P3+i, +i, —i,; i, = R2(3,2)—i,,,

i, =RI(3,2)—i,, i, =R2(3,1)— P2+i, —i, +i,,

i, =L3(3,2)-i,,

iy =—R2(3,1)+ P2+ LI(3,2) i, —i, +i,, (8.8)
i, =R3(3,2)—i;

i, =L2(3,2)~i, i, =P3-R3(3,2)~i, +i,,

i, =P2—i —i, i,, =PI—RI(3,2)— R2(3,2)+i, +i,,.

We have also the system

k,=i,+i j=1..6,k, =i ;+i, +i;. (8.9)

(J+1)?

It is simple to verify that these variables are function of i17-i9 then we choose for
simplicity the multiplicity p by: p =k3.

We write 16 in terms of 19: 16=k3-L3 (3.2) +19.

We deduce that the number of summations is three indices: i7, 19, i11.

8.4 The algebraic expression of Wigner’s coefficients and isoscalors of SU(4)

By replacing (8.10) and (8.6) in (8.5) and by comparison we find the algebraic
expression of Wigner’s coefficients, and isoscalors factors of SU(3).
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(h'); (h7); (B, i1 =1

ZJ(PH)!Hf,(P—ZPi)!([h’L 0, O], (8.10)
1! L@, @, ),

As in (7.15) we write in this case P=J and Pi=Ji.

[[h Iy (7] [ ]sj =N6(ﬁ(N§)P;(1)Jﬁ(ki!)x

We use the well known notations of Wigner’s coefficients in terms of isoscalar {},
And 3-j symbols of SU(2). We have:

(WL (471 [hm] :{[h’L (41, [hf]g} (WL (71, W]Z] &.11)
(hD)s () (), (') 0L L)\, @), (),

We find the analytic expression of the isoscalar for the canonical basis of SU(3):

{[h’h ], [h3]3} . ];[(ki!) z\/(P+])!Hj=I(P—2Pi)! 612
(2], 7], [P°1], 6li[(N§)P;'(1) [T
9. Appendixes

Appendix1

The maple program for the derivation of the binary representation and it is parameters
representation in the generating function and the normalization coefficients of Gel’fand
polynomials basis of U(n).

> restart:

with(linalg):

geyz:=proc(n,m)

local lam,mu,p,z,y,dlm,dplm;

y:= array(l..n,1..n); z:=array(l..n,1..n);
dlm:= array(1..n,1..n); dplm:= array(1..n,1..n);
for lam from 1 to n do

for mu from 1 to n do
dlm[lam,mu]:=0;dplm[lam,mu]:=0;

od;od;

p=1;

for lam from 1 to n-1 do

for mu from 1 to (n-lam) do
dlm[lam,mu]:=m[mu,lam]-m[mu+1,lam];
dplm[lam,mu]:=m[mu+1,lam]-m[mu,lam+1];
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p=p*((z[lam,n-mu+1]**dIm[lam,mu])*(y[lam,n-mu+1]**dplm[lam,mu]));

od;od;print("Phi of BFR" ,p); end;

ibn:=proc(n,m)

local 1,i1,j,s,bn,del;

bn:= array(1..n);w:= array(1..n);del:= array(1..n);

for j from 1 to n do

del[j]:=0;0d;

bn[1]:=m[n,1];

for j from 1 to n do

s:=0;

forifrom 1 to j do

s:=s+ m[n-j+1,i];

od;w[j]:=s;o0d;

for j from 2 to n do

bn[j]:=w[j]-w[j-1]; od;

print(" BFR", bn);

1:=0;

for j from 1 to n do

if bn[j]=1 then

1:=1+1;

del[i]:=j;fi;0d;

il:=t;print(il, "delta", del); end;

