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Linear systems are usually solved with Gaussian elimination. Especially when multiple right hand sides are involved, an efficient procedure is to provide a factorization of the left hand side. When exact computations are required in an integral domain, complete fraction-free factorization and forward-backward substitutions are useful. This article deals with the case where the left hand side may be singular. In such a case, kernels are required to test a solvability condition and to derive the general form of the solutions. The complete fraction-free algorithms are therefore extended to deal with singular systems and to provide the kernels with exact computations on the same integral domain where the initial data take their entries.

Introduction

Linear systems with entries in an integral domain Z arise from several applications such as symbolic and exact polynomial computations [START_REF] Bini | Polynomial and matrix computations[END_REF][START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF], applications to cryptography [START_REF] Odlyzko | Discrete logarithms: The past and the future[END_REF], computational geometry [START_REF] O'rourke | Computational Geometry in C[END_REF][START_REF] Schirra | Robustness and precision issues in geometric computation[END_REF][START_REF] Halperin | Iterated snap rounding[END_REF], signal processing, etc.

Though other techniques are available, see [START_REF] Wan | An algorithm to solve integer linear systems exactly using numerical methods[END_REF] and associated references, we consider herein a direct solution technique. We denote such a problem with Ax = b, for which the right hand side b also takes its values in Z. If the left hand side is a square matrix, A ∈ Z n×n , and is regular, the Cramer's expression of the solution allows to conclude that it lies in the field of the quotient space Q, and that the solution of the scaled problem Ax = (det A)b, where the determinant of the left hand side is (det A) ∈ Z, also lies in Z n .

An efficient direct solving procedure, especially with multiple right hand sides, is to provide a factorization of the matrix A, relying on the Gaussian elimination technique. If the factorization could be performed without computing fraction, all the intermediate terms will also lie in Z and the solution of the scaled problem is exact; the initial solution is then (det A) -1 x ∈ Q n . Such a factorization is named as fraction-free [START_REF] Bareiss | Sylvester's identity and multistep integer-preserving Gaussian elimination[END_REF][START_REF] Bareiss | Computational solutions of matrix problems over an integral domain[END_REF][START_REF] Turner | A simplified fraction-free integer Gauss elimination algorithm[END_REF][START_REF] Lee | Fraction-free gaussian elimination for sparse matrices[END_REF][START_REF] Zhou | Fraction-free forms of LU matrix factoring[END_REF][START_REF] Corless | The Turing factorization of a rectangular matrix[END_REF][START_REF] Mulders | A generalized Sylvester identity and fraction-free random Gaussian elimination[END_REF] and recently, a complete fraction-free algorithm has been proposed [START_REF] Turner | A simplified fraction-free integer Gauss elimination algorithm[END_REF][START_REF] Zhou | Fraction-free matrix factors: new forms for LU and QR factors[END_REF] for factorization, forward and backward substitutions.

Section 2 briefly recalls the original complete fraction-free algorithms, Section 3 deals with the case of singular matrices, providing a suited regularization, and the kernel computations, as well as the treatment of the surjection case with a rectangular matrix. Finally, Section 4 proposes two test examples.

2 Complete fraction-free LD -1 U factorization of a full rank matrix

The algorithms provided in [START_REF] Zhou | Fraction-free matrix factors: new forms for LU and QR factors[END_REF] are partially coded in in fflas library [START_REF] Dumas | Dense linear algebra over word-size prime fields: the FFLAS and FFPACK packages[END_REF] (BLAS for matrices over finite fields), and in the SymPy library (Python library for symbolic mathematics) [START_REF]SymPy: Python library for symbolic mathematics[END_REF]. They factorize the regular matrix P A, where A ∈ Z n×m (m ≥ n) and P is a n-by-n permutation matrix, into P A = LD -1 U , with a n-by-n lower triangular matrix L, a n-by-n diagonal matrix D, a n-by-m upper trapezoidal matrix U , all having their entries in Z. The matrices L and U are of the form:

L =        p 1 L 21 p 2 . . . . . . . . . L n-1,1 L n-1,2 . . . p n-1 L n,1 L n,2 . . . L n,n-1 1        (1) 
and

U =        p 1 U 12 . . . U 1,n-1 U 1,n . . . U 1,m p 2 . . . U 2,n-1 U 2,n . . . U 2,m . . . . . . . . . . . . p n-1 U n-1,n . . . U n-1,m p n . . . U n,m        (2) 
The p i are the pivots, and

D = diag(p 1 , p 1 p 2 , . . . , p n-2 p n-1 , p n-1 ) (3) 
The pseudo-codes for dense matrices are recalled in A.

