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How behave the typical L q -dimensions of measures?

We compute, for a compact set K ⊂ R d , the value of the upper and of the lower L q -dimension of a typical probability measure with support contained in K, for any q ∈ R. Different definitions of the "dimension" of K are involved to compute these values, following q ∈ R.

Introduction

Let K be a compact subset of R d , and let P(K) be the set of Borel probability measures on K; we endow P(K) with the weak topology. In this paper, we are interested in properties shared by typical measures of P(K). By a property true for a typical measure of P(K), we mean a property which is satisfied by a dense G δ set of elements of P(K). Specifically we deal with the upper and lower L q -dimensions of measures. Let µ ∈ P(K), r > 0 and q ∈ R\{1}. We write

I µ (r, q) = K µ B(x, r)
q-1 dµ(x).

The lower and upper L q -dimensions are now defined, for q = 1, by D µ (q) = lim inf r→0 1 q -1 × log I µ (r, q) log r D µ (q) = lim sup r→0 1 q -1 × log I µ (r, q) log r .

When q = 1, the definitions involve a logarithmic factor: These dimensions were introduced by Hentschel and Procaccia in [START_REF] Hentschel | The infinite number of generalized dimensions of fractals and strange attractors[END_REF] in order to generalize the information dimension of a measure. They are important for their relationship with the multifractal formalism. This formalism, which was conjectured in the 1980s in the physic literature, asserts that for "good" measures, D µ (q) = D µ (q) for any q ∈ R and that the Hausdorff multifractal spectrum of µ coincides with the Legendre transform of τ µ : R → R defined by τ µ (q) = (1 -q)D µ (q) = (1 -q)D µ (q). This multifractal formalism has been verified for various classes of measures on R d , see [START_REF] Falconer | Techniques in fractal geometry[END_REF] and the references therein.

I µ (
In a series of papers ( [START_REF] Olsen | Typical L q -dimensions of measures[END_REF], [START_REF]Typical Rényi dimensions of measures. The cases: q = 1 and q = ∞[END_REF] and [START_REF]Typical upper L q -dimensions of measures for q ∈ [0, 1[END_REF]), L. Olsen made a first approach to estimate the typical value of D µ (q) and of D µ (q). To state his results, we need to introduce some classical terminology which can be found e.g. in [START_REF]Fractal geometry: Mathematical foundations and applications[END_REF]. For a subset E ⊂ R d , we denote the lower box dimension of E and the upper box dimension of E by dim B (E) and dim B (E), respectively. The Hausdorff and the packing dimension of E are denoted respectively by dim H (E) and dim P (E). Also, for a subset K of R d and x ∈ K, we define the lower local box dimension of K at x and the upper local box dimension of K at x by dim B,loc (x, K) = lim

r→0 dim B K ∩ B(x, r) dim B,loc (x, K) = lim r→0 dim B K ∩ B(x,

r) .

Theorem A (Olsen). Let K be a compact subset of R d . Write

s -= inf x∈K dim B,loc (x, K) = inf x∈K inf r>0 dim B B(x, r) s + = inf x∈K dim B,loc (x, K) = inf x∈K inf r>0 dim B B(x, r) s = dim B (K).
Then the following holds:

All measures µ ∈ P(K) satisfy A typical measure µ ∈ P(K) satisfies q > 1 0 ≤ D µ (q) ≤ D µ (q) ≤ s D µ (q) = 0 s -≤ D µ (q) ≤ s + q ∈ [0, 1] 0 ≤ D µ (q) ≤ D µ (q) ≤ s s -≤ D µ (q) ≤ s.

Remark 1.1. In this paper, we adopt the normalization of [START_REF]Typical Rényi dimensions of measures. The cases: q = 1 and q = ∞[END_REF] instead of that of [START_REF] Olsen | Typical L q -dimensions of measures[END_REF], because it avoids unpleasant factors (1 -q) all over the proofs, and also because it seems clearer if a dimension is always nonnegative. We nevertheless mention that this inverts the definition of D µ (q) and D µ (q) of [START_REF] Olsen | Typical L q -dimensions of measures[END_REF] when q > 1.

Remark 1.2. In [START_REF]Typical upper L q -dimensions of measures for q ∈ [0, 1[END_REF], the inequality s -≤ D µ (q) ≤ s + is announced for a typical measure when q ∈ [0, 1). However, there is a mistake in the proof, precisely in Lemma 2.3.1. A correct statement of this lemma should be: Let E ⊂ K and let µ ∈ P(E). Then

D µ (q) ≤ dim B (E)
for all q ∈ [0, 1). This correct statement forces to replace s + by s in Theorem A, which is less good. See also the forthcoming Theorem 1.6, which shows that typically D µ (q) ≥ s + for q ∈ [0, 1).

Remark 1.3. It should be observed that the precise statement of Theorem A is: a typical measure satisfies for every q > 1 . . . That is formally stronger than:

for every q > 1, a typical measure satisfies . . .

The work of Olsen leaves open several questions:

• What happens in the remaining cases? Olsen conjectured that, for any q < 1, D µ (q) = 0 and that, for any q < 0, D µ (q) = +∞. • Can we say more for the upper L q -dimension? Precisely, does there exist for any q ≥ 0 a real number f (q) such that a typical measure µ ∈ P(K) satisfies D µ (q) = f (q)? In this case, Olsen conjectured that we cannot do better than s -≤ D µ (q) ≤ s + for a typical µ ∈ P(K).

Our aim, in this paper, is to answer these questions. To this intention, we need to introduce two new ways to measure the size of a compact set. The first one measures how behaves locally the upper box dimension, uniformly in K. For a set E ⊂ R d and r > 0, we denote by P r (E) the largest number of pairwise disjoint balls of radius r with centers in E and by N r (E) the smallest number of balls of radius r which are needed to cover E.

Definition 1.4. Let K be a compact subset of R d . The local uniform upper box dimension of K is the real number dim B,loc,unif (K) defined by dim B,loc,unif (K) = inf

N ≥1 inf x 1 ,...,x N ∈K inf r 0 >0 lim sup r→0 inf i=1,...,N log P r K ∩ B(x i , r 0 ) -log r = inf N ≥1 inf x 1 ,...,x N ∈K inf r 0 >0 lim sup r→0 inf i=1,...,N log N r K ∩ B(x i , r 0 ) -log r
(the equivalence between these two definitions is a standard property of box-like dimensions.) It is easy to check that inf

x∈K dim B,loc (x, K) ≤ dim B,loc,unif (K) ≤ inf x∈K dim B,loc (x, K).
We shall see later that these inequalities can be strict. We will also need another variant of the lower box dimension, which measures both the size and the connectivity of a set. For K a compact subset of R d , let C n (K) be the collection of the half-closed dyadic cubes of size 2 -n intersecting K, namely

C n (K) =    n j=1 k j 2 n ; k j + 1 2 n ; k j ∈ Z and n j=1 k j 2 n ; k j + 1 2 n ∩ K = ∅    .
Let K n = C∈Cn(K) C and let C n (K) be the number of connected components of K n . We may observe that the sequence (C n (K)) is nondecreasing. and F = {0}∪ [1, 2], then dim B,loc,unif (E) = 1 whereas dim B,loc,unif (F ) = 0. Regarding the box separation index, bsi([0, 1]) = 0 (the 2 -n -mesh cubes intersecting [0, 1] are connected), whereas bsi(K) = 1/2 when K = {0} ∪ {1/n; n ≥ 1}. This last fact follows easily from the standard proof of dim B (K) = 1/2.

Definition 1.5. Let K be a compact subset of R d . The box separation index of K is the real number bsi(K) defined by bsi(K) = lim inf n→+∞ log(C n (K)) n log 2 . It is clear that bsi(K) ≤ dim B (K).
Our first main result now reads:

Theorem 1.6. Let K be an infinite compact subset of R d . Write

s sep = bsi(K) s u = dim B,loc,unif (K) s = dim B (K) s P = dim P (K).

Then the following holds:

All measures µ ∈ P(K) satisfy A typical measure µ ∈ P(K) satisfies

q > 1 0 ≤ D µ (q) ≤ D µ (q) ≤ s P D µ (q) = s u D µ (q) = 0 q ∈ (0, 1) 0 ≤ D µ (q) ≤ D µ (q) ≤ s D µ (q) = s D µ (q) = 0 q = 0 0 ≤ D µ (q) ≤ D µ (q) ≤ s D µ (q) = s D µ (q) = s sep q < 0 0 ≤ D µ (q) ≤ D µ (q) D µ (q) = +∞ D µ (q) = s sep .
The typical values of D µ (q), for q > 1, and of D µ (q), for q ≤ 0, are very interesting. Indeed, they did not take the worst possible values, what is rather atypical in analysis! From a technical point of view, these results force us to prove two inequalities instead of just one, since we cannot use the results of the second column. They also point out that the typical L q -dimensions of measures supported by K depend heavily both on the size and on the local structure of K, since they involve the local uniform upper box dimension and the box separation index of K.

As one can guess, the proof of Theorem 1.6 requires delicate constructions of measures as well as a careful examination of the local structure of a compact set. More surprizingly, it also involves elements of graph theory. It should be noted that the unusual notions of dimension used in Theorem 1.6 can be easily computed for natural compact sets arising in multifractal analysis: Cantor sets, self-similar compact sets, finite disjoint unions of these sets,...

We turn now to the L 1 -case. This is maybe the most important case. In the literature, the L 1 -dimensions are also known as the (upper and lower) information dimension or as the (upper and lower) entropy. From Theorem 1.6, we can get immediately the typical value of D µ (1). However, that of D µ (1) is unpredictable: it is not clear if it should be s u , like for q > 1, or s, like for q < 1. It turns out that neither s u nor s is convenient. In fact, the situation breaks down dramatically for the upper L 1 -dimension: in general, there is no typical value for D µ (1)! We cannot say more that D µ (1) belongs typically to some interval, and we shall give soon the optimal interval. Nevertheless, we need to introduce yet another couple of definitions.