# la base de Gel'fand et la formule des binomes#
# (n!/p!(n-p))=(((n-1)!/(p-1)!(n-p))+(n-1)!/p!(n-p-1)! #

#SU(2) SU@B) SU@) SU(S) Su(o)#

T+

nl:=14+3+7+15+31+63; n:=6;

nt:= array(l..n);m:= array(l..n,1..n);a:= array(1..n1,1..n,1..n);

11:=0;

for j from 1 to n do

11:=11+42%*(5)-1;

nt[j]:=il; od;

nl:=nt[n];

for j from 1 to n do

for k from 1 to n do

m[j,k]:=0; od;od;

for 1 from 1 ton do

for j from 1 to n do

m[i,j]:=0;0d;0d,;

for i from 1 tonl do

for j from 1 to n do

for k from 1 to n do

a[i,j,k]:=0;

od;od;od;
a[2,1,1]:=1; a[2,1,2]:=0; a[2,2,11:=0; a[2,2,2]:=0;
al3,L1]:=1; a[3,1.2]:=0; a[3.2,1]:=1; a[3,2.2]:=0;
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ald,11]=1 a[4,12):=1;  a[4.2,1):=1; a[4.2.2]:=0;
# le programme#
for 1 from 3 to 5 do

print(" "
318111 ——— ""the group SU(",i,") ");
print(" ")

13:=nt[i-1];i4:=nt[i-2];id:=i; print(" i3=",13," i4=",i4);
# la formule des elements ail,1=k<=i#
for j from 1 to n do
for k from 1 to n do
m([j,k]:=0; od;od;
fork from 1 to i do
13:=13+1;
for j from 1 to k do
a[i3,j,1]:=1; od;
for k1 from 1 to k do
m[kl,1]:=a[i3,k1,1];
od;print("n=",i3,m);ibn(i,m);
geyz(i,m); od;i5:=1:
# la formule des reccurences #
# AVG*A)D)=(E-DV G- DHHGE-DYG-DIA-)DH#
# *********************************************#
#part1# print("......... part 1........ ");
for j from 2 to (i-1) do
t1:=(A-D)(G-1D)!*(-5)!));print("part 1",t1);
for k from 1 to t1 do
13:=13+1:14:=14+1:
for k1 from 1 to (j) do
a[i3,1,k1]:=1;m[1,k1]:=a[i3,1,k1]; od;
for k2 from 2 to n do
for k3 from 1 to (n) do
a[i3,k2 k3]:= a[i4,k2-1,k3];m[k2,k3]:= a[i3,k2,k3]; od;od;
print("n=",i3,m);ibn(i,m);geyz(i,m); od;"end k";
# part 2 # print("......... part 2........ ");
t2:=((-1)1/(G"*@1-j-1)!));print("part 2",t2);
15:=14;
for k from 1 to t2 do
13:=13+1;14:=14+1;
for k1 from 1 to (j) do
a[i3,1,k1]:=1;m[1,k1]:=a[i3,1,k1]; od;
for k2 from (2) to n do
for k3 from 1 to (n) do
a[i3,k2,k3]:= a[i4,k2-1,k3];m[k2,k3]:= a[i3,k2,k3];
od;od;print("n=",13,m);ibn(i,m);geyz(i,m);"end k";od;
14:=15;0d;"end j";#+++++++++++H+++#
# la formule des elements aii===
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print("la formule des elements aii======="),
13:=13+1:14:=14+1:

for k1 from 1 to (id) do

for j1 from 1 to (id-k1+1) do
a[i3.,k1,j1]:=1;0d;0d;

for k1 from 1 to (id) do

forjl from 1 to (id-k1+1) do
m[k1,j1]:=a[i3,k1,j1]; od;od;
print("n=",i3,m);ibn(i,m);geyz(i,m);
od;"end 1";> restart:

with(linalg):