If n = m, p n = det A and p i is the principal minor of the top left i-by-i sub-block of A (therefore the positive definiteness can be tested with ∀i, p i > 0).

Concerning the forward substitution, since all the divisions are exact in Z [START_REF] Turner | A simplified fraction-free integer Gauss elimination algorithm[END_REF], one has the property:

∀b ∈ Z n , DL -1 b ∈ Z n (4) 
therefore DL -1 gets all its entries in Z.

For the backward substitution, only the first n-by-n sub-block Û of U is used. The property related to the backward substitution is:

∀y = DL -1 b, b ∈ Z n , Û -1 (det Â)y ∈ Z n ( 5 
)
where  is the first n-by-n sub-block of A, and det  = p n = Ûn,n .

Case of a singular matrix

The case of a full rank surjective matrix A is trivial and has been considered in [START_REF] Dumas | Dense linear algebra over word-size prime fields: the FFLAS and FFPACK packages[END_REF][START_REF] Ibarra | A generalization of the fast LUP matrix decomposition algorithm and applications[END_REF]. We are concerned herein with the case of a singular square operator (m = n), and the case with more unknowns than equations (m > n) with a possible rank deficiency.

Standard LU factorization of a square singular matrix

When det A = 0, a solvability condition should be satisfied for the existence of a solution for the system Ax = b. If the kernel of the adjoint of A (or the transpose A T of A according to a scalar product on Z n ) is generated by the column vectors stored in matrix S, this solvability condition is

S T b = 0 (6)
Once satisfied, this condition allows to define the set of solutions, up to a vector in the kernel of A:

x = A † b + Ru (7) 
R stores independent column vectors generating the kernel of A, and u is the column vector of the coordinates of a solution in the kernel of A. A † is an arbitrary generalized inverse of A [START_REF] Noble | A method for computing the generalized inverse of a matrix[END_REF][START_REF] Farhat | Encyclopedia of Vibration, chapter Linear Algebra[END_REF][START_REF] Golub | Matrix Computations[END_REF] (any generalized inverse generates the same family of solutions).

If S T b = 0, there is no solution.

For sake of simplicity, we assume that a standard LU factorization of A [START_REF] Dopico | Multiple LU factorizations of a singular matrix[END_REF], with a unitary lower triangular matrix L, can be performed without pivoting. Null diagonal entries of U correspond to null pivots; they are as numerous as the size of the kernel, which will be denoted with r [START_REF] Hwang | Rank revealing LU factorizations[END_REF]. The LU factorization can easily be modified to return the factorization of a regularized matrix Ā and to allow the extraction of the kernel vector sets R and S. The corresponding generalized inverse is then A † = Ā-1 . This is described in the following developments.

Consider first an arbitrary splitting of the unknowns in two sets, denoted with subscripts 1 and 2. The matrix A can be split accordingly in several blocks:

A 11 A 12 A 21 A 22 x 1 x 2 = b 1 b 2 (8) 
where A 11 and A 22 are diagonal square blocks. If A 11 is regular (which is assumed here), this system can be condensed onto the second set of unknowns:

A 11 A 12 0 A 22 x 1 x 2 = b 1 b 2 (9) 
with the Schur complement

A 22 = A 22 -A 21 A -1 11 A 12 and the condensed right hand side b 2 = b 2 - A 21 A -1
11 b 1 . The initial system reads:

I 1 0 A 21 A -1 11 I 2 A 11 A 12 0 A 22 A x 1 x 2 = I 1 0 A 21 A -1 11 I 2 b 1 b 2 b ( 10 
)
where I k is the identity matrix (with a size consistent to its use).