Definition 1.7. Let K be a compact subset of R d . The convex upper box dimension of K is the real number dim B,conv (K) defined by

dim B,conv (K) = inf N ≥1 inf x 1 ,...,x N ∈K inf ρ>0 inf p i >0, i p i =1 lim sup r→0 i p i log P r K ∩ B(x i , ρ) -log r . The maximal convex upper box dimension of K is the real number dim B,conv,max (K) defined by dim B,conv,max (K) = sup y∈K,ρ>0 dim B,conv K ∩ B(y, ρ) .
It is clear from the definition that

dim B,loc,unif (K) ≤ dim B,conv (K) ≤ dim B,conv,max (K).
We shall see later that these inequalities can be strict.

Our main theorem on L 1 now reads:

Theorem 1.8. Let K be an infinite compact subset of R d . Then a typical measure µ ∈ P(K) satisfies

D µ (1) = 0 and D µ (1) ∈ [dim B,conv (K), dim B,conv,max (K)]. Moreover, if [a, b] is any interval such that a typical measure µ ∈ P(K) satisfies D µ (1) ∈ [a, b], then a ≤ dim B,conv (K) and b ≥ dim B,conv,max (K).
As before, even though the definition of the (maximal) convex upper box dimension is not very appealing, it can be easily computed for many compact sets, like Cantor sets, self-similar compact sets, finite disjoint unions of these sets... Here is an example to see how Theorem 1.8 reads on a very easy compact set. It points out that we cannot expect to get a typical value for the upper L 1 -dimension. This happens only for this value of q.

Example 1.9.

Let K = {0} ∪ [1, 2].
Then a typical measure µ ∈ P(K) satisfies D µ (1) ∈ [0, 1] and this interval is the best possible.

The paper is organized as follows. In Section 2, we introduce the tools which are needed throughout the paper. In Section 3,4,5, we prove Theorem 1.6, whereas Section 6 is devoted to the study of the upper L 1 -dimension. We conclude in Section 7 by remarks and open questions.

Preliminaries

2.1. The topology on P(K). Throughout this paper, P(K) will be endowed with the weak topology. It is well known (see for instance [START_REF] Parthasarathy | Probability measures on metric spaces, Probability and Mathematical Statistics[END_REF]) that this topology is completely metrizable by the Fortet-Mourier distance defined as follows. Let Lip(K) denote the family of Lipschitz functions f : K → R, with |f | ≤ 1 and Lip(f ) ≤ 1, where Lip(f ) denotes the Lipschitz constant of f . The metric L is defined by

L(µ, ν) = sup f ∈Lip(K)
f dµ -f dν for any µ, ν ∈ P(K). We endow P(K) with the metric L. In particular, for µ ∈ P(K) and δ > 0, B L (µ, δ) = {ν ∈ P(K); L(µ, ν) < δ} will stand for the ball with center at µ and radius equal to δ.

We shall use several times the following lemma.

Lemma 2.1. For any α ∈ (0, 1), for any β > 0, there exists δ > 0 such that, for any E a Borel subset of K, for any µ, ν ∈ P(K),

L(µ, ν) < δ =⇒ µ(E) ≤ ν E(α) + β,
where

E(α) = {x ∈ K; dist(x, E) < α}.
Proof. We set

f (t) =    α provided t ∈ E α -dist(x, E) provided 0 < dist(x, E) ≤ α 0 otherwise.
Then f is Lipschitz, with |f | ≤ 1 and Lip(f ) ≤ 1. Thus,

µ(E) ≤ 1 α f dµ ≤ 1 α f dν + δ ≤ ν E(α) + δ α .
Hence, it suffices to take δ = αβ.

Our first application of Lemma 2.1 is that a small perturbation of a finite measure µ does not change dramatically the value of I µ (r, q), provided we allow to change slightly the radius. Here is the statement that we can get for q > 1. F(K) denotes the set of probability measures with finite support in K.

Corollary 2.2. Let q > 1. There exists C q > 0 such that, for any µ ∈ F(K), for any r > 0, there exists δ > 0 such that, for any ν ∈ P(K) with L(µ, ν) < δ, I ν (r, q) ≤ C q I µ (2r, q) and I ν (2r, q) ≥ C -1 q I µ (r, q).

Proof. We begin by fixing a pair (t, η) with t ∈ (r, 2r) and η > 0 such that

[t -η, t + η] ∩ x -y ; x, y ∈ supp(µ) = ∅; ∀x, y ∈ supp(µ), x = y =⇒ x -y > 2η.
Observe that this choice of t and η guarantees that, for any x ∈ supp(µ) and any z ∈ B(x, η), then supp(µ) ∩ B(x, t) = supp(µ) ∩ B(z, t) so that µ B(x, t) = µ B(z, t) . Now, suppose that δ > 0 has been chosen so small that any ν ∈ P(K) with L(µ, ν) < δ satisfies

• for any x ∈ supp(µ), 1 2 µ({x}) = 1 2 µ B(x, η/2) ≤ ν B(x, η) ≤ 2µ B(x, 2η) = 2µ({x})
(this is possible by applying Lemma 2.1 with α = η/2 and β = inf x∈supp(µ) µ({x})). • for any x ∈ supp(µ), ν B(x, η) ≥ µ B(x, η/2) -I µ (2r, q) N ≥ µ({x}) -I µ (2r, q) N where N denotes the cardinal of the support of µ. What is important here is that, setting Y = x∈supp(µ) B(x, η), one gets

ν(Y ) ≥ 1 -I µ (2r, q).
• for any x ∈ supp(µ) and any z ∈ B(x, η),

ν B(z, r) ≤ 2µ B(z, t) = 2µ B(x, t) ν B(z, 2r) ≥ 1 2 µ B(z, t) = 1 2 µ B(x, t) .
Again, this is possible thanks to Lemma 2.1 and because µ has finite support. Hence, on the one hand, we get

I ν (r, q) = x∈supp(µ) B(x,η) ν B(z, r) q-1 dν(z) + Y c ν B(z, r) q-1 dν(z) ≤ 2 q x∈supp(µ) µ B(x, t) q-1 µ({x}) + ν(Y c )
≤ 2 q I µ (t, q) + I µ (2r, q) ≤ (2 q + 1)I µ (2r, q).

On the other hand, we also have

I ν (2r, q) ≥ x∈supp(µ) B(x,η) ν B(z, 2r) q-1 dν(z) ≥ 2 -q x∈supp(µ) µ B(x, t) q-1 µ({x}) ≥ 2 -q I µ (t, q) ≥ 2 -q I µ (r, q).
When q < 1, the situation is more difficult. Indeed, for an arbitrary close to µ measure ν ∈ P(K), ν B(x, r)) q-1 may be very large even if x / ∈ supp(µ). However, adding an assumption to avoid singularities, we are able to prove the following corollary.

Corollary 2.3. Let q < 1. There exists C q > 0 such that, for any µ ∈ F(K), for any r > 0 with µ B(x, r) > 0 for any x ∈ K, there exists δ > 0 such that, for any ν ∈ P(K) with L(µ, ν) < δ, I ν (2r, q) ≤ C q I µ (r, q) and I ν (r, q) ≥ C -1 q I µ (2r, q).

Proof. Let a = min x∈K µ(B(x, r)) > 0. a is positive since µ has finite support so that µ(B(x, r)) can only take a finite number of values. As before, let t ∈ (r, 2r) and let η > 0 be such that [t -η, t + η] ∩ x -y ; x, y ∈ supp(µ) = ∅; ∀x, y ∈ supp(µ), x = y =⇒ x -y > 2η. Then, for any x ∈ supp(µ) and any z ∈ B(x, η), one gets µ B(x, t) = µ B(z, t) . Now, provided δ > 0 is small enough, Lemma 2.1 tells us that, for any ν ∈ P(K) with

L(µ, ν) < δ, ∀z ∈ K, ν B(z, 2r) ≥ 1 2 µ B(z, t) ≥ 1 4 ν B(z, r) (recall that µ B(z, t) ≥ a > 0). Let F = K\ x∈supp(µ) B(x, η). Then I ν (2r, q) = x∈supp(µ) B(x,η) dν(z) ν B(z, 2r) 1-q + F dν(z) ν B(z, 2r) 1-q ≤ 2 1-q x∈supp(µ) B(x,η) dν(z) µ B(z, t) 1-q + 2 1-q F dν(z) µ B(z, t) 1-q ≤ 2 1-q x∈supp(µ) ν B(x, η) µ B(x, t) 1-q + 2 1-q a q-1 ν(F ).
We apply Lemma 2.1 again to observe that, provided δ is small enough, for any x ∈ supp(µ), ν B(x, η) ≤ 2µ B(x, 3η/2) = 2µ({x}) and that ν(F ) ≤ µ F (η/2) + ε = ε, where ε > 0 is arbitrary. Thus we conclude that I ν (2r, q) ≤ 2 2-q I µ (t, q) + 2 1-q a q-1 ε ≤ 2 3-q I µ (r, q) if ε > 0 is small enough. For the other inequality, we simply write

I ν (r, q) ≥ x∈supp µ B(x,η) dν(z) ν B(z, r) 1-q ≥ x∈supp µ 2 q-1 B(x,η) dν(z) µ B(x, t) 1-q ≥ x∈supp µ 2 q-1 ν B(x, η) µ B(x, t) 1-q . Now, we can choose δ > 0 to ensure that ν B(x, η) ≥ 2 -1 µ B(x, η/2) = 2 -1 µ {x} , so that I ν (r, q) ≥ 2 q-2 I µ (t, q) ≥ 2 q-2 I µ (2r, q).
Remark 2.4. The assumption µ B(x, r) > 0 for any x ∈ K is needed only to prove

I ν (2r, q) ≤ C q I µ (r, q).
Of course, there is a similar statement for q = 1. Nevertheless, we will need later a more precise result, because of the logarithm. We restrict ourselves to one inequality.

