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Abstract 
 
    The generating function method that we had developing has various applications in physics and 
not only interress undergraduate students but also physicists. We solve simply difficult problems 
or unsolved commonly used in quantum, nuclear and group theory textbooks. We find simply: the 
generating function of the harmonic oscillator, the Feynman propagators of the oscillator and the 
oscillator in uniform magnetic field. We derive the invariants of SU(2) and the expressions of 3-j 
,6-j symbols. We find also the octonions or Hurwitz quadratic transformations. We show that the 
cross-product exist only in E3 and E7. We determine the {p} representation of hydrogen atom in 
three and n-dimensions. We generalize the Cramer's rule for the calculation of the rotational 
spectrum of the nucleus. We find the expression of the Hamiltonian in terms of quasi-bosons for 
study the collective vibration. We determine the basis and the expressions of 3-j symbols of SU 
(3) and SU(n).We find the Schrödinger equation from Hamilton-Jacobi formalism. We present 
these applications in independent chapters. 
 
 
Résumé 
      La méthode de la fonction génératrice que nous développons a beaucoup des applications en 
physique et qui intéressent non seulement les étudiants de la licence mais aussi les physiciens. 
Nous résolvons simplement des problèmes difficiles ou non résolus en physique quantiques , 
nucléaire et la théorie des groups. Nous trouvons simplement : la fonction génératrice l’oscillateur 
harmonique, les propagateurs de Feynman de l’oscillateur et l’oscillateur dans un champ 
uniforme. Nous dérivons facilement les invariants et l’expression des symboles 3-j , 6-j de  
SU(2). Nous trouvons aussi les transformations de Hurwitz. Nous montrons que le produit 
vectoriel existe seulement dans E3 et E7.  Nous déterminons la représentation {p} de l’atome 
d’hydrogène dans trois et n-dimensions. Nous généralisons la règle de Cramer pour l’étude de 
mouvement rotationnel du noyau. Nous trouvons l’Hamiltonien en fonction des quasibosons pour 
l’étude de vibration du noyau. Nous déterminons la représentation et les expressions des 
symboles 3-j des groupes SU(3) et SU(n). Nous dérivons aussi l’équation de Schrödinger du 
formalisme de Hamilton-Jacobi. Nous présentons ces applications dans des chapitres 
indépendants. 
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Introduction 
 

   Quantum, nuclear and groups theories constitutes the background of any physician but 
there are still many problems unresolved or some of them resolved by difficult methods 
for undergraduates [1-9]. The generating function method, (GFM), that we develop 
solves some of these problems in a simple and fits naturally in these courses. But we find 
to make our presentation more clear and useful for students in mathematics and physics is 
to make a quick historical review of analytical and quantum mechanics. 
 
1.  A brief review of analytical mechanics and quantum mechanics 
    We can represent the study of mechanics by an astronaut in space who looks at a 
pedestrian moving on a road. From a distance, he sees the movement is linear or 
curvilinear, but when he approaches he finds that the motion is zigzag and see a random 
stochastic, and if it approaches more he sees only its form (eyes: spin, ..), and so on. 
 
1.1 The first case:  In the first case the equation of the trajectory is determined by 
Newton formula. But we know that classical mechanics has the starting point the meeting 
of a very rich Tycho Brahe passion for astrophysics and a priest out of the church because 
he doing mathematics during the confessions. They worked together until the death of 
Tycho Brahe and the results were Kepler's laws and the death of Kepler poverty.  
   Then Galileo, a mathematics professor, loved dancing and had success. An evening in a 
dancing room a breeze has led Chandeliers to a pendulum motion for a very long time. 
This was the origin of his discovery of inertial frame and the beginning of his research. 
   Finally Newton introduced the acceleration and found the equation of the trajectory 

. Undoubtedly Newton breakthrough the icy ocean of knowledge and allowed 
other scientists to swim in it.  
   The beginning of analytic mechanic [10] was with Lagrange. In France Lagrange (well 
respected by Napoleon) generalized Newton's formula on a variety by introducing the 
Lagrangian L = T - V = (kinetic energy - potential). And in the same time in Russia  
Euler (*) developed the calculus of variations [11] generalizing Fermat's principle of least 
time.  After a time, Hamilton starting from Euler‘s variation calculus and Lagrange 
function, he introduced the action (S),   , the principle of least action and 
simply deduced the Lagrange’s equations. He also introduced a new function, the 
Hamiltonian H (H = T + V) and found the canonical equations. He also discovered the 
quaternion and then generalized by Cayley and Grave to octonions, non associative 
algebra [12-13], which is very useful in mathematical physics. Hamilton's work was 
complemented by Jacobi and finds a new equation, the Hamilton-Jacobi equation. 
    But this analytical mechanics has led to the fundamental concepts of the physical 
system are the concepts of state and the dynamic variables: coordinates of the particles 

 momentum ( ), the components of orbital angular momentum ( ) and energy (E). 
    Among the most important applications of mechanics are the harmonic oscillator, 
hydrogen atom and gravitation. But it is also important to note that the equation of the 
hydrogen atom or gravitation transformed into an equation of the harmonic oscillator to 
be resolved.  
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1.2 The second case: The second case represents the latest approach to quantum 
mechanics or "the Lagrangian quantum theory" and it is the path integral introduced by 
Dirac and developed by Feynman [14-16]. But the methods of calculations of Feynman’s 
propagators are beyond the undergraduate level.  
    It is also very important to summarize the quantum Hamiltonians [1-7] approaches and 
the general formalism of Dirac.  
 We know that Hamiltonian quantum mechanics originates from a true story: 
      On a sunny day in Geneva (1885) had escaped from a seller of balloons filled with 
hydrogen a number of them flew in the sky and in the night he found an emission of 
radiation picked up balloons and after that a Geneva newspaper published the 
wavelengths of radiation and then a secondary school teacher found the series known by 
his name, the Balmer series. 
    We must not forget that the problem of black body radiation (stove) was the basis for 
the introduction of light quanta by Planck, Einstein and Bohr and was also very important 
for the development of quantum mechanics 
 
      After much research developed two approaches are equivalent:  
The matrix mechanics of Heisenberg and Schrödinger's wave mechanics. The first 
formulation requires appearing in any physical theory only physically observable 
quantities therefore the concept of the electronic orbit is unfounded at the microscopic 
level. But the second has its origin in the work of L. de Broglie who postulated that 
wave-particle duality, already predicted by Hamilton, is a general property of 
microscopic objects.  
However, Schrödinger generalizes this notion of wave field and discovered the equation 
of propagation of the wave function, and a simple rule of correspondence 

for deriving this fundamental equation, = . 
    Schrödinger also showed the equivalence of two methods, but Dirac has established 
the general formalism of quantum theory. 
 Dirac observed two weeks after reading the work of Heisenberg that the coordinates of 
the particles and impulses are observable but do not commute. Which implies from the 
mathematical point of view we need two wave functions: the first is function of 
coordinated and the second of momentum and are deduced from each other by means of 
Fourier transformation. 
Because the coordinates are hermitian operators led Dirac to introduce the state function 
in quantum and the discovery of the delta function that bears his name (Dirac delta 
function) and a new formulation of quantum mechanics. In addition he introduced the 
ladders, or bosons, operators ( for the resolution of the harmonic oscillator, which 
play a fundamental role in physics. 
    Starting from the evolution operator   , Heisenberg too, 
found that is called the Heisenberg equation of motion. 
 
1.3 The third case: The third cases are the study of elementary particles [15], but we are 
interested only in those lectures by the unitary groups which are very important for the 
study of rotational invariance and the classification of elementary particles, SU (3). 
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2. The Generating function and the unsolved problems or solved with Difficult 
     methods 
   I observed that the generating function of the harmonic oscillator with complex 
parameter G(x, z) [8,17],can be regarded as kernel function with Gaussian measure for 
integration, has never been used and may be generalized to simplify the resolution or to 
solve many important problems in quantum , nuclear and group theory include: 
1.     A simple derivation of the generating function of the harmonic oscillator [6]. 
2.     a- Schwinger [18-22] developed a method based on the Heisenberg equations of  
            motion for calculating the Feynman propagator 000 txttHitx ,)]()/(exp[),( −− h .  
       b- Schwinger [23-25] also start in his famous study “on angular momentum” to 
          search operators  in terms of bosons operators  which generalizes the orbital  
          angular momentum   took (  )   
         with  and are the Pauli matrices for spin 1 and spin ½.  
Bargmann study the Fock space and use it’s isomorphism with the harmonic oscillator to 
study the Rotation groups, following Schwinger treatment. 
 But all these works are difficult to be followed by undergraduate student. 
3.    Connecting the equation of hydrogen atom and harmonic oscillator was performed 
using the quadratic transformations, (Levy-Civita, Kustaanheimo-steifel ,…)[26-29]. 
Kibler and (al.) have studied these transformations and have made several useful 
applications in physics [30-31]. But the momentum representation of hydrogen atom is 
not resolved using the Fourier transform except for simple cases [1-7, 32-37]. 
4.   The development of techniques for operators of fermions and the Hamiltonian in 
terms of quasibosons operators proved particularly effective to study the collective 
Hamiltonian [38-40] and transition operators of even-even nuclei. Two development 
methods were used: first the Belyev and al. and the second is the Marumori and al. 
unfortunately these developments converge slowly when they converge, and no longer 
respect the Pauli principle when they are trunked. 
5.   The known generalization of the Euler’s angles to classical groups is inconvenient 
     [41-43] so we must seek a new parameterization.  
6-  Schwinger's method for the study of angular momentum, known boson method has 
been generalized by several authors [44-46] to study the classical groups and in particular 
the unitary groups. But the study of unitary groups is facing a major challenge for the 
explicit determination of the basis of representations of SU (n) for n> 3. In addition there 
are no simple formulas for 3-j symbols of SU (3) and the calculation become intractable 
for > 3. 
 
3. The generating function method and some of it’ is applications      
    We will present our works on these subjects in a way as simple as possible in seven 
chapters and appendix but prerequisites the standard graduate courses.  
And we give a simple diagram for the connection between the various applications.  
  
     In the first chapter of these lectures we make a quick review of the harmonic oscillator 
and we find a new elementary and interesting method for the derivation of the generating 
function G(x, z). It has been known that the generating function with complex parameters 
z can be written which is the sum of the product of the basis of the oscillator  and the 
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basis of the analytic Hilbert space or Fock space F= , with dμ (z) Is the 
Gaussian measure. Using the generating function and the orthogonality of Fock space we 
calculate simply the normalization of the delta function, the Feynman propagators of the 
oscillator and the charged harmonic oscillator in uniform magnetic field [16-22]. 
 
    In chapter two [47-53] we start from Schwinger’s generating function of D-Wigner 
matrix elements and the Fock space for simple treatment of angular momentum. We have 
found a simple method to study and to simplifies the calculation of 3n-j symbols (n >2). 
   We find also two important observations:  first we find that the coordinates (x, y, z) 
may be written in terms of the SU(2) matrix elements as quadratic form and thereby 
calculate the representation {p} of hydrogen.  
  Second we note that the invariants of 3-j symbols can be calculated in terms of the space 
of parameter of the generating functions which will allow us to find the analytic 
expression of 3-j symbols of SU (3) and SU (n) groups. 
 
    We present in the third chapter the well known problem of sums squares [12-13, 28] 
which has-been the origin of the non-associative algebras: the quaternion, the Octonions. 
We show a recurrence method which gives all Octonions quadratic transformations 
(OQT), or Hurwitz transformations [54], and we show the connection of hydrogen and 
oscillators in the general case. We find the relationship between the Pauli, Dirac matrices 
and its generalization and the generating functions of Gegenbaeur polynomials.This 
generalization leads to a new algebra different from Cayley-Dixon algebra.  
    The relationship between the inertia tensor and the octonions algebra was emphasized 
for the first time in our paper [55]. And we also show by means of the tensor of inertia 
and Hurwitz's theorem that the cross-products can bee defined only in Euclidian spaces of 
three and seven dimensions [56-57].  
    The quadratic transformations that we have derived from the theory of angular 
momentum are related to OQT allowed us to find the momentum representation of the 
hydrogen atom [58-65] in the case of two and three dimensions. The general case N≥3 
may be done using generating function and the Hankel’s integral of Bessel functions and 
we determine the wave function in momentum space with the exact phase factor. 
 
      In chapter forth we study collective motions using the Hartree-Fock variation method. 
In this method we approximate the ground state of the system by a Slater determinant 

HFΦ  constructed from the states of nucleons. This wave function is not function of 
angular momentum, and the calculation of rotational energy can be done by using the 
projection operator [66-78]. But the calculation of rotations spectrum is very long. We 
have generalized the Cramer’s rule and so the calculations can be carried out simply by 
the Gauss-Jacobi method we derive also the Thouless function [78]. 
     To study collective motions it is important to consider the residual interactions [38]. 
And the introduction of random phase approximation theory and more generally the 
quasibosons developments aim the study of these interactions. We find the generating 
function as expansion as product of a Fock space and Hartree-Fock basis. Using the 
generating function method we determine the expression of the Hamiltonian Hb in terms 
of quasibosons operators. In many important papers we find that Hb was used to study the 
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vibrations motion of the nucleus, e.g. [79-81]. The great utility of the GFM [82-89] 
encourages me after retirement (2005) to expand and develop this method.  
 
      In chapter five we generalize the Euler angles for the classical groups. We find for 
unitary groups the measure of integration which is the measure of Fock space. To 
determine the 3-j symbols of SU (3) we construct the generating function using the 
Schwinger method of coupling then we find also a new expression of these symbols in 
the case of multiplicity free [43,90-107]. 
 
      In chapter six we treat the difficult problems with the help of our method and we find 
the basis of representations of unitary groups and its 3-j symbols with multiplicity [108-
120]. The objective of this chapter is the graduate students and physicists but we need in 
all our works only the well known Gaussian integrals. 
     In the annex we treat the derivation of classical relativity and Schrodinger equation 
using Hamilton and Hamilton-Jacobi formalisms. 
   The presentation given in these lectures is simple enough to be accessible to 
undergraduate students and can serve as a working tool for physicists. And I limit myself 
to simple parts of my works that do not require much calculation over each chapter can 
be read independently of the others. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Euler was the son of a Swiss baker and was sent to school early. After a time he asked his teacher to write 
a set of numbers and he gives the product directly. The teacher was shocked and at three and half (AM) of 
the morning he spent at the bakery telling the father that his son is a genius and he is incapable of educated 
the child. He proposed to send the son to be educated by the family of the mathematicians Bernoulli. 
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The following diagram describe the connection 
Between the various applications  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                     
 
 

Harmonic oscillator 
(Generating function) 

Generating function and Feynman 
propagators of the harmonic oscillator 

On the collective motion of the 
nucleus 

Angular momentum 
and Fock space 

Euler angles, Generating function 
and Wigner’s Symbols for SU (3)     

multiplicity free 

Fock space or  
Fock-Bargmann space 

Octonions 
algebra

6j, 9j, …    Symbols     
for SU(2) 

Cross product in  
n-dimensions

Gel’fand basis of SU(n) and the 
multiplicity withWigner’s coefficients  

Momentum representation of
Hydrogen atom 
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Generating function of the Harmonic oscillator, 
Fock space and Feynman propagators 

 
1. Introduction 
2. The harmonic oscillator and Dirac transformations 
   2.1 The Schrodinger basis of harmonic oscillator 
   2.2 Dirac notations in quantum mechanic 
   2.3 Dirac transformation 
3. The harmonic oscillator in Dirac notations and  
    the generating function 
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   3.2 The generating function of the harmonic oscillator 
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5. The Dirac delta function and the normalization of 
    the free wave 
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   7.3 The Feynman propagator of two-dimensional isotropic charged harmonic 
        oscillator in uniform magnetic field 
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Chapter One  

 
 
 

Generating function of Harmonic oscillator, 
Fock space and Feynman propagators 

 
 

1. Introduction 
  
     The harmonic oscillator plays a fundamental role in physics [1-7] and the solution of 
Schrödinger equation is well known to students. And as we have already written that 
Dirac determines the state of the quantum system and introduced the delta function. 
Furthermore,  Dirac for solving the equation of harmonic oscillator start from the analogy 
between the form of the Hamiltonian of the harmonic oscillator and the product of a 
complex number and its complex conjugate and then he introduce the raising and 
lowering operators and found the states the oscillator with the new notations.  
    We know also from the standard quantum mechanics textbooks there are many 
important problems [17-22] with resolutions exceed the level of undergraduate’s students 
for example: the generating function, the normalization of the delta function, the 
Feynman propagators etc... 
 In this chapter we present a new simple method, closely related to Dirac notations, for 
the determination of the generating function. And using this generating function and the 
Fock space we determine by an elementary calculation the normalization of Dirac delta 
function and the Feynman propagator of harmonic oscillator [18-22].  
   Then we review the resolution of two-dimensional isotropic charged harmonic 
oscillator in uniform magnetic field and after that we calculate the Feynman propagator 
in this case.  
 

2. The Harmonic oscillator and 
 Dirac transformations 

 
     In this part we present a brief review of the harmonic oscillator then Dirac notations of 
quantum mechanic and Dirac transformation [6]. 
  