The previous condensation operation can also be performed recursively, line per line of the left upper block A 11 of the system (8) to give:

U 11 U 12 0 A 22 x 1 x 2 = c 1 b 2 (11) 
and the initial system reads:

L 11 0 L 21 I 2 L (1) U 11 U 12 0 A 22 
U (1) A x 1 x 2 = L 11 0 L 21 I 2 c 1 b 2 b ( 12 
)
for which the same Schur complement has been computed recursively (this can be easily proved using the sub-block factorization A 11 = L 11 U 11 , A 12 = L 11 U 12 , A 21 = L 21 U 11 and the uniqueness of the factorization without pivoting). Assume now that the second diagonal block, of size r ×r, corresponds to all the null pivots (this would be obtained with a total pivoting strategy): A 22 = 0. In this case, the factorization is completed and L = L (1) , U = U (1) . Existence of a solution is ensured if and only if b 2 = 0, which is the aforementioned solvability condition. This condition reads: b 2 = B T L -1 b = 0, where B ∈ Z n×r is a Boolean matrix containing non null terms only on its second block, which is an identity block of size r × r: B T = 0 I 2 . By identification with (6), the kernel of A T is therefore

S = L -T B ( 13 
)
One way to resume the solution of the system is to 'clamp' the undetermined unknowns (the last ones) to an arbitrary fixed value, for instance identity, and to backsolve the remaining regular left upper block. Null pivots in the partial factorization are therefore replaced with identity, and dedicated partially condensed right hand sides (as many as the kernel size) are settled:

U 11 U 12 0 I 2 Ū R = B = 0 I 2 (14) 
Ū is then invertible and the solution of this system is a generating set of independent vectors of the kernel of A:

R = Ū -1 B (15) 
This is the factorization of a regularized version of A:

Ā = L Ū = L U + 0 0 0 I 2 = LU + L 11 0 L 12 I 2 0 0 0 I 2 = A + 0 0 0 I 2 (16) 
A and Ā only differ with the kernel sub-space.

Completely fraction-free factorization of a singular square matrix

The goal of this section is to extend the previous factorization, regularization and kernel extraction to fraction-free computations. The proposed factorization requires a total pivoting strategy [START_REF] Peña | LDU decompositions with L and U well conditioned[END_REF][START_REF] Azulay | Which pivot to solve linear systems[END_REF] (though only the first non null pivot is searched for, not the pivot with maximal amplitude). In this case, the null pivots are postponed to the last degree-of-freedom positions, and a null block is built at the stage where no pivoting is possible anymore. Assuming at a first step that pivoting was not necessary for sake of simplicity, the system to solve is identical to [START_REF] Dureisseix | Information transfer between incompatible finite element meshes: Application to coupled thermo-viscoelasticity[END_REF] with a null block A

(1) 22 = 0, and a regular block U 11 :

U 11 U 12 0 0 x 1 x 2 = c 1 b (1) 2 (17) 
and the initial system reads:

L 11 0 L 21 I 2 L D 11 0 0 I 2 -1 D -1 U 11 U 12 0 0 U A x 1 x 2 = LD -1 c 1 b (1) 2 b (18) 
The blocks U 11 , U 12 , L 11 , L 21 and D 11 are given from expressions in (1), ( 3) and ( 2). The solvability condition is still b

(1) 2 = 0. To provide a fraction-free factorization and kernel extraction, two approaches can be derived: (i) using a fraction-free regularization Ā of A that allows to fulfill the standard fraction-free factorization, (ii) deal directly with the equivalent rectangular system (once the solvability condition is satisfied):

U 11 U 12 x 1 x 2 = c 1 (19) 
Choosing one solution or the other depends on implementation issues. The first solution is described in the following, while the second one is discussed in Section 3.3.

