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Many natural and artificial networks evolve in time. Nodes and connections appear and disappear
at various timescales, and their dynamics has profound consequences for any processes in which they
are involved. The first empirical analysis of the temporal patterns characterizing dynamic networks
are still recent, so that many questions remain open. Here, we study how random walks, as paradigm
of dynamical processes, unfold on temporally evolving networks. To this aim, we use empirical
dynamical networks of contacts between individuals, and characterize the fundamental quantities
that impact any general process taking place upon them. Furthermore, we introduce different
randomizing strategies that allow us to single out the role of the different properties of the empirical
networks. We show that the random walk exploration is slower on temporal networks than it is on
the aggregate projected network, even when the time is properly rescaled. In particular, we point
out that a fundamental role is played by the temporal correlations between consecutive contacts
present in the data. Finally, we address the consequences of the intrinsically limited duration of
many real world dynamical networks. Considering the fundamental prototypical role of the random
walk process, we believe that these results could help to shed light on the behavior of more complex
dynamics on temporally evolving networks.

PACS numbers: 05.40.Fb, 89.75.Hc, 89.75.-k

I. INTRODUCTION

Many real networks are dynamic structures in which
connections appear, disappear, or are rewired on various
timescales [1]. For example, the links representing social
relationships in social networks [2] are a static representa-
tion of a succession of contact or communication events,
which are constantly created or terminated between pairs
of individuals (actors). Such temporal evolution is an in-
trinsic feature of many natural and artificial networks,
and can have profound consequences for the dynamical
processes taking place upon them. Until recently how-
ever, a large majority of studies about complex networks
have focused on a static or aggregated representation, in
which all the links that appeared at least once coexist.
This is the case, for example, in the seminal works on sci-
entific collaboration networks [3], or on movie costarring
networks [4]. In particular, dynamical processes have
mainly been studied on static complex networks [5].

In recent years, the interest towards the temporal di-
mension of the network description has blossomed. Em-
pirical analyses have revealed rich and complex patterns
of dynamic evolution [1, 6–15], pointing out the need to
characterize and model them [9, 16–19]. At the same
time, researchers have started to study how the temporal
evolution of the network substrate impacts the behavior
of dynamical processes such as epidemic spreading [13–
15, 20–22], synchronization [23], percolation [12, 24] and
social consensus [25].

Here, we focus on the dynamics of a random walker

exploring a temporal network [26–28]. The random walk
is indeed the simplest diffusion model, and its dynam-
ics provides fundamental hints to understand the whole
class of diffusive processes on networks. Moreover, it
has relevant applications in such contexts as spreading
dynamics (i.e. virus or opinion spreading) and search-
ing. For instance, assuming that each vertex knows only
about the information stored in each of its nearest neigh-
bors, the most naive economical strategy is the random
walk search, in which the source vertex sends one mes-
sage to a randomly selected nearest neighbor [5, 29, 30].
If that vertex has the information requested, it retrieves
it; otherwise, it sends a message to one of its nearest
neighbors, until the message arrives to its finally target
destination. Thus, the random walk represents a lower
bound on the effects of searching in the absence of any
information in the network, apart form the purely local
information about the contacts at a given instant of time.

In our study, we consider as typical examples of tem-
poral networks the dynamical sequences of contact be-
tween individuals in various social contexts, as recorded
by the SocioPatterns project [10, 31]. These datasets
contain indeed the time-resolved patterns of face-to-face
co-presence of individuals in settings such as conferences,
with high temporal resolution: for each contact between
individuals, the starting and ending times are registered
by the measuring infrastructure, giving access to the tim-
ing and duration of contacts.

The paper is structured as follows. In Sec II we re-
view some of the fundamental results for random walks
on static networks. In Sec. III we describe the empiri-
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cal dynamical networks considered: we recall some basic
definitions, present an analysis of the datasets, and intro-
duce suitable randomization procedures, which will help
later on to pinpoint the role of the correlations in the
real data. In Sec. IV we write down mean-field equations
for the case of maximally randomized dynamical contact
networks, and in Sec. V we investigate the random walk
dynamics numerically, focusing on the exploration prop-
erties and on the mean first passage times. Sec. VI is
devoted to the analysis of the impact of the finite tem-
poral duration of real time series. Finally, we summarize
our results and comment on some perspectives in Sec VII.

II. A SHORT OVERVIEW OF RANDOM
WALKS ON STATIC NETWORKS

The random walk (RW) process is defined by a walker
that, located on a given vertex i at time t, hops to a
nearest neighbor vertex j at time t+ 1.

In binary networks, defined by the adjacency matrix
aij such that aij = 1 is j is a neighbor of i, and aij = 0
else, the transition probability at each time step from i
to j is

pb(i→ j) =
aij∑
r air

≡ aij
ki
, (1)

where ki =
∑
j aij is the degree of vertex i: the walker

hops to a nearest neighbor of i, chosen uniformly at ran-
dom among the ki neighbors, hence with probability 1/ki
(note that we consider here undirected networks with
aij = aji, but the process can be considered as well on
directed networks). In weighted networks with a weight
matrix ωij , the transition probability takes instead the
form

pw(i→ j) =
wij∑
r wir

≡ wij
si
, (2)

where si =
∑
j ωij is the strength of vertex i [32]. Here

the walker chooses a nearest neighbor with probability
proportional to the weight of the corresponding connect-
ing edge.