#calcul de A(m(1,n),m(1,n),...,m(n,n) de Kernel functions#
n:=3; m:= array(1..n,1..n);
coefr:=proc(n,m)
local a,mul,mup,i,j.k,p,pp,q,q99,mq,coetn,

coefap,nl,al,ap,apl;
coefn:= array(1..n);
#part 1 Kernel functions#

ap:=1;apl:=1;nl:=n-1;
for j from 1 to nl do
al:=m[j,nl]; ap:=(al+nl-j)!*ap;
od;
for j from 1 to (n1-1) do
for k from j+1 tonl do
al:=(m[j,n1]-m[k,n1]+k-j)!; apl:=al*apl,;
od;od;coefa:=ap1/ap;print(coefa,l);
pring("E Rk k1)

#part 2 The branching operators#

#calcul de P( mu, mu)#p:=1;
for k from 1 to n do
for j from 1 to (k-1) do
mul:=m[k,n]+n-k;
mup:=m[j,n]+n-j;
p:=p*((mup-mul)!); od;od;print(p,2);
#calcul de P( mup, mup)#
pp:=1;
for k from 1 to (n-1) do
for j from (1) to (k-1) do
mul:=m[k,n-1]+n-k-2; mup:=m[j,n-1]+n-j-2;
pp:=pp*((mup-mul)!);
od;od;print(pp,3);
#calcul de Q( mu, mup)#q:=1;

for k from 2 to n do
mul:=m[k,n]+n-k;
for j from 1 to (k-1) do
mup:=m[j,n-1]+n-j-1; q:=q*((mup-mul)!);
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od;od;print(q,4);

#calcul de Q( mup, mu)#
qq:=1;
for k from 1 to n-1 do
mul:=m[k,n-1]+n-k-1;
for j from 1 to (k) do
mup:=m[j,n]+n-j;
qq:=qq*((mup-mul-1)!); od;od;
print(qq,5);

#calcul de A( mup, mup)#

mq:=1;
for j from 1 to (n) do
mul:=m[j,n]+n-j; mq:=mq*((mul)!);
od;print(mq,6);
coefap:=(pp*p)/((mq*qq*q)); coefn[n]:=coefa*coefap;
coefb:=[(m[1,2]+1)!*(m[2,2])!*((m[1,1]-m[2,2])!)
*((m[1,2]-m[1L1DH)/[(m[1,2]-m[2,2]+)!];

p— }

print("coefa=",coefa); print("coefap=",coefap);

—n

print("coefnl[n]=",coefn[n]);
coefn[n]:=coefn[n]*coetb;

print("coetb=",coefb); print("coefn[n]=",coefn[n]);
end;coefr(n,m);

Appendix 2
The linear system of indices (part 8):

i,+ig+i,+i,;=LI131), i,+ig=LI3,2),
iy+i,+i,;+i,;,=L23,1), i,+i,=L2(3,2),
i, +i, +i,+i,=L33,1),is+i, =L3(3,2),
i,+is+i,;=RI3,D), i,+i,=RI32),
i,+i,+i,, =R2(3,1), i,+i,, =R2(3,2),
ig+i, +i,; =R3(3,]), i;+i,, =R3(3,2),
ig+i,+i,, =Pl i,+i,+i,;=P2

i, +i;+i,,=P3.
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J. Phys. IV France 1 (2004)
© EDP Sciences, Les Ulis

Derivation of classical relativity and Schrddinger equation
using Hamilton and Hamilton-Jacobi formalisms

Abstract

Using Hamilton formalism of classical mechanic we derive in a simple way the
equations of motions of classical relativity. Applying the canonical transformation and
the Lagrange-Euler equation we find the Schrodinger equation. Our objective is a
pedagogical point of view.

1. Introduction

The Hamilton and Hamilton-Jacobi formalisms didn't play a central role in classical
mechanics or in the subsequent development of quantum mechanics. It is probably fair to
say that the Hamilton and Hamilton-Jacobi formalisms, which were once taught as part of
an advanced course on classical mechanics, have been seldom if ever used by physicists.