   2.1 The Schrodinger basis of harmonic oscillator 
       The Schrödinger equation of the harmonic oscillator in one dimension is:  
 
                                                 )()( xExH ψψ =                                                             (2.1)  

And                                 )( 2222
x xmp

m2
1H ω+=  hipx x =],[                                     (2.2) 
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Put                                        qmx )/( ωh= ,                                                                 (2.3)                      
we obtain                                  )( 22 qpH += ωh                                                          (2.4)                               
The solution of Schrödinger equation is  
                               )()( quEqHu nnn = and ))/(( 21nEn += ωh .                                   (2.5)   

With          )()!()( qHen2qu n
2

q
2
1

n
n

2
−−

= π  And  ( ) )(/)()( / qumxu n
41

n hω=               (2.6)     
 

)(qHn  is the Hermite polynomial with  
                    )()()( qH1qH n

n
n −=−  and )()()( qu1qu n

n
n −−= .                                    (2.7)  

 
The generating function is given by [1]: 
 

                                        
)(

!
),( qu

n
zqzG n0n

n

∑∝

=
=

                                                      
(2.8)

 
 
2.2 Dirac notations in quantum mechanic 
  I want to do only a simplistic explanation of Dirac transformation. We know from the 
course of linear algebra that any Hilbert space with a basis   has a dual space 

 with    is the scalar product.  
We can make a change in the notations by putting:  
 
                                          *, iiii ffff ==                                                          (2.9) 
 
If q  is the continuous eigenfunctions of the operator q̂  
 
We write:                                          qqqq =ˆ   
 
The expression of the unitary operator is 
                                            

                                                       qdqqI ∫=                                                         (2.10) 
Similarly, in the Hilbert space the inner product of two functions f and g is then:

    

                                           dqqgqfgqdqqf

gqdqqfgfgf

)()(

),(

∫∫
∫

==

==

                          
(2.11)

 

 
For this expression is valid whatever f and g we can then deduce the famous Dirac's 
transformation: 

                                   )(,)( qggqqfqf ==                                                  (2.12) 
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2.3 Dirac transformation 
 1- By definition the Dirac transformation is:  
                                                 nqquuq nn =→ )(:                                              (2.13)  

and                                                ),(qffq =  

2-The momentum   has the eigenfunctions   

And . 
The Dirac transformation from the representation q to p is given by: 

 
With                                          

And                           ),(qqffqq =  )(qf
dq
d

i
fpq h

=                                    (2.14)                               

 
3. The Harmonic oscillator in Dirac notations 

and the generating function 
 

3.1 The basis of harmonic oscillator in Dirac notations      

       Let                            )(),(
dq
dq

2
1a

dq
dq

2
1a −=+= +                                        (3.1)  

we find                              0aa0aa1aa === +++ ],[,],[,],[                                        (3.2)  
 
We derive from the above expressions a very useful formula: 
 

                                                
0

a
af0aaf +

+
+

∂
∂

=
)()(

                                                  
(3.3) 

 

And                                       +=+= aaN
2
1NH ),(ωh                                                  (3.4)  

In Dirac notations the basis of the harmonic oscillator becomes  

                                   0
n

an
n

!

+

=  , )(qunq n=                                                       (3.5)  

With nmnm ,δ=  and 0 is the vacuum state.  

The energy is given by:      
And the expressions of the unitary operator and the generating functions are: 
                                             
                                                                                                                
  

                       
0)(

!
),(

0

+

== ∑∝

=
za

nn

n

eqqu
n

zqzG                                                     (3.6)                              
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3.2 The generating function of the harmonic oscillator 
   We will find the expression of the generating function by a new simple method 
different from the other methods [1,6] and closely related to Dirac Ladder operators. 
 Using Dirac transformation and (2.14) we find: 

                                               ),()( qzG
dq
dq

2
10aeq za +=

+

                                    (3.7) 

Using also (3.3) we find:          ),(0 qzzGaeq za =
+

 
By comparison of the above expressions we find: 
 

                            ),()(),( qzGqz2qzG
dq
d

−=                                                             (3.8) 

 
The solution of this equation is: 

                          )}()exp{(),( z
2

qqz2cqzG
2

ϕ+−=                                                    (3.9) 

To determine )(zϕ  we use the creation operator, we find:              

                      ),(),()( qzG
z

qzG
dq
dq

2
10eaq za

∂
∂

=−=
++                                      (3.10)

 Using (2.13) and (3.3) we find:      
                                                 zz −=)('ϕ  
After solving this equation we determine the generating function of the oscillator 

                           
}exp{),(

2
z

2
qqz2cqzG

22

−−=
 

 For t = 0 we have )(),( qu0qq0G 0== and it follows that: 4
1

c
−

= π                 
  So we finally get 

                          }exp{)(
!

),(
2
z

2
qqz2qu

n
zqzG

22
4
1

n0n

n

−−π==
−∝

=∑
                      

(3.11) 

 
4. The Fock space 

 
      In the expression of the generating function we note that the functions )(znϕ     

                                                       
!

)(
n

zz
n

n =ϕ                                                             (4.1) 

 Constitute a basis of analytic Hilbert space that is known by Fock- Bargmann space {F}. 
  

 And         ji

ji

jiji zd
j

z
i

zzdzz ,)(
!!

)()()( δμμϕϕϕϕ === ∫∫∫∫                                  (4.2) 
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  )(zdμ Is the cylindrical measure or Gaussian measure: 

                                      iyxzdxdyezd
22 yx +== +− ,)( )(

π
μ                                          (4.3)                                

 we have also  
                           ∫ μ= )'()'()( ' zdezfzf zz  and ∫ μ= βααβ )(zdeee zz                                (4.4) 
 
1-We observe also that the images of any wave function, )(xfΨ and any operator A 
  of the space {H}, a function f(z) and an operator  of {F} with: 
 
                         (4.5) 
 
We are dealing with a transformation and a problem in the oscillator basis can be 
transformed into a problem in the Fock space of which the resolution is simpler.   
2- The generating function z  is the well known coherent state with: 

                              zzza ezz0ez '', ==
+

 
                                                         zzza =                                                             
     And                                       zqqzG =),(                                                            (4.6) 
 The unitary operator is:      
                                        zzdznnI

n
)(μ== ∫∑                                                    (4.7) 

 3- The transformation from the representation }{q  to the representation of the 
         Harmonic oscillator is: 
 
                                 zzdqzGzzdzqq )(),()( μ=μ= ∫∫                                       (4.8) 
    
4- The correspondence between the harmonic oscillator and Fock space may be deduced  
    from the relation (3.3): 
                                                  )/(, zaza δδ→→+                                                 (4.9) 
   The generators of unitary group may be written in terms of raising and lowering 
operators of the harmonic oscillator [8-9] therefore we can write these generators in terms 
of the variables of Fock space. 
 

5. The Dirac delta function and the  
  normalization of the free wave 

 
   We want to determine the expression qq' using the generating function of the 
harmonic oscillator and the orthogonality of the basis of Fock space. 
We write:  
                ∑∑ ××===

= ji ijii0i ii ququququqIqqq
, , )()()'()()'('' δ  
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Using (4.2) and (3.11) we find:   
                                                 )()',(' zdq) (z,G qzGqq μ∫=                                       (5.1)                    
                                                                                    
By replacing )',( qzG and  q) (z,G  by the expression (3.7) we obtain  

                     )()]'('exp[' zdqzzq2
2

zz
2

qq1qq
2222

μ
π ∫ ++

+
−

+
−=                    (5.2)  

the arrangement of this expression gives  

   dxdyqqiy2qq
4
2x2qq

4
11qq 22 ∫ −++−−−−= ))'(]))'((exp([)'(exp('

ππ
   

using the change of variables and performing the integration we find that  
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4
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2
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π

                             (5.3) 

Using the Gauss integral we find that  
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                       (5.4) 

But q and 'q are eigenfunctions of the operator q̂ then:     
  
                                qqqqqqqqq '''ˆ' ==  and 0')'( =− qqqq                    
 
it follows that:  

                                            qqqqqq
4
1 2 ''))'(exp( =−−                                     

Therefore           

                                   1dkdqqqik
2
1dqqq =−+= ∫∫

∝+

∝−

∝+
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')]'(exp[''
π

                              (5.5) 

   
 if we use in (3.3) the free wave iqxNe  we find from the expression (5.5) the normalization 
of the wave function of free particle: π= 2/1N   
Finally we write  

                  ∫
∝

∝−

−=−= dke
2
1qqqq kqqi )'()'('
π

δ and ∫
∝+

∝−
=− 1dqqq ')'(δ                         (5.6)  

 
   We find in a simple and coherent way the Dirac delta function. We deduce also from 
(5.1) that the delta function is an even function and we obtain the normalization of the 
wave function of free particle without the help of distribution theory [6].  
 

6. The Feynman propagator of the harmonic oscillator 
 
    The Feynman propagator of the oscillator was determined by several methods  
 The first one is the Feynman path integral, the second is the Schwinger method of Green 
function, the third is the algebraic method and finally by a direct calculation using the 
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Mehler formula [18-19]. All these methods are difficult for undergraduates and all the 
text books gives only the final result. In this section we propose a simple and elementary 
method for the calculation of this propagator.  
  The Feynman propagator of the oscillator is:  
 

                         ''
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0
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== hh  

                                                  )'()( )/) xuexue nn
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n
2t-(t-i 00 ∑ −= ωω                            (6.1)  

 
From the orthogonality of Fock space and (4.2) we deduce that: 
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    By replacing the expressions under the integral by (2.14) and )( 0tt −= ωα . 
We write: 

              )(])'('exp([/
/

zde
2

zz2zqqze
2

qqem i
22

2
i22

2i
21

μ
π

ω α
α

α −−− +
−++

+
−⎟

⎠
⎞

⎜
⎝
⎛ ∫h

 

 
After arrangement we find that:  
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we have also    

                   xmq h/)( ω= and ,∫
∝+
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− =
a

dze
2az π  with Re (a)>0                

 
 Using the above expressions and performing the integration after change of variables we  
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Find that:  

                       
α

π=××
α+ sini2

1EE
e
1

21i
  With   0cos1 >± α                           

 
Finally we obtain the expression of Feynman propagator:  
 

           ]]'cos)'[(
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qq2qq
2

i
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m))t,(q't),K((q, 22
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ααπ
ω

h
                   (6.3)    

 
  Consequently we do not encounter the difficulties of the method proposed by Holstein 
[20] which adopted by all the authors [21-22] and especially the standard books. The 
same calculation can be used with the generating function to calculate the propagator of 
the cylindrical basis.  
  Our method may be applied to the calculation of the partition function and other 
Feynman propagators [4-5]. We can also do other calculations with the oscillator 
representation using the expression (4.8) and Schwinger techniques [23]. 

 
 

7. The Feynman propagator of charged harmonic 
oscillator in uniform magnetic field 

 
7.1 Isotropic charged harmonic oscillator  
     Considering an isotropic charged harmonic oscillator with electric charge q and mass 
μ moves in a two-dimensional plane under a uniform magnetic field B perpendiculars to 
the plane and the vector potentials have the following form [1-7]: 
                                       2BxA2ByA 21 /,/ =−=                                                        (7.1) 
The Hamiltonian of the system is 
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With 
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2
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                                           (7.3) 

And 
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⎠

⎞
⎜⎜
⎝

⎛
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c2
qB

c
2
c

2
0 μ

ωωωω , .                                                        (7.4) 

We have also 0],[ 0 =zLH . 
   To determine the eigenfunctions of zLH ,0  we use the polar coordinates of two 
dimensions harmonic oscillators [10]. 
We put 
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                                      ϕρϕρ sin,cos == yx                                                          (7.5) 
                                       πϕρ 200 ≤≤≤∝≤ ,  
 
Using the method of separation of variables we find the solution of Schrödinger 
 Equation which is the cylindrical basis: 
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                              (7.6) 

With                          mnj +=      and      
h

ωλ m
=                                                  

The energy of the system can be given as follows: 

                                    
c

qBm1m2n2Enm μ
ω hh −++= )(                                                (7.7) 

With       ,..0,1,2= ., n  And ,....,, 210m2 ±±= . 
  We emphasize that we can build the generating function of the cylindrical basis from the 
generating function of Laguerre polynomials but the calculation is more simpler with the 
generating function that we will build in part three. 
 
7.2 The generating function of the cylindrical harmonic oscillator  
    In this part we review the construction of the generating function of the cylindrical 
basis of the harmonic oscillator which is the eigenfunctions of ),( z0 LH . 
  We know that the Cartesian basis of harmonic oscillator in Dirac notations is  
                                            00aann yx n

y
n

xyx ,, ++=                                                         (7.8) 

This ket is not eigenfunctions of zL  so to obtain the basis which has this property 
 We must take the transformation [10]  

                            )(),( ++++++ +=−= yx2yx1 iaa
2
2Aiaa

2
2A  

                                   ,),( 2121 NNNNNLz +=−=  
                                    222111 , AANAAN ++ ==                                                      
The new basis 21, NN can be written in the form  
 
                           00AAmjmjNN mj

2
mj

121 ,,, −+++=−+= .                               
 
This basis is function of zL and N with the values 2m and 2j. 

With                                           zL
c2

qB1NH
μ

ω −+= )(h  

 And                                   
c

qBm1j2Enm μ
ω hh −+= )(  
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The new generating function may be written in the form: 
 
             00AzAzzzG 221121 ,]exp[),( ++ +=             

                              002zz2ia2zz2a 21x21x ,]/)(/)(exp[ +−++= ++                       
 
In term of Cartesian coordinates we write the generating function as: 
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And                                         
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2
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ϕ   

Is a two dimensional Fock-Bargmann spaces [11]. 
 
7.3 The Feynman propagator of two-dimensional isotropic charged harmonic 
     oscillator in uniform magnetic field 
     In this section, we propose a simple and elementary method for the calculation of 
Feynman propagator of two-dimensional charged harmonic oscillator in uniform 
magnetic field. 
We have:  

                        ''
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With                     τωβωτα c== ,  and )( 0tt −=τ  
From the orthogonality of the basis )(zjmϕ  and (7.10) we deduce that: 
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With                              2iea /)( βα −−= and 2ieb /)( βα +−=  
 
    By substituting the expressions under the integral by (7.11) we write: 
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This integral is invariant by changing 22 zz ↔ , and then we can use the well  
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known formula: 
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By an elementary calculation we find that: 
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Then the propagator may be written: 
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It is easy to verify the following identities   
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Substitute these relations in (7.13) we obtain the exact expression of Feynman 
Propagator of a charged harmonic oscillator in constant magnetic field: 
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I leave the reader to compare between our method and Schwinger’s method,  
Reference [18] part B.   
  It is important to emphasize that the expression (7.14) may be obtained by the 
application of the transformation from the coordinates representations to the harmonic 
oscillator basis. 
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Chapter two 

 
 
 

Angular momentum and Fock –Bargmann space 
 
 

1. Introduction 
 
         It is well known that the orbital angular momentum prL rr

×=  plays a central role in 
classical and Quantum mechanics. But in quantum mechanics we can write the 
components },,{ zyx LLL as quadratic forms in terms of creation and annihilation 
operators, and the matrix of spin -1, of the three-dimensional harmonic oscillators. 
Schwinger was observed that the use of spin half leads simply for the study of angular 
momentum with the help of two dimensions harmonic oscillator basis [23]. But 
Bargmann used the isomorphism between the Fock space and the basis of the oscillator to 
redo the famous Schwinger‘s work “on angular momentum “in the Fock basis [24-25] but 
the calculation of the 3n-j symbols became difficult for n>2.  
    In this work we use the Schwinger‘s generating function of elements of the matrix of 
rotations to determine the generating function of the spherical harmonics and we find a 
quadratic transformation ܴସ ՜ ܴଷ very useful in physics [47]. We find using the 
Gaussian integral the generating functions: of Gegenbauer, Legendre polynomials and the 
characters of SU(2) [54]. 
 In many physical problems we find that the wave functions is not eigenfunctions of 
angular momentum therefore we need the finite projection operator to obtain the good 
wave function [66-73]. The infinitesimal projection operators is given in the appendix. 
      We simply deduct the invariant of SU (2), or Van der Warden invariant, which can be 
generalized for the determination of Wigner’s symbols of unitary groups [108-113].  
    We also show that the calculation of generating functions symbols 3n-j can be done 
simply by using symbolic computation programs. 
      

2. Schwinger approach for angular momentum 
 
   We review the properties of spherical harmonics and the Schwinger basis of SU (2) and 
the Wigner’s D- matrix elements. 
 
2.1 Preliminary 
 
Problem: If   f and g are two quadratics forms  
 
            ))(()(,))(()( agaaaggafaaaff tn

ij jiij
n

ij
t

jiij
++++ ==== ∑∑  
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Using the commentator:       ijjiiiji aa0aa0aa δ=== +++ ],[,],[,],[  
 
It’s simple to prove that:          ))]()(())()[((],[ afggfagf −= +  
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We write the orbital angular momentum: 
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It’s simple to verify that the solid harmonics )(rY m
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2.2 The boson polynomial basis of SU(2)  
    Schwinger in his work [1] “on angular momentum “ use the spin 1 / 2 instead of spin 1 
and find the generators of SU(2) or the infinitesimal operators in terms of creation and 
destruction operators of two-dimensional  harmonic oscillator:  
 we write: 
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With                  K,,/,,/,, 2231210jmj =≥  
We find the Fock Bargmann basis by applying the transformations:   
   
                     ηξηξ ∂∂→∂∂→→→ ++ /,/,, 2121 aaandaa  

                                ),(u,
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                                       (2.1)  

we denote )(udμ  by the measure of integration  
                                              )()()( ημξμμ ddud =                                                        (2.2) 
The conjugate  representation of )(zjmϕ  in the space of Fock-Bargmann is 
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mj
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2.3 Finite rotations and its generating function  
   The matrix of rotation [1-7] can be deduced simply from the property 1RR =* . 
Using Euler angles we write:  
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Multiplying by j
jmjm rvu 2

' )()( ϕϕ  and after the summation we find the  
Generating function of the matrix elements of rotation  
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This expression may be generalized to SU (n) groups. 



 

25 

 
2.4 Orthogonality and normalization of D-Wigner matrix elements 
    We have 
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With ),( 21 zzz = and )()()( 21 zdzdzd μμμ = . 
 Using the generating (2.4) we find   
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After integration we find that: 
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After expansion of (2.7) and it’s identification with (2.6) we find: 
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2.5 The finite projection operator  
   With the help of (2.8) we find that the angular momentum projection operator is: 
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We write the projection operator in the general case by: 
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{α} Is a set of quantum numbers. 
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 This projection operator is called sometimes Hill-Wheeler integral.  
 
2.6 Expression of the matrix elements 
   From the expansion of the generating function we derive the expression of the matrix 
elements of finite rotations in terms of the Jacobi polynomial. 
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2.7 Particulars cases of the matrix elements of rotation 
     We can derive the expressions of the following particulars cases:  
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Remarque’s: 
1- We observe that the expression (e) is a transformation from the four dimensions 
    to the three dimensions 
2- We shall use later this important property to derive the momentum representation of 
      Hydrogen atom. 
 

3. The spherical harmonic and the quadratic  
transformation ࡾ૝ ՜  ૜ࡾ

 
    The relation between the Wigner's D matrix and the spherical harmonics is given by:  
 

                              )r(Y
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4)z(D lm
l

)0,m(
r

+
=                                                            (3.1)  

With:    ߩଶ ൌ  ݎ
    We observe that the expression is a transformation from the four dimensions 
  to the three dimensions but here we shall use the generating function for the derivation 
of the transformation. 
 