The basic quantity characterizing random walks in net-
works is the occupation probability ρi, defined as the
steady state probability (i.e., measured in the infinite
time limit) that the walker occupies the vertex i, or in
other words, the steady state probability that the walker
will land on vertex i after a jump from any other vertex.
Following rigorous master equation arguments, it is pos-
sible to show that the occupation probability takes the
form [33, 34]

ρbi =
ki
〈k〉N

, ρwi =
si
〈s〉N

, (3)

respectively in binary and weighted networks.
Other characteristic properties of the random walk,

relevant to the properties of searching in networks, are

the mean first-passage time (MFPT) τi and the coverage
C(t) [26–28]. The MFPT of a node i is defined as the
average time taken by the random walker to arrive for
the first time at i, starting from a random initial posi-
tion in the network. This definition gives the number of
messages that have to be exchanged, on average, in order
to find vertex i. The coverage C(t), on the other hand, is
defined as the number of different vertices that have been
visited by the walker at time t, averaged for different ran-
dom walks starting from different sources. The coverage
can thus be interpreted as the searching efficiency of the
network, measuring the number of different individuals
that can be reached from an arbitrary origin in a given
number of time steps.

At a mean-field level, these quantities are computed as
follows: let us define Pf (i; t) as the probability for the
walker to arrive for the first time at vertex i in t time
steps. Since in the steady state i is reached in a jump
with probability ρi, we have Pf (i; t) = [1− ρi]t−1ρi. The
MFPT to vertex i can thus be estimated as the average
τi =

∑
t tPf (i; t), leading to

τi =

∞∑
t=1

t[1− ρi]t−1 ≡
1

ρi
. (4)

On the other hand, we can define the random walk reach-
ability of vertex i, Pr(i; t), as the probability that vertex
i is visited by a random walk starting at an arbitrary ori-
gin, at any time less than or equal to t. The reachability
takes the form

Pr(i; t) = 1− [1− ρi]t ' 1− exp(−tρi), (5)

where the last expression is valid in the limit of suffi-
ciently small ρi. The coverage of a random walk at time
t will thus be given by the sum of these probabilities, i.e.

C(t)

N
=

1

N

∑
i

Pr(i; t) ≡ 1− 1

N

∑
i

exp (−tρi) . (6)

For sufficiently small ρit, the exponential in Eq. (6) can
be expanded to yield C(t) ∼ t, a linear coverage implying
that at the initial stages of the walk, a different vertex is
visited at each time step, independently of the network
properties [35, 36].

It is now important to note that the random walk pro-
cess has been defined here in a way such that the walker
performs a move and changes node at each time step, po-
tentially exploring a new node: except in the pathological
case of a random walk starting on an isolated node, the
walker has always a way to move out of the node it occu-
pies. In the context of temporal networks, on the other
hand, the walker might arrive at a node i that at the suc-
cessive time step becomes isolated, and therefore has to
remain trapped on that node until a new link involving
i occurs. In order to compare in a meaningful way ran-
dom walk processes on static and dynamical networks,
and on different dynamical networks, we consider in each
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dynamical network the average probability p that a node
has at least one link. The walker is then expected to
move on average once every 1

p time steps, so that we will

consider the properties of the random walk process on
dynamical networks as a function of the rescaled time pt.

III. EMPIRICAL DYNAMICAL NETWORKS

A. Basics on temporal networks

Dynamical or temporal networks [1] are properly rep-
resented in terms of a contact sequence, representing the
contacts (edges) as a function of time: a set of triplets
(i, j, t) where i and j are interacting at time t, with
t = {1, . . . , T}, where T is the total duration of the
contact sequence. The contact sequence can thus be ex-
pressed in terms of a characteristic function (or temporal
adjacency matrix [37]) χ(i, j, t), taking the value 1 when
actors i and j are connected at time t, and zero otherwise.

Coarse-grained information about the structure of
dynamical networks can be obtained by projecting
them onto aggregated static networks, either binary or
weighted. The binary projected network informs of the
total number of contacts of any given actor, while its
weighted version carries additional information on the to-
tal time spent in interactions by each actor [1, 8, 21, 38].
The aggregated binary network is defined by an adja-
cency matrix of the form

aij = Θ

(∑
t

χ(i, j, t)

)
, (7)

where Θ(x) is the Heaviside theta function defined by
Θ(x) = 1 if x > 0 and Θ(x) = 0 if x ≤ 0. In this repre-
sentation, the degree of vertex i, ki =

∑
j aij , represents

the number of different agents with whom agent i has in-
teracted. The associated weighted network, on the other
hand, has weights of the form

ωij =
1

T

∑
t

χ(i, j, t). (8)

Here, ωij represents the number of interactions between
agents i and j, normalized by its maximum possible
value, i. e. the total duration of the contact sequence
T . The strength of vertex i, si =

∑
j ωij , represents the

average number of interactions of agent i at each time
step.

While static projections represent a first step in the
understanding of the properties of dynamical networks,
they coarse-grain a great deal of information from the em-
pirical time series, a fact that can be particularly relevant
when considering dynamical processes running on top of
dynamical networks [21]. At a basic topological level,
projected networks disregard the fact that dynamics on
temporal networks are in general restricted to follow time
respecting paths [1, 7, 12, 21, 39, 40], meaning that if

a contact between vertices i and j took place at times

Tij ≡ {t(1)ij , t
(2)
ij , · · · , t

(n)
ij }, it cannot be used in the course

of a dynamical processes at any time t 6∈ Tij . Therefore,
not all the network is available for propagating a dynam-
ics that starts at any given node, but only those nodes
belonging to its set of influence [7], defined as the set of
nodes that can be reached from a given one, following
time respecting paths. Moreover, an important role can
also be played by the bursty nature of dynamical and so-
cial processes, where the appearance and disappearance
of links do not follow a Poisson processes, but show in-
stead long tails in the distribution of link presence and
absence durations, as well as long range correlations in
the times of successive link occurrences [9, 10, 12, 41].