As previously, to resume the factorization of a regularized matrix Ā ∈ Z n×n , the replacement of the null block

A (1)
22 should be performed in a suited way: Referring to the recursion formula on line 20 in algorithm 1, the null pivots should be replaced with the last non null pivot found in the previous factorization of the first block, i.e. p n-r (therefore, for k ≥ n -r + 1, A i,k = 0, and the new block A is not modified by the factorization). Finally, one gets the modified blocks:

L22 = p n-r I r-1 0 0 I r , D22 = p 2 n-r I r-1 0 0 p n-r and Ū22 = p n-r I r (20) 
the modified factorization:

L = L 11 0 L 21 L22 , D = D 11 0 0 D22 and Ū = U 11 U 12 0 Ū22 (21) 
and one recovers [START_REF] Gotsman | On the computation of null spaces of sparse rectangular matrices[END_REF]:

det Ā = p n-r , Ā = L D-1 Ū = A + 0 0 0 L22 D-1 22 Ū22 = A + 0 0 0 I 2 (22) 
with the regularized problem:

Ū x = D L-1 b (23) 
The fraction-free forward and backward substitution algorithms are preserved as previously; their usage on the factorization of a regularized matrix ensures that the solutions are still taking their entries in Z.

For kernel construction, one needs some matrices B and C in Z n×r with a regular second block of size r × r:

B = 0 B 22 and C = 0 C 22 (24) 
Then, S = L-T DB and R = Ū -1 C. Suitable choices for B 22 and C 22 can be made to preserve fraction-free computations. In a first step, one can choose B 22 = I 2 , Indeed, since D L-1 ∈ Z n×n , see [START_REF] Bareiss | Computational solutions of matrix problems over an integral domain[END_REF], its transpose has also its entries in Z which allows to conclude that S ∈ Z n×r . In a second step, we propose to select

C 22 = (det Ā) D22 . Indeed, L D-1 0 D22 T ∈ Z n×r and since L D-1 Ū R = (det Ā) L D-1 0 D22
T , the solving fractionfree algorithm will provide R ∈ Z n×r by design [START_REF] Bini | Polynomial and matrix computations[END_REF].

If pivoting was necessary, the previous proofs are still valid since the pivoting does not alter the intrinsic properties. The factorization of A reads A = P L D-1 U Q and the factorization of the regularized matrix is Ā = P L D-1 Ū Q. P and Q are permutation matrices. They are orthogonal matrices and the reverse permutation operation is P T and Q T . This is used for notation purpose only since the permutation matrices are not explicitly stored in the pseudo-codes of this article in A and B, conforming to the BLAS implementation standards [START_REF] Blackford | An updated set of basic linear algebra subprograms (BLAS)[END_REF]. The associated kernels are:

S = P L-T DB and R = Q T Ū -1 (det Ā)C (25) 
In practice, these expressions are used as follows. For the kernel S, once the multiple r right hand sides are stored in B, a call to the forward substitution routine that allows to solve for a transpose left hand side (algorithm 5) is performed. The result is then permuted with P to produce the kernel S. Concerning the kernel R, the multiple r right hand sides stored in C are used. This time, the call to the backward substitution routine (algorithme 3) is performed, and a reverse permutation with Q on the result allows to obtain R.

Case of a rectangular matrix

The extension of the previous algorithm to matrix A ∈ Z n×m with m > n is easy to derive for the standard case [START_REF] Gotsman | On the computation of null spaces of sparse rectangular matrices[END_REF].

For the fraction-free case, we will first consider the case where rank A = n. In this case, the factorization up to the stage [START_REF] Hwang | Rank revealing LU factorizations[END_REF] leads to a regular block U 11 . For an original rectangular system, it reads:

A = A 11 A 12 = LD -1 U 11 U 12 and b = LD -1 c 1 (26) 
For any case, the problem is:

U 11 x 1 = c 1 -U 12 x 2 (27) 
With a regular block U 11 , the kernel R is such that U 11 R is proportional to U 12 = DL -1 A 12 . With the same argument as before [START_REF] Bini | Polynomial and matrix computations[END_REF],

to get R ∈ Z n×(m-n) , it is proposed to choose R = U -1 11 (det A 11 )U 12 . Indeed, in such a case, LD -1 U 11 R = (det A 11 )A 12 .
With rank A = n, no solvability condition apply and S does not exist.