3.1 The generating function of the spherical harmonic  
      We find from (2.4) that the generating function of spherical harmonics is:  
             



 

27 

                ( ) ])(exp[),(exp[)(

2
ravvd

v
v

zz
zz

uue 21
2

1

12

21
21

vv 21

rr
⋅

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∫

λμλ

                       
(3.2)

 

                                                  )()(][ rYu
1l2

4
lmlm

l
lm

2
1

rϕλπ∑ +
=  

 
ar  is a vector of length zero, 0=⋅ aa rr

 and has the components  
 
                                    213

2
2

2
12

2
2

2
11 uu2auuiauua =+−=+−= ),(,                             (3.3) 

 
3.2 The quadratic transformation ࡾ૝ ՜  ૜ࡾ
      We obtain the quadratic transformation 34 R R → from (3.2) or terms of coordinates 
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We can write these expressions in term of spin half as 
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If we put 432211 uuzuuz +=+= ,   we find 
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The quadratic transformation 34 R R →  [8-11] or Octonions quadratics transformation 
(or Hurwitz transformation) corresponds to the transformation introduced by 
Kustaanheimo and Steifel up to permutation on x, y, z and the ݑ௜′ݏ . Recently we used it 
for the derivation of the momentum representation of hydrogen atom [ch.5].  
   We also observe that expression (3.5) can be extended to the transformation ࡾૡ ՜
 .૞using the Dirac matrices that we will then make a generalizationࡾ
 
3.3 The connection between hydrogen atom and the harmonic oscillator 
      A quick calculation shows that the equation of the hydrogen atom  
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E
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That may be written on the basis of harmonic oscillator in the form  
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With a constraint on the eigenfunctions: 0=
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3.4 Some applications of the generating function of spherical harmonics  
    All calculations that we perform in the Fock Bargmann space can be solved with the 
Gaussian integrals in finite dimensions: 
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3.4.1 Generating function for Legendre polynomials  
      We put 21 uu = in the formula (3.10) and using (3.13) we find the generating function 
of Legendre polynomials.  
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3.4.2 Generating function of the characters )(Rχ  of SU (2).  
     In the generating function of matrix-D we replace (u) by )(v  we get after integration: 
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4. The addition of angular momentum 

 
    If we consider a system of two particles the conservation of angular momentum imply 
that the state of the system is decomposition on the product of the states of one particle. 
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The Wigner 3j symbols for angular momentum may be written in terms of the Clebsh-
Gardan coefficients 33212211 mjjjmjmj )(, like that:  
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With 213 mmmm +=−=  and  '''' 213 mmmm +=−=  

 
4.1 expression of the integral over the product of three D’s: 
 Using the above expressions we write: 
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This expression is known by Gaunt formula or the integral of the product of three D. 
 
4.2 expressions of 3j symbols of SU (2) 
   we find first the integral representation of SU (2) and the sets of generalized 
hypergeometric functions for 3j symbols. Then we deduce from Euler identity the Regge 
[48] symmetry of these symbols. 
 
4.2.1     Integral representation of 3j symbols 
      Using the Gaunt formula we can calculate the particular case using (4.5) or much 
simpler from (3.6):  

             
)!()!(

)!()!()(
321321

21j2j2

1221

321

jjj1jjj
j2j21

jjjj
jjj

21

+++++
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

+−                (4.6)  

Put 11 jm =' , 22 jm −=' and 123 jjm −='  . 
 We deduce the integral representation of 3j symbols:  
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with  )!()!( iiiii mjmj +−=Γ  
 
4.2.2 Wigner’s expression for 3j symbols 
    We write the Jacobi polynomials in terms of )2/(cot 2 θ in the expression (4.7)  
and after integration we get the Wigner’s expression for 3j symbols: 
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4.3 Euler's identity and Regge symmetry of SU(2)  
     We determine the symmetries of the 3j symbols by  new method may be generalized 
to other problems . We write the expression of Jacobi polynomials (4.7) in terms of 
hypergeometric functions [60] and then we use the Euler identity  
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  To find the symmetries we assume that after transformation we obtain the same 
expression but with the new indices.  
We find the new indices ''''' ,,,, σρβαn  in terms of the old one:  
                                σσαρρββααα =−==−=+= ''''' ,,,,nn                       
In our case we find the Regge symmetry.  
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5. The invariant polynomials of the 3-j symbols 

 
    Van der Wearden [49] determined the invariant of SU (2), method known to Weyl [9], 
and deduces the Wigner 3j symbols of this group. We will determine first the Van der 
Wearden invariant using the D-Wigner matrix elements and then the generating function 
of spherical harmonics.    
 
5.1 The invariant polynomials and the D-Wigner matrix elements  
  The integral of the product of three generating functions of D-Wigner matrix elements 
 
        )()()()()],,([ )()( yHxHzdzdzyxG

321

321

321 jjj
3

1i
jjj

jjj21
iii3 ∫∏ ∑=

== μμφ
                  

(5.1) 



 

31 

Using the expression αβμβα ezdzz =+∫ )(]exp[  for integration we find: 
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We denote )()( xH

321 jjj by the invariant polynomials of SU (2)  

And  ][ 32 xx  , ][ 13 xx ’ ][ 21xx  are the elementary invariants of SU (2). 
 
5.2 The invariant polynomials and the generating function of spherical harmonics 
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the development of the integral (5.3) gives  
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With 321 lllL ++=  
We use the well-known result of the theory of angular momentum  
 

       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛+
= ∏∫∏

== 321

3213212
13

1i

i
3

1i
ml mmm

lll
000
lll

4
1l2ddY

ii
]))((sin)(

π
ϕθθθϕ .                (5.6) 

 
After the integration of (5.5) and the identification with the second member of the  
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 integral we obtain the Van der Wearden invariant )()( uH
321 jjj  of 3-j symbols:  
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  This is the same expression as above.  
 
5.3 Generating function of the invariants of SU(2)  
     We deduce the generating function of 3j symbols of SU (2) from (5.2) by   
      multiplying it by:      
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   After summing with respect to ,..,/, 1210lj ii ==  we obtain the Schwinger formula:  

               [ ]
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛∑ ∏ =

321

321

321

321

321

mj

3

1i
i

mjjjj mmm
jjj

u
ii

ii213

ηηη
ξξξ
τττ

ϕτϕ exp)()(
,

,)(              (5.9) 

 
the symmetries of the 3j symbols can be deduced from the invariance of the    
determinant: permutation of columns, permutation of rows and transposition .  
 
5.4 The Van der Wearden formula for 3j symbols 
    The Van der Wearden formula for 3j symbols can be derived simply form (5.2): 
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        The method of invariants has been the subject of many studies [24, 49-51] but the 
generalization of this method for SU (n) for n> 3 is very difficult. 

 
6. Schwinger’s Approach for the coupling and 6j symbols of SU(2) 

 
    We will present the Schwinger’s method very interesting for the determination of the 
the many couplings states and we use it later for the determination of SU (3) basis. For 
the calculation of 6j and 9j symbols, it is more convenient to follow Bargeman’s method 
with a simple change of variables which makes the calculations simpler. 
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6.1 Schwinger’s Approach for the coupling   
     The polynomials invariant of SU (2) has the generating function: 
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To determine the generating function of the coupling of two angular momentums we 
change 1

3z by 2
3z− and 2

3z by 1
3z in the above expression. We obtain the Schwinger's 

formula:  
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This formula can be applied to the calculation of several coupling of angular momentum 
where the great interest of this method.  
 
6.2 The generating function of the 6j symbols of SU (2) 
   The expression of the 6j symbols [6] is given by:  
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With help of Fock-Bargmann space and the expression (5.2) we write  
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We need to replace the four 3j symbols by expressions of this form to calculate the 
generating function of 6j symbols.  
                    )',,',(]exp[)( ηηξξμτ dDDDDG 3210∫ +++=                                          (6.2)              
We obtain the generating function for the 6j symbols 
To avoid the Bargmann complex calculations we make a change of variables                                
we obtain:  
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Then the generating function for the 6j symbols may be written in the form:  
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This expression can be executed simply with a symbolic program (maple, Scientific 
Work,) and we find an expression for the 6j with one summation analogue to Racah 
formula:  
                                    1XG −= ))(det()(τ                                                                        

                        
,,,

,,,,

)(,))(()det(

311330033311320022322310011

0313233120232221310113020100

3

1i i
3

0i i
2

bbb
aaaa

ba1ggX

ττττττττττττ
ττττττττττττ

ττ

===
====

++== ∑∑ ==

 

 
6.3 Symmetry of 6j symbols  
     If we denote as Bargmann done the power of )( ijτ by )( ijk  it is simple to observe that 

)(τg  is invariant by the permutation of rows and columns of:     
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7. Appendices 

 
Appendix 1 
The matrix (X) for the 6j symbols 
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Appendix 2 
The infinitesimal projection operator  
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We find the triangular system as in the projection of oscillator  
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     One can show that CGC can be presented in the form:  
 
 
 
Using the explicit formulas (3.1) and (3.2) one can easily obtain the final formula of 
su(2)-CGC  
 
Appendix 3 
The calculus of 9j coefficients is very useful in physics and we present the calculations as 
a problem. The 9-j coefficients are: 
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1. Prove that the generating function is: 
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2. Use the change of variables ii ηη →  to find the above expression in 
 the form }{ XZZExp t−  
Use a symbolic program to find the expression of the generating function. 
 
Note: It’s very important to note that many physical applications [52] have as a starting 
point the cylindrical basis therefore we treat these cases in the paper [53]. 
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Chapter three 
 
 
 

Octonions algebra and the cross product in n-dimensions 
(Why do we love Octonions?) 

 
1. Introduction 
2. The problem of sums squares 
   2.1 The Hurwitz theorem on sums of squares 
   2.2 Solution of Hurwitz Problem 
3. The Octonions quadratic transformations 
   3.1 Levi-Civita Transformation  
   3.2 Octonions Transformations  
   3.3 Cayley- Hamilton transformation and the Hurwitz’s matrices 
4. Pauli, Dirac matrices and Gegenbauer polynomials 
   4.1 Pauli, Dirac matrices and quadratic transformations 
   4.2 Gegenbauer polynomials and the quadratic transformations 
   4.3 New generalization of quadratic transformations and 
         Generalized Dirac algebra  
   4.4 the connection of Hydrogen atom and Harmonic oscillator 
5. The cross product in n-dimensions and Hurwitz theorem 
   5.1 Inertia Tensor 
   5.2 Inertia tensor and the quaternion  
   5.3 The cross product in n-dimensions 
6. The generating matrices and Cartan-Weyl basis 
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Chapter three 

 
 
 

Octonions algebra and the cross product 
 in n-dimensions 

 
 

1. Introduction 
 

       It is well known that the old problem of Sums squares [12-13] has been the source of 
the well known division algebra R, C, Q = H, O which are very important in mathematics 
and physics. The particular quadratic transformations: Levi-Civita and Kutaanheimo - 
Steifel can be deduced simply from these algebras [26-29]. Kibler and al. [30-31] have 
studied these transformations and made several useful applications. We present a 
recurrence method for the determination of all quadratic transformations, Hurwitz or 
octonions quadratic transformations, which are derived as a transformation using the 
Cayley-Hamilton. In addition we found similar transformations from the theory of 
angular momentum [22] and the connection hydrogen atom and oscillator can be 
generalized to all these transformations [58-59].  
   We note that these quadratic transformations are related to the Pauli, Dirac matrices and 
generating functions of Gegenbauer polynomials and generalizations of Dirac algebra.  
   The relationship between the inertia tensor and the octonions algebra was emphasized 
for the first time in the paper [55]. And we also show by means of the tensor of inertia 
and Hurwitz's theorem that there are only cross-products in the Euclidian space of seven 
and three dimensions [55-57].  

 
2. The problem of sums squares 

 
2.1 The Hurwitz theorem on sums of squares 
    The problem of sums squares is an old problem and Hurwitz find the final solution. 
       
 The general question we ask is: For which r=s=n is there an identity  
                                                                                                                        
                  2

n
2
2

2
1

2
s

2
2

2
1

2
r

2
2

2
1 xxxvvvuuu ..)...)(..( ++=++++                                          (2.1)  

 
Where the x’s are algebraically determined by: 

                                        ∑=
n

ji
jiiji vuax

,
                                                                        (2.2) 

From the historical point of view we know that: 
1-  n=2 is known  to Indian Brahmagupta(605?) and to Fermat.  
2- n= 4 is the Euler’s identity  
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3- In 1843, Euler’s identity was rediscovered by Hamilton in his work on quaternion.   
4- Graves and Cayley independently found an 8-square Identity. 
5- In 1898, Hurwitz proved a theorem that killed this subject: 
   
Hurwitz proved only the dimension constraints n = 1, 2, 4, and 8, it is also the case 
that, up to a linear change of variables, the only sum of squares identities in these 
dimensions are the ones associated to multiplication in the four classical real division 
algebras of dimensions 1, 2, 4 and 8: the real numbers, complex numbers, quaternion’s  
and octonions. 
 
R, C, Q, O are the division algebra and play very important role in physics and math.  
 
This problem is very important in numbers theory and it has been the basis of the theory 
of spinners, the Cayley-Dixon algebra and Clifford algebra for r≠s=n.  
 
2.2 Solution of Hurwitz Problem 
       For n=2:  
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And Z=UV we find:  
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 U belong to the complex field or the Clifford algebra C(0,1)  
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  U belong to the H-field =C (0, 2) or the quaternion's of Hamilton  
 

For n=8      
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It can be developed as a linear combination of Clifford matrices. 
 
             ),,(,, 82jiI2uIuH ijji

8

2i
t
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ΓΓΓΓΓ     

 
We notice that matrices Hn are anti-symmetric, orthogonal and the rows and columns are 
the components of a vector V (u). 
 

3. The Octonions quadratic transformations 
 

    In what follows, we will expose a recurrence method for the determination of the 
matrices (H). It’s starting point the transformation of Levi-Civita and the orthogonality of 
the matrices (H). We deduce also these transformations from Cayley-Hamilton 
transformation. 
 
3.1 Levi-Civita Transformation  
     For n=2 Levi-Civita introduced the conformal transformation which is an      
application of 22 RR → . 
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3.2 Octonions Transformations  
    For the generalization of the transformations of Levi-civita we put 
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   Using the orthogonality of )( 2H  we find 
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Thus we find the transformation of 34 RR →  known by Kustaanheimo-steifel 
transformation.  
  To obtain )( 8H and )( 16H  we repeat the same process while replacing 

322 )'(,)( zandUH  by )( 4H , 5854 ),,()'( zanduuU t K=  we deduce )( 8H then 
 we adopt the same way for )( 16H . 
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3.3 Cayley- Hamilton transformation and the Hurwitz’s matrices 
     The Cayley transformation [121-124] for the orthogonal groups nO is: 

                                                         
n

n
n SI
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+
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nS  Is a skew symmetric matrix of order n.  
In order to obtain nO in terms of the variables {u}: we multiply by 1u the numerator 
 And the denominator of (3.3). 
We multiply also nO by nr .   ∑ =
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To simplify the notation we replace nn SbySu1  in the expression of )(uOn  we obtain 
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3.3.1 The transformation 22 RR →  
  For n=2 we have     
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3.3.2 The transformation 34 RR →  
     Using a computer symbolic program we find the Weyl’s expression  
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In the space of 4-dimensions we derive also the expression 
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With                       )( 2343 uuuV −=  and )( 00003 = . 
 
3.3.3 The transformation 78 RR →  
     We also find, using the symbolic program, an analogue expression as above-
mentioned: 
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 And in the 8-dimensions space we derive the expression 
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   With                          )( 23456787 uuuuuuuV −−−=   
      
And                              )( 00000000t

7 = . 
 

4. Pauli, Dirac matrices and Gegenbauer polynomials 
 

  There is a close link between the Octonions Quadratics transformations and spinor 
theory [54-55]. In this regard, we put iz in quadratic form in terms of ( )vandv t)(  
 
4.1 Pauli, Dirac matrices and the Octonions transformations 
 a- Pauli matrices and the Transformation .28 RR →  

                                                     iz = ))(()( vv i
t σ                                                         (4.1) 

With )()( 21vvv t =  and )( iσ  denotes the Pauli matrices (11). 
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b- Dirac matrices and the Transformation .58 RR →  
      Put )()( 4321 vvvvv t = , then by explicit calculation we find: 
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It is clear that γ-matrices are the famous Dirac representation. 
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  Finally we can change the Euclidean by a pseudo-Euclidean space (11) which doesn’t 
affect our treatment.  
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4.2 Gegenbauer polynomials and the quadratic transformations 
    We noticed a relationship between the generating function of Gegenbauer polynomials 
and the Octonions algebra and this part aims to present this relationship.  
 
a- The Gaussian integral and Levi-Civita transformation 
The quadratic transformation ࡾ૛ ՜   ૛isࡾ
                           2
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Put (x, y, z) = (x1, x2, x3) 
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The Gaussian integral in this case is                                                                   

                 
[ ]

22
3

213
rx21

1udyixxixrx
αα

μα
+−

=++∫ )()'''(exp                            (4.6) 

 
The second part is the generating function of Gegenbauer polynomials 
We also  
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b- The Gaussian integral and the quaternion 
It is well known that  
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With     11 2
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14 −==== ΓΓΓΓ ,  
Where ሺࡵ, Г૜, Г૛, Г૚ሻ are representations matrices of the quaternion.  We find by a direct 
calculation the Gaussian integral 
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The second part is the generating function of Gegenbauer polynomials 
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c- The Gaussian integral and the Octonions transformations 
The 58 RR →  is given by                                                                                                                                   
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We consider as previously: 
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t is the transpose and ),,,()( 4321
t zzzzz =  

 
We also write  05i11 ijji

2
i6 =+≤−== ΓΓΓΓΓΓ ,,,  

The Gaussian integral in this case is: 
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0i 2i21i2i iuuzwith  
We find again that the second member is the generating function of Gegenbauer 
Polynomials. 
 