B. Empirical contact sequences

The temporal networks used in the present study de-
scribe the sequences of face-to-face contact between in-
dividuals recorded by the SocioPatterns collaboration
[10, 31]: in the deployments of the SocioPatterns in-
frastructure, each individual wears a badge equipped
with an active radio-frequency identification (RFID)
device. These devices engage in bidirectional radio-
communication at very low power when they are close
enough, and relay the information about the proximity
of other devices to RFID readers installed in the envi-
ronment. The devices properties are tuned so that face-
to-face proximity (1-2 meters) of individuals wearing the
tags on their chests can be assessed with a temporal res-
olution of 20 seconds (∆t0 = 20 seconds represents thus
the elementary time interval that can be considered).

We consider here datasets describing the face-to-face
proximity of individuals gathered in several different
social contexts: the European Semantic Web Confer-
ence (“eswc”), the Hypertext conference (“ht”), the 25th
Chaos Communication Congress (“25c3”) 1, and a pri-
mary school (“school”). A description of the correspond-
ing contexts and various analyses of the corresponding
datasets can be found in Refs [10, 21, 38, 42].

In Table I we summarize the main average properties of
the datasets we are considering, that are of interest in the
context of walks on dynamical networks. In particular,
we focus on:

• N : number of different individuals engaged in in-
teractions;

• T : total duration of the contact sequence, in units
of the elementary time interval ∆t0 = 20 seconds;

• 〈k〉 =
∑
i ki/N : average degree of nodes in the pro-

jected binary network, aggregated over the whole
dataset;

1 In this particular case, the proximity detection range extended
to 4-5 meters and packet exchange between devices was not nec-
essarily linked to face-to-face proximity.
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Dataset N T 〈k〉 p f n ∆tc 〈s〉
25c3 569 7450 185 0.215 256 91 2.82 0.90

eswc 173 4703 50 0.059 7 2.8 2.41 0.079

ht 113 5093 39 0.060 4 1.9 2.13 0.072

school 242 3100 69 0.235 41 25 1.63 0.34

Table I. Some average properties of the datasets under con-
sideration.

• p =
∑
t p(t)/T : average number of individuals p(t)

interacting at each time step;

• f =
∑
tE(t)/T =

∑
ijt χ(i, j, t)/2T : mean fre-

quency of the interactions, defined as the average
number of edges E(t) of the instantaneous network
at time t;

• n =
∑
t n(t)/2T: average number of new conversa-

tions n(t) starting at each time step;

• 〈∆tc〉: average duration of a contact.

• 〈s〉 =
∑
i si/N : average strength of nodes in the

projected weighted network, defined as the mean
number of interactions per agent at each time step,
averaged over all agents.

Table I shows the heterogeneity of the considered
datasets, in terms of size, overall duration and contact
densities. In particular, while the dataset 25c3 shows a
high density of interactions (high p, f and n), and con-
sequently a large average degree and average strength,
the others are sparser. Moreover, as also shown in the
deployments timelines in [10], some of the datasets show
large periods of low activity, followed by bursty peaks
with a lot of contacts in few time steps, while others
present more regular interactions between elements. In
this respect, it is worth noting that we will not consider
those portions of the datasets with very low activity, in
which only few couples of elements interact, such as the
beginning or ending part of conferences or the nocturnal
periods.

The heterogeneity and burstiness of the contact pat-
terns of the face-to-face interactions [10] are revealed by
the study of the distribution of the duration ∆t of con-
tacts between pairs of agents, P (∆t), the distribution of
the total time in contact of pairs of agents (the weight
distribution P (ω)), and the distribution of gap times, τ ,
between two consecutive conversations involving a com-
mon individual and two other different agents, for a single
agent i, Pi(τ), or considering all the agents, P (τ). All
these distributions are heavy-tailed, typically compatible
with power-law behaviors (see Fig. 1), corresponding to
the burstiness of human interactions [41].

As noted above, diffusion processes such as random
walks are moreover particularly impacted by the struc-
ture of paths between nodes. In this respect, time re-
specting paths represent a crucial feature of any temporal
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Figure 1. (Color Online) Distributions of P (∆t) (duration of
contacts), P (ω) (total contact time between pairs of agents),
Pi(τ) (gap times of a single individual i) and P (τ) (global
gap times). In the case of Pi(τ), we only plot the gap times
distribution of the agent which engages in the largest number
of conversation, but the other agents exhibit a similar behav-
ior. All distributions are heavy-tailed, indicating the bursty
nature of face-to-face interactions, for the four empirical con-
tact sequences considered.

network, since they determine the set of possible causal
interactions between the actors of the graph.

For each (ordered) pair of nodes (i, j), time-respecting
paths from i to j can either exist or not; moreover, the
concept of shortest path on static networks (i.e., the path
with the minimum number of links between two nodes)
yields several possible generalizations in a temporal net-
work:

• the fastest path is the one that allows to go from
i to j, starting from the dataset initial time, in
the minimum possible time, independently of the
number of intermediate steps;

• the shortest time-respecting path between i and j is
the one that corresponds to the smallest number of
intermediate steps, independently of the time spent
between the start from i and the arrival to j.

For each node pair (i, j), we denote by lfij , l
s,temp
ij ,

ls,statij the lengths (in terms of the number of hops) respec-
tively of the fastest path, the shortest time-respecting
path, and the shortest path on the aggregated network,

and by ∆tfij and ∆tsij the duration of the fastest and
shortest time-respecting paths, where we take as initial
time the first appearance of i in the dataset. As already

noted in other works [21, 43], lfij can be much larger than

ls,statij . Moreover, it is clear that lfij ≥ ls,tempij ≥ ls,statij ;

from the duration point of view, on the contrary, ∆tfij ≤
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Dataset le 〈ls〉 〈∆ts〉 〈lf 〉 〈∆tf 〉 〈ls,stat〉
25c3 0.91 1.67 1607 4.7 893 1.67

eswc 0.99 1.75 884 4.95 287 1.73

ht 0.99 1.67 1157 3.86 452 1.66

school 1 1.76 853 8.27 349 1.73

Table II. (Color Online) Average properties of the shortest
time-respecting paths, fastest paths and shortest paths in the
projected network, in the datasets considered.