Corollary 2.5. Let ε > 0, r > 0 and µ ∈ F(K). There exists δ > 0 such that for any ν ∈ P(K) with L(µ, ν) < δ,

I ν (r, 1) ≤ log 2 + (1 -ε)I µ (2r, 1).
Proof. Again, let t ∈ (r, 2r) and let η > 0 be such that

[t -η, t + η] ∩ x -y ; x, y ∈ supp(µ) = ∅; ∀x, y ∈ supp(µ), x = y =⇒ x -y > 2η.
Then, for any x ∈ supp(µ) and any z ∈ B(x, η), one gets

µ B(x, t) = µ B(z, t) .
Let δ > 0 be such that, for any x ∈ supp(µ) and any z ∈ B(x, η), for any ν ∈ P(K) with

L(µ, ν) < δ, ν B(z, r) ≤ 2µ B(z, t) = 2µ B(x, t) ≤ 2µ B(x, 2r) , ν B(x, η) ≥ (1 -ε)µ B(x, η/2) = (1 -ε)µ({x}). Then, I ν (r, 1) ≤ x∈supp(µ) B(x,η) log ν B(z, r) dν(z) ≤ x∈supp(µ) log(2)ν B(x, η) + x∈supp(µ) log µ B(x, 2r) ν B(x, η) ≤ log 2 + (1 -ε) x∈supp(µ) log µ B(x, 2r) µ {x} ≤ log 2 + (1 -ε)I µ (2r, 1).
Another application of Lemma 2.1 is the following result on open subsets of P(K):

Lemma 2.6. (a) Let x ∈ K, a ∈ R and r > 0. Then {µ ∈ P(K); µ B(x, r) > a} is open. (b) Let E ⊂ K be such that there exists α > 0 with E(α) ∩ K = E. Then {µ ∈ P(K); µ(E) > 0} is open.
Proof. (a) If a does not belong to [0, 1), then the set is either empty or equal to P(K).

Otherwise, let µ ∈ P(K) be such that µ B(x, r) > a. One may find ε > 0 such that µ B(x, (1 -ε)r) > a. Thus the result follows from Lemma 2.1 applied with

E = B(x, (1 -ε)r), α = εr and β = µ B(x, (1 -ε)r) -a /2. (b)
The proof is similar (and even easier).

Finally, we will need that some subsets of P(K) are dense in P(K). We first recall a result which can be found e.g. in [Ols05, Lemma 2.2.4.].

Lemma 2.7. Let (x i ) i≥1 be a dense sequence of K. Let (µ n,i ) n≥1, 1≤i≤n be a sequence of P(K) such that, for any n ≥ 1 and any

1 ≤ i ≤ n, supp(µ n,i ) ⊂ K ∩ B(x i , 1/n). Then, for any m ≥ 1, n≥m n i=1 p i µ n,i ; p i ≥ 0, i p i = 1 is dense in P(K).
Since a compact set is separable, the previous lemma yields in particular that the set F(K) of probability measures on K with finite support is dense in P(K). Moreover, taking the p i in Q, we can always consider a sequence (µ n ) of F(K) which is dense in P(K).

We shall also need several times the following result.

Lemma 2.8. Let n ≥ 1 and let K 1 , . . . , K n be nonempty subsets of K. Then µ ∈ P(K); µ(K j ) > 0 for any j = 1, . . . , n is dense in P(K).

Proof. Let ν ∈ P(K), ε > 0 and for each j = 1, . . . , n, let x j ∈ K j . We set

µ = (1 -ε)ν + ε n n j=1 δ x j .
Then L(µ, ν) ≤ 2ε and µ(K j ) > 0 for any j = 1, . . . , n.

2.2. Graph theory. Surprizingly enough, our constructions of measures with prescribed properties need some results from graph theory. Let us first recall some terminology, which can be found e.g. in [START_REF] Diestel | Graph theory[END_REF]. Let G = (V, E) be a graph. We recall that two vertices v, w of E are adjacent or neighbour if vw is an edge of G. A path between two vertices v and w is a sequence of vertices v 0 = v, v 1 , . . . , v N = w such that v i v i+1 belongs to the set of edges E for any i ∈ {0, . . . , N -1}. We say that the graph is connected provided any two vertices of G can be linked by a path in G.

If U is a subset of V , the induced subgraph G(U ) is the graph whose set of vertices is U and whose set of edges is the subset of E containing all edges vw with v, w ∈ U .

Our first lemma is a well known result in graph theory. For convenience, we provide a proof.

Lemma 2.9. Let G = (V, E) be a connected graph. There exists a vertex v ∈ V such that G(V \{v}) remains connected.

Proof. Let [v 0 , . . . , v N ] be a path such that its vertices are pairwise different, and whose length is maximal in the set of such paths. Then G\{v 0 } is connected. Indeed, take any v, w ∈ V \{v 0 } and let [w 0 , . . . , w p ] be the shortest path from v = w 0 to w = w p in G. In particular, w i = v 0 for at most one i ∈ {1, . . . , p -1}. If for any i ∈ {1, . . . , p -1}, w i is not equal to v 0 , there is nothing to prove : the path stays already in G(V \{v 0 }). Thus, suppose that w i = v 0 for some i. If w i-1 or w i+1 did not belong to {v 1 , . . . , v N }, then we could add the edge w i-1 v 0 or w i+1 v 0 to the path [v 0 , . . . , v N ], with a new vertex. This would contradict the maximality of this path. Thus, w i-1 and w i+1 both belong to {v 1 , . . . , v N }, and we can replace in [w 0 , . . . , w p ] the subpath [w i-1 , w i , w i+1 ] by the corresponding subpath joining w i-1 to w i+1 using only vertices in {v 1 , . . . , v N }, and thus avoiding v 0 .

This lemma allows us to give weights on the vertices of a connected graph with particular properties.

Lemma 2.10. Let G = (V, E) be a connected graph, let ε > 0 and let ρ ≥ 1. There exist v 0 ∈ V and positive real numbers (ω v ) v∈V such that

• for any v ∈ V \{v 0 }, one can find a neighbour u of v such that ω v ≤ εω ρ u ; • ω v 0 > 1/2; • v∈V ω v = 1.
Proof. We proceed by induction on the number of vertices of G, the case where this number equals 1 or 2 being trivial. So, suppose that V contains n ≥ 3 elements and let v 1 be given by Lemma 2.9. The graph G(V \{v 1 }) remaining connected, we can apply the induction hypothesis with some ε 0 ∈ (0, ε) to the graph G(V \{v 1 }). We get positive numbers (θ v ) v∈V \{v 1 } and v 0 ∈ V \{v 1 }. Let α > 0 be very small and let

ω v = (1 -α)θ v if v = v 1 ω v 1 = α. Provided α > 0 is small enough, ω v 1 is much smaller that ω v , for v any neighbour of v 1 . Moreover, when v ∈ V \{v 0 , v 1 }, one can find another vertex u which is a neighbour of v in G(V \{v 1 }), in particular in G, such that θ v ≤ ε 0 θ ρ u . This leads to ω v ≤ ε 0 (1 -α) ρ-1 ω ρ u ≤ εω ρ u ,
provided α > 0 is small enough again. The property ω v 0 > 1/2 is also true, under the same restriction on α.

2.3.

Measures with prescribed properties. Our results will depend on the construction of probability measures on K having prescribed properties depending on the dimension of K. Of course, the choice of the definition of the dimension will determine the properties of the measure on K that we can expect. In this direction, the most famous result is the Frostman lemma (see [START_REF]Fractal geometry: Mathematical foundations and applications[END_REF]) which is based on the Hausdorff dimension.

Lemma 2.11. Let K be a nonempty compact subset of R d . Then, for every 0 ≤ t < dim H (K), there exists µ ∈ P(K) and constants C > 0, r 0 > 0 such that µ B(x, r) ≤ Cr t for all x ∈ K and 0 < r ≤ r 0 .

This lemma has a counterpart for the upper-box dimension, due to Tricot ([Tri82]).

Lemma 2.12. Let K be a nonempty compact subset of R d . Then, for every t > dim B (K), there exists µ ∈ P(K) and constants C > 0, r 0 > 0 such that µ B(x, r) ≥ Cr t for all x ∈ K and 0 < r ≤ r 0 .

One can also ask to weaken the assumption in the anti-Frostman lemma, by the use of the lower-box dimension instead of the upper-box dimension. This is possible, even if there is a price to pay: the conclusion is also weaker, since it is only obtained for one value of r, arbitrarily small. Lemma 2.13. Let K be a nonempty compact subset of R d . Then, for every t > dim B (K), for every α > 0, there exists µ ∈ P(K) and r ∈ (0, α) such that µ B(x, r) ≥ 2 -t r t for all x ∈ K.

Proof. One can find r ∈ (0, α) such that P r/2 (K) ≤ 2 t r -t . We set P = P r/2 (K) and let x 1 , . . . , x P ∈ K be centers of disjoint balls of radius r/2. We define

µ = 1 P P j=1 δ x j .
Then, for any x ∈ K, one can find i ∈ {1, . . . , P } such that x i ∈ B(x, r) (otherwise B(x, r/2) would not intersect any B(x j , r/2)). Thus

µ B(x, r) ≥ 1 P ≥ 2 -t r t .
We can, like in Frostman lemma, obtain measures with an upper estimate of the size of balls using the upper-box dimension only. However, here too, we have to work with a fixed radius.

Lemma 2.14. Let K be a nonempty compact subset of R d and let 0 ≤ t < dim B (K).

Then, for any α > 0, one can find r ∈ (0, α) and µ ∈ P(K) such that, for any x ∈ K, µ B(x, r) ≤ r t .

Proof. The proof is similar to that of Lemma 2.13. By definition of the upper-box dimension, one can find r ∈ (0, α) such that r -t ≤ P r (K).

Let P = P r (K) and let x 1 , . . . , x P ∈ K be the centers of disjoint balls with radius r. Then the measure

µ = 1 P P j=1 δ x j
is convenient. Indeed, for any x ∈ K, the ball B(x, r) contains at most one of the x j , so that µ B(x, r) ≤ P -1 ≤ r t .