4.3 New generalization of quadratic transformations generalized Dirac algebra  
     we can generalize Aଵ, Aଶ  and Aଷ  by writing:  
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We note that the generalization of the quadratic transformations (5.12) can be  
written as:  
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 nA  Are the Pauli matrices for n = 2 and the Dirac matrices for n = 3.  
    It is also important to note that we deduce a new quadratics transformations and new 
algebra different from the Cayley-Dixon algebra for n> 3.  
Using a symbolic program we find also: 
For n=4     
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For n=5 
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   We find also after integration the generating functions of Gegenbauer polynomials: 
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 we find also that:  
                                        ∑ Γ= iin xA   and ijijji

2
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iΓ are elements of Clifford algebra.  

We deduce from the above mentioned that there is a close relationship between the 
Clifford algebra and the generating functions of Gegenbauer polynomials  
     It is important to note that the integration with Grassmann variables of the formula 
(4.12) becomes m

n rx )21( 22
2 αα −− . This result can be considered as the extension of the 

generating function of Gegenbauer polynomials.  
Our variables { '

ix } are in the form: j
ij

iiji zzax ∑=' this is not the case of Cayley –Dixon 

algebra for n>3. Then our algebra is a new algebra which generalized Dirac algebra.  
 
4.4 The connection of Hydrogen atom and Harmonic oscillator 
 
    4.3.1 Introduction:   We want to prove the important formula  
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    nx ,Δ  is the Laplacian of SO(n), n=2, 3, 5 and 9.  
 
Solution  
  We derive the solution With the help of the relations  
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We have also ix  is a homogenous function in terms of iu  and the matrix nH  is 
orthogonal    
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4.3.2 The connection between hydrogen atom and the harmonic oscillator 
A quick calculation shows that the equation of the hydrogen atom  
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That may be written on the basis of harmonic oscillator in the form  
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5. The cross product in n-dimensions and 

Hurwitz theorem 
 

   We demonstrated using an elementary method that the tensor of inertia of a material 
point and the cross product of two vectors were only possible in a three or seven 
dimensional space [55-57]. The representation matrix of the cross product in the seven 
dimensional space and its properties were given.  

 
5.1 Inertia Tensor 
  The kinetic energy of a particle of mass m=1 which moves in a system in rotation with 
angular velocity )(ω
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We write the inertia matrix as:  
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5.2 Inertia tensor and the quaternion  
   The identification of two sides of the equation (5.2) may be written as:  
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We can express these systems in matrix form as IrHH 2
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We replace the matrix ( )3V by its expression in (5.1); we deduce the orthogonal and anti-
symmetric matrix:  
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With )( 4H  is the matrix representation of the quaternion  
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  )( 4H Is the Hurwitz matrix and 321 eandee ,  are the generators of the quaternion 
algebra.     
 
5.3 The cross product in n-dimensions 
      The generalization of the tensor of inertia in an intuitive way is: 
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And the matrix system IrHH 2
n

t
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The generators of the Octonions algebra satisfy:  
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2
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Hurwitz showed that we can only build orthogonal and anti-symmetric matrix which lines 
are a linear combination of components of a vector only if n=1, 2,4 or 8.  Consequently 
the matrix (M) is orthogonal if n+1=8, it results that dim( nR )=1,3 or 7. 
After simple calculus we find the matrix:   
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Properties of the matrix (V)  
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6. The generating matrices and the Cartan-Weyl basis 

 
    The adjoint representations of the orthogonal groups are anti-symmetric and the 
number of elements is n (n-1)/2. The matrix Hn is anti-symmetric and function of (n-1) 
parameters, {u}, and develops in terms of the adjoint representation of SO (n). To 
generate the Cartan-Weyl basis we need consequently n/2 matrices, this number is in 
agreement with the number of the simple roots of the orthogonal groups.  
   By analogy with the generating functions we call these matrices by the generating 
matrices of the Cartan-Weyl basis and we build it for the cases.  
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We start with the link of the Cartan-Weyl basis for the group SO(3),SO(4) and SO(5) 
with Hurwitz matrices. 
 
A-Generating matrices of SO(3) 
 
      3212 SuIuH2nFor
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+==  
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)))

+++==                                     (6.1) 
 
B-Generating matrices of SO(4)    
 For n= 4 we obtain by Cayley transformation two orthogonal matrices  
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C-Generating matrices of SO(5)      
    For n= 5 we must add only 2121 VVUU
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We must change S by T to obtain the other matrix 2

5H  
 
D-The generators of SO (5) 
 We put  
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The generators of SO (5) groups are: 
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Chapter four 

 
 

Momentum representation of hydrogen atom 
and Octonions quadratic transformations 

 
 

Part I-On the hydrogen wave function in Momentum-space 
 
 

1. Introduction 
 

    The problem of the hydrogen atom has played a central role in the development of 
Quantum mechanics. Schrödinger solved his equation and found the wave function in 
terms of coordinates. The problem in momentum space has been reformulated by 
Fock [32] and led to an integral form of the Schrödinger equation and the eigenfunctions 
are then expanded in terms of spherical harmonics. Despite the importance of Fock’s 
work and the interest of many authors [33-37] to study the wave function in momentum 
space it must not hide [1-7] that the direct calculation of Fourier transform of the wave 
function of coordinates is up till now undone and our aim in this work is to fill this gap. 
  The wave function of coordinates [6-7] has the form n2YrRr lmnlnlm /),()()( == ωθϕωψ r . 
Where )( rRnl ω  is the radial part, )(θϕlmY is the spherical harmonic and (Ω) the solid 
angle. The difficulty for the determination of the wave function in momentum space 
comes from ω and the appearance of the term “r” in the exponential of the radial part. 
  We propose to circumvent these problems by using the quadratic transformation and the 
generating function method where ߱ ൌ 2/݊଴ is a constant for all the elements of the 
basis. After calculation of the Fourier transform we found in the expansion of order n  
a function and we replace ߱ by 2/݊଴and then we obtain the analytic expression of the 
wave function of hydrogen atom in momentum representation. 

 
2. Generating function of hydrogen atom  

in momentum representation 
 

The wave function of hydrogen atom in momentum representation is 
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α is the associated Laguerre polynomial. Atomic unit are used through the text. 
 
2.1 The generating function of Laguerre polynomial )(rL 1l2
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2.2 The generating function of spherical harmonics 
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With Ԧܽ is a vector of length zero, Ԧܽ. Ԧܽ ൌ 0 and its components 
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2.3 Generating function for the basis of the hydrogen atom 

We multiply )(rnlm
r

ψ by )(][ αξϕ
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Substituting (2.4) and (2.5) in the above expression we obtain: 
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3. The connection of ࡾ૜ hydrogen atom and ࡾ૝ Harmonic oscillator 
 

     We will make a revision of the derivation of the quadratic transformations then we 
determine the volume element. A summary of the connection between the wave function 
of hydrogen atom and harmonic oscillator is given also. 
 
3.1 The quadratic transformation ࡾ૝ ՜   ૜ࡾ
    Consider the relationship between the well-known Wigner’s D matrix spherical 
harmonics polynomials  
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We write in terms of Euler’s angles or Cayley-Klein parameterization. 
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It is important to emphasize that the elements of the matrix D are solution of Laplacian 
∆ସ  . 
If we put l =1 in (3, 1) we obtain the quadratic transformation 
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3.2 The volume element 
We consider the transformation ),(),,,( ψθϕruuuu 4321 →  
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The calculation of the Jacobian gives 
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4. The wave functions of hydrogen atom in momentum space 
 

    We write first the Fourier transform in the representation (u) and with the help of 
Bargmann integral we determine the generating function in momentum representation. 
Finally the development of this function gives us the hydrogen atom wave functions in 
Momentum space. 
 
4.1 The generating function in {u} representation 
We denote the generating function by ),,( pzG r

αξ in the representation {u}. But to 
determine the generating function (2.6) we must multiply by 4 / π to reflect the change in 
the measure of integration. We write 

                                   rdre
2

1p nlm
rpi

23nlm
rrr rr

)(
)(

)( .
/ Ψ

π
Ψ ∫ −=                                             (4.1) 

 
To calculate this expression we must write (4.1) in the (u) representation using the 
formula (3.4):  
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In the expression of                 there is the term      for that we consider a new generating 
function:  
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We assume that β ≥ 0 therefore there is no problem of convergence. 
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4.2 The generating function of momentum-space 
     We can do the integration of (4.3) by a direct calculation with the variables (u) we can 
perform  the integration using the Gauss formula  
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Because Ԧܽଶ=0 we deduce that: 
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We find therefore the generating functions  
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In applying the relation (4.4) we find the generating function ),,( pzG r
αξ  
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4.3 The wave functions in momentum-space 
We drive the basis of momentum-space using the formula 
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In this case we must take δ=1/n and to execute the calculations we proceed by step: 
1 - Derivation with respect to α 
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We have  
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We deduce that 
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2- Derivation with respect to z 
   Using the familiar formula for the generating function of Gegenbauer polynomials 
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With m + l +1 = n, m+ l + 3 = n and δ =1/ n therefore 
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We obtain  ݕሬሬሬԦ. Ԧݕ ൌ 0. 
Thus we find the transformation introduced by Fock. 
 
3- Derivation with respect to ࢓࢒࣐ሺ ࣔ

ࣈࣔ
ሻ  

   By using the formula (2.5) we get the following expression 
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4- The wave functions in momentum space 
The comparisons of (4.16) and (4.12) give us the result: 
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And with the help of the recurrences formula [10]:  
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We derive finally the wave functions in momentum space:  
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It is clear that we obtain by an elementary method and direct calculus not only the wave 
function in momentum representation but also the phase factor. 



 

56 

Part II- On the N-dimensional hydrogen atom in 
momentum representation 

 
 

1. Introduction 
 

   In a previous part we presented a new and elementary method for the determination of 
the wave function in momentum space for two and three dimensions using the generating 
function and Octonions quadratic transformations for a direct integration of the Fourier 
transform. But Octonions transformations are valid only for N = 2, 3, 5 and 9. 
  In this work we present, the generalization for N≥3 by using the technique of generating 
function and the Hankel’s integral [60] of Bessel functions and therefore we determine 
the wave function in momentum space with the exact phase factor for any order N. 
 

2. The wave function of hydrogen atom in 
 representation space 

 
In this part we exhibit only the well known wave function solution of the Schrödinger 
equation for the hydrogen atoms in N-dimensions [62-63]. 
  
2.1 The wave function of hydrogen atom 
The Schrödinger equation of the hydrogen atom in N-dimensions space  is 
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Where μ  is the reduced mass. 
We write ),,,( 21 Nxxxr K

r
=  in spherical coordinates as ),,,,,( 221 ϕθθθ −= Nrr K

r  . 
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With  .,,,, πϕπθ 202N1j0 j ≤≤−=≤≤ K    
And atomic unit are used through the text. 
 The method of separation of variables is used for the resolution of the Schrödinger 
equation and we write only the solution: 
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2.2 The radial function 
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 2.3 The angular function 
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nC  Is the Gegenbauer polynomial of degree n and parameter α. 
 

3. The momentum representation of N-dimensional hydrogen atom  
 

    Using the development of the free wave in space of N-dimensions, the generating 
functions of Laguerre polynomials and Hankel’s integral we determine the generating 
function of momentum representation and hence the wave function in momentum space.  
 
3.1 The Generating function and the momentum representation   
 The wave function of hydrogen atom in momentum representation is:                        
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We note that rrpi δ+⋅
rr

 can be regarded as the scalar product of two vectors in Euclidean 
space 1 E +N . The first one is a vector of zero lengths ),,,,( 21 irxxx NK  and the second 

vector is defined by the angles ),,,( 11
k
N

kK −= θθθ K
r

 and the length 22
npK δ+=

r  
Using the development of the wave function of the free particle in N-dimensions [4]: 
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Multiply by )/()/(1 2/

,
Nln

ln zN +ω and do the summation we write first the generating 
function for the basis and the generating function with ω=constant which is very useful 
for the determination of wave function in momentum space.  
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3.2 Derivation of the generating function using Hankel’s integral 
  Using Hankel’s integral[60]: 
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We find the generating function as follows: 
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 This function is the generalization of the generating function (4.10) of the paper [36], by 
a minus sign due to the derivation of (4.9). 
 
 3.3 The Wave function in the momentum representation 
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 Using the development 
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We find that the expression (3.11) may be written as 
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Finally we derive the wave function in the momentum representation 
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This hyperphysical function may be written in term of the components of the vector 

defined by the angles ),,,2
2

(' 11
k
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 and the length 22' nPK δ+=

r
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This vector may be derived from K
r

 by rotation about the vector perpendicular to the 

space  NE  with angle of rotation θπ
+−

2
. 

We can also determine the representation {p} by this method if the potential has an 
additional term 2/ rA . 
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4. Appendix  
 

Problem: 
 The Four dimensions of Laplacian have two solutions: 
Our objective is to derive the passage formulas between these basis . 
1- If we consider the coordinates  
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3- We consider the quadratic transformation  
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Find the two expressions of the developments, ]''''exp[ izziyyixxqq +++  
in terms of spherical and D-matrix elements. 
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4- Use the two expressions to derive the formula:  
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Chapter V 
 

On the collective motion of the nucleus 
 “Microscopic theory”  
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Chapter V 

 
 

On the collective motion of the nucleus 
 “Microscopic theory”  

  
 

Introduction 
 

     The Hartree-Fock variation method provides an approximate determination of ground 
states and ground state energies of quantum mechanical systems, and widely used in 
physics and chemistry. In Hartree-Fock method [66-73] we approximate the ground state 
of the system by a Slater determinant HFΦ  constructed from the states of nucleons 
which are eigenstates of a single particle Hamiltonian called Hartree-Fock Hamiltonian. 
This approximation reduces the problem of many interacting particles to one of non-
interacting particles in a field. This wave function is not function of angular momentum, 
and the calculation of rotational energy [68] can be done by using the integral 
representation of Hill-Wheeler operator. But the calculation of the rotations spectrum is 
Very long [70-72]. 
    We have generalized the Cramer’s rule and so the calculations can be carried out 
simply by the Gauss-Jacobi method [72]. 
Using this generalization of Cramer's rule we determine the Thouless function [78] and 
we take this function as the generating function of the Hartree-Fock basis.   
     It is obvious that this approximation neglects much of the interaction forces between 
particles. These forces are the residual interaction. To study collective motions it is 
important to consider these interactions. And the introduction of random phase 
approximation theory and more generally the quasibosons developments aim the study of 
these interactions. It is therefore important to express the Hamiltonian in terms of quasi-
bosons and apply the Bogoliubov transformation to determine the frequencies of 
collective vibrations. But the methods developed by Belyaev and Zelevinsky [39] and 
that of Marumori et al. [40] converge slowly and don’t respect Pauli principal. 
   For the sake of clarity we did a quick revision of the generating function method and 
we apply our method to the well known model in nuclear physics the Lipkin model [81] 
or  in the SU (2) case we got the same result of  Holstein-Primakoff mapping.  
  We know that the Thouless function is developed on the product of the Hartree-Fock 
basis and its image in the Fock space which is an orthogonal basis without normalization. 
So that this function to be useful we need to normalize the basis to get the correct 
generating function )(zG .So using the generating function method we find the 
expression of the Hamiltonian in terms of quasi-bosons operators. This Hamiltonian was 
used by many others for studying the collective vibrations of the nucleus. We made 
reference only to some papers despite the importance of the other works [82-89]. 
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    We have already used also the generating function method for calculating the 
Moshinsky-Smirnov coefficients which are very useful for numerical calculations of the 
matrix elements of nuclear potential [79]. 
  

Part I-Generalization of Cramer's rule and its application to 
the projection of Hartree-Fock wave function 

 
 

1. Introduction 
 
    The great recent interest [72-77] to study the projection theory and their application in 
nuclear physics leads me to resume my former works on the projection of angular 
momentum [72].  
    Löwdin [69] proposed a formula for the calculation of the spectrum of energy levels, 
but this method requires a long calculation and does not take account the conditions of 
stability resulting from the minimization of the energy of the system using the Hartree-
Fock theory.  
    We observe that the calculation of the rotational energy implies the calculation of a 
determinant, the overlap of rotation, and a set of determinants which differs from each 
other by the change of two columns [72]. This leads us to the generalization of Cramer’s 
rule of linear algebra this allowing us to calculate all these determinants by Gauss 
elimination method.  
   This method takes into account the conditions of stability and minimizes the time of 
executions. Using this generalization we derive also the Löwdin formula [69] and the 
well known Thouless theorem [78].     

 
2. Generalization of Cramer's rule 

 
Let E be a vector space of dimension (n) with basis neee r

K
rr ,,, 21 . naaa r

K
rr ,,, 21  Is a set of 

linearly independent vectors, belonging to E. nsbbb s ≤,,,, 21

rrr
 is another set of linearly 

independent vectors, belonging to E. We denote by (A) the matrix formed by the 
components of the vectors )( iar and ( )AaaaA n == ),,,det()det( 21

r
K

rr  is the determinant 
of the matrix (A). 
Theorem: Consider the following systems  
 

                                        nsskbjkxa
n

j
kj ≤==∑

=

,,,2,1,),(
1

K
rr                                     (2.1)  

 
  We find the determinant formed from det (A) by substituting the components of some 
vector )( jar  by the components of the vectors nsibi ≤≤≤ )1(,

r
 by the formula: 
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⎟
⎟
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⎞

⎜
⎜
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⎝
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11 1

s

s
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isxisx

ixix
Aababaa s

K

MMM

K

K
rr

K
rr

K                        (2.2) 

Prove: We will proceed by induction, s = 1 then 2, etc.  

It is well known from the multilinear algebra that the space E
n
∧  has only one basic vector

neee r
K

rr
∧∧∧ 21  and eeeAaaa n

r
K

rrr
K

rr
∧∧∧=∧∧∧ 2121 )det( . 

1-For s = 1 this is the case of Cramer's rule. We shall do a brief revision.  
     