∆tsij .
We therefore define the following quantities:

• le: fraction of the N(N − 1) ordered pairs of nodes
for which a time-respecting path exists;

• 〈ls〉: average length (in terms of number of hops
along network links) of the shortest time-respecting
paths;

• 〈∆ts〉: average duration of the shortest time-
respecting paths;

• 〈lf 〉: average length of the fastest time-respecting
paths;

• 〈∆tf 〉: average duration of the fastest time-
respecting paths;

• 〈ls,stat〉: average shortest path length in the binary
(static) projected network;

The corresponding empirical values are reported in Ta-
ble II. It turns out that the great majority of pairs of
nodes are causally connected by at least one path in all
datasets. Hence, almost every node can potentially be
influenced by any other actor during the time evolution,
i.e., the set of sources and the set of influence of the great
majority of the elements are almost complete (of size N)
in all of the considered datasets.

In Fig. 2 we show the distributions of the lengths,
P (ls), and durations, P (∆ts), of the shortest time-
respecting path for different datasets. In the same Fig-
ure we choose one dataset to compare the P (ls) and
the P (∆ts) distributions with the distributions of the
lengths, P (lf ), and durations, P (∆tf ), of the fastest
path. The P (ls) distribution is short tailed and peaked
on l = 2, with a small average value 〈ls〉, even consid-
ering the relatively small sizes N of the datasets, and
it is very similar to the projected network one 〈ls,stat〉
(see Table II). The P (lf ) distribution, on the contrary,
shows a smooth behavior, with an average value 〈lf 〉
several times bigger than the shortest path one, 〈ls〉,
as expected [21, 43]. Note that, despite the important
differences in the datasets characteristics, the P (ls) dis-
tributions (as well as P (lf ), although not shown) col-
lapse, once rescaled. On the other hand, the P (∆ts) and
P (∆tf ) distributions show the same broad-tailed behav-
ior, but the average duration 〈∆ts〉 of the shortest paths
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Figure 2. (Color Online) Top: Distribution of the temporal
duration of the shortest time-respecting paths, normalized by
its maximum value T . Inset: probability distribution P (ls) of
the shortest path length measured over time-respecting paths,
and normalized with its mean value 〈ls〉. Note that the dif-
ferent datasets collapse. Bottom: Probability distribution of
the duration of the shortest P (∆ts) and fastest P (∆tf ) time-
respecting paths, for the eswc dataset. Inset: Probability dis-
tribution of the shortest P (ls) and fastest P (lf ) path length
for the same dataset.

is much longer than the average duration 〈∆tf 〉 of the
fastest paths, and of the same order of magnitude than
the total duration of the contact sequence T .

Thus, a temporal network may be topologically well
connected and at the same time difficult to navigate or
search. Indeed spreading and searching processes need
to follow paths whose properties are determined by the
temporal dynamics of the network, and that might be
either very long or very slow.

C. Synthetic extensions of empirical contact
sequences

The empirical contact sequences represent the proper
dynamical network substrate upon which the properties
of any dynamical process should be studied. In many
cases however, the finite duration of empirical datasets
is not sufficient to allow these processes to reach their
asymptotic state [13, 44]. This issue is particularly im-
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portant in processes that reach a steady state, such as
random walks. As discussed in Sec. II, a walker does not
move at every time step, but only with a probability p,
and the effective number of movements of a walker is of
the order Tp. For the considered empirical sequences,
this means that the ratio between the number of hops
of the walker and the network size, Tp/N , assumes val-
ues between 3.01 for the school case and 1.60 for the
eswc case. Typically, for a random walk processes such
small times permit to observe transient effects only, but
not a stationary behavior. Therefore we will first explore
the asymptotic properties of random walks in syntheti-
cally extended contact sequences, and we will consider
the corresponding finite time effects in Sec. VI. The syn-
thetic extensions preserve at different levels the statistical
properties observed in the real data, thus providing null
models of dynamical networks.

Inspired by previous approaches to the synthetic ex-
tension of empirical contact sequences [1, 7, 13, 22, 44],
we consider the following procedures:

• SRep: Sequence replication. The contact sequence
is repeated periodically, defining a new extended
characteristic function such that χSRepe (i, j, t) =
χ(i, j, t mod T ). This extension preserves all of the
statistical properties of the empirical data (obvi-
ously, when properly rescaled to take into account
the different durations of the extended and empiri-
cal time series), introducing only small corrections,
at the topological level, on the distribution of time
respecting paths and the associated sets of influ-
ence of each node. Indeed, a contact present at
time t will be again available to a dynamical pro-
cess starting at time t′ > t after a time t+ T .

• SRan: Sequence randomization. The time order-
ing of the interactions is randomized, by construct-
ing a new characteristic function such that, at each
time step t, χSRane (i, j, t) = χ(i, j, t′) ∀i and ∀j,
where t′ is a time chosen uniformly at random from
the set {1, 2, . . . , T}. This form of extension yields
at each time step an empirical instantaneous net-
work of interactions, and preserves on average all
the characteristics of the projected weighted net-
work, but destroys the temporal correlations of suc-
cessive contacts, leading to Poisson distributions
for P (∆t) and Pi(τ).