We finally use the box separation index. This is much more delicate, and we work directly with I µ (r, q) instead of µ B(x, r) .

Lemma 2.15. Let K be a nonempty compact subset of R d , let n ≥ 1 and let q ≤ 0. There exists ν n ∈ P(K) with finite support such that, for any µ = N i=1 p i δ x i ∈ P(K) with finite support, for any θ ∈ (0, 1), setting ν = (1 -θ)µ + θν n , then

I ν (3.2 -n , q) ≤ N (1 -θ) q a q + θ q + θ q 2 q C n (K) 1-q ,
where a = min i (p i ). Moreover, ν B(x, 3.2 -n ) > 0 for any x ∈ K.

Proof. We use the notations of the introduction. We decompose K n into its connected components C n,1 (K), . . . , C n,Cn(K) (K). For any j = 1, . . . , C n (K), we denote by C i j , i = 1, . . . , κ j , the half-closed dyadic cubes of size 2 -n appearing in C j . By definition, C i j ∩ K is never empty, and we can fix y i j a point in C i j ∩ K. We endow each C n,j with a graph structure. Precisely, we say that two cubes C i j and C l j are adjacent provided their closure do intersect. The graph C n,j is then a connected graph. Moreover, it is easy to check that if C i j and C l j are adjacent, then for any x ∈ C i j , C l j is contained in B(x, 3.2 -n ) (at this part of the proof, we find convenient to use the ℓ ∞ -norm on R d , and to suppose that B(x, r) is the ball corresponding to this norm. Working with a different norm would only replace here 3 by a constant depending on d. This would not change at all the content of our main theorem.) Let ε > 0 be such that ε(κ

1 + • • • + κ Cn(K) ) ≤ C n (K) q .
We apply Lemma 2.10 to each connected graph C n,j with ρ = 1 -q. This gives weights ω i j , i = 1, . . . , κ j . Renumbering the cubes if necessary, we can always assume that, for any i in 1, . . . , κ j -1, there exists l = i such that the cubes C i j and C l j are adjacent, and ω i j ≤ ε(ω l j ) 1-q (that is we suppose that the vertex v 0 in Lemma 2.10 is C

κ j j .)
We finally set

λ j = κ j i=1 ω i j δ y i j ν n = Cn(K) j=1 1 C n (K) λ j .
Let now µ and ν as in the assumptions of the lemma. We first observe that for any

x ∈ K, ν B(x, 3.2 -n ) > 0. Indeed, any x ∈ K belongs to some C i j and ν B(x, 3.2 -n ) ≥ ν({y i j }) > 0. Let us now control I ν (3.2 -n , q): I ν (3.2 -n , q) = Cn(K) j=1 κ j i=1 C i j ∩K dν(x) ν B(x, 3.2 -n ) .
To estimate the integral, we distinguish three different cases:

(a) There exists (at least) one point in the support of µ which lies in C i j ∩ K. Then we just use that, for any

x ∈ C i j ∩ K, ν B(x, 3.2 -n ) ≥ ν(C i j ∩ K) ≥ (1 -θ)a, so that C i j ∩K dν(x) ν B(x, 3.2 -n ) 1-q ≤ ν(C i j ∩ K) q ≤ (1 -θ) q a q .
Observe that this estimate concerns at most N cubes. (b) supp(µ) ∩ C i j is empty, and i ≤ κ j -1. Let C l j be a neighbour of C i j such that ω i j ≤ ε(ω l j ) 1-q . For any x ∈ C i j ∩ K, we already observed that B(x, 3.2 -n ) contains C l j ∩ K, so that ν B(x, 3.2 -n ) ≥ ν(C l j ∩ K) ≥ θ Cn(K) ω l j . Thus,

C i j ∩K dν(x) ν B(x, 3.2 -n ) 1-q ≤ ν(C i j ∩ K) θ 1-q (ω l j ) 1-q C n (K) q-1 ≤ θ q ω i j (ω l j ) 1-q C n (K) q ≤ θ q ε C n (K) q .
(c) For the last cubes, namely supp(µ) ∩ C i j is empty and i = κ j , we argue as in case (a), except that now the mass of the cube C i j ∩ K is given by ν n :

C i j ∩K dν(x) ν B(x, 3.2 -n ) 1-q ≤ ν(C i j ∩ K) q ≤ θ q C n (K) q (ω κ j j ) q ≤ θ 2 q C n (K) -q .
Putting this together, and remembering the value of ε, we get that

I ν (3.2 -n , q) ≤ N (1 -θ) q a q + Cn(K) j=1 κ j -1 i=1 θ q ε C n (K) q + Cn(K) j=1 θ 2 q C n (K) -q ≤ N (1 -θ) q a q + θ q + θ q 2 q C n (K) 1-q . (1)
2.4. Results true for all measures. The results true for all measures which are quoted in Theorem 1.6 are not new. All of them can be found in [START_REF] Olsen | Typical L q -dimensions of measures[END_REF] or in [START_REF]Typical upper L q -dimensions of measures for q ∈ [0, 1[END_REF], except D µ (q) ≤ s P for q ≥ 1. But this inequality can be found in [START_REF] Cutler | Strong and weak duality principles for fractal dimension in euclidean space[END_REF] for q = 1, and the remaining cases follow easily from the next lemma, which is an easy application of Jensen inequality.

Lemma 2.16. Let q 1 ≤ q 2 be two real numbers and let µ ∈ P(K). Then D µ (q 1 ) ≥ D µ (q 2 ) and D µ (q 1 ) ≥ D µ (q 2 ).

3. Typical lower L q -dimensions, q ≤ 0 Let K be an infinite compact subset of R d . In this section, we prove that a typical measure µ ∈ P(K) satisfies D µ (q) = s sep for any q ≤ 0. We first observe that we can work with a fixed value of q. Indeed, suppose that we are able to prove that, for any q ≤ 0, the set M(q) = µ ∈ P(K); D µ (q) = s sep contains a dense G δ -set. Then consider (q n ) a dense sequence in (-∞, 0],with q 0 = 0 and let

M = n M(q n )
which itself contains a dense G δ -set. Let µ ∈ M and let q ∈ (-∞, 0]. One can find two subsequences (q φ(n) ) and (q ψ(n) ) such that q φ(n) ≤ q ≤ q ψ(n) . Since D µ (q ψ(n) ) ≤ D µ (q) ≤ D µ (q φ(n) ), taking the limit, we get D µ (q) = s sep . This trick works in any case. In particular, in this section, from now on, we fix q ≤ 0.

3.1. The lower estimate. We first prove that a typical measure µ ∈ P(K) satisfies D µ (q) ≥ s sep . Let n ≥ 1, and recall that C n,1 , . . . , C n,Cn(K) denote the connected components of K n , the union of the dyadic cubes of size 2 -n intersecting K. We also define

A n,j = C∈C n,j C ∩ K.
It is important to notice that dist(A n,j , A n,k ) ≥ 2 -n provided j = k, and that K is the (disjoint) union of the A n,j . In particular, A n,j (2 -n-1 ) ∩ K = A n,j . We finally set

R n = µ ∈ P(K); ∀j ∈ {1, . . . , C n (K)}, µ(A n,j ) > 0 R = n≥1 R n ,
and we claim that R is the dense G δ -set we are looking for. Indeed, each R n is dense by Lemma 2.8 and open by Lemma 2.6. Moreover, any µ in R has its lower L q -dimension greater that or equal to s sep . Indeed, let r > 0 be small, and let n ≥ 1 be such that 2 -(n+1) < r ≤ 2 -n . We know that

I µ (r, q) = Cn(K) j=1 A n,j dµ(x) µ B(x, r) 1-q ≥ Cn(K) j=1
A n,j dµ(x) µ(A n,j ) 1-q , because the A n,j are well separated, so that A n,j ⊃ B(x, r) ∩ K for any x ∈ A n,j and any r ≤ 2 -n . Thus we find

I µ (r, q) ≥ Cn(K) j=1 µ(A n,j ) q .

Now, since

Cn(K) j=1

µ(A n,j ) = 1, it is well known that this quantity is minimal when µ(A n,j ) = 1 Cn(K) for any j = 1, . . . , C n (K). This shows that

I µ (r, q) ≥ C n (K) 1-q .
Taking the logarithm, dividing by (q -1) log r, which is positive, and taking the liminf, we get the aforementioned lower bound for D µ (q).

3.2. The upper estimate. We now prove that a typical measure µ ∈ P(K) satisfies D µ (q) ≤ s sep . It is sufficient to prove that, for any t > s sep , a typical measure µ ∈ P(K) satisfies D µ (q) ≤ t.

Let µ ∈ F(K), µ = N i=1 p i δ x i , a = min i (p i ) > 0 and let l ≥ 1. By definition of the box separation index, one can find n ≥ l very large such that

N (1 -N -1 ) q a q + N -q + 2 -q N -q C n (K) 1-q ≤ 2 nt(1-q) .
Let ν n be the measure given by Lemma 2.15 and let

ν µ,l = 1 - 1 N µ + 1 N ν n .
We can apply Corollary 2.3 to the measure ν µ,l and to r = 3.2 -n to get some positive δ µ,l such that, for any ν with L(ν, ν µ,l ) < δ µ,l ,

I ν (6.2 -n , q) ≤ C q I ν µ,l (3.2 -n , q) ≤ C q N (1 -N -1 ) q a q + N -q + 2 -q N -q C n (K) 1-q ≤ C q 2 nt(1-q) .
We finally set

R = l≥1 µ∈F (K) B L (ν µ,l , δ µ,l ).
For any fixed l ≥ 1, {ν µ,l ; µ ∈ F(K)} is dense in P(K). Indeed, let λ ∈ P(K) and let ε > 0. Since K is infinite, there exists µ ∈ F(K) such that L(µ, λ) < ε/2 and the cardinal number of the support of µ, denoted by N , satisfies N > 4/ε. Now,

L(ν µ,l , λ) < ε 2 + 2 N < ε.
Thus, R is a dense G δ -set. Moreover, for any ν ∈ R, there exist arbitrarily large integers n such that

I ν (6.2 -n , q) ≤ C q 2 nt(1-q) .
Taking the logarithm and dividing by (q -1) log(6.2 -n ), this shows that D ν (q) ≤ t.