With a rank-deficient matrix A (rank A = n -r) and a total pivoting strategy, using the same regularization as before, the stage (19) reads:

Ū11 U 12 x 1 x 2 = D L-1 P T b with x 1 x 2 = Q x 1 x 2 (28) or Ū11 x 1 = D L-1 P T b -U 12 x 2 (29) 
This problem has the same structure as [START_REF] Noble | A method for computing the generalized inverse of a matrix[END_REF], therefore, the kernel of A T has the same expression:

S = P L-T DB ∈ Z n×r (30) 
and the kernel of A is:

R = Q T Ū -1 11 0 0 I d C U 12 0 I ∈ Z m×(r+m-n) ( 31 
)
where d is the (n -r, n -r) entry of Ū11 . Once the matrix A has been factorized, and the permutations built, this kernel is obtained by: (i) calling the backward substitution routine with the multiple (r+m-n) right hand sides C U 12 , (ii) the completion of the results with the (m -n) lines d 0 I , and (iii) the reverse permutation of the result.

Implementation issues

Since the regularization procedure is quite easy to code, and does not require memory management for intermediate storage, this is the preferred solution we chose for dealing with the singular case. The treatment of the rectangular case also embeds this regularization procedure when rank A < n. The pseudo-codes in B describe this implementation.

The main drawback of the fraction-free algorithms is the large growing rate of the terms during the factorization and the substitutions (though this is reduced when compared to a division-free algorithm since exact divisions are taken into account here). For instance, for integer computations, Z = Z, the growth in the dynamic range of the integers that must be represented is recalled in [START_REF] Zhou | Fraction-free matrix factors: new forms for LU and QR factors[END_REF]: if the length of a ∈ Z, a = 0, is defined as λ(a) = log |a| + 1 where • is the rounding down to the nearest integer, and if the lengths of the elements of A are bounded by , then the elements of L and U have their lengths bounded by n( + log n).

A classical storage strategy for the integers is to use a double precision declaration and to certify that no cancellation error will occur. With IEEE standard for binary floating-point arithmetic (ANSI-IEEE 754-1985) on 32-bit architectures, to avoid cancellation error, integers stored in REAL*8 should be less than 2 53 -1, i.e. their length should be less than 16. For integer storage the value is limited to 2 31 -1, i.e. their length should be less than 10.

For the case of large-size systems, alternative solutions consist in using arbitrary adaptive precision algebra libraries [START_REF] Granlund | GMP, the GNU multiple precision arithmetic library[END_REF][START_REF] Fousse | MPFR: A multiple-precision binary floating-point library with correct rounding[END_REF], modular methods such as a residue number system (RNS) [START_REF] Turner | Fraction-free RNS algorithms for solving linear systems[END_REF], or high-order lifting techniques [START_REF] Storjohann | The shifted number system for fast linear algebra on integer matrices[END_REF].

Though additional gain in dynamic range can be reached by using greatest common divisor searches per completed line of the matrix, this may not improve the worst case.

Test cases

For illustration and eventual checking purposes, we propose two examples for Z = Z. The first one arise from computational geometry: To match incompatible 3D finite element meshes, the core problem for mesh intersection of linear elements is to intersect a line (defined by a segment A 1 , A 2 ) with a plane (defined by a triangle M 1 , M 2 , M 3 ). Though using barycentric coordinates may not be the most efficient approach [START_REF] O'rourke | Computational Geometry in C[END_REF], these coordinates are required for the associated information transfer problem from one mesh to another [START_REF] Dureisseix | Information transfer between incompatible finite element meshes: Application to coupled thermo-viscoelasticity[END_REF]. Therefore, the problem is to find the point M = 3 i=1 λ i M i = 2 j=1 µ j A j with the partition of unity