• SStat: Statistically extended sequence. An inter-
mediate level of randomization can be achieved by
generating a synthetic contact sequence as follows:
we consider the set of all conversations c(i, j,∆t)
in the sequence, defined as a series of consecutive
contacts of length ∆t between the pair of agents i
and j. The new sequence is generated, at each time
step t, by choosing n conversations (n being the av-
erage number of new conversations starting at each
time step in the original sequence, see Table I), ran-
domly selected from the set of conversations, and
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Figure 3. (Color Online) Top: Probability distribution Pi(τ)
of a single individual and P (∆t) (inset) for the extended con-
tact sequences SRep, SRan and SStat, for the 25c3 dataset.
The weight distribution P (w) of the original contact sequence
is preserved for every extension. Bottom: Probability distri-
bution of gap times P (τ) for all the agents in the SRep, SRan
and SStat extensions of the 25c3 dataset.

considering them as starting at time t and ending
at time t + ∆t, where ∆t is the duration of the
corresponding conversation. In this procedure we
avoid choosing conversations between agents i and
j which are already engaged in a contact started at
a previous time t′ < t. This extension preserves all
the statistical properties of the empirical contact
sequence, with the exception of the distribution of
time gaps between consecutive conversations of a
single individual, Pi(τ).

In Fig. 3 we plot the distribution of the duration of
contacts, P (∆t), and the distribution of gap times be-
tween two consecutive conversations realized by a sin-
gle individual, P (τi), for the extended contact sequences
SRep, SRan and SStat. One can check that the SRep ex-
tension preserves all the P (w), P (∆t) and Pi(τ) distribu-
tions of the original contact sequence, the SRan extension
preserves only P (w) and the SStat extension preserves
both the P (w) and the P (∆t) but not the Pi(τ), as sum-
marized in Table III. Interestingly, we note that the dis-
tribution of gap times for all agents, P (τ), is also broadly
distributed in the SRan and SStat extensions, despite
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Extension P (w) P (∆t) Pi(τ)

SRep X X X

SRan X 7 7

SStat X X 7

Table III. Comparison of the properties of the original contact
sequence preserved in the synthetic extensions.

the fact that the respective individual burstiness Pi(τ)
are bounded, see Fig. 3. This fact can be easily under-
stood by considering that P (τ) can be written in terms
of a convolution of the individual gap distributions times
the probability of starting a conversation. In the case of
SRan extension, the probability ri that an agent i starts
a new conversation is proportional to its strength si, i.e.
ri = si/(N〈s〉). Therefore, the probability that it starts a
conversation τ time steps after the last one (its gap distri-
bution) is given by Pi(τ) = ri[1− ri]τ−1 ' ri exp(−τri),
for sufficiently small ri. The gap distribution for all
agents P (τ) is thus given by the convolution

P (τ) =

∫
P (s)

s

N〈s〉
exp

(
−τ s

N〈s〉

)
ds, (9)

where P (s) is the strength distribution. This distribution
has an exponential form, which leads, from Eq. (9), to a
total gap distribution P (τ) ∼ (1 + τ/N)−2, with a heavy
tail. Analogous arguments can be used in the case of the
SStat extension.

IV. RANDOM WALKS ON EXTENDED
CONTACT SEQUENCES

Let us consider a random walk on the sequence of in-
stantaneous networks at discrete time steps, which is
equivalent to a message passing strategy in which the
message is passed to a randomly chosen neighbor. The
walker present at node i at time t hops to one of its
neighbors, randomly chosen from the set of vertices

Vi(t) = {j | χ(i, j, t) = 1} , (10)

of which there is a number

ki(t) =
∑
j

χ(i, j, t), (11)

If the node i is isolated at time t, i.e. Vi(t) = ∅, the
walker remains at node i. In any case, time is increased
t→ t+ 1.

Analytical considerations analogous to those in Sec. II
for the case of contact sequences are hampered by the
presence of time correlations between contacts. In fact,
as we have seen, the contacts between a given pair of
agents are neither fixed nor completely random, but in-
stead show long range temporal correlations. An excep-
tion is represented by the randomized SRan extension,

in which successive contacts are by construction uncor-
related. Considering that the random walker is in vertex
i at time t, at a subsequent time step it will be able
to jump to a vertex j whenever a connection between i
and j is created, and a connection between i and j will
be chosen with probability proportional to the number
of connections between i and j in the original contact
sequence, i.e. proportional to ωij . That is, a random
walk on the extended SRan sequence behaves essentially
as in the corresponding weighted projected network, and
therefore the equations obtained in Sec. II, namely

τi =
〈s〉N
si

, (12)

and

C(t)

N
= 1− 1

N

∑
i

exp

(
−t si
〈s〉N

)
(13)

apply. In this last expression for the coverage we can
approximate the sum by an integral, i.e.

C(t)

N
= 1−

∫
dsP (s) exp

(
−t s

〈s〉N

)
, (14)

being P (s) the distribution of strengths. Giving that
P (s) has an exponential behavior, we can obtain from
the last expression

C(t)

N
' 1−

(
1 +

t

N

)−1
. (15)

V. NUMERICAL SIMULATIONS

In this Section we present numerical results from the
simulation of random walks on the extended contact se-
quences described above. Measuring the coverage C(t)
we set the duration of these sequences to 50 times the
duration of the original contact sequence T , while to
evaluate the MFPT between two nodes i and j, τij , we
let the RW explore the network up to a maximum time
tmax = 108. Each result we report is averaged over at
least 103 independent runs.