3.3. box separation index of self-similar compact sets. We end up this section by computing the box separation index of a self-similar compact set. Fix an integer N ≥ 2 and let S i : R d → R d , i = 1, . . . , N be contracting similarities with respective ratio r i . Let K be the self-similar compact set associated to these similarities, namely K is the unique nonempty compact subset of R d satisfying

K = i S i (K).
We say that (S 1 , . . . , S N ) satisfies the open set condition if there exists an open nonempty and bounded subset U of R d with S i U ⊂ U and S i U ∩ S j U = ∅ for all i, j with i = j. We also say that (S 1 , . . . , S N ) satisfies the strong separation condition if S i K ∩ S j K = ∅ for all i = j.

When (S 1 , . . . , S N ) satisfies the open set condition, the Hausdorff dimension and the box dimension of K are well known. Define β as the unique solution of N i=1 r β i = 1. Then dim H (K) = dim B (K) = dim B (K) = β (all details can be found in [START_REF]Fractal geometry: Mathematical foundations and applications[END_REF]). Under a slightly stronger assumption, this is also the value of the box separation index.

Theorem 3.1. Let (S 1 , . . . , S N ) be contracting similarities of R d with ratios (r 1 , . . . , r N ) and let K be the associated self-similar compact set. If (S 1 , . . . , S N ) satisfies the strong separation condition, then bsi

(K) = dim H (K) = dim B (K) = dim B (K) = β
where β is the unique solution of N i=1 r β i = 1.

Proof. Since bsi(K) ≤ dim B (K), we just need to prove that lim inf n log Cn(K) n log 2 ≥ β. For a word i = i 1 . . . i p with entries in {1, . . . , N }, define

S i = S i 1 • • • • • S ip , r i = r i 1 . . . r ip , ρ i = r β i .
Since the strong separation condition is satisfied, there exists m ≥ 0 such that dist S i (K), S j (K) ≥ 2 -m for any i = j.

For r > 0, denote by I(r) the set of words i such that r i 1 . . . r ip ≤ r and r i 1 . . . r i p-1 > r.

Such a word is called minimal with respect to r. The key points are the following facts which can be found e.g. in the proof of [Fal03, Theorem 9.3]:

• For any r > 0, i∈I(r) ρ i = 1;

• For any r > 0, K ⊂ i∈I(r) S i (K). Now, by definition of I(r), ρ i ≤ r β for any i ∈ I(r), so that card I(r) ≥ r -β .

Pick now i = j in I(r). By minimality of i and j, i is not the beginning of j, and conversely. Let k be the smallest index with i k = j k and let u be the word u

= i 1 . . . i k-1 . Then dist S i (K), S j (K) ≥ dist S u S i k (K), S u S j k (K) ≥ r i 1 . . . r i k-1 dist S i k (K), S j k (K) ≥ 2 -m r.
We specialize this inequality for r = 2 -n . In each S i (K), i ∈ I(2 -n ), one can find a point belonging to K. Furthermore, the distance between S i (K) and S j (K) is greater than 2 -(n+m) when i = j ∈ I(2 -n ). Thus, the closure of the dyadic cubes of size 2 -(n+m+2) intersecting S i (K) and the closure of the dyadic cubes of size 2 -(n+m+2) intersecting S j (K), i = j ∈ I(2 -n ), are disjoint. Hence,

C n+m+2 (K) ≥ card I(2 -n ) ≥ 2 -nβ .
Taking the logarithm and the liminf, this yields bsi(K) ≥ β.

Remark 3.2. The example of K = [0, 1] shows that we cannot only assume the open set condition.

Local uniform upper box dimension and typical upper L q -dimension

In this section, we study the link between the local uniform upper box dimension of the compact set K and the typical upper L q -dimension, q > 1, of the probability measures on K. We also show that the local uniform upper box dimension does not coincide with the local upper box or the local lower box dimensions.

From now on, we fix q > 1 and set s u = dim B,loc,unif (K).

4.1. The lower estimate. Let t < s u . One intends to show that D µ (q) ≥ t for a typical measure µ ∈ P(K). Let (x i ) i≥1 be a dense sequence in K and let n ≥ 1. By definition of s u , one may find r n < 1/n such that, for any i = 1, . . . , n,

P rn K ∩ B(x i , 1/n) ≥ r -t n .
Arguing like in the proof of Lemma 2.14, we can construct for each n ≥ 1 and each i ≤ n a measure µ n,i ∈ P(K) such that supp(µ n,i ) ⊂ B(x i , 1/n) and, for any x ∈ K, µ n,i B(x, r n ) ≤ r t n . Let also δ n > 0 be given by Lemma 2.1 for α = r n /2 and β = r t n . We finally set

Λ n = n i=1 p i µ n,i ; p i ≥ 0, n i=1 p i = 1 R n = µ∈Λn B L (µ, δ n ) R = m≥1 n≥m R n .
By Lemma 2.7, for any m ≥ 1, n≥m R n is dense, so that R is a dense G δ -subset of P(K). Pick now ν ∈ R. There exists an arbitrarily large integer n and µ ∈ Λ n such that L(µ, ν) < δ n . Now, µ satisfies, for any

x ∈ K, µ B(x, r n ) = n i=1 p i µ n,i B(x, r n ) ≤ r t n .
Taking into account the value of δ n , this yields ν B(x, r n /2) ≤ 2r t n . Integrating this inequality, we get I ν (r n /2, q) ≤ 2 q-1 r t(q-1) n .

Since r n can be taken arbitrarily small, this implies D ν (q) ≥ t. 4.2. upper estimate. Let t > s u . Our aim is to show that, generically, D µ (q) ≤ t. By definition of the local uniform upper box dimension, one can find x 1 , . . . , x n ∈ K, all different, r 0 > 0, with 4r 0 < min i =j x i -x j and α > 0, such that, for any r ∈ (0, α), one may find i ∈ {1, . . . , n} with

log N r K ∩ B(x i , r 0 ) -log r ≤ t.
The crucial point here is a result which appears in the proof of [Ols05, Lemma 2.3.1.]. It is based on Jensen's inequality.

Lemma 4.1. Let µ ∈ P(K), let E be a Borel subset of K with µ(E) > 0. Then, for any r > 0,

I µ (2r, q) ≥ µ(E) q N r (E) q-1 .
We then set R = µ ∈ P(K); ∀i ∈ {1, . . . , n}, µ B(x i , r 0 ) > 0 . The set R is dense (Lemma 2.8) and open (Lemma 2.6). Moreover, for any µ ∈ R and any r > 0,

I µ (2r, q) ≥ sup i=1,...,n µ B(x i , r 0 ) q N r K ∩ B(x i , r 0 ) q-1 ≥ C inf i=1,...,n N r K ∩ B(x i , r 0 ) q-1 ,
where C = inf i=1,...,n µ B(x i , r 0 ) q . Taking the logarithm, we find

log I µ (2r, q) ≥ log C -(q -1) inf i=1,...,n log N r K ∩ B(x i , r 0 ) .
Now, for any r in (0, α), this becomes log I µ (2r, q) ≥ log C + t(q -1) log r.

We now divide this inequality by (q -1) log r (which is negative) and we take the limsup to obtain that D µ (q) ≤ t.

4.3.

Comparison of three notions of dimensions. We now show that the local uniform upper box dimension is not always equal to the (local) lower box dimension or to the (local) upper box dimension. For simplicity, we set

s + = inf x∈K dim B,loc (x, K) s -= inf x∈K dim B,loc (x, K).
That s u > s -for some compact sets is easy: it suffices to take a Cantor set K for which dim B (K) < dim B (K). The uniformity in the construction of the Cantor set ensures that

s -= dim B (K) and s u = s + = dim B (K)
(see [START_REF] Tricot | Two definitions of fractional dimension[END_REF] for details). To prove that it is possible that s u < s + , we also use Cantor sets. Let (n k ) be a sequence of integers increasing to +∞ with n 0 = 1 and n k+1 > 5n k . We define two sequences (α n ) and (β n ) by α 0 = β 0 = 1 and

α n+1 =        27 provided n ∈ [n k , 2n k ) 3 provided n ∈ [2n k , 3n k ) 9 otherwise β n+1 =        27 provided n ∈ [3n k , 4n k ) 3 provided n ∈ [4n k , 5n k ) 9 otherwise.
Define E (resp. F ) a Cantor subset of [0, 1] (resp. of [2, 3]) as follows :

E = n E n (resp. F = n F n )
where at each step we divide each subinterval of E n (resp. F n ) into α n+1 (resp. β n+1 ) intervals of size 100 -(n+1) . Thus E n (resp.

F n ) consists of α 1 × • • • × α n (resp. β 1 × • • • × β n ) intervals of size 100 -n .We finally set K = E ∪ F . A key point in the construction is that, for each n, min(α 1 . . . α n , β 1 . . . β n ) = 9 n .
Thus we need at most 9 n intervals of size 100 -n to cover either E or F . On the contrary, when we look separately at E or at F , we need for certain values of n more intervals.

Let us proceed with the details. By uniformity of the construction of each Cantor set, it is not hard to show that On the contrary, we shall see that for this compact set K, s u ≤ 2 log 3 log 100 (actually, s u is equal to 2 log 3 log 100 ). Indeed, it is enough to show that lim sup

inf x∈K dim B,loc (x, K) = inf dim B (E), dim B (F ) .
r→0 inf log N r (E), log N r (F ) -log r ≤ 2 log 3 log 100 .
This follows easily from lim sup n→+∞ log 9 n n log 100 = 2 log 3 log 100 .