 Multiply the two terms of the expression (2.1), the right by ni aa r

K
r

∧∧∧ +1  and the left by
∧∧∧ −11 iaa r

K
r  we obtain: 

      niki

n

j
niji aabaaaaaaajkx r

K
rrr

K
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K
rrr

K
r

∧∧∧∧∧∧=∧∧∧∧∧∧ +−
=

+−∑ 111
1

111),(  

  The summation in the first member is zero unless j = i, it follows that: 
                                nikin aabaaaaikx r

K
rrr

K
rr

K
r

∧∧∧∧∧∧=∧∧ +− 1111),(                  (2.3)  
     then we deduce that  
                                         ),,,,,,det(),()det( 111 niki aabaaikxA r

K
rrr

K
r

+−=                        (2.4) 
 
2-For s = 2, we multiply the two terms of (2.1), the right by 
                                 nrli abaa r

K
rr

K
r

∧∧∧∧∧∧ −+ 11  
And the left by         nrli abaa r

K
rr

K
r

∧∧∧∧∧∧ −+ 11 ,                                                    (2.5) 
 We obtain: 

                        ∑
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                     nrliki abaabaa r
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r
∧∧∧∧∧∧∧∧∧ −+− 1111                                     (2.6) 

The first member is zero unless ij = or lj = , it follows that     
                             ++− ),,,,,,,,det(),( 111 nlrli aabaaaikx r

K
rrr

K
r

K
r  

                             ),,,,,,,,,det(),( 1111 nlrlil aabaaaalkx r
K

rrr
K

rr
K

r
+−+ = 

                             ),,,,,,,,,det( 11111 nlrliki aabaabaa r
K

rrr
K

rrr
K

r
+−+−                                     (2.7)  

 in the second term of the first member, we can interchange the order of vectors and we 
change the sign, by replacing the expressions of the first member using their value of 
(2.4) we get the expression. 

                 [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

),(),(
),(),(

)det(),(),(),(),(
lrxirx
lkxikx

Airxlkx-lrxikxdet(A)                         (2.8) 

                 ),,,,,,,,,,det( 11111 nlrliki aabaabaa r
K

rrr
K

rrr
K

r
+−+−=  

 
3-We assume that (2.2) is true for s-1, we prove that is true for the case s.  
    Multiply the two terms of system (2.1), the left by 
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                                  11111 −−− ∧∧∧∧∧∧ sli babaa
rr

K
rr

K
r                           

and the right by nl aa r
K

r
∧∧∧ +1 , we obtain a similar expression of (2.7) and the 

summation is zero unless  ,i,,iij s21 K= .  
 
Using the result of the case s-1 and we note the minors by min, we find: 

=++− )),(min(),()),(min(),()),(min(),()[det( ss2211 isxisxisxisxisxisxA K  
 

          ),,,,,,,,det(
),(),(

),(),(
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=                  (2.9) 

 
3. The projection of the Hartree-Fock wave function 

 
   We present at first the basis of Hartree-Fock and then the calculation of the spectrum of 
rotations. For the calculation of the spectrum, we applied the projection of the Hartree-
Fock wave function, and the application of Cramer's rule’s generalization.  
 
3.1 The Hartree-Fock basis  
   the variation method leads to a Hamiltonian called Hartree-Fock Hamiltonian whose 
eigenfunctions are the states of particles{ }ic .  
We denote the occupied states by naaa ,,, 21 K  and  KK ,,,, 21 ibbb  the unoccupied 
states. 
In the second quantization formalism we write the wave functions of the system with the 
creation and destruction operators ≤∝≤≤≤++ lk1nji1bbaa lkji ,,,},,{},,{ and we choose 
the wave function of Hartree-Fock as starting point. 
                                         021

+++=Φ nHF aaa K                                                           (3.1) 

We note the states{ }HFij
j
i ab Φ=Φ +  by particle-hole states hp 11 −  and the states 

{ }HFjiml
lm
ij aabb Φ=Φ ++ by the 2particles-2holes states hp 22 − , etc. All these states 

form a basis which we call the Hartree-Fock basis.  
 
3.2 The energy levels using the projection of the Hartree-Fock wave function 
The spectrum of energy levels is given in the Peierls-Yoccoz theory [4] by 

                                    
∫
∫

ΩΦΩΦΩ

ΩΦΩΦΩ
=

dRD

dHRD
E

HFHF
j

mm

HFHF
j

mm
j )()(

)()(
*

),(

*
),(                                    (3.2) 

 
With H = T + V is the Hamiltonian, T is the kinetic energy and V is the potential energy. 

)(ψβϕ=Ω Is the solid angle and )()( ),(
)(

),( βϕψ j
mm

imj
mm deD +−=Ω  is an element of rotations 

matrix.  
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In order to assure that the average value of H is minimal [1-2], the variation method 
imposes the condition:                                      
                      jiaHbhpH HFijHFHF ,,011 ∀=ΦΦ=−Φ +                                   (3.3) 
  If we introduce the unitary operator of Hartree-Fock basis between H and R of the 
expression HFHF HR ΦΩΦ )( and taking into account the condition (3.3), we find in the 
case of axial symmetry: 
 

           
∫

∫∑ −

−++
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ββΦΦβ

ββΦΦβ
β

β
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4
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j
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Jyi

kljiHF
j

mm

ij
HFj sin)(

sin)(~
*

),(

*
),(             (3.4) 

 
With    lkVijklVijklVij −=~

 
And klVij are the elements of the potential matrix. 
We prove by simple calculation that [2]: 
             ),,,det( n21HF

Jyi
HF aaae r

K
rr

=− ΦΦ β  With  jyiij aJieaa β−=  
And 
         ),,,,,,,,,,det( n1jl1j1ik1i1HF

Jyi
kljiHF aabaabaaebbaa r

K
rrr

K
rrr

K
r

+−+−
−++ =ΦΦ β

          (3.5) 
With 
                                     lkrnm1aebb m

Ji
rmr

y ,,,)( =≤≤= − β .                                  (3.6) 
 
According to the preceding theorem, we deduce the final expression of energy. 
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(3.7) 

 
We performed the calculations of ),( ikx  using the Gauss elimination method and the 
integration by Gauss method or Gauss-Legendre integration.  
 

4. Derivation of Löwdin formula and Thouless theorem 
 
4.1 Generalization of Cramer's rule and Löwdin formula 
  We can extend the definition of variables ),( ikx by 
                         HFHFHFikHF RcRcikx ΦΦΦΦ= + /),(                                           (4.1) 
With                            niifikx >= ,0),(   

We find that ∑
=

−=
n

j
jijk AaRcikx

1

1),( and 1−
kjA  are the minor of the matrix (A).  

We deduce that the one body potential may be written in the formalism of second 
quantization: 
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                HFHFjij
k

kkiHFHF RAaRccTaTR ΦΦ=ΦΦ −∑∑ 1                        (4.2) 

 

But k
k

k cc∑
∝

=1

is the unitary operator in the space of one particle state.  

Finally                    HFHFjij
ij

iHFHF RAaTRaTR ΦΦ=ΦΦ −∑ 1                          (4.3) 

 
Following the same method we find for the two body potential 
 

           HFHF
ijkl ljli

kjki
lkjiHFHF R

AA
AA

aaRVaaVR ΦΦ
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⎜
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⎛
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11~                   (4.4) 

 
The inconvenient of Löwdin formula is the calculation of the elements }{ lkji aaVRaa  
that require long calculation. 
 
4.2. Generalization of Cramer's rule and Thouless theorem 
  Let Ψ and Φ  be two wave functions such that Φ=Ψ U , U is an invertible linear 
transformation and I is the unit operator of Hartree-Fock basis.  
 
We have                                   +−+ ∑= ji

j
ji ccUcUUc 1                                             (4.5) 

And              
                      +ΦΦΦ+ΦΦΦ=Φ=Φ=Ψ ∑ ++

ik
ikki abUbaUIUU         (4.6) 

                                                       K+ΦΦΦ∑ ++++

ijkl
ljjllkji aabbUbbaa  

Applying the theorem we get: 
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                      ΦΦΦ ⎥
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⎤
⎢
⎣

⎡
+++= ∑ ∑ ++

ik ik

2
ikik abikx

2
1abikx1U K)),((
!

)),((                (4.7) 

This expression is written in the form  

                           Φ⎥
⎦

⎤
⎢
⎣

⎡
ΦΦ=Φ=Ψ ∑ +

ik
ik abikxUU

,
),(exp                                  (4.8)  

 
In the particular case where ΦΦ U  = 1 we obtain the Thouless function [78]. 
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Part II- Collective vibration of the nucleus, G.F. Method and 
quasi-bosons approximation 

 
 

1. Introduction 
 
  We shall be concerned with the approximations and the excited states. But in the 
Hartree-Fock theory the residual interaction is neglected. And if one is interested in 
collective states then the residual cannot be neglected. 
If first we limit the approximation to the Hartree-Fock function and 1p-1h states and then 
we solve the Schrödinger equation. This approximation or the Random phase 
approximation (RPA) cannot give good results for phenomena involving two or more 
particle correlations [38]. 
The development of techniques for operators of fermions in terms of operators of creation 
and annihilation of quasibosons proved particularly effective to study the collective 
Hamiltonian and transition operator of even-even nuclei. 
   Two development methods were used: that Belyaev and Zelevinsky [38] and that of 
Marumori and al. [40]. Unfortunately these developments converge slowly when they are 
trunked. 
    We intend to show how the generating function method [80] allows the construction of 
developments in terms of quasibosons that respect the Pauli principle and are also more 
rapidly convergent. 
 

2- The RPA equation of motion 
 

    The RPA derives from the well known equations of motion method solving the 
harmonic oscillator problem. 
 
2.1 The equation of motion harmonic oscillator 
The equation of motion harmonic oscillator in Quadratic form is: 
  
                                       22 aaaaH γβα ++= ++

                                                           (2.1) 
 
Put: yaxaO −= +     OOH ω−=],[   and ++ = OOH ω],[   , 
 
We obtain:   
               ],[]],[,[],,[]],[,[ ++++++ == OaOHaAndOaOHa ωω                                    (2.2) 
 
2.2 The RPA equation of motion  
    In the Hartree-Fock theory the Hamiltonian is   
 
                                                                  res0 HHH +=                                                                      (2.3) 
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∑ +++ −=
mi mimiimmi aaZaaYOputweIf  

 
],[]],[,[],,[]],[,[ ++++++++ == OaaOHaaAndOaaOHaa mimiimim ωω                            (2.4) 

 
We obtain the usual equations of the RPA:  

                         
minj njmnijnjmjinmiim

minj njijmnmiinmjmiim
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∑
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(2.5) 

 
We write these equations in the form:  
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(2.6) 

 
3. The generating function method (revision) 

 
  3.1 The Generating coordinates Method  
    The theory of rotational energy is done by Peierls-Yoccoz [68] using the well known 
Hill-Wheeler generating coordinate’s method:  
 
                                        ∫= dzzxzfx ),()()( ΦΨ

                                                 (3.1)
 

And ),( zxΦ  is the trial function 
To study the vibration I was proposing to change the trail function by the generating 
function and to use the Fock-Bargmann space for integration.  
 
3.2 New Interpretation of the generating function 
    The generating function of the harmonic oscillator is:  

                                               )(
!

),( qu
n

zqzG n

n

0n

n

∑
=

=                                                   
(3.2)

 

We denote the Fock-Bargmann Space { })(qun by {B}, and the Space of waves functions 

by {F}.The generating function is given by:  { }!/ nz n  
 We have     { }}{}{),( FBtraceqzG ⊗=  
 
And                              ∫= dqqzAGqzGzfzfA ),(),'()'()(ˆ

                                           (3.3)
 

A is an operator belong to {F} and ܣመሺݖሻbelong to ሼܤሽ 
 
3.3 Generalization of the generating function: 
    We denote by B the space of orthogonal polynomials BzPm ∈)(  
We consider the transformation:  
                                                 FmBzPm ∈→←∈ LLL)(                                    (3.4)
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And we define the generating function by:  
                                              ∑=

m
m mzPzG )()(  

The image of the operator A is )(ˆ zA  
It is very simple to prove that: 
                                                    '

ˆ' mm pApmAm =  

And                    
} }

)ˆˆ)(,ˆ BAABAA ==
∧∧

++  
 
So our method satisfies the conditions of B-Z and Marumori et al. 
Using the formula  
                                 ∫= dqzGAzGzfzfA )'()()'()(ˆ

                                                 (3.5)
 

 
We write:                               AzGzGA )()(ˆ =                                                          

(3.6)
                          

 
This expression is very useful for computing. 

 
3.4 applications to harmonic oscillator 
     a- In one dimension harmonic oscillator we have: 
                                                        )/( 21aaH += +ωh                                                (3.7) 
Using                          ,),(),(ˆ AqzGqzGA =  
 

We find  )/(ˆ,ˆ,/ˆ 21
dz
dzHzadzda +=== + ωh  

 
     b- In the three dimensions harmonic oscillator: 
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(3.8) 

 
3.5 Application to Lipkin model 
      The method that has just been developed will now be applied to the model of Lipkin 
[8] to compare our results and some of those previously obtained. 
The Hamiltonian of the system studied is written: 
 

                                      )( 22
0 JJ

2
1eJH −+ ++=

                                                             
(3.9) 
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With  ±±−+ == J2JJJ2JJ 00 ],[,],[  
The basis n of representation is defined by: 
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And       J2Nn0nJ 1N =∀=+

+ ,                                                      
The generating function is: 
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 Will determine the images of the operators 2

0 JJJ ++,,  
1-Image of              00 JZZJ )()( ΦΦ =

)

                                                                  (3.12) 
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must be developed in the form: 
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The vectors { n } are linearly independents, we deduce that 

                                     21
1n

0j
j 1nJ2

1jn
1n /][

)!(
)!(

+−=
−−

−∑
−

=

α          

Calculating the coefficients jα   is done by induction 
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We find after calculation that: 
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Our method makes it possible to quickly condense the form of the development. 
 

4. The renormalized Thouless function as generating 
function for the many body problem 

 
4.1 The Thouless function is: 
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-We denote the holes by ,...),( βα  and the particles ,..),,( kji  
 
4.2 Renormalization of the Thouless function 
    The generating function may be obtained by the renormalization of Thouless function.   
We consider: 
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As a basis of Fock-Bargmann space but we must normalize this basis then  
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We write the generating function as: 
 

                             Φ)
!!

()()( ∑
+

==
n

n

m nn
AmzPzG

                                                  
(4.4) 
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And for the applications we use: XZGZGX )(()( =
)

 

 
5. The quasiboson development of the Hamilton 

 
5.1. The Hamiltonian of the nucleus is:  
 
     0H 20 =   i f 0Φ is the Hartree-Fock wave Function.  
 
We write 
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5.2-The image of the operators:  particles-holes 
     Using the formula AzGzGA )()(ˆ =   we find the image of particles-holes in terms  
Of  ൛ݖ௜௝ൟ: 
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The latest development is rapidly converging with ,, 211 10 −== αα                                                            
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And                          0076o0480 32 .,. −≈−≈ αα .  
 
The general term }{ iα being defined by the recurrence relation: 
 
                 1nnn12n1nn1nnn 01n

n
210 ==−++−−+−− − ααααα ,!)(...))(()(  

 
Taking into account the correspondence between the Bargmann-Fock space {F} and the 
bosons space  ሼܤሽ  we write: 
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 We find simply the transformation of the operators with the operators of bosons. 
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5.3-The image of the operators:  two particles-two holes 
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 The third term coefficient is: 
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This coefficient is negligible. 
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5.4 The expression of the Hamiltonian in terms of bosons operators 
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Note that the developments of Belyaev-Zelevinsky and Marumori et al. different from 
ours by the presence of surplus operators whose action on all elements of the subspace 
{B} of bosons is null. Such an operator is for example the following:  

                                                    0Zf
ZZZZ ijij

=
∂

∂
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∂
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∂
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∂
∂

βααβ

)()(  

 
Or                                                 0BBBB ijij =+ βααβ  

 
Therefore in the generating function method  the development of the operators converges 
quickly, conserve the commutations relations and the matrix elements ,verify the Pauli 
principle and the calculus of the image of the Hamiltonian of fermions in terms quasi-
bosons is elementary and simple. The development will be very rapidly convergent and 
therefore very useful [80]. Then the method described here will therefore ultimately to 
obtain rigorous development in terms of quasibosons, observables of a system of 
fermions, valid up to an order as high as desired.  
    After 90, the calculations conducting by many authors and the comparison with 
experimental results showed the importance of this formula in many body problems [89]                            
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Chapter VI 

 
 
 

On the Euler angles for the classical groups and 
The Wigner’s Symbols for SU (3) multiplicity free 

 
 

1. Introduction 
 

   The applications of the SU (n) group theory have occurred in numerous research areas: 
nuclear physics, high energy particle theory and experimental nano-scale physics. 
Several problems remain under investigation:  
  a-The parameterization of these groups [41-43], 
  b-The explicit determination of Wigner’s D-functions is not found [4-6].  
  c-The Wigner’s 3j coefficients are very important for applications and are not 
completely solved despite the extensive efforts made by many authors [44-46].  
   In this work we start from the order of the classical groups to determine new 
recurrences formulas of parameterization and from which we derive the generalization of 
Euler’s angles for these groups. 
  We prove the connection of the measure of SU(n) with the measure of product of 
cylindrical basis of harmonic oscillator or the two dimensions Fock-Bargmann spaces.  
   The basis of the representation of SU (3) was constructed by many authors [93-96] and 
we've built the generating function of this basis using Schwinger’s coupling method of 
angular momentum in Fock- Bargmann space [91-92]. 
    The invariants for 3j symbols of multiplicity-free are functions of the powers of the 
elementary invariants of SU (3) and the normalization is feasible in this case. The 
expression of the isoscalar factor in a compact form is found for the first time.  
    

2. The classical groups 
 

  We give a quick revision of the properties of classical groups, then we derive from two 
kinds of recurrences relations the parameterization of the classical groups and then the 
measures of integration on SO (n), SU (n) and the connection of the measure of unitary 
groups with the measures of integration in Fock-Bargmann spaces. 
 
2.1 The special orthogonal group SO(n) 
     The special orthogonal group SO(n) is the group of n×n orthogonal matrices )( 0

nA  
with unit determinant. They form real compact lie groups of dimension n (n-1)/2. 
The real special orthogonal matrices leave invariant the real quadratic form: 
 
                                                           ∑ =

n

1i
2
ix

                                                               (2.1)
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2. 2 special unitary group SU(n)   
 
   The special unitary group of degree n, denoted SU(n), is the group of n×n unitary 
matrices )( 1

nA with unit determinant.  The special unitary group SU(n) is a real matrix of 
dimension f(n)= n2 − 1. 
  The unitary group leaves invariant the hermitian form: 

                                                              ∑
=

n

1i
ii zz

                                                              (2.2)
 

 
2.3 The symplectic group Sp(n) 
      This is the Lie algebra of Sp(n), the group of n x n quaternionic matrices )( 2

nA  that 
preserve the standard hermitian form on Qn: 
                                   nn2211 yxyxyxyx +++= ...,                                                     (2.3)

 

  That is, SP(n) is just the quaternionic unitary group, Sp(n) is a real Lie group of 
Dimension f(n)=n(2n+1).  
 