A. Network exploration

The network coverage C(t) describes the fraction of
nodes that the walker has discovered up to time t. Fig-
ure 4 shows the normalized coverage C(t)/N as a func-
tion of time, averaged for different walks starting from
different sources, for the dynamical networks obtained
using the SRep, SRan and SStat prescriptions. Time is
rescaled as t → pt to take into account that the walker
can find itself on an isolated vertex, as discussed before.
While for SRep and SRan extensions the average num-
ber of interacting nodes p is by construction the same as
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Figure 4. (Color Online) Normalized coverage C(t)/N as a
function of the rescaled time pt/N , for the SRep, SRan and
SStat extension of empirical data. The numerical evaluation
of Eq. (13) is shown as a dashed line, and each panel in the
figure corresponds to one of the empirical datasets considered.
The exploration of the empirical repeated data sets (SRep) is
slower than the other cases. Moreover, the SRan is in agree-
ment with the theoretical prediction, and the SStat case shows
a close (but systematically slower) behavior. This indicates
that the main slowing down factor in the SRep sequence is
represented by the irregular distribution of the interactions
in time, whose contribution is eliminated in the randomized
sequences.

in the original contact sequence, for the SStat extension
we obtain numerically different values of p, which we use
when rescaling time in the corresponding simulations.

The coverage corresponding to the SRan extension is
very well fitted by a numerical simulation of Eq. (15),
which predicts the coverage C(t)/N obtained in the cor-
respondent projected weighted network. Moreover, when
using the rescaled time pt, the SRan coverages for differ-
ent datasets collapse on top of each other for small times,
with a linear time dependence C(t)/N ∼ t/N for t� N
as expected in static networks, showing a universal be-
havior (not shown).

The coverage obtained on the SStat extension is sys-
tematically smaller than in the SRan case, but follows
a similar evolution. On the other hand, the RW explo-
ration obtained with the SRep prescription is generally
slower than the other two, particularly for the 25c3 and
ht datasets. As discussed before, the original contact
sequence, as well as the SRep extension, are character-
ized by irregular distributions of the interactions in time,
showing periods with few interacting nodes and corre-
spondingly a small number n(t) of new started conver-
sations, followed by peaks with many interactions (see
Fig. 5). This feature slows down the RW exploration,
because the RW may remain trapped for long times on
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Figure 5. (Color Online) Number of new conversations n(t)
started per unit time in the SRep (black, full dots), SRan
(red, empty squares) and SStat (green, diamonds) extensions
of the school dataset.

isolated nodes. The SRan and the SStat extensions, on
the contrary, both destroy this kind of temporal struc-
ture, balancing the periods of low and high activity: the
SRan extension randomizes the time order of the contact
sequence, and the SStat extension evens the number of
interacting nodes, with n new conversations starting at
each time step.

The similarity between the random walk processes on
the SRan and SStat dynamical networks shows that the
random walk coverage is not very sensitive to the het-
erogenous durations of the conversations, as the main
difference between these two cases is that P (∆t) is nar-
row for SRan and broad for SStat. In these cases, the ob-
served behavior is instead well accounted for by Eq. (13),
taking into account only the weight distribution of the
projected network, i.e., the heterogeneity between aggre-
gated conversation durations. Therefore, the slower ex-
ploration properties of the SRep sequences can be mostly
attributed to the correlations between consecutive con-
versations of the single individuals, as given by the indi-
vidual gap distribution Pi(τ), (see [13, 15, 22] for analo-
gous results in the context of epidemic spreading).

A remark is in order for the 25c3 conference. A close
inspection of Fig. 4 shows that the RW does not reach
the whole network in any of the extensions schemes, with
Cmax < 0.85, although the duration of the simulation
is quite long ptmax > 102N . The reason is that this
dataset contains a group of nodes (around 20% of the
total) with a very low strength si, meaning that there
are actors who are isolated for most of the time, and
whose interactions are reduced to one or two contacts in
the whole contact sequence. Given that each extension
we use preserves the P (w) distribution, the discovery of
these nodes is very difficult. The consequence is that we
observe an extremely slow approach to the asymptotic
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Figure 6. (Color Online) Asymptotic residual coverage 1 −
C(t)/N as a function of p̄t/N for the SRep (top) and SRan
(bottom) extended sequences, for different datasets.

value limt→∞
C(t)
N = 1. Indeed, the mean-field calcu-

lations presented in Secs. II and III C suggest a power-
law decay with (1 + p̄t/N)−1 for the residual coverage
1−C(t)/N . In Fig. 6 we plot the asymptotic coverage for
large times in the 4 datasets considered. We can see that
RW on the eswc and ht dataset conform at large times
quite reasonably to the expected theoretical prediction in
Eq. (15), both for the SRep and SRan extensions. The
25c3 dataset shows, as discussed above, a considerable
slowing down, with a very slow decay in time. Interest-
ingly, the school dataset is much faster than all the rest,
with a decay of the residual coverage 1−C(t)/N exhibit-
ing an approximate exponential decay. It is noteworthy
that the plots for the randomized SRan sequence do not
always obey the mean-field prediction (see lower plot in
Fig. 6). This deviation can be attributed to the fact
that SRan extensions preserve the topological structure
of the projected weighted network, and it is known that,
in some instances, random walks on weighted networks
can deviate from the mean-field predictions [45]. These
deviations are particularly strong in the case of the 25c3
dataset, where connections with a very small weight are
present.
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Figure 7. (Color Online) Rescaled mean first passage time
τi, shown against the strength si, normalized with the total
strength N〈s〉, for the SRep, SRan and SStat extensions of
empirical data. The dashed line represents the prediction of
Eq. (12). Each panel in the figure corresponds to one of the
empirical datasets considered.

B. Mean first-passage time

Let us now focus on another important characteristic
property of random walk processes, namely the MFPT
defined in Section II. Figure 7 shows the correlation be-
tween the MFPT τi of each node, measured in units of
rescaled time pt, and its normalized strength si/(N〈s〉).