It was customary to derive the equations of motion of classical relativity using
Lagrange formalism [A4] but in this note Our purpose is to point out that the derivation is
more simple and instructive with Hamilton Formalism. Also, in the books of quantum
mechanics [A1-4] we find comparisons between Schrodinger equation and the Hamilton-
Jacobi equation, or start from Schrodinger equation and use Ritz variation method to
derive the Schrodinger equation. These treatments do not satisfy a pedagogical point of
view. In this note we purpose to derive the Schrodinger equation using the canonical
transformation of the Hamiltonian (with the generating function as a variable) and then
apply the Lagrange-Euler equation.

In part two, we do a revision of analytical dynamics formalism. In part three we

derive the equations of motions of classical relativity. The derivation of Schrodinger
equation constitutes part four. Finally, part five is devoted to some conclusions.
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2. Revision of principle of least action

2.1 Hamilton principle of least action
Starting with the expression:

S = TL(q,q',t)dt

4
S is the Hamilton action and L(q,q,t) is the Lagrange's function.
The least action means:

oS =0 With 5q(¢,) = 0q(t,) =0 and 5(¢) = %(5@

Using Taylor development and the integration by part the second term becomes
53
58 = { } ja—L—ia—L)a dt =

The equations of Lagrange can be derlved.
d oL oL

L . .
And: p, = 2— is the generalized momentum.
q

The Lagrangian is defined to within an additive total time derivative of any function of
coordinates and time

oo . d
L (Q:QJ) = L(q’Q7t)+EF(q’t)

t) ' ty d '
=[L@.4.0+ [ F@.0=5+F(qt).6) = Flg(t).1,) =85 =55

2.2 Hamilton Mechanics

2.2.1 The Hamiltonian
Starting with the Lagrangian function L = L(gq, q)

dL = Z—d +—d

and Lagrange's equations, we obtain
d(Q g:p,—L)=- pdg,+ q,dp,.
By definition the Legendre transformation is:
H=(Q ¢p —L)
The function H = H(q, p,t) is Hamiltonian.

For a conservative system:
L=T-V
And H=H(g,p,t)=T+V.
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2.2.2 Hamilton's equations of motion
dH =" —dq, L —> . pdq, +4,dp,

a4,
by comparison we ﬁnd the canonical equations
dq; _OH dp, __OH

dt  op dt  oq,

i

2.3 Hamilton-Jacobi equation

2.3.1 Derivation of the equation
If ¢, is variable in the expression of S = S(q, t) then

ds_
dt
and
dS os oS . )
a Zla 4= Ziplql
Therefore
_—L_Zl-piqz‘
finally: a—S=pi
aq,
And 8S + H(q, S ,0)=0.
o 0q

2.3.2  Canonical transformation
Starting with the coordinate’s transformation:

qapat ______ %Q(qapat)aQ(qapat)at
S, LH—————~— S L' H'

T is a canonical transformation if the form of Hamilton’s equations is conserved
do, _ OH' dP, 6H !
o o a0
dar
dr’
Putp =F + ZiP[.Q,. , we obtain de(q, P,t) = Z,- p.dq, + Z,- Q.dP. +(H — H')dt
We derive easily

And L = L+6;—For2pql H=Y PO —H'+
t

o = op’ T

1

P =

The function ¢ is called generating function.
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3. Derivation of classical Relativity
using Hamilton formalism

3.1 Metric of classical relativity
We start from the definition of the action

S = J.Ldt = Ipxdx +p,dy+ p.dz— Hdt
We observe that p_, p , p. are momentum and H is the energy. Then we must divide by

a velocity, a, to make some coherence in the expression of S .

So we write:

H
S = [Ldt = [ p.dx+ p,dy+ p.dz+"(iadt)
a
= Ipxdx+p},dy+ p.dz+ p,(du)
. . . H .
With a being a constant velocity then p, = 1 is a momentum and
a

S =J.13-d1§ =J-(pr+pyj+pf%—pﬁ)-(dxf+dyj+dzl€+duﬁ)

P And R are vectors in the four Euclidean space.
The choice of the velocity implies that the element of length in the four dimensional
Euclidean space is:
dr* = (du)’ +(dy)’ +(dz)* +(du)’

d(* Is an invariant by Lorentz transformation.