3 i=1 λ i = 2 j=1 µ j = 1. The problem therefore reduces to find x = λ 2 λ 3 µ 2 T such that Ax = b with A = M 1 M 2 M 1 M 3 -A 1 A 2 and b = [M 1 A 1 ].
For robustness purposes, a snap rounding of nodal coordinates is used; this leads to integer coordinates. Checking singularities is mandatory due to singular positions that occur for instance on planar boundaries of the triangulated domain where segments and triangles are parallel. This is for instance the case when (see Figure 1) One can finally check that any combination of the form ( 7) is a solution, for instance: Ax -d b = 0. In this case, the solution of the intersection problem is λ 1 = 1/2, λ 2 = (48 -64u)/d, λ 3 = (-16 + 64u)/d, µ 1 = (d -64u)/d, µ 2 = 64u/d, with an arbitrary u; this is indeed the whole line (A 1 , A 2 ). Extremal solutions (for which at least one of the barycentric coordinate is in {0, 1} and all are in [0, 1]) can therefore easily be checked. They are the intersections with the triangle edges: (λ

M 1 =   0 0 0   , M 2 =   16 8 0   , M 3 =   0 0 4   , A 1 =   12 6 -1   , A 2 =   -4 -2 3 
1 = λ 3 = 1/2, λ 2 = 0, µ 1 = 1/4, µ 2 = 3/4) and (λ 1 = λ 2 = 1/2, λ 3 = 0, µ 1 = 3/4, µ 2 = 1/4).
The next example is extracted from [START_REF] Chang | Error-free computer solution of certain systems of linear equations[END_REF], with a singular matrix obtained by replacing two columns by linear combination of others. It is designed to illustrate the growth in the dynamical range of the entries in Z. Consider the following problem: 

A =      

Conclusions

This article proposes an extension of complete fraction-free algorithms, first to square singular matrices in an integral domain, A ∈ Z n×n with det A = 0, providing: (i) the factorization of a regularized matrix Ā ∈ Z n×n whose inverse is a pseudo-inverse of A, and (ii) the fraction-free determination of the kernels of A and of A T . Second, the case with rectangular matrices A ∈ Z n×m with m > n, and exhibiting a rank deficiency, is derived as an other extension. As for the original algorithm, all computations are exact in any integral domain and singular linear systems can be solved within their input domain.

A Pseudo-code for complete fraction-free factorization

The pseudo-codes for dense matrices are recalled in algorithms 1, 2 and 3. Supplementary information from reference [START_REF] Zhou | Fraction-free matrix factors: new forms for LU and QR factors[END_REF] are: the matrices L and U are overwritten on A during the factorization (the diagonal of L is not stored), the vector y is overwritten on b during the forward substitution (where b has been permuted if needed), and the vector x is overwritten on y during the backward substitution; the permutations are stored in a list P giving indexes for row permutations (consistent with the standard LAPACK [START_REF] Anderson | LAPACK Users' Guide[END_REF] factorization routine dgetf2, and BLAS [START_REF] Blackford | An updated set of basic linear algebra subprograms (BLAS)[END_REF] substitution routine dtrsm); and a typo correction has been fixed with respect to the original article (line 8 in algorithm 2). All the involved divisions are proved to be exact in Z, and the tests are strict [START_REF] Turner | A simplified fraction-free integer Gauss elimination algorithm[END_REF][START_REF] Zhou | Fraction-free matrix factors: new forms for LU and QR factors[END_REF].

B Pseudo-code for singular complete fraction-free factorization with kernel extraction

The additional codes for singular cases are given in algorithms 4 and 6. Note that the last one, for kernel extraction, deals only with a square matrix, which can be the first n-by-n block of a permuted factorization of a n-by-m (m > n) rectangular matrix. The algorithm 5 is a modified forward substitution with a transpose left hand side. All the divisions are exact in Z due to the property (DL -1 ) T ∈ Z n . 

P (k) ← k 6: if A(k, k) = 0 then 7:
Search for the first non null pivot A(kpivot, k), for kpivot

∈ [k + 1, n] 8:
if No pivot found then 9:

Error: Matrix is rank deficient {Integer exact division} 20:

A(i, j) ← (pivot * A(i, j) -Aik * A(k, j))/oldpivot if No pivot found then 10:

{Matrix is rank deficient} {No more singularity here: Apply CFF transformation}

22:

pivot ← A(k, k)

for i = k + 1, . . . , n do

24:

Aik ← A(i, k)

25:

for j = k + 1, . . . , m do 26:

{Integer exact division} 27:

A(i, j) ← (pivot * A(i, j) -Aik * A(k, j))/oldpivot 

 1

 1 The in-place factorization of A gives the matrix (the two last rows have been permuted: P is stored as [1 3 3] and Q is stored as[1 2 3] in the pseudo-code provided 1 , conforming to the BLAS standard[START_REF] Blackford | An updated set of basic linear algebra subprograms (BLAS)[END_REF]) some possible duplicates in P or Q arise from the choice of using an incremental permutation strategy for efficiency purposes, see associated pseudo-codes.