The random walks performed on the SRan and SStat
extensions are very well fitted by the mean field theory,
i.e. Eq. (12) (predicting that τi is inversely proportional
to si), for every dataset considered; on the other hand,
random walks on the extended sequence SRep yield at
the same time deviations from the mean-field prediction
and much stronger fluctuations around an average behav-
ior. Figure 8 addresses this case in more detail, showing
that the data corresponding to RW on different datasets
collapse on an average behavior that can be fitted by a
scaling function of the form

τi ∼
1

p
×
(

si
N〈s〉

)−α
, (16)

with an exponent α ' 0.75.
These results show that the MFPT, similarly to the

coverage, is rather insensitive to the distribution of the
contact durations, as long as the distribution of cu-
mulated contact durations between individuals is pre-
served (the weights of the links in the projected net-
work). Therefore, the deviations of the results obtained
with the SRep extension of the empirical sequences have
their origin in the burstiness of the contact patterns, as
determined by the temporal correlations between consec-
utive conversations. The exponent α < 1 means that the
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Figure 8. (Color Online) Mean first passage time at node i,
in units of rescaled time pt, vs. the strength si, normalized
with the total strength N〈s〉, for RW processes on the SRep
datasets extension. All data collapse close to the continuous
line whose slope, α ' 0.75, differs from the theoretical one,
α = 1.0, shown as a dashed line.

searching process in the empirical, correlated, network
is slower than in the randomized versions, in agreement
with the smaller coverage observed in Fig. 4.

The data collapse observed in Fig. 8 for the SRep
case leads to two noticeable conclusions. First, although
the various datasets studied correspond to different con-
texts, with different numbers of individuals and densities
of contacts, simple rescaling procedures are enough to
compare the processes occurring on the different tempo-
ral networks, at least for some given quantities. Second,
the MFPT at a node is largely determined by its strength.
This can indeed seem counterintuitive as the strength is
an aggregated quantity (that may include contact events
occurring at late times). However, it can be rationalized
by observing that a large strength means a large num-
ber of contacts and therefore a large probability to be
reached by the random walker. Moreover, the fact that
the strength of a node is an aggregate view of contact
events that do not occur homogeneously for all nodes but
in a bursty fashion leads to strong fluctuations around
the average behavior, which implies that nodes with the
same strength can also have rather different MFPT (Note
the logarithmic scale on the y-axis).

VI. RANDOM WALKS ON FINITE CONTACT
SEQUENCES

The case of finite sequences is interesting from the
point of view of realistic searching processes. The limited
duration of a human gathering, for example, imposes a
constraint on the length of any searching strategy. Fig.
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Figure 9. (Color Online) Normalized coverage C(t)/N as
function of the rescaled time pt/N for the different datasets.
The inset shows the probability distribution P (∆tnew) of the
time lag ∆tnew between the discovery of two new vertices.
Only the discovery of the first 5% of the network is consid-
ered, to avoid finite size effects [46].

9 shows the normalized C(t)/N coverage as a function
of the rescaled time pt/N . The coverage exhibits a con-
siderable variability in the different datasets, which do
not obey the rescaling obtained for the extended SRan
and SStat sequence. The probability distribution of the
time lags ∆tnew between the discovery of two new ver-
tices [46] provides further evidence of the slowing down
of diffusion in temporal networks. The inset of Fig. 9
indeed shows broad tailed distributions P (∆tnew) for all
the dataset considered, differently from the exponential
decay observed in binary static networks [46].

The important differences in the rescaled coverage
C(t)/N between the various datasets, shown in Fig. 9,
can be attributed to the choice of the time scale, pt/N ,
which corresponds to a temporal rescaling by an aver-
age quantity. We can argue, indeed, that the speed
with which new nodes are found by the RW is propor-
tional to the number of new conversations n(t) started
at each time step t, thus in the RW exploration of the
temporal network the effective time scale is given by the
integrated number of new conversations up to time t,

N(t) =
∫ t
0
n(t′)dt′. In Fig. 10 we display the correlation

between the coverage C(t)/N and the number of new
conversations realized up to time t, N(t), normalized for
the mean number of new conversations per unit of time,
n. While the relation is not strictly linear, a very strong
positive correlation appears between the two quantities.

The complex pattern shown by the average coverage
C(t) originates from the lack of self-averaging in a dy-
namic network. Figure 11 shows the rank plot of the
coverage Ci obtained at the end of a RW process start-
ing from node i, and averaged over 103 runs. Clearly, not
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Figure 11. (Color Online) Rank plot of the coverage Ci ob-
tained starting from node i in the contact sequence of duration
T , averaged over 103 runs. In the inset, we show a rank plot
of the coverage Ci(∆T ) up to a fixed time ∆T = 103.

all vertices are equivalent. A first explanation of the vari-
ability in Ci comes from the fact that not all nodes appear
simultaneously on the network at time 0. If t0,i denotes
the arrival time of node i in the system, a random walk
starting from i is restricted to T ri = T − t0,i: nodes arriv-
ing at later times have less possibilities to explore their
set of influence, even if this set includes all nodes. To
put all nodes on equal footing and compensate for this
somehow trivial difference between nodes, we consider
the coverage of random walkers starting on the different
vertices i and walking for exactly ∆T time steps (we limit
of course the study to nodes with t0,i < T − ∆T ). Dif-
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Figure 12. (Color Online) Correlation between the probabil-
ity of node i to be reached by the RW, Pr(i), and the rescaled
strength pTsi/N〈s〉 for different datasets. The curves ob-
tained by different dataset collapse, but they do not follow
the mean-field behavior predicted by of Equation (17) (dashed
line). The inset shows the same data on a linear scale, to em-
phasize the deviation from mean-field.

ferences in the coverage Ci(∆T ) will then depend on the
intrinsic properties of the dynamic network. For a static
network indeed, either binary or weighted, the coverage
Ci(∆T ) would be independent of i, as random walkers
on static networks lose the memory of their initial posi-
tion in a few steps, reaching very fast the steady state
behavior Eq. (3). As the inset of Fig. 11 shows, impor-
tant heterogeneities are instead observed in the coverage
of random walkers starting from different nodes on the
dynamic network, even if the random walk duration is
the same.