2.4 The infinitesimal group generators  
The elements A of group G are composed of nonsingular matrices of degree n and can be 
expressed in terms of r continuous parameters 
                                             ).,...,( r1AA αα=  
 Such that the infinitesimal group generators are:  
 
                                          ( ) 0kk AX =∂∂= αα/                                                                (2.4)

 

 
We have the important group theory formula:  
                                   n

t ExxofxOf ∈= )),(()(                                                            (2.5)
 

We have also the important group theory formula: 
  
                                 n

t CzzufzUf ∈= )),(()(                                                               (2.6) 
The generators of unitary group may be written in terms of creations and destruction of n-
dimensional harmonic oscillators as:  
 
                              ),,,(, n1jiaaE n

1ij jiij K== ∑ +                                                         
(2.7)

 

 
 Using theses formulas we derive the generators of SU(3) in part five.  
 

3. On the Euler angles for the classical groups 
 

    We establish recurrences formulas of the order of the classical groups that allow us to 
find a generalization of Euler’s angles for classical groups and the invariant measures of 
these groups. 
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  3.1 Generalization of the Euler parameterization of SO(3)     
    In Quantum mechanic we write the matrix elements of rotation by   
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                                           (3.1) 
    We observe that for every rotation in the space }{ lm there is a rotation in the dual 
space }'{ lm . In this interpretation, we can write the finite transformation of classical 
groups in the form:  
                                         m

1n
m
n

m
1n

m
n ABAA −−=                                                                    (3.2)

 

 
With m = 0, 1 and 2 for orthogonal, unitary and symplectic groups. 
In the following we derive two kinds of recurrences formulas 
 
 3.1.1 First recurrences relations for the number of parameters 
     It’s simple to verify the recurrences relations   
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We obtain the relation    
                                .,,,)()( 210m1n21nNnN m =−+−=                                             (3.4) 
So the order of the matrix n has parameters more than the matrix of order n-1. 
Since the point ሺ0, … ,0,1ሻ is invariant by the group of order n-1 this means that the last 
column and the last row are the components of the unit vectors of points on the unit 
sphere ܵ௠,௡ିଵ  of the Euclidian space ܧ௡ሺܭሻ, ܭ ൌ ܴ, ,ܥ ܪ ൌ ܳ. 
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 3.1.2 Second recurrences relations for the number of parameters  
        It’s also simple to verify the recurrences relations 
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We can write these expressions in the form 
                   .2,1,0m,m2)2N(n)1N(n2N(n) =+−−−=  
In the expression                m
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It is quite evident that the parameters of left and right are different. 
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We choose                                           0AB m
2n

m
n =− ],[                                                     (3.5) 

 
Then number of parameters ܣ௡

௠ of becomes 2ሺܰ െ 1, ݉ሻ െ ܰሺ݊ െ 2, ݉ሻ ൅ 2௠ and the 
number of ܤ௡

௠  parameters of is 2௠ . Therefore we find the same result of the recurrence 
relation. 
Therefore we write          m
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To find m
nA we must choose the parameters such that the last line, or the last column, are 

the components of the vector 1rr),x,...,x,(xr n21 =•=
rrr and 0AB m

2n
m
n =− ],[ . In this case 

the range of parameters is imposed by the range of the variation of the angles of the 
vector ݎԦ .      It is important to note that every parameterization components of the vector 

)x,...,x,(xr n21=
r corresponds to a parameterization of classical groups and therefore the 
parameterization is not unique. 
 
3.2- Parameterization of SO(n) 
     In this case m
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m
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m
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nB  is function of one variable and  
The expression 0AB 1
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If we choose in En the spherical coordinates 1n21 −θθθ ,..., we write 
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By use of the polar coordinates ),...,,,( 1n21r −θθθ  defined by ii rx ξ= . 
We find the Vilenkin’s parameterization [121] for SO(n) and therefore we shall use the 
same notations. Any rotation g of the group SO (n) can be set as follows 
                                                 )1()1( ...ggg n−=  
Where                                  )()...()( k

kk
k
11

k ggg θθ=                                                       (3.7) 

And   0
n
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)()(   is the transformation 
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3.3 Parameterization of SU(n) 
        In the case of m = 1 the matrix 1

nB  is function of two variables and 1B1
n =)det( . 

The expression 0AB 1
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n =− ],[  means that 1
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2nA −  and the solution is not 

unique for n>2. If we parameterize like above the last column by the spherical 
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We can also consider other useful options (22), for example   
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 3.4 Parameterization of SO(6) 
     It’s known that the Lie algebra of SO(6) and the Lie algebra SU(4) are isomorphic. 
Therefore, there are a non-singular mapping between the generators of SO(6) and SU(4). 
Since such mapping preserves the Lie bracket structure, we can deduce a 
parameterization of SO(3), SO(4), SO(5) and SO(6) using the expressions of the 
generators (2.5) and the harmonic oscillator basis . 

 
4. The invariant measure on the group SU (n) 

 
      the invariant measure is the result of the product of invariants measure on the sphere 

1n2S − With n = 1... n. We determine first the invariant measure of the group SO(n) and 
then for the group SU (n). 
 
4.1 The invariant measure of the group SO (n) and Euclidean measure 
    The metric on the sphere nS  is:  
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(4.1) 

By use of the polar coordinates 
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We choose the constant A so that the measure on the sphere is equal to one.  
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And in the Cartesian n-dimensional harmonic oscillator we have  
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The invariant measure on the group SO(n) is: 
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The invariant measure of SO (n) is the angular part of product measure of Cartesian 
harmonic oscillator.    
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The number of parameters of SO(n) is ௡ሺ௡ିଵሻ
ଶ

ൌ 2଴ሺ∏ ݅௡
௜ୀଵ ሻ െ ݊ with n is the number 

of parameters ݎ௜. 
 
4.2 The invariant measure of the group SU(n) and Fock-Bargmann spaces 
        By use of the polar coordinates i

i
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We deduce the connection between the 2n-dimensional cylindrical bases of harmonic 
oscillator, the measure of integration of Bargmann spaces of dimension 2n and the 
measure on the sphere 12 −nS .  



 

84 

We obtain 
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And therefore we note for the following of this work 
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We determine A by observing that 
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   The same arguments for the derivation of the measure of integration of SO (n) 
remain valid in the case of SU (n). It follows that the measure of integration of 
the group SU (n) must be taken as the angular part of the measure of product of basis 
of the cylindrical harmonic oscillators. 
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The number of parameters SU (n) is  ݊ଶ െ 1 ൌ 2ଵሺ∑ ݅௡

௜ୀଶ ሻ െ ሺ݊ െ 1ሻ with (n-1) is the 
number of parameters { ݎ௜ } and the sum is the dimension of the space. We obtain then 
the relationship between the measure of Fock- Bargmann space and the measure on the 
This property is very useful for the calculation of the isoscalar factors of unitary groups, 
using the Fock spaces , after the introduction of the additional parameters { ri }. 
 

5- Generating function of the basis SU(2)⊂SU(3) 
 

5.1 The basis of the group SU (2) ⊂ SU (3)  
    Let ],[ μλD  the space of homogeneous polynomials and ),( 21
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orthogonal basis with:  
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The space is homogeneous then 
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The vectors ),( 21

),0,( zzV ytt
λμ are eigenfunctions of the Casimir operator of the second order

2T
r

, the projection ofT
r

on the z axis and the hypercharge Y. The eigenvalue of these 
operators are respectively t (t + 1), 0t and the triple of the hypercharge quantum number 
y. The numbers  0, tt  are the isospin and the component of isospin on the z axis. 
We have: 
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the condition of Young tableau on λμ
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The Casimir operator of second order is: 
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5.2 Generating function of the basis SU(2)ؿSU(3) 
     The vectors ),( 21

)( zzV λμ
α belong to the space 

321 ttt DDD ⊗⊗ which has the basic 

Elements ),(),(),( 21mj21mj21mj 332211
σσϕηηϕξξϕ  and has the generating:

 
 

                            )]()()exp[( σηξ 31211 xxx ++ . 

The generating functions of the eigenfunctions of 2T
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and 0T can be deduced by applying 
 the Schwinger’s coupling method. 
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Nous avons comme puissance de 1Z ' et 2'Z  : 
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We note in the following the minors by ),( 21δ
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5.3 The expression of the generating function of SU(3) 
     So that the relation (5.5) is satisfied we put 0Z 2 =' in the result of the second coupling 
then we get the generating function of the basis vectors ).,(),,(
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we write the generating function in a compact form 
  
                             =+= ]..exp[)),,,(( )()( 121 zgzfzuyxG rrr  

                                            ),(),( )()()(
),,(

)(
),,(

121
yttytt

ytt

zzVgf
00

0

λμλμ

λμ

ϕ rr
∑                                     (5.6) 



 

87 
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We have also:     
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6. Generating function of the 3j symbols for 

Multiplicity-free of SU (3) 
 
6.1 The invariant of the 3j symbols for multiplicity-free 021 == μμ . 
      The invariant of 3j symbols of SU (3) is given by:  
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The conjugate vector cV )( )(
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α  is deduced from λμ

α )(V by R- Conjugation [6, 7]: 
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the invariant are functions of the elementary invariants:  
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We can determine the constant of normalization by our method [108-109] but it is 
simpler in this case to do the direct calculation [50], we write:  
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So we have the decomposition:  
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the normalization is:  
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6.2 The generating function of the 3j symbols for multiplicity-free 021 == μμ . 
     We find the 3j symbols from the expression (9.1) as: 
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Multiplying this expression by (∏ ki

ii t ) and using (6.7) we write: 
 
               { +++= ∫ ]..exp[].exp[].exp[)),,(( )()()()( 565

5
3

3
1

1 zgzfzfzftgfG
rrrrrrrr

  
 
             } =⋅+⋅+×⋅ ),,,(])([ )()()()()()()()()( 6531563

3
561

2
531

1 zzzzdzztzztzzzt μrrrrrrr   
  

     ))(,()()())((
)()()(

)(
)(

)(
)(

)(
)(∑ ∏−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i

33

3

2

2

1

1

ki
ii53

0
1

01
i

321

3321 tgfffkN
00

α

μλ
α

λ
α

λ
α ϕϕϕ

ααα
μλλλ

             (6.8)  

In carrying out the integration over )()()( ,, 631 zzz rrr  we find that the quantity in brackets is 
written as:  
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Using the formula the Gaussian integral we find the generating function:  
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6.3 Expression of 3j symbols of SU (3).  
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 developing (6.12) first and after that we use (6.13), (6.14) and  the generating function of 
the 3j symbols of SU(2) we find the expression of 3j symbols of SU (3):  
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We write the quantity between brackets: 
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Thus the isoscalar factor expression is found for the first time in this compact form 
And which shows the great interest of the generating function method. 
 
 
 
 
 
 
 

 
 
 
 



 

90 

Chapter VII 
 
 

The Gel’fand basis of SU(n) and the Wigner’s 
Coefficients with multiplicity for the canonical basis 

 
 
1. Introduction 
   2. Gel’fand basis and the fundamental representations 
      2.1 The Weyl generators and the Weyl branching law of U(n) 
      2.2 Gel’fand Basis for SU(n) 
      2.3 The Weyl dimension formula 
     2.4 The maximal and the semi maximal states 
     2.5 The fundamental representations  
     2.6 Explicit expression of Gel’fand basis vectors 
3. Matrix elements, Bosons polynomials and kernel function of SU(n) 
    3.1 The D-Wigner matrix elements of SU(n) 
    3.2 The bosons polynomials basis of U(n)  
    3.3 The kernel and the branching kernel function of SU(n)  
     3.4 The SU(2) and SU(3) basis in terms of bosons expansion 
4. Generating function of SU(n) 
    4.1 The generating function of SU(2)  and SU (3) 
    4.2 The generating function of SU(n) 
    4.3 The generating function and the kernel function of SU(n) 
    4.4 Invariance by complementary of binary numbers (R-reflexion). 
    4.5 The generating functions of SU(3), U(4) and U(5) 
5. The Gel’fand basis vectors of U(n) 
    5.1 The Gel’fand basis of U(2). 
    5.2 The recurrence method for the calculation of U (n)

 
polynomials 

    5.3 Calculation of )1(Pn

     5.4 Calculation of )1(Pn for n=3, 4, 5. 
6. The Gel’fand basis of U(3) and U(4) 
    6.1 The Gel’fand basis of U(3) 
    6.2 The Gel’fand basis of U(4) 
7. The Wigner’s symbols and the invariants of SU(n)    
    7.1 The Wigner’s symbols 
    7.2 The elementary invariants )z(i

n
sΔ  and  i

n
s φ  

     7.3 The Wigner’s coefficients of SU(2)
                                 8. The 3-j symbols and the Isoscalar factors of SU(3) 

    8.1 The Invariants of the Gel'fand basis 
    8.2 Calculus of the invariants in the space of parameters i

6
s φ  

    8.3 The generating function of 3-j symbols of SU(3) 
    8.4 The algebraic expression of Wigner’s coefficients and isoscalar of SU(4) 
9. Appendix 



 

91 

 
Chapter VII 

 
 
 

The Gel’fand basis of SU(n) and the Wigner’s 
Coefficients with multiplicity for the canonical basis 

 
 
 

1. Introduction 
 
          The theory of unitary groups is of great interest in quantum physics, nuclear and 
elementary particle. The study of these groups was started in mathematics and several 
methods have been proposed: the infinitesimal method developed by Shur, Cartan, 
Killing, Weyl, etc. .., and the Weyl global method [108-116] whose starting point the 
matrix elements of SU(n). Weyl find the connection between the representation of the 
symmetric group and the unitary group.  Weyl also find the basis vectors of the 
irreducible representation labeled by the highest weights ],...,,[][ nn1nn1n hhhh −= and the 
dimension formula. The reduction of the representation with highest weight nh ][ of U(n) 
to U(n-1) with highest weight 1nh −][ is given in terms of Weyl branching law.  
 
                            ]...[ ,,,,, nn1n1n1n2n21n1n1 hhhhhh ≥≥≥≥≥ −−−−  
 
Using the “Weyl’s branching law” Gelfand-Zeitlin introduce the basis of representation 
of U (n), function of 2/)1n(n + indices, and later proved the orthogonality of this basis. 
Moreover, Cartan has already found that these irreducible representations are 
polynomials of the fundamental representations ]1,..,1[],..,0,..,1[ , whose number is 12n − . 
           In physics the Schwinger’s method [23] of bosons calculus, has been extended to 
study the homogenous polynomials basis for the irreducible representation of U(n) by 
Bargmann and Moshinsky and other [113]. Biedenharn et al. [44-45] used the Weyl 
tableau techniques of construction of some vectors [45] of the Gelfand-Zeitlin basis in 
terms of the bosons operators. The maximal and semi-maximal states of SU(n) are 
defined by Biedenharn et al.[45], and their importance for the study of the space of 
representation was observed by Moshinsky [90] and their extension to kernel and the 
branching operators was find in the papers of Louck [114] and Henrich [115] .  
 Furthermore, Nagel et Moshinsky[46] derive the Gel'fand basis polynomials in terms of 
the raising and lowering operators but the calculus[115-116] was very complexes and 
difficult to find the number of summations N of these polynomials for n>3, 

21nn12N n /)()( +−−= [22-23]. After that, Heinrich use the kernel and the branching 
operators to determine the polynomials and he is unable to find it for n> 3.  
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         In other side the Wigner coefficients of SU(3) for the canonical basis were 
discussed by many authors[99-107]: Moshinsky observed that the Kronecker product of  
k representations of SU(n) could be analyzed in terms of certain representation of 
SU(N),where N=k(n-1). Furthermore, a large class considered of theses coefficients, for 
example Biedenharn et al. using the canonical unit tensor operator method and Le blanc 
and Rowe use the vector coherent state theory [100-105]. The method of invariants 
applied by Van der Wearden and finds the generating function of 3-j symbols of SU (2). 
This method was generalized by Resnikoff to SU (3) and derives only the results for 
multiplicity free. Parakash et al. [107] uses the latest methods and the expression 
obtained contains 33 summations and the normalization factor is difficult to calculate. 
          All theses methods are very complex and the Gel'fand basis of homogenous 
polynomials is not found for n>3 and the Wigner coefficients with multiplicity in the 
canonical basis are very difficult to calculate. 
 To solve these important and difficult problems we proposed a simple method [22,118-
120], the generating function method [117], for the calculation of Gel'fand basis 
polynomials, the Wigner coefficients and isoscalar factors for SU(n).  
    Recently the author has returned to these problems [43] and we applied our method to 
calculate the Wigner coefficients for multiplicity free. However, in this work we will do a 
review of this method and we focus our attention to the practical sides to do the 
calculations of Gel'fand basis polynomials, the Wigner coefficients and isoscalar factors 
with multiplicity for SU(n). .  
        The generalization of the generating functions of SU (2) and SU (3) to SU(n) is easy 
after our introduction of the binary representations of the vectors of the fundamental 
representations. We observe also that there is a connection between the generating 
function, the kernel and the branching operators expressed as functions of complex 
variables of SU (n). We use these functions and a recurrence method for the 
determination of the vectors basis of representation of SU (4). We also use the space of 
parameters of the generating function and the invariants method to find an algebraic 
expression of Wigner’s coefficient in the general case, multiplicity free or not, and the 
isoscalar of SU (3).  
           This chapter is organized as follows: Part two and three are a simple revision of Gel’fand 
basis, The fundamental representations, Matrix elements, Bosons polynomials and kernel 
function of SU(n). The next section is devoted to the derivation of the Generating 
function of SU(n). We outline the method for calculating the bosons polynomials of 
Gel’fand basis vector and we apply it to the case of SU(3) and SU (4) in part 6. In part 7 
we present the invariant method for the calculation of Wigner’s coefficients of SU(n) and 
we apply it to SU (2). The parts eight are devoted to the derivation of the analytic 
function of the 3-j symbols and the Isoscalar factors with multiplicity of SU(3). In the 
appendix we give a maple program very useful for the derivation of the generating 
function of U(n) and the normalization of Gel’fand basis. 
 