Figure 1 :LD - 1 U

 11 Figure 1: Test case of a 3D segment-triangle intersection

  The in-place factorization of Ā gives the matrix (with the permutation of rows corresponding to [1 2 4 4 5] and no column permutation, but with final pivots ln p = [4 5]): is obtained as: x = -14110 108710 -154840 0 0T with d = 11006.

25 :Algorithm 2 1 : 12 :Algorithm 3 1 :Algorithm 4 7 : 8 :

 25211231478 Return: modified A (storing L, D and U ), P Forward substitution: solve y from LD -1 y = b for a permuted b Inputs: A (storing L and D), b 2: n ← size(b) 3: oldpivot ← 1 4: for k = 1, 2, . . . , n -1 do 5: pivot ← A(k, k) 6: for i = k + 1, . . . , n do 7: {Integer exact division} 8: b(i) ← (pivot * b(i) -A(i, k) * b(k))/oldpivot Return: modified b (storing y) Backward substitution: solve x from U x = d y with d = det A Inputs: A (storing U ), y 2: n ← size(y) 3: d ← A(n, n) 4: for i = n, n -1,..., 1 do 5: {Integer exact division} 6: y(i) ← (d * y(i) -n k=i+1 A(i, k) * y(k))/A(i, i) 7: end for 8: Return: modified y (storing x), scaling factor d Completely fraction-free factorization of a dense regularization of A with full pivoting 1: Inputs: A 2: (n, m) ← size(A) 3: n p ← 0 4: oldpivot ← 1 5: for k = 1, 2, . . . , n do 6:P (k) ← k, Q(k) ← k if A(k, k) = 0 thenSearch for the first non null pivot A(kpivot, lpivot), for kpivot ∈ [k + 1, n] and lpivot ∈ [k + 1, n] 9:

32 :Algorithm 5 1 :

 3251 Return: modified A (storing L, D and U of the regularized matrix Ā), P , Q and ln p Modified forward substitution: solve y from L T D -1 y = b Inputs: A (storing L and D), b 2: n ← size(b) 3:for i = n, n -1,..., 1 do ) ← oldpivot * b(i) -( n k=i+1 A(k, i) * b(k))/A(i, i) 11: end for 12: Return: modified b (storing y) Algorithm 6 Find kernels from a fraction-free factorization of a regularized square matrix A 1: Inputs: A (storing L, D, U ), ln p (for original nul pivot locations) 2: n ← size(A, 1) 3: n p ← length(ln p ) 4: d ← A(n, n) 5: {Initialize right-hand-sides for kernel extractions} 6: for i = 1, 2, . . . , n p do 7: R(ln p (i), i) ← d 8: S(ln p (i), i) ← 1 9: end for 10: Solve U R = d b where the n p right-hand-sides b are stored in R on input, with fraction-free backward substitution (algorithm 3) 11: Solve L T D -1 S = b where the n p right-hand-sides b are stored in S on input, with fraction-free forward modified substitution (algorithm 5) 12: Return: kernels R and S

  Algorithm 1 Completely fraction-free factorization of dense A 1: Inputs: A 2: (n, m) ← size(A) 3: oldpivot ← 1 4: for k = 1, 2, . . . , n do

	5:

  p ← n p + 1, ln p (n p ) ← k

	11:	
	12:	{Apply a suited regularization}
	13:	A(k, k) ← oldpivot
	14:	else
	15:	{Row interchange}
	16:	
	17:	{Column interchange}
	18:	
	19:	end if
	20:	end if
	21:	

n A(k, 1 : m) ↔ A(kpivot, 1 : m), P (k) ← kpivot A(1 : n, k) ↔ A(1 : n, lpivot), Q(k) ← kpivot