3.2 Choice of the velocity a
The invariant operator in the four dimensions space is\ the Laplace-Beltrami
Operator:
82+82+82+82 _62+62+82 _ii
ox* oy oz out ox* oyt 0z° a’or’

Now if we choose a = ¢ where ¢ the velocity of light is, the equation A =0 is the

Ag =

Maxwell equation. We deduce the momentum

oS oS oS oS H

px :_7py =7 pz =

ox Oy

—P, = - =1
0z P o(ict) c
The last equation is the Hamilton-Jacobi.

3.3 Expression of the Hamiltonian
The invariant in 4-dimension Euclidean space is

B, E
B = pt () =~
C

_)2
c

In a system at rest p° = 0, E, is a constant of motion or the energy at rest:
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We deduce the Hamiltonian
E
H=](")+p?
c

P2 E, . E, P2 p’

for (—) <<1, H=(—) [1+(—)" = (—)(A+(—)") =const +—

(Eo) (c) (Eo) (c)( (Eo)) -

We deduce the expression E, = mc” and ()2 << 1 which means thatv < c.
0

3.4 Equations of motions of classical relativity
Using the canonical equations we simply derive the equations of motions of classical
relativity

- my mc
p= 2’ E= 2
v v
1——2 1——2
c c

It is important to point out that we can use the quaternion field instead of Euclidean
space.

4. Derivation of Schrodinger equation
using Hamilton-Jacobi formalism

We adopt the Hartree-Fock method used in the theory of many body problems.
That is, we consider a transformation and we search to find the minimum
of energy. In our case we take the canonical transformation of the Hamiltonian
H Given by:
H'=H+ %
ot

Where ¢ is the generating function and p, = 6_(0

oq

i

In this caseq, =x, g, = y,9, =z,
AndH=L(px2 +p, P,
2m ’
We obtain
I O0p, 0p., 0,
H=—(=) +(=)" +(x))+V
2m((6x) (ax) (at))

Put ¥ =e"" then V" ="

Therefore ¢ = zln‘]’ and ¢ = —zln v
i i

Then
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0 oV 0¥ . 0 oV 0¥
(S =h o

8x 8x ’ ay &y
@y =20y,
0z Oz
But dp _ho¥ ., 29" _ ho¥ .
ot i Ot ot i ot
We can write 6_(0__( " 55” 55”
or 21
Using these expressions in the formula
o=+
ot
We obtain
WH?,__[GT 6¥’+6¥’ 85”+8¥’ 85”] o _( i a_yl_yjay,]
2m Ox Ox oy 0oy 0z Oz ot o

Using the Euler-Lagrange differential equation we will show that the variation of this
expression yields the Schrodinger equation. ¥ and W " have to be varied Independent.
n’ a\P oY oV ov oy oy

—dxdydz
2m ox 8x oy 8y 0z 0Oz

. 0¥
ot
By choosing a Lagrange den51ty £(‘P,8‘P/6q)=-H(‘P,8‘P/8q) we find the expression
Find by Greiner [A56] without any indication of its origin.
The Euler-Lagrange equation, split up into space and time components, reads:
ot 0 of _d of

o¥, oOx, 00V, /0x,) dt oY,
Where the summation over i runs through 1, 2, and 3 or
First we vary with respect to ¥ and obtain

2
LN YR ACL Y
2m ot

J(P) = j\{f HY = j

+IV\P*\P

= j H(‘P,a—ly)dxdydz
oq

Analogously, variation with respect to ¥ yields

2 *
A rw = —in Y
2m ot

=HY’
H Is the familiar Schrédinger equation

2
H=—h—A+V
2m

Thus we derived the Schrodinger equation using the Hamilton-Jacobi formalism.
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