2. Gel’fand basis and the fundamental representations 
 

   We summarize in this part the results of the determination of Gel’fand basis of the 
irreducible representation and the properties of this basis. By analogy with the theory of 
angular momentum, the maximal and the semi maximal of this basis are derived. 
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 We define also the vectors of the fundamental representations.     
Nagel and Moshinsky have found that the states of SU(n) may be written in terms of 
raising and lowering as in the SU(2) theory and we also summarize this work. 
 
2.1 The Weyl generators and the Weyl branching law of U(n) 
   The 2n  Weyl infinitesimal generators )....,(, n1jiEij = of the unitary group U(n) obey 
the commutation relations 
                                   ,],[ kiililjkklij EEEE δδ −=                                                             (2.1) 
These generators may be written in terms of creations and destruction of n-dimensional 
harmonic oscillators as: 
                                         ∑ +=

ij
jiij aaE                                                                          (2.2) 

 The irreducible representations of U(n) are labeled by n-integer numbers  
 
                                            ].,...,,[ nnn2n1 hhh                                                                   (2.3)

 
  
 When the group U(n) is restricted to the subgroup U(n-1) we find the Weyl branching 
law:   
             nn1n1n1n2n21nlnl hhhhhh ,,,,,, .... ≥≥≥≥≥≥ −−−− . 
 
2.2 Gel’fand basis for SU(n) 
     Gel’fand  and al. [5] extend the Weyl branching law to U(n) and derived the 
individual orthogonal states of the representation, called Gel’fand basis n)h( : 
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 In angular momentum and in particles physics [20] we have the notations: 
 
For SU(2)                     mjhmjh 1112 −=+= ,  
 
For SU(3) 
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2.3 The Weyl dimension formula 
    The dimension of subspaces ][ μνh  is given by the Weyl formula: 
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2.4 The maximal and the semi-maximal states 
     The eigenvalue of the diagonal generators iiE  is: 
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We associate to each state μνh  a vector or weight vector which has components  
  
                       ))(...),(),(()( 21 hhhh nnnn ωωω=ω . 
  
A weight )'h(ω  is higher than a weight )h(ω if the first nonzero component in the 
difference )h()'h( ω−ω  is positive.  

We note respectively 
1n

nh

−(max)
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 and 
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−(min)
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 are the states that have the maximum 

and minimum of weight.  

The vector 
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 is the semi-maximal vector. 

 
2.5 The fundamental representations 
      We can express an arbitrary irreducible representation of U(n) in terms of a set of 
subspace called the fundamental  representations [20]. 
 The fundamental representations of U (n) are the irreducible subspaces: 
 
                             ],,,[,],,,,[],,,,[ 111011001 LLLL                                                   (2.8) 

The dimension of the subspace ],,...,,,..,,,[ n001111
p48476

 is p
nC . Then we deduce that the total 

number of vector bases of the fundamental representations is 12n − . And we observe that 
the weight vectors of these bases were expressed in terms of the binary number and it is 
easy to establish a correspondence between these weight vectors and the fundamentals 
Gel'fand basis.  
We denote these fundamentals basis vectors by 1221i np

in −= ,,,][, LΔ .  

  Using the binomials formula 1p
1n

p
1n

p
n CCC −

−− +=  and a symbolic program (Maple 8 see 
appendix1) we derive by recurrence all Gel'fand fundamental representations for n> 2 
and the binary representation of the fundamental representations (B.F.R). 
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2.6 Explicit expression of Gel’fand basis vectors 
   Nagel and Moshinsky have found that each vector μνh of the basis ][ nhμ may be 

deducted from the vector
1n

nh

−(min)
][

 or the vector
1n

nh

−(max)
][

 by applying the raising 

operators μ
λR or the lowering operators μ

λL and derived the explicit expressions of these 
operators. We write:  
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With   1,, −λμλμ

μ
λ −= hhL       , λ+μ−λμ

μ
λ −= ,11, hhR  

N and N 'are the constants of normalization.  
 
It is quite clear that this result is the generalization of the well-known result of angular 
momentum [8]. And it is very important to mention that the computation of Gel’fand 
basis vectors with this formula is very difficult and complicate for n >3 [115-116]. 

 
 

3. Matrix elements, Bosons polynomials and  
Kernel function of SU(n) 

 
   After the classification of elementary particles a great effort has been made to study the 
matrix elements of unitary groups using the Gel'fand basis and the maximal and semi-
maximal cases of the D-Wigner matrix elements of SU(n) are found. The maximal and 
semi-maximal polynomials basis in terms of bosons operators introduced by Biedenharn 
et al. [44] or in term of complexes variables are used by many authors [90,113]. Theses 
polynomials are functions of minors determinants as variables and it’s extension to the 
derivation of the kernel and the branching kernel function is found [115-116].We also 
give in term of bosons operators the basis of U (2) and SU (3) which are very useful later 
in this work. 
 
3.1 The D-Wigner matrix elements of SU(n) 

The application of the unitary transformation to the basis 
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h
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is:
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The Gel’fand states for which rnrs hh = , 1≤ r ≤ s ≤ n, is the state of highest weight.  
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 A special result which is immediately available from tableau techniques [18] is the so 
called semi-maximal case: 
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k Uu  Is the minors constructed from the matrix of (Un). 

The normalization is: 
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The conjugate representation 
      Define the transformation 
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The conjugate of the basis states is  
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3.2 The bosons polynomials basis of U(n)  
   The well known isomorphism between the spaces of Fock - Bargmann with the 
harmonic oscillator [17] implies that we can use one or the other of these spaces.  
In this work we give the expressions of kernel and branching kernel functions in the 
Fock-Bargmann space because the computation in this space is very convenient. 
We also give the expressions of known expressions of the bases of SU(2) and SU(3) . 
 
 3.2.1 The Fock space  
    We consider the analytic Hilbert nin21 Cz),z,,z,z( ∈L with the Gaussian measure 
and the scalar product is: 
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3.2.2 The polynomials basis of U(n) 
  We consider transformation 
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In this representation the Gel'fand basis will be noted by ))((
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3.3 The kernel and the branching kernel function of SU(n)  
   We give only the analytical expressions of kernel function and the branching kernel 
functions of unitary groups [115]. 
 
3.3.1 The kernel function is: 
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3.3.2 The branching kernel function is: 
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3.4 The SU(2) and SU(3) basis in terms of bosons expansion 
     The expressions of U (2) and SU (3) in the base of the harmonic oscillator are well 
known [114]. 
 
3.4.1 The bosons expansion of U(2) 
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3.4.2 The bosons expansion of U(3) 
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4. Generating function of SU(n) 
 
     We observe that the parameters and their powers in the generating function of the 
basis of SU(2) and SU(3) are linked to the raising and lowering operators and their 
powers, then we generalized it by an empirical way [39] to SU(n) basis. And we derive it 
also using the kernel function. 
    Our introduction of the binary fundamental representation basis (B.F.R) is very useful 
for the calculations of the generating function and the invariance, which is connected 
with the complement of binary numbers [118-120].                                                                       
  This generating function is practical for the derivation of the invariant polynomials of 
SU(n) from the Gel’fand basis of unitary group SU(3(n-1)). 
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4.1 The generating function of SU(2)  and SU (3) 
   We write only the generating functions of SU (2) and SU (3) then, we deduce simply 
the generating function of SU (n). 
 
  4.1.1 The generating function of SU(2) 
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  4.1.2 The generating function of SU(3) 
       The generating function of SU (3) may be written in Fock-Bargmann basis  
   in the form: 
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We find this generating function using Schwinger’s approach of angular momentum. 
  
4.2 The generating function of SU(n) 
     The generalization of (4.2) to the generating functions of SU (n) is immediate and in 
the representation of Fock-Bargmann [6-7] we write   
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 We will calculate )(][, zk
inΔ  by the introduction of the binary fundamental representation 

and then we use two simple rules for the calculation of ),(][, yxin
kφ , the constant will be 

calculated later. 
  
4.2.1 The binary fundamental representation (B.F.R) of k

in ][,Δ  

   We associate to each miner l12
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KΔ a table of n-boxes numbered from 1 to n.  

We put "one" in the boxes l21 iii ,,, K and zeros elsewhere. 
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         It’ is very important to mention from the fact that the B.F.R. k
]i[,nΔ   is anti-

symmetric then there are a connection between this basis and the Fock space of the 
second quantization hence the theory of unitary group plays an important role in physics. 
 
4.2.2 Calculus of coefficients ),(][, yxin

kφ  
    The coefficients ),(][, yxin

kφ  may be written as product of parameters ),(yy μλ=μ
λ and

),(xx μλ=μ
λ . We determine the indices of these parameters by using the following 

rules: 
a- We associate to each "one" which appeared after the first zero a parameter ),(y μλ  
whose index λ  are the number of boxes and μ  the number of "one" before him, plus one. 
b- We associate to each zero after the first "one" a parameter ),(x μλ  whose index λ  is 
the number of boxes and μ  the number of "one" before him. 
 
4.3 The generating function and the kernel function of SU(n) 
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Replace *)(][, uk
inΔ  by ),(][, yxin

kφ and summing with respect to μνh we find:  
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4.4 Invariance by complementary of binary numbers (R-reflexion). 
     We know that each binary number has a complement then we deduce that )z(k

]i[,nΔ  has 

a complement )z(
k

]i[,nΔ , Therefore the B.F.R. is invariant by the transformation 

                                                )(][, zk
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k
inΔ .                                                       (4.8)                               

- For SU (2) we have the transformation mj
mj

jm 1 −
+−→ ϕϕ )( taken into account that the 

complement of [0  1] is [1  0] and conversely. 
- For SU (3) we also deduce the R-Conjugation of Gell-Mann (Resnikoff)    
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(4.9) 
 
  The expression of complement ]i[,n

kφ  may be deduced from ]i[,n
kφ  by changing y( l ,m) by  

z( l ,-m+ l ) and z(l ,m) by z(l ,-m+ l ), and then the expression (4.5) is invariant by this 
transformation. We call this property of invariance by reflection or complementarily invariance. 
We also note that in the basis of U(n) the complement of ],,,[ 111 L  is 0  in the oscillator basis 
and 1 in the Fock-Bargmann space. 
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4.5 The generating functions of SU(3), U(4) and U(5) 
    We find simply by a direct calculation of rules a and b or using the results of the 
symbolic program (appendix1) the generating functions of U(4) and U(5) which are very 
useful for later. 
 
4.5.1 The generating function of SU(3) 
    We write the generating function in a manner useful for computations 
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4.5.2 The generating function of U(4) 
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4.5.3 The generating function of U(5)   
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5. The Gel’fand basis vectors of U(n) 
 

        We will calculate by recurrence the polynomials of the irreducible                          
representations of SU (n) using the branching kernel function. We consider the base of  
U (2) as a starting point, then we presents the recurrence method and we determine the 
bases of the groups U (3) and U (4). 
 
5.1 The Gel’fand basis of U(2). 
 We have                                    ( ) )!(/ 11

h
111 hh 11ΔΓ =  
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In the notation of angular momentum [20] we write: 
 
                              11122212 , hhmjhhmj −=−−=+ . 
 
5.2 The recurrence method for the calculation of U(n) Polynomials 
 
   By considering the product of coefficients of ),( inyyi
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appearing in the generating function of SU (n) we find the branching kernel. 
We have 

                           ×⎥
⎦

⎤
⎢
⎣

⎡
=

−

−
−

21

n
1n

n1nn
1n A

A
yxzR

/

)),(),(( ϕΔ
     

                                 
∏∏

=

−
−

−

=

−
−

n

1k

L1nn12
n1k12

1n

1k

R1nk12
k1k12

k
n

k
n zz )),(()),(( .....

),..(
.....

),..( ϕΔϕΔ
                         

(5.2)
 

                           

[ ]
[ ] [ ]

)),((
)(

)(
)()(

yx
h
h

z
h
h
h

1n

h 2n

1n
1n

2n

1n

n

n
2n

−

−

−
−

−

−∑
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= ϕΓΔΓ

                                  

(5.3)

 

But                 
[ ]

)()),(,(),((
)(

1PyxhNyx
h
h

1n
1n

1n
1n

2n

1n
1n −

−
−

−

−

−
− =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
φϕΓ

                              
 

(5.4)

 And 11P2 =)( .

 
After identification of the two sides of (5.4) we find the polynomial representations of the 
irreducible of U(n) 
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5.3 Calculation of )1(Pn

    By replacing (5.4) in (5.5) we identify the results and then we do the summation for the 
convenience of calculations, we find the expression: 
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 If we put u = ax and v = by we find after identification of the two sides of  
 The expression (5.6) : 
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The constants nN  and )(1Pn  are functions of Gel'fand indices of U(n). 
The expression (5.7) is very important for the computing of )(1Pn . 
 
5.4 Calculation of )1(Pn for n=3, 4, 5. 
     We will compute P3 (1), P4 (1) using the formula (5.7). 
  
1-Calculation of )(1P3  
   Using (5.7) we find: 
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We deduce from the above expression  1112
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2- Calculation of )(1P4  
   We will compute P4 (1) using the formula (5.7). 
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After development of the first member and the identification with the second member we 
find )(1P4  
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3- Calculation of )(1P5  
  We will compute P5 (1) using the formula (5.7). 
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After development of the first member and the identification with the second member we 
find )(1P5
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6. The Gel’fand basis of U(3) and U(4) 
 

   We will determine the polynomials basis of SU (3) and SU (4). 
 
6.1 The Gel’fand basis of U(3) 
 We know that 11P2 =)(  so we can do the calculations with the aid of (5.5) and (5.6). 
 In this case, we write
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Using (5.5) we find:                                                     
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After identification we find the expression of the vector basis of U(3): 
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   We find the same expression already found in paper [19, 23]. 
 
6.2 The Gel’fand basis of U(4) 
  We have 

                )(
)(
][

))((
)(
][

)),((
)(

ϕΓΔΓϕΔ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2h 2

3

3

44
3 h

h
z

h
h

zR                                                (6.4) 

This is also written in the form 

              
××++=

1
4

1
4 R1

4
L1

3
1
3

1
3

1
2

1
2

1
2

1
14

3

34
3 xyxy

A
AzR )())(()),(( ΔΔΔΔϕΔ       

               
2
4

2
4 R1

3
12
34

1
3

1
2

12
24

1
2

12
14

L2
3

12
12

2
3

1
2

12
23

1
2

12
13 xyxyyxxy ))(())(( ΔΔΔΔΔΔ ++×++×  

                
4
4

3
4

3
4 L1234

1234
L123

123
R2

3
123
124

2
3

1
2

123
234

1
2

123
134 )()()yx)xy(( Δ×Δ×Δ+Δ+Δ×                              (6.5) 

 
b-the “bosons” polynomial of the irreducible representations of U(4) 
   by the development of (6.5) and using (5.5) we find the relation between the indices: 
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We find that the number of indices five which is the exact number. 
Finally the bosons polynomial is: 
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With 4N is the normalization constant. 
It is clear that our method is the only one who can solve this problem from the practical 
point of view. 

 
7. The Wigner’s symbols and the invariants of SU(n)    

 
    In this section we give the definition of invariant and its connection with the Wigner 
coefficients. By using the binary representation of invariants and the parameter space we 
show that our method gives the Van der Wearden’s result of SU(2). 
 
7.1 The Wigner’s symbols 
    The direct product of two representations may be reduced according to the formula  
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 Where (ρ) is the multiplicity or the number of time the representation is contained in
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The coefficients in this expression are the Clebsh-Gordan coefficients.  

The vector                 ∑
)( )(

][
)(
][

33 h c
3

3

3

3

h
h
h

h
h

d
1

ρ                                                                
(7.3) 

Is an invariant by unitary transformation with unity norm in the product of trois spaces. 
When we replace it with the above mentioned:  
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  Are Wigner’s 3j symbols of SU (n) and ρ is the indices of multiplicity. 
)(H ρ  is the generalization of the Van der Wearden’s invariant of the group SU(2). These 

invariants has the following  
 
                             )'(),()'()()()(

),,( , ρρρρρρ δ== HHHHT 321
U                                        

 (7.6) 
 



 

106 

  These properties mean that the invariant polynomial is function of elementary 
invariants. We choose )(ρH as subspace of SU(3 (n-1)) which are function of the 
compatible elementary invariants.  
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We note for the remainder of the variables by xi (λ ,μ) ,yi (λ ,μ), i

)0,3(N , )1(Pi
)0,3(  

Li(λ ,μ), Ri(λ, μ). 
 
7.2 The elementary invariants )(zi

n
sΔ  and  i

n
s φ  

  We determine the elementary scalars )(zi
n

sΔ  which are the basic elements of the 
Gel'fand basis of the SU (3 (n-1)). These scalars are formed of three rows of tables, 
Where each row of (n-1) boxes and iα “one” and zero elsewhere.  

iα  Satisfies the following conditions  
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7.3 The Wigner’s coefficients of SU(2)

                                     We will apply the formula (7.7) for the determination of 3-j symbols.  
 
7.3.1 The Invariants in the Gel'fand basis

                                         
 

    We find for SU (2) the three elementary scalars 
 
                                  110101011 ,,                                              (7.9) 

 
The parameters {x, y} that are not in the { ),(][, yxi3

kφ } of elementary scalars must have 
the power null. We put 0xy 1

3
1
3 == then 122313 hhh ==  and the invariants )(ρH  are the 
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We can write this expression in term of well known quantum numbers of angular 
momentum:   
                      2221111112322 JhhJhhJh =−=−= ,,                        
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7.3.2 The elementary invariants in the space of parameters { i
3

s φ }  
         The elementary invariants in the space of parameters are: 
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7.3.3 The generating function of 3-j symbols of SU(2)  
      The expression (7.7) in the case of SU (2) becomes: 
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We obtain the well known expression of Van der Wearden with ρ=1. 
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 To simplify the notations we write: )),(),,(( 12yi12xiu i = . 
Then we find the generating function of SU(2) or the well known Van der Wearden 
invariant of SU(2):
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We have: J=j1+j2+j3 and P1=J-2j1, P2=J-2j2, P3=J-2j3. 
 