Another interesting quantity is the probability that a
vertex i is discovered by the random walker. As discussed
in Section II, at the mean field level the probability that
a node i is visited by the RW at any time less than or
equal to t (the random walk reachability) takes the form
Pr(i; t) = 1− exp[−tρ(i)]. Thus the probability that the
node i is reached by the RW at any time in the contact
sequence is

Pr(i) = 1− exp

(
− pTsi
N〈s〉

)
, (17)

where the rescaled time pt is taken into account. In Fig.
12, we plot the probability Pr(i) of node i to be reached
by the RW during the contact sequence as a function of
its strength si. Pr(i) exhibits a clear increasing behavior
with si, larger strength corresponding to larger time in
contact and therefore larger probabilities to be reached.
Interestingly, the simple rescaling by p and 〈s〉 leads to
an approximate data collapse for the RW processes on
the various dynamical networks, showing a very robust
behavior. Similarly to the case of the MFPT on extended
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Figure 13. (Color Online) Correlation between the probability
of node i to be reached by a RW of length T/2, Pr(i), and
the rescaled strength pTsi/N〈s〉 for different datasets, where
si is computed on the whole dataset of length T . The inset
shows the same data on a linear scale.

sequences, the dynamical property Pr(i) can be in part
“predicted” by an aggregate quantity such as si. Strong
deviations from the mean-field prediction of Eq. (17) are
however observed, with a tendency of Pr(i) to saturate
at large strengths to values much smaller than the ones
obtained on a static network. Thus, although the set
of sources of almost every node i has size N , as shown
in Sec. III B (i.e., there exists a time respecting path
between almost every possible starting point of the RW
processes and every target node i), the probability for
node i to be effectively reached by a RW is far from being
equal to 1.

Moreover, rather strong fluctuations of Pr(i) at given
si are also observed: si is indeed an aggregate view
of contacts which are typically inhomogeneous in time,
with bursty behaviors2 . Figure 13 also shows that the
reachability computed at shorter time (here T/2) displays
stronger fluctuations as a function of the strength si com-
puted on the whole time sequence: Pr(i) for shorter RW
is naturally less correlated with an aggregate view which
takes into account a more global behavior of i.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the behavior of ran-
dom walks on temporal networks. In particular, we have
focused on real face-to-face contact networks concerning
four different datasets. These dynamical networks ex-
hibit heterogeneous and bursty behavior, indicated by

2 When considering RW on a contact sequence of length T ran-
domized according to the SRan procedure instead, Eq. (17) is
well obeyed and only small fluctuations of Pr(i) are observed at
a fixed si (not shown).

the long tailed distributions for the lengths and strength
of conversations, as well as for the gaps separating suc-
cessive interactions. We have underlined the importance
of considering not only the existence of time preserving
paths between pairs of nodes, but also their temporal du-
ration: shortest paths can take much longer than fastest
paths, while fastest paths can correspond to many more
hops than shortest paths. Interestingly, the appropriate
rescaling of these quantities identifies universal behaviors
shared across the four datasets.

Given the finite life-time of each network, we have con-
sidered as substrate for the random walk process the
replicated sequences in which the same time series of
contact patterns is indefinitely repeated. At the same
time, we have proposed two different randomization pro-
cedures to investigate the effects of correlations in the
real dataset. The “sequence randomization” (SRan) de-
stroys any temporal correlation by randomizing the time
ordering of the sequence. This allows to write down ex-
act mean-field equations for the random walker explor-
ing these networks, which turn out to be substantially
equivalent to the ones describing the exploration of the
weighted projected network. The “statistically extended
sequence” (SStat), on the other hand, selects random
conversations from the original sequence, thus preserv-
ing the statistical properties of the original time series,
with the exception of the distribution of time gaps be-
tween consecutive conversations.

We have performed numerical analysis both for the
coverage and the MFPT properties of the random walker.
In both cases we have found that the empirical sequences
deviate systematically from the mean field prediction, in-
ducing a slowing down of the network exploration and
of the MFPT. Remarkably, the analysis of the random-
ized sequences has allowed us to point out that this is
due uniquely to the temporal correlations between con-
secutive conversations present in the data, and not to
the heterogeneity of their lengths. Finally, we have ad-
dressed the role of the finite size of the empirical net-
works, which turns out to prevent a full exploration of
the random walker, though differences exist across the
four considered cases. In this context, we have also shown
that different starting nodes provide on average different
coverages of the networks, at odds to what happens in
static graphs. In the same way, the probability that the
node i is reached by the RW at any time in the contact
sequence exhibits a common behavior across the differ-
ent time series, but it is not described by the mean-field
predictions for the aggregated network, which predict a
faster process.

In conclusion, the contribution of our analysis is two-
fold. On the one hand, we have proposed a general
way to study dynamical processes on temporally evolv-
ing networks, by the introduction of randomized bench-
marks and the definition of appropriate quantities that
characterize the network dynamics. On the other hand,
for the specific, yet fundamental, case of the random
walk, we have obtained detailed results that clarify the
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observed dynamics, and that will represent a reference
for the understanding of more complex diffusive dynam-
ics occurring on dynamic networks. Our investigations
also open interesting directions for future work. For in-
stance, it would be interesting to investigate how random
walks starting from different nodes explore first their own
neighborhood [47], which might lead to hints about the
definition of “temporal communities” (see e.g. [48] for
an algorithm using RW on static networks for the detec-
tion of static communities); various measures of nodes
centrality have also been defined in temporal networks
[1, 44, 49–51], but their computation is rather heavy, and
RW processes might present interesting alternatives, sim-

ilarly to the case of static networks [52].
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