Remark 4.2. The local uniform upper box dimension can also be easily computed for a regular compact set. We recall that a compact set

K ⊂ R d with dim H (K) = s is called Ahlfors regular if there are positive constants c 1 , c 2 , r 0 > 0 such that c 1 (2r) s ≤ H s K ∩ B(x, r) ≤ c 2 (2r) s
for all x ∈ K and all 0 < r < r 0 . For a Ahlfors-regular compact set, it is easy (and classical) to check that

inf x∈K dim B,loc (x, K) = dim B,loc,unif (K) = dim H (K) = s.
This happens in particular if K is a self-similar compact set satisfying the open set condition.

5. L q -dimensions, the remaining cases, q = 1 In this section, we turn to the remaining cases, for q = 1. More precisely, we prove that a typical measure µ ∈ P(K) satisfies

• D µ (q) = dim B (K) provided q ∈ [0, 1); • D µ (q) = +∞ provided q < 0; • D µ (q) = 0 provided q ∈ (0, 1).
As previously, we can work with a fixed q ∈ R.

5.1. Typical upper L q -dimension, q ∈ [0, 1). In [START_REF]Typical upper L q -dimensions of measures for q ∈ [0, 1[END_REF], it is proved that any measure µ ∈ P(K) satisfies D µ (q) ≤ s where s = dim B (K). So, since the result is trivial if dim B (K) = 0, we may assume that s is positive, and we have just to prove that, given any t ∈ (0, s), a typical µ ∈ P(K) satisfies D µ (q) ≥ t.

Let (µ n ) be a sequence of F(K) which is dense in P(K). Write µ n = N i=1 p i δ x i , where the x i are all different and each p i is nonzero. Let α n > 0 be such that

α n ≤ 1 n , N α t n ≤ 1 2 and 4α n < min i =j x i -x j .
For these values of t and α n , Lemma 2.14 gives us a real number r n ∈ (0, α n ) and a measure m n ∈ P(K) such that, for any x ∈ K, m n B(x, r n ) ≤ r t n . We then set

ε n = 1 -log r n , ν n = (1 -ε n )µ n + ε n m n and Y n = N i=1 B(x i , r n ).
We first observe that

ν n (Y n ) ≤ 1 -ε n + ε n N i=1 m n B(x i , r n ) ≤ 1 -ε n + ε n N r t n ≤ 1 - ε n 2 . Moreover, for any x / ∈ Y n , ν n B(x, r n ) ≤ ε n r t n , so that, I νn (r n , q) ≥ Y c n dν n (x) ν n B(x, r n ) 1-q ≥ ν n (Y c n )ε q-1 n r t(q-1) n ≥ 1 2 ε q n r t(q-1) n
Now, Corollary 2.3 (see also the remark following it) gives us a real number δ n > 0 such that, for any ν ∈ P(K) satisfying L(ν, ν n ) < δ n , one has

I ν (r n /2, q) ≥ 1 4 ε q n r t(q-1) n .
Taking the logarithm and dividing by (q -1) log r n , which is positive, we get

log I ν (r n /2, q) (q -1) log(r n ) ≥ C 1 + C 2 log(-log(r n )) log r n + t.
Finally, we observe that since (ε n ) is going to zero, (ν n ) keeps dense in P(K). We then consider the dense

G δ -set R = m≥0 n≥m B L (ν n , δ n ).
The work done before implies immediately that any ν ∈ R satisfies D ν (q) ≥ t.

5.2. Typical upper L q -dimension, q < 0. Let (µ n ) be a sequence in F(K) which is dense in P(K). For any n ∈ N, let m n = δ yn where y n does not belong to supp(µ n ). Let (r n ) be a sequence decreasing to zero such that 2r n < dist(y n , supp(µ n )). We set

ε n = r n n and ν n = (1 -ε n )µ n + ε n m n .
Observe that (ν n ) remains dense in P(K). Moreover, the choice of r n ensures that

I νn (r n , q) ≥ ν n {y n })ν n B(y n , r n ) q-1 = ν n {y n }) q = r -nq n .
Corollary 2.3 gives us a real number δ n > 0 such that any ν ∈ P(K) satisfying L(ν, ν n ) < δ n also verifies

I ν (r n /2, q) ≥ C q r -nq n . (2) 
We then consider the dense G δ -set

R = m≥0 n≥m B L (ν n , δ n ).
Picking any ν ∈ R, we can find n as large as we want and the corresponding r n as small as we want such that (2) holds true. Dividing by (q -1) log r n , which is positive, and taking the limsup, this yields D ν (q) = +∞, and this holds for a typical ν ∈ P(K). 5.3. Typical lower L q -dimensions, q ∈ (0, 1). We begin by applying the anti-Frostman lemma 2.12 to get a measure m ∈ P(K) and some C, r 0 > 0 such that m B(x, r) ≥ Cr t for all x ∈ K and all 0 < r ≤ r 0 , where t > dim B (K). Let (µ n ) be a sequence of F(K) which is dense in P(K). We write µ n = N i=1 p i δ x i and we also set

r n = min 1 n , min i (p i ) n(1-q) , ε n = r t(1-q)/q n and ν n = (1 -ε n )µ n + ε n m.
Observe that (ε n ) goes to zero, so that (ν n ) remains dense in P(K). Let also

Y n = N i=1 B(x i , r n ). It is easy to check that • ∀x ∈ Y n , ν n B(x, r n ) ≥ min i (p i )/2; • ∀x / ∈ Y n , ν n B(x, r n ) ≥ Cε n r t n . Thus, one obtains I νn (r n , q) = Yn dν n (x) ν n B(x, r n ) 1-q + Y c n dν n (x) ν n B(x, r n ) 1-q ≤ C min(p i ) q-1 + ε q n r -t(1-q) n .
(in this proof, the letter C denotes a positive real number which may change from line to line, remaining always independent of n). The values that we impose on r n and ε n ensure that

I νn (r n , q) ≤ C 1 r 1/n n + 1 .
Now, 2.3 gives us some δ n > 0 such that any ν ∈ P(K) with L(ν, ν n ) < δ n satisfies

I νn (2r n , q) ≤ C 1 r 1/n n + 1 .
It is now routine to prove that

R = m≥0 n≥m B L (ν n , δ n )
is the dense G δ -set we are looking for to prove that, typically, D µ (q) = 0 when q ∈ (0, 1).

Typical L 1 -dimension

We now turn to the L 1 -dimensions. Lemma 2.16 yields that, for a typical measure µ ∈ P(K),

0 ≤ D µ (1) ≤ D µ (1/2) = 0 and s u ≤ D µ (2) ≤ D µ (1) ≤ D µ (1/2) = s.
We now prove the nontrivial part of Theorem 1.8. We shall need several times the following analog of Lemma 4.1.

Lemma 6.1. Let K be a compact subset of R d , let A ⊂ K, let µ ∈ P(K) and let r > 0.

Then A log µ B(x, 2r) dµ(x) ≥ -µ A(r) log N r (A) -e -1 .
Proof. We follow [START_REF]Typical Rényi dimensions of measures. The cases: q = 1 and q = ∞[END_REF]. For brevity, write N = N r (A). Let x 1 , . . . , x N K be such that A ⊂ N i=1 B(x i , r). Put E 1 = B(x 1 , r) and E i = B(x i , r)\ i-1 j=1 B(x j , r) for i = 2, . . . , N . Since for any x ∈ E i , E i ⊂ B(x, 2r), we may write

A log µ B(x, 2r) dµ(x) = i A∩E i log µ B(x, 2r) dµ(x) ≥ i A∩E i log µ(E i ∩ K) dµ(x) ≥ i µ(E i ∩ K) log µ(E i ∩ K) .
Now, we apply Jensen's inequality to the convex function φ : (0, +∞) → R, t → t log t. Observing that N i=1 E i ∩ K ⊂ A(r) and that φ is bounded from below by e -1 , we get

A log µ B(x, 2r) dµ(x) ≥ N N i=1 1 N φ µ(E i ∩ K) ≥ N φ i 1 N µ(E i ∩ K) ≥ φ µ i E i ∩ K -µ i E i ∩ K log N ≥ -e -1 -µ A(r) log N.
Let ≥ 1 and let n ≤ N . By definition of s max conv , we know that we may find an integer M n,N > 0, elements x 1 n , . . . , x

M n,N n contained in B(y n , ρ n ), a real number δ n,N ∈ (0, ρ N ) and real numbers p 1 n , . . . , p

M n,N n in (0, 1) with i p i n = 1 satisfying i p i n log N r K ∩ B(x i n , δ n,N ) -log r ≤ t 0
provided r is small enough. Reducing δ n,N if necessary, we can always assume that the balls B(x i n , 2δ n,N ), for i = 1, . . . , M n,N , are pairwise disjoint and that they are contained in B(y n , ρ N ). Let also Q N be defined by Q N = (q 1 , . . . , q N ) ∈ (0, 1);

i q i = 1 .
For any q = (q 1 , . . . , q N ) in Q N , we also fix ε N,q ∈ (0, 1) satisfying (d + 1)ε N,q ≤ ηt 0 ε N,q (1 -p i n q n ) ≤ ηp i n q n for any n = 1, . . . , N and any i = 1, . . . , M n,N . We finally set, for N ≥ 1 and q ∈ Q N ,

U N,q = µ ∈ P(K) ; ∀n = 1, . . . , N, ∀i = 1, . . . , M n,N , µ B(x i n , δ n,N /2) > (1 -ε N,q )p i n q n and µ B(y n , ρ N ) > (1 -ε N,q )q n .
Each U N,q is open by Lemma 2.6 and N,q U N,q is dense by Lemma 2.7. Let us show that any µ ∈ U N,q satisfies D µ (1) ≤ t. We set

Y N = K\ N n=1 M n,N i=1 B(x i n , δ n,N )
and we apply Lemma 6.1 to each B(x i n , δ n,N ) and to Y N . Taking into account that we have a partition of K, we thus obtain

I µ (2r, 1) ≥ - N n=1 M n,N i=1 µ B(x i n , δ n,N + r) log N r K ∩ B(x i n , δ n,N ) -µ Y N (r) log N r (Y N ) + C µ ,
where C µ does not depend on r. We first look at the last term. Provided r is small enough,

Y N (r) ⊂ K\ N n=1 M n,N i=1 B(x i n , δ n,N /2) so that µ Y N (r) ≤ 1 - n i (1 -ε N,q )p i n q n ≤ ε N,q .
On the other hand, since Y N is contained in R d , which has dimension d, we know that log N r (Y N ) ≤ -(d + 1) log r provided r is small enough. Thus, taking into account the value of ε N,q , -µ Y N (r) log N r (Y N ) ≥ ηt 0 log r.