8. The 3-j symbols and the Isoscalar factors of SU(3) 
 
  We deduce that the Gel’fand pattern is reduced to 7 indices variables:                

 The invariants polynomials are formed from one term or monomials and function of 
compatible product of elementary invariant scalars.  
 
8.1 The Invariants of the Gel'fand basis 
     We find for SU (3) seven scalar elementary compatible, which are represented by the 
following tables: 
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              110001000111001101 ,,  

 
              011100110100010011 ,,
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The parameters {x, y} that are not present in the elementary scalars )y,x(]i[,n
kφ  must have 

the power null. 
 We find: 
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The basis of Gel'fand for the invariants is: 
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8.2 Calculus of the invariants in the space of parameters i

6
s φ  

    To determine the images of invariants in the space of parameters we write 
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We apply the same method for the calculation of the image of the invariants. 
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8.3 The generating function of 3-j symbols of SU(3) 
     The expression (7.7) is written in this case as: 
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The development of the second side is
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a-We have 
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b-The development of the second side of (8.5) and the identification with the first 
member lead to a system of equations (Appendix2). The number of indices is  
fifteen so we have a system of fifteen equations which has the solution: 
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We have also the system  
                                    .,..,)( 15141371jjj iiik61jiik ++==+= +                                  (8.9) 
 
 It is simple to verify that these variables are function of i7-i9 then we choose for 
simplicity the multiplicity ρ by:  ρ =k3.  
We write i6 in terms of i9:   i6= k3-L3 (3.2) + i9.  
We deduce that the number of summations is three indices: i7, i9, i11. 
 
8.4 The algebraic expression of Wigner’s coefficients and isoscalors of SU(4) 
    By replacing (8.10) and (8.6) in (8.5) and by comparison we find the algebraic 
expression of Wigner’s coefficients, and isoscalors factors of SU(3). 
 



 

110 

                      

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−+

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∑
∏
∏

∏∏

=

=

=

−

=

1
3

1
2

1
1

2
3

2
2

2
1

iii
15

1j j

3

1i

7

1i
i

13

1i

i
3

i
36

3
3

3
2

3
1

3
3

3
2

3
1

hhh
hhh

i

Pi2P1P

k1PNN
hhh
hhh

1197
)()()(
][][][

!

)!()!(

)!()()(
)()()(
][][][

ρ

                   (8.10) 

 As in (7.15) we write in this case P=J and Pi=Ji. 
We use the well known notations of Wigner’s coefficients in terms of isoscalar {}, 
 And 3-j symbols of SU(2). We have: 
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We find the analytic expression of the isoscalar for the canonical basis of SU(3): 
 

 ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −+
=

⎭
⎬
⎫

⎩
⎨
⎧

∑
∏
∏

∏

∏

=

=

=

=

1197 iii
15

1j j

3

1i
3

1i

i
3

i
3

7

1i
i

6
2

3
2

2
2

1
3

3
3

2
3

1

i

Pi2P1P

1PN

k
N

hhh
hhh

!

)!()!(

)()(

)!(

][][][
][][][

ρ

            

(8.12) 

 
9. Appendixes 

 
Appendix1 
    The maple program for the derivation of the binary representation and it is parameters 
representation in the generating function and the normalization coefficients of Gel’fand 
polynomials basis of U(n). 
 
> restart: 
with(linalg): 
geyz:=proc(n,m) 
local lam,mu,p,z,y,dlm,dplm; 
y:= array(1..n,1..n);   z:= array(1..n,1..n); 
dlm:= array(1..n,1..n);  dplm:= array(1..n,1..n); 
for lam from 1 to n do 
for mu from 1 to n do 
dlm[lam,mu]:=0;dplm[lam,mu]:=0; 
od;od; 
p:=1; 
for lam from 1 to n-1 do 
for mu from 1 to (n-lam) do 
dlm[lam,mu]:=m[mu,lam]-m[mu+1,lam]; 
dplm[lam,mu]:=m[mu+1,lam]-m[mu,lam+1]; 
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p:=p*((z[lam,n-mu+1]**dlm[lam,mu])*(y[lam,n-mu+1]**dplm[lam,mu])); 
od;od;print("Phi of BFR" ,p);    end; 
ibn:=proc(n,m) 
local i,i1,j,s,bn,del; 
bn:= array(1..n);w:= array(1..n);del:= array(1..n); 
for j from 1 to n do 
del[j]:=0;od; 
bn[1]:=m[n,1]; 
for j from 1 to n do 
s:=0;          
for i from 1 to j do 
s:=s+ m[n-j+1,i]; 
od;w[j]:=s;od; 
for j from 2 to n do 
bn[j]:=w[j]-w[j-1]; od; 
print(" BFR", bn); 
i:=0;  
for j from 1 to n do 
if bn[j]=1 then 
i:=i+1; 
del[i]:=j;fi;od; 
i1:=i;print(i1,     "delta", del);      end;                   
#  la base de Gel'fand et la formule des binomes# 
     # (n!/p!(n-p)!)=(((n-1)!/(p-1)!(n-p)!)+(n-1)!/p!(n-p-1)!)# 
#SU(2)   SU(3)   SU(4)     SU(5)     SU(6)# 
#============================================# 
n1:=1+3+7+15+31+63; n:=6; 
nt:= array(1..n);m:= array(1..n,1..n);a:= array(1..n1,1..n,1..n); 
i1:=0; 
for j from 1 to n do 
i1:=i1+2**(j)-1; 
nt[j]:=i1; od; 
n1:=nt[n]; 
for j from 1 to n do 
for k from 1 to n do 
m[j,k]:=0;    od;od; 
for i from 1 to n do 
for j from 1 to n do 
m[i,j]:=0;od;od; 
for i from 1 to n1 do 
for j from 1 to n do 
for k from 1 to n do 
a[i,j,k]:=0; 
od;od;od; 
          a[2,1,1]:=1;  a[2,1,2]:=0;        a[2,2,1]:=0;  a[2,2,2]:=0;                
          a[3,1,1]:=1;    a[3,1,2]:=0;     a[3,2,1]:=1;    a[3,2,2]:=0; 
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           a[4,1,1]:=1;    a[4,1,2]:=1;     a[4,2,1]:=1;    a[4,2,2]:=0;  
                          # le programme# 
for i from 3 to 5 do 
print("======================================="); 
print("----------------","the group SU(",i,") ---------------------"); 
print("======================================="); 
i3:=nt[i-1];i4:=nt[i-2];id:=i;          print(" i3= ",i3," i4= ",i4); 
                # la formule des elements ai1,1=k<=i# 
for j from 1 to n do 
for k from 1 to n do 
m[j,k]:=0;    od;od; 
for k from 1 to i do 
i3:=i3+1; 
for j from 1 to k do 
a[i3,j,1]:=1;   od; 
for k1 from 1 to k do 
m[k1,1]:= a[i3,k1,1]; 
od;print("n=",i3,m);ibn(i,m); 
geyz(i,m); od;i5:=1: 
                       # la formule des reccurences # 
       # (i!/(j!*(i-j)!))=((i-1)!/j!(i-j-1)!)+((i-1)!/(j-1)!(i-j)!)# 
       # *********************************************# 
 # part 1 #    print(".........part 1........"); 
for j from 2 to (i-1) do 
t1:=((i-1)!/((j-1)!*(i-j)!));print("part 1",t1); 
for k from 1 to t1 do 
i3:=i3+1:i4:=i4+1: 
for k1 from 1 to (j) do 
a[i3,1,k1]:=1;m[1,k1]:=a[i3,1,k1];    od; 
for k2 from 2 to n do 
for k3 from 1 to (n) do 
a[i3,k2,k3]:= a[i4,k2-1,k3];m[k2,k3]:= a[i3,k2,k3];   od;od; 
print("n=",i3,m);ibn(i,m);geyz(i,m);   od;"end k"; 
 # part 2 #  print(".........part 2........"); 
t2:=((i-1)!/(j!*(i-j-1)!));print("part 2",t2);  
i5:=i4; 
for k from 1 to t2 do 
i3:=i3+1;i4:=i4+1; 
for k1 from 1 to (j) do 
a[i3,1,k1]:=1;m[1,k1]:=a[i3,1,k1];    od; 
for k2 from (2) to n do 
for k3 from 1 to (n) do 
a[i3,k2,k3]:= a[i4,k2-1,k3];m[k2,k3]:= a[i3,k2,k3]; 
od;od;print("n=",i3,m);ibn(i,m);geyz(i,m);"end k";od; 
i4:=i5;od;"end j";#++++++++++++++# 
                  # la formule des elements aii===# 
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print("la formule des elements aii======="); 
i3:=i3+1:i4:=i4+1: 
for k1 from 1 to (id) do 
for j1 from 1 to (id-k1+1) do 
a[i3,k1,j1]:=1;od;od; 
for k1 from 1 to (id) do 
for j1 from 1 to (id-k1+1) do 
m[k1,j1]:= a[i3,k1,j1]; od;od; 
print("n=",i3,m);ibn(i,m);geyz(i,m); 
od;"end i";> restart: 
with(linalg): 
   #calcul de A(m(1,n),m(1,n),...,m(n,n) de Kernel functions# 
n:=3; m:= array(1..n,1..n); 
coefr:=proc(n,m) 
local a,mu1,mup,i,j,k,p,pp,q,qq,mq,coefn, 
            coefap,n1,a1,ap,ap1; 
coefn:= array(1..n); 
                      #part 1 Kernel functions# 
ap:=1;ap1:=1;n1:=n-1; 
for j from 1 to n1 do 
a1:=m[j,n1]; ap:=(a1+n1-j)!*ap; 
od; 
for j from 1 to (n1-1) do 
for k from j+1 to n1 do 
 a1:=(m[j,n1]-m[k,n1]+k-j)!; ap1:=a1*ap1; 
od;od;coefa:=ap1/ap;print(coefa,1); 
print("***************"); 
      #part 2 The branching operators# 
              #calcul de P( mu, mu)#p:=1; 
for k from 1 to n do 
for j from 1 to (k-1) do 
mu1:=m[k,n]+n-k; 
mup:=m[j,n]+n-j; 
p:=p*((mup-mu1)!); od;od;print(p,2); 
                #calcul de P( mup, mup)# 
pp:=1; 
for k from 1 to (n-1) do 
for j from (1) to (k-1) do 
 mu1:=m[k,n-1]+n-k-2;  mup:=m[j,n-1]+n-j-2; 
pp:=pp*((mup-mu1)!); 
od;od;print(pp,3); 
               #calcul de Q( mu, mup)#q:=1; 
for k from 2 to n do 
mu1:=m[k,n]+n-k; 
for j from 1 to (k-1) do 
mup:=m[j,n-1]+n-j-1; q:=q*((mup-mu1)!); 
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od;od;print(q,4); 
      #calcul de Q( mup, mu)# 
qq:=1; 
for k from 1 to n-1 do 
mu1:=m[k,n-1]+n-k-1; 
for j from 1 to (k) do 
mup:=m[j,n]+n-j;  
qq:=qq*((mup-mu1-1)!); od;od; 
print(qq,5); 
           #calcul de A( mup, mup)# 
mq:=1; 
for j from 1 to (n) do 
mu1:=m[j,n]+n-j; mq:=mq*((mu1)!); 
od;print(mq,6); 
coefap:=(pp*p)/((mq*qq*q)); coefn[n]:=coefa*coefap; 
coefb:=[(m[1,2]+1)!*(m[2,2])!*((m[1,1]-m[2,2])!) 
*((m[1,2]-m[1,1])!)]/[(m[1,2]-m[2,2]+1)!]; 
print("coefa=",coefa); print("coefap=",coefap); 
print("coefn1[n]=",coefn[n]); 
coefn[n]:=coefn[n]*coefb; 
print("coefb=",coefb); print("coefn[n]=",coefn[n]); 
end;coefr(n,m); 
 
Appendix 2 
The linear system of indices (part 8): 
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Derivation of classical relativity and Schrödinger equation 
using Hamilton and Hamilton-Jacobi formalisms 

 
 

Abstract 
 

 Using Hamilton formalism of classical mechanic we derive in a simple way the 
equations of motions of classical relativity. Applying the canonical transformation and 
the Lagrange-Euler equation we find the Schrödinger equation. Our objective is a 
pedagogical point of view. 
  
  

1. Introduction 
  
The Hamilton and Hamilton-Jacobi formalisms didn't play a central role in classical 
mechanics or in the subsequent development of quantum mechanics. It is probably fair to 
say that the Hamilton and Hamilton-Jacobi formalisms, which were once taught as part of 
an advanced course on classical mechanics, have been seldom if ever used by physicists. 
 It was customary to derive the equations of motion of classical relativity using 
Lagrange formalism [A4] but in this note Our purpose is to point out that the derivation is 
more simple and instructive with Hamilton Formalism. Also, in the books of quantum 
mechanics [A1-4] we find comparisons between Schrödinger equation and the Hamilton-
Jacobi equation, or start from Schrödinger equation and use Ritz variation method to 
derive the Schrödinger equation. These treatments do not satisfy a pedagogical point of 
view. In this note we purpose to derive the Schrödinger equation using the canonical 
transformation of the Hamiltonian (with the generating function as a variable) and then 
apply the Lagrange-Euler equation. 
  
        In part two, we do a revision of analytical dynamics formalism. In part three we 
derive the equations of motions of classical relativity. The derivation of Schrödinger 
equation constitutes part four. Finally, part five is devoted to some conclusions. 
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2. Revision of principle of least action 
 
2.1 Hamilton principle of least action 
          Starting with the expression:     
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t
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S is the Hamilton action and ),,( tqqL &  is the Lagrange's function.  
The least action means:  
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The equations of Lagrange can be derived:  
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=   is the generalized momentum.  

The Lagrangian is defined to within an additive total time derivative of any function of 
coordinates and time  
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2.2 Hamilton Mechanics 
 
2.2.1 The Hamiltonian  
     Starting with the Lagrangian function ),( qqLL &=    

qd
q
Ldq

q
LdL i

i i
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 and Lagrange's equations, we obtain  
                                ii iii iii i dpqdqpLpqd ∑∑∑ +−=− &&& )( . 
 By definition the Legendre transformation is: 
                                                  )( LpqH ii i −= ∑ &

 
The function ),,( tpqHH = is Hamiltonian. 
For a conservative system:  
                                                         VTL −=  
And                                     VTtpqHH +== ),,( .  
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2.2.2      Hamilton's equations of motion 

 iiii ii
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by comparison we find the canonical equations  
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2.3 Hamilton-Jacobi equation 
  
2.3.1     Derivation of the equation 
If 2t  is variable in the expression of t)S(q,S = then  
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2.3.2      Canonical transformation 
 Starting with the coordinate’s transformation:  

',',',,

),,,(),,,(,,

HLSHLS

ttpqQtpqQtpq
T

T

→−−−−−−

→−−−−−−
 

               
T is a canonical transformation if the form of Hamilton’s equations is conserved  
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 The function ϕ  is called generating function.  
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3. Derivation of classical Relativity 

 using Hamilton formalism 
 
3.1 Metric of classical relativity 
 We start from the definition of the action  

HdtdzpdypdxpLdtS zyx −++== ∫ ∫  

We observe that zyx ppp ,, are momentum and H  is the energy. Then we must divide by 
a velocity, a, to make some coherence in the expression of S . 
  
So we write: 
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With a being a constant velocity then 
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 are vectors in the four Euclidean space.  
     The choice of the velocity implies that the element of length in the four dimensional 
Euclidean space is:  
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2ld  Is an invariant by Lorentz transformation. 

  
3.2 Choice of the velocity a 
     The invariant operator in the four dimensions space is\ the Laplace-Beltrami  
Operator:  
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Now if we choose ca = where c the velocity of light is, the equation 0=Δ S  is the 
Maxwell equation. We deduce the momentum  
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The last equation is the Hamilton-Jacobi. 
 
3.3   Expression of the Hamiltonian  
     The invariant in 4-dimension Euclidean space is  
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E
c
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In a system at rest 02 =pr , 0E is a constant of motion or the energy at rest: 
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We deduce the Hamiltonian 
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We deduce the expression 2
0 mcE = and 1)( 2

0

<<
E
pcr  which means that cv ≤ . 

 
3.4    Equations of motions of classical relativity  
      Using the canonical equations we simply derive the equations of motions of classical 
relativity 
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It is important to point out that we can use the quaternion field instead of Euclidean 
space. 
  

4. Derivation of Schrödinger equation  
using Hamilton-Jacobi formalism 

  
We adopt the Hartree-Fock method used in the theory of many body problems. 

That is, we consider a transformation and we search to find the minimum  
of energy. In our case we take the canonical transformation of the Hamiltonian 
H Given by: 

t
HH

∂
∂

+=′ ϕ  

Where ϕ  is the generating function and
i

i q
p

∂
∂

=
ϕ . 

In this case zqyqxq === 321 ,, ,  

And Vppp
m2
1H 2

z
2

y
2

x +++= )( ,  

We obtain     

                               V
txxm2

1H 222 +
∂
∂

+
∂
∂

+
∂
∂

= ))()()(( ϕϕϕ  

 
Put h/ϕie=Ψ  then h/ϕie−∗ =Ψ   
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Then 
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Using these expressions in the formula  
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Using the Euler-Lagrange differential equation we will show that the variation of this 
expression yields the Schrödinger equation. Ψ and ∗Ψ have to be varied Independent.  
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By choosing a Lagrange density £(Ψ,∂Ψ/∂q)=-H(Ψ,∂Ψ/∂q) we find the expression 
Find by Greiner [A56] without any indication of its origin. 
The Euler-Lagrange equation, split up into space and time components, reads:  

0£
)x/(

££

i

=
Ψ∂
∂

−
∂Ψ∂∂

∂
∂
∂

−
Ψ∂
∂

σσσ
&dt

d
xi

 

Where the summation over i  runs through 1, 2, and 3 or  
 First we vary with respect to Ψ  and obtain  

Ψ=
∂
Ψ∂

−=Ψ+Δ− H
t

iV
m

h
h ]
2

[
2

 

Analogously, variation with respect to Ψ  yields 
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 H  Is the familiar Schrödinger equation  
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Thus we derived the Schrödinger equation using the Hamilton-Jacobi formalism. 
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