The analysis of the first term is slightly more delicate. We first observe that, provided r is small enough,

µ B(x i n , δ n,N + r) ≤ µ B(x i n , 2δ n,N ) ≤ µ B(y n , ρ N ) - j =i µ B(x j n , δ n,N ) ≤ 1 - m =n µ B(y m , ρ N ) - j =i (1 -ε N,q )p j n q n ≤ 1 -(1 -ε N,q ) m =n q m -(1 -ε N,q )(1 -p i n )q n ≤ 1 -(1 -ε N,q )(1 -q n ) -(1 -ε N,q )(1 -p i n )q n ≤ p i n q n + ε N,q (1 -p i n q n ) ≤ (1 + η)p i n q n . Thus, I µ (2r, 1) ≥ -(1 + η) n q n i p i n log N r K ∩ B(x i n , δ n,N ) + ηt 0 log r + C µ ≥ (1 + 2η)t 0 log r + C µ ,
provided again that r is small enough. Dividing by log r and taking the limsup, we find D µ (1) ≤ (1 + 2η)t 0 ≤ t.

6.3. Optimality of the lower bound. Suppose that there exists t > s conv such that R = µ ∈ P(K); D µ (1) ≥ t is residual. We shall arrive at a contradiction. The argument follows rather closely that of the previous subsection. We fix t 0 ∈ (s conv , t) and η > 0 such that (1 + 2η)t 0 < t. By definition of s conv , one may find x 1 , . . . , x N ∈ K, ρ > 0 with 4ρ < min( x i -x j ; i = j) and p 1 , . . . , p N > 0 with i p i = 1 such that any r > 0 sufficiently small verifies

N i=1 p i log N r K ∩ B(x i , ρ) ≤ (-log r)t 0 .
Now, let ε > 0 satisfying the following conditions:

(d + 1)ε ≤ ηt 0 ε ≤ η p i 1-p i for any i = 1, . . . , N. Let finally U = N i=1 µ ∈ P(K); µ B(x i , ρ/2) > (1 -ε)p i .
U open and nonempty and one can pick µ ∈ U ∩ R. We set Y = K\ N i=1 B(x i , ρ) and we apply Lemma 6.1 to get

I µ (2r, 1) ≥ - N i=1 µ B(x i , ρ + r) log N r K ∩ B(x i , ρ) -µ Y (r) log N r (Y ) + C µ ≥ - N i=1 µ B(x i , 2ρ) log N r K ∩ B(x i , ρ) -µ Y (ρ/2) log N r (Y ) + C µ provided r < ρ/2. Now we observe that µ B(x i , 2ρ) ≤ 1 - j =i µ B(x j , ρ) ≤ 1 - j =i p j (1 -ε) ≤ p i + ε(1 -p i ) ≤ (1 + η)p i .
In the same vein, we also get

µ Y (ρ/2) ≤ 1 - j µ B(x j , ρ/2) ≤ ε, whereas, provided r is small enough, log N r (Y ) ≤ -(d + 1) log r.
Coming back to I µ (2r, 1) and summarizing the previous results, we conclude that

I µ (2r, 1) ≥ - N i=1 (1 + η)p i log N r K ∩ B(x i , ρ) + (d + 1)ε log r + C µ ≥ (1 + 2η)t 0 log r + C µ
where C µ does not depend on r. Dividing by log r and taking the limsup, we obtain that D µ (1) ≤ (1 + 2η)t 0 < t, a contradiction with µ ∈ R. 6.4. Optimality of the upper bound. Suppose that there exists t < s max conv such that R = µ ∈ P(K); D µ (1) ≤ t is residual. Let t 0 ∈ (t, s max conv ) and let y ∈ K, ρ > 0 be such that, setting E = K ∩B(y, ρ), dim B,conv (E) > t 0 . Let also β > 0 be such that (1-β) 3 1+β t 0 > t. We start from a sequence (µ n ) ⊂ F(K) which is dense in P(K) and such that µ n (E) > 0 for any n ≥ 1. We fix n ≥ 1 and we write

µ n = q i=1 q i δ y i + p i=1 p i δ x i where x i ∈ E, y i / ∈ E, p i , q i > 0.
Let α > 0 be such that 4α < min( x i -x j ; i = j), 4α < min( y i -y j ; i = j), 4α < min( x i -y j ) and α < 1/n. By definition of the convex upper box dimension, we know that one can find r n < min(α, 1/n) as small as we want such that

p i=1 p i log P rn E ∩ B(x i , α) ≥ (-log r n )t 0 p i=1 p i = (-log r n )t 0 µ n (E).
For simplicity, we set P i = P rn E ∩ B(x i , α) and we consider points x 1 i , . . . , x P i i all in E ∩ B(x i , α) such that the balls B(x j i , r n ) are disjoint. We then set

ν n,i = 1 P i P i j=1 δ x j i ν n = q i=1 q i δ y i + p i=1 p i ν n,i . ν n is close to µ n . Indeed, for any f ∈ Lip(K), K f dν n - K f dµ n ≤ p i=1 p i x i -x j i ≤ α ≤ 1 n .
In particular, the sequence (ν n ) keeps dense in P(K). Furthermore, ν n (E) = µ n (E) > 0 and

I νn (r n , 1) = q i=1 q i log q i + p i=1 p i P i P i j=1 log p i P i = q i=1 q i log q i + p i=1 p i log(p i ) - p i=1 p i log(P i ) ≤ q i=1 q i log(q i ) + p i=1 p i log(p i ) + log(r n )t 0 ν n (E).
Provided r n is small enough, this implies

I νn (r n , 1) ≤ (1 -β)t 0 log(r n )ν n (E).
Now, Lemma 2.1 and Corollary 2.5 give us a real number

δ n > 0 such that L(ν, ν n ) < δ n implies I ν (r n /2, 1) ≤ (1 -β)I ν (r n , 1) + log 2 ν(E) ≤ ν n E(α) + βν n (E) = (1 + β)ν n (E).
Thus,

I ν (r n /2, 1) ≤ (1 -β) 2 1 + β t 0 log(r n )ν(E) + log 2. We define R ′ = m≥1 n≥m B L (ν n , δ n ) which is a dense G δ -subset of P(K) such that any ν ∈ R ′ verifies D ν (1) ≥ (1-β) 2 1+β t 0 ν(E). Finally, we considered U = µ ∈ P(K); µ(E) > 1 -β
which is open and nonempty. Then any measure µ in the nonempty intersection R∩R ′ ∩U satisfies the contradictory conditions

D µ (1) ≤ t and D µ (1) ≥ (1 -β) 3 1 + β t 0 > t.
6.5. To apply Theorem 1.8, we need to be able to compute the dimensions which are involved. This is indeed possible for simple compact spaces.

Example 6.2. Let K = {0} ∪ [1, 2]. Then a typical measure µ ∈ P(K) satisfies D µ (1) ∈ [0, 1] and this interval is the best possible.

Proof. That s conv = 0 is easy. It suffices to take in the definition of the convex upper box dimension N = 1 and x 1 = 0. To prove that s max conv = 1, one may observe that dim B,conv ([1, 2]) = 1.

Example 6.3. Let E and F be the two Cantor sets defined in Section 4.3 and let K = E ∪ F . Then a typical measure µ ∈ P(K) satisfies D µ (1) ∈ 13 log 3 6 log 100 , 5 log 3 2 log 100 and this interval is the best possible.

An interesting feature of the previous example is that s conv > s u .

Proof. By homogeneity of the two Cantor sets, to compute s conv , we just need to compute inf α+β=1 lim sup n→+∞ αN 100 -n (E) + βN 100 -n (F ) n log 100 .

From the construction of the Cantor sets, it is easy to check that, for a fixed choice of α and β, the limsup will be attained along either the sequence (2n k ) k or the sequence (4n k ) k . Moreover (8 + 2α, 9 -α).

The minimum is obtained for α = 1/3 (when the two terms are equal) so that s conv = 13 log 3 6 log 100 .

That s max conv = dim P (K) = 5 log 3 2 log 100 is easier. Indeed, we can restrict ourselves to E where, by homogeneity, dim B,conv (E) = dim B (E).

Example 6.4. Let K be a Ahlfors-regular compact set with Hausdorff dimension s. Then a typical measure µ ∈ P(K) satisfies D µ (1) = s.

Proof. For such a compact set, s ≤ inf x∈K dim B,loc (x, K) ≤ s conv ≤ s max conv ≤ dim B (K) = s.

7.3. L q -dimension along subsequences. When, for a measure µ ∈ P(K), D µ (q) < D µ (q), it is natural to ask the following question: for which τ ∈ (D µ (q), D µ (q)) can we find a sequence (r n ) going to zero such that log I µ (r n , q) (q -1) log r n → τ ?

The most interesting case is when all values of (D µ (q), D µ (q)) can be attained. For continuity reasons, this is always the case.

Proposition 7.3. Let K be a compact subset of R d , let µ ∈ P(K) and let q ∈ R. Then, for any τ ∈ (D µ (q), D µ (q)), there exists a sequence (r n ) going to zero such that log I µ (r n , q) (q -1) log r n → τ when q = 1, log I µ (r n , 1) log r n → τ otherwise.

The proof of this proposition is based on an application of the intermediate value theorem. Unfortunately, the map r → 1 q-1 × log Iµ(r,q) log r

does not need to be continuous. However, an enhancement of the intermediate value theorem to semicontinuous functions will be sufficient in our context. It can be found e.g. in [START_REF] Guillerme | Intermediate value theorems and fixed point theorems for semi-continuous functions in product spaces[END_REF].

Lemma 7.4. Let f : [u, v] → R be upper semicontinuous on the right and lower semicontinuous on the left. Suppose moreover that f (u) ≥ f (v). Then for any λ ∈ f (v), f (u) , there exists x ∈ [u, v] such that f (x) = λ.

The regularity of I µ (•, q) will depend on the position of q with respect to 1. Lemma 7.5. Let µ ∈ P(K) and let q ∈ R. Suppose moreover that, for any r > 0, I µ (r, q) = +∞. (a) For q > 1, r → log I µ (r, q) is negative, nondecreasing and continuous on the left; (b) For q = 1, r → I µ (r, 1) is negative, nondecreasing and continuous on the left; (c) For q < 1, r → log I µ (r, q) is positive, nonincreasing and continuous on the left.

Proof. We just prove the continuity statement. We fix r > 0 and we pick a sequence (r n ) increasing to r. Then µ(B(x, r n ) increases to µ B(x, r) for any x ∈ supp(µ). Thus (a) follows from the monotone convergence theorem, whereas (b) and (c) follow from Lebesgue's theorem.

In order to apply Lemma 7.4 to r → 1 q-1 × log Iµ(r,q) log r

, we need a last lemma.

Lemma 7.6. Let I be an interval, let g : I → (-∞, 0) be continuous and let f : I → ( -∞, 0) be nondecreasing. Then f g is upper semicontinuous on the right.

Proof. Let r 0 ∈ I, let ε > 0 and let η > 0 such that any r ∈ [r 0 , r 0 + η) ∩ I satisfies g(r 0 ) ≤ g(r) + ε.

We also know that for these values of r, f (r 0 ) ≤ f (r) ≤ 0, so that f (r 0 )g(r 0 ) ≥ f (r)g(r 0 ) ≥ f (r)g(r) + εf (r) ≥ f (r)g(r) + εf (r 0 ).

This that lim sup r→r + 0 f (r)g(r) ≤ f (r 0 )g(r 0 ), which means that f g is upper semicontinuous on the right.

Proof of Proposition 7.3. Let τ ∈ (D µ (q), D µ (q)) (if D µ (q) = D µ (q)), there is nothing to say. Define

φ(r) =        1 q -1
× log I µ (r, q) log r if q = 1 I µ (r, 1) log r if q = 1.

By the above lemmas, φ is continuous on the left and upper semicontinuous on the right. Moreover, for any ε > 0, one may find 0 < r 1 < r 2 < ε such that φ(r 1 ) > τ and φ(r 2 ) < τ.

By Lemma 7.4, one can find r 3 ∈ (r 1 , r 2 ) such that φ(r 3 ) = τ.

The conclusion of Proposition 7.3 follows easily.

Combining this proposition with Theorem 1.6 yields:

Corollary 7.7. Let K be an infinite compact subset of R d . Write

s sep = bsi(K) s u = dim B,loc,unif (K) s = dim B (K).
Define, for q ∈ R\{1},

E q =        [0, s u ] for q > 1 [0, s]
for q ∈ (0, 1) [s sep , s] for q = 0 [s sep , +∞) for q < 0.

Then a typical measure µ ∈ P(K) satisfies, for any q ∈ R\{1}, for any τ ∈ E q , there exists a sequence (r n ) going to zero such that log I µ (r n , q) (q -1) log r n → τ.

7.4. Prevalence. The notion of genericity used in this paper is in the sense of Baire theorem. One could also consider other notions, in particular that of prevalence. In [START_REF]Prevalent L q -dimensions of measures[END_REF], Olsen studied the typical values of D µ (q) and D µ (q) for q ≥ 0 for this notion of genericity. Surprizingly enough, the results are rather different from the results in the Baire point of view.

Problem. What can be said on D µ (q) and D µ (q) for a prevalent measure, when q < 0?

  r, 1) = K log µ B(x, r) dµ(x) D µ (1) = lim inf r→0 K log µ B(x, r) dµ(x) log r D µ (1) = lim sup r→0 K log µ B(x, r) dµ(x) log r .

N

  100 -2n k (E) = 9 n k 27 n k = 3 5n k N 100 -2n k (F ) = 3 4n k N 100 -4n k (E) = 3 8n k N 100 -4n k (F ) = 3 9n k .

  Heuristically speaking, bsi(K) is large if, for each n ≥ 1, you need many cubes of size 2 -n to cover it and if these cubes are far away from each other. It should be pointed out that neither the local uniform upper box dimension nor the box separation index can be considered as a dimension. For instance, E ⊂ F does not imply dim

B,loc,unif (E) ≤ dim B,loc,unif (F ) or bsi(E) ≤ bsi(F ). As an example, if you set E = [1, 2]

We divide the proof of Theorem 1.8 into four parts. For convenience, we set : s conv = dim B,conv (K) and s max conv = dim B,conv,max (K).

6.1. The lower bound. Let t < s conv . One intends to show that D µ (1) ≥ t for a typical measure µ ∈ P(K). Let (x i ) i≥1 be a dense sequence of distinct points in K and let n ≥ 1. Let ρ n > 0 be such that 4ρ n < min( x i -x j ; 1 ≤ i < j ≤ n) and ρ n < 1/n. Let finally p 1 , . . . , p n > 0 be such that i p i = 1. By definition of s conv , one may find r n < ρ n such that, setting

We then consider, for a fixed i in 1, . . . , n, points x j i , j = 1, . . . , P i , which are the centers in K ∩ B(x i , ρ n ) of disjoint balls of radius r n . We observe that our choice of ρ n ensures that all balls B(x j i , ρ n ), i = 1, . . . , n, j = 1, . . . , P i are pairwise disjoint. We set

and we majorize I µ n,(p i ) (r n , 1):

Now, Corollary 2.5 gives us a real number δ n,(p i ) > 0 such that L(ν, µ n,(p i ) ) < δ n,(p i ) implies I ν (r n /2, 1) ≤ log 2 + 1 -1 n t log r n . We conclude by setting

R is a dense G δ subset of P(K) and any ν ∈ R satisfies

6.2. The upper bound. Let t > s max conv . One intends to show that there exists a dense and open set of measures µ of P(K) such that D µ (1) ≤ t. We first fix t 0 ∈ (s max conv , t) and η > 0 such that (1 + 2η)t 0 < t. Let (y n ) be a dense sequence of distinct points in K and let (ρ n ) be a sequence of (0, 1) such that

Concluding remarks

7.1. Case q = ±∞. The L q -dimensions of a probability measure µ have also a meaning for q = -∞ and q = +∞. Their definitions are

In [START_REF]Typical Rényi dimensions of measures. The cases: q = 1 and q = ∞[END_REF], Olsen shows that a typical µ ∈ P(K) satisfies

Our methods allow us to determine the exact typical value of the L q -dimensions, for q = -∞ and q = +∞.

Theorem 7.1. Let K be an infinite compact subset of R d . Then a typical µ ∈ P(K)

Among these values, that of D µ (-∞) is surprising, because it is different from the value of D µ (q) when q < 0.

Proof. For commodity reasons, we set s u = dim B,loc,unif (K). It is easy to show that, for any q ∈ R,

Thus, Theorem 1.6 already implies that D µ (+∞) ≤ s u and that D µ (-∞) = +∞ for a typical µ ∈ P(K). Thus, it remains to show the typical (in)equalities D µ (+∞) ≥ s u and D µ (-∞) = dim B (K). We begin by showing that D µ (+∞) ≥ s u for a typical µ ∈ P(K). Let t < s u and let us apply the results of Section 4.1. They provide a dense G δ -set R and a sequence (r n ) going to zero such that, for any ν ∈ R, we can find n as large as we want such that ν B(x, r n ) ≤ Cr t n . This immediately yields D ν (+∞) ≥ t. We now prove that a typical µ ∈ P(K) satisfies D µ (-∞) ≥ dim B (K). For n ≥ 1, let P = P 2 -n (K) be the maximal number of balls of radius 2 -n with center in K which do not intersect. Let B(x 1 , 2 -n ), . . . , B(x P , 2 -n ) be such a family of balls. We set

Each n is dense by Lemma 2.8 and open by Lemma 2.6, so that R is a dense G δsubset of P(K). Pick now any µ ∈ R and let r ∈ (0, 1). There exists n ≥ 1 such that 2 -(n+1) ≤ r < 2 -n . Moreover,

Taking the liminf, this shows that D µ (-∞) ≥ dim B (K).

We finally prove that D µ (-∞) ≤ dim B (K). Let t > t ′ > dim B (K). Lemma 2.13 gives us, for each n ≥ 1, a measure m n ∈ P(K) and a real number r n ∈ (0, 1/n) such that m n B(x, r n /2) ≥ Cr t ′ n for each x ∈ K, where C just depends on t ′ . Let now µ ∈ F(K) and let us set

. By Lemma 2.1, we may find δ n > 0 such that any ν ∈ P(K) with L(ν, ν µ,n ) < δ n satisfies ν B(x, 2r n ) ≥ 2Cr t n . We then consider

which is a dense G δ -set. For any ν ∈ R, there exists r n as small as desired such that

7.2. On the optimality. It is natural to ask whether the inequalities appearing in the second column of Theorem 1.6 are optimal or not. The third column gives the answer, except for D µ (q), q ≥ 1 and D µ (q), q ≤ 0. It is very easy to exhibit a measure satisfying D µ (q) = 0, q < 0: any Dirac mass does the job. The situation is different for D µ (q), q ≥ 1; we just know that D µ (1) ≤ dim P (K), but we do not know whether this is always the best bound.

Question 7.2. What is the biggest possible valut of D µ (q), q ≥ 1?

It is conceivable that, at least for q = 1, we need a kind of convex version of the packing dimension.