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Abstract

Linear systems are usually solved with Gaussian elimination. Especially when multiple right
hand sides are involved, an efficient procedure is to provide a factorization of the left hand side.
When exact computations are required in an integral domain, complete fraction-free factorization
and forward-backward substitutions are useful. This article deals with the case where the left hand
side may be singular. In such a case, kernels are required to test a solvability condition and to derive
the general form of the solutions. The complete fraction-free algorithms are therefore extended to
deal with singular systems and to provide the kernels with exact computations on the same integral
domain where the initial data take their entries.
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1 Introduction

Linear systems with entries in an integral domain Z arise from several applications such as symbolic
and exact polynomial computations [5, 14], applications to cryptography [24], computational geometry
[25, 27, 18], signal processing, etc.

Though other techniques are available, see [32] and associated references, we consider herein a direct
solution technique. We denote such a problem with Ax = b, for which the right hand side b also takes its
values in Z. If the left hand side is a square matrix, A ∈ Zn×n, and is regular, the Cramer’s expression
of the solution allows to conclude that it lies in the field of the quotient space Q, and that the solution
of the scaled problem Ax = (detA)b, where the determinant of the left hand side is (detA) ∈ Z, also
lies in Zn.

An efficient direct solving procedure, especially with multiple right hand sides, is to provide a fac-
torization of the matrix A, relying on the Gaussian elimination technique. If the factorization could be
performed without computing fraction, all the intermediate terms will also lie in Z and the solution of
the scaled problem is exact; the initial solution is then (detA)−1x ∈ Qn. Such a factorization is named
as fraction-free [3, 4, 30, 21, 34, 8, 22] and recently, a complete fraction-free algorithm has been proposed
[30, 33] for factorization, forward and backward substitutions.

Section 2 briefly recalls the original complete fraction-free algorithms, Section 3 deals with the case of
singular matrices, providing a suited regularization, and the kernel computations, as well as the treatment
of the surjection case with a rectangular matrix. Finally, Section 4 proposes two test examples.
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2 Complete fraction-free LD−1U factorization of a full rank ma-
trix

The algorithms provided in [33] are partially coded in in fflas library [10] (BLAS for matrices over
finite fields), and in the SymPy library (Python library for symbolic mathematics) [29]. They factorize the
regular matrix PA, where A ∈ Zn×m (m ≥ n) and P is a n-by-n permutation matrix, into PA = LD−1U ,
with a n-by-n lower triangular matrix L, a n-by-n diagonal matrix D, a n-by-m upper trapezoidal matrix
U , all having their entries in Z. The matrices L and U are of the form:

L =


p1

L21 p2

...
...

. . .

Ln−1,1 Ln−1,2 . . . pn−1

Ln,1 Ln,2 . . . Ln,n−1 1

 (1)

and

U =


p1 U12 . . . U1,n−1 U1,n . . . U1,m

p2 . . . U2,n−1 U2,n . . . U2,m

. . .
...

...
...

pn−1 Un−1,n . . . Un−1,m

pn . . . Un,m

 (2)

The pi are the pivots, and
D = diag(p1, p1p2, . . . , pn−2pn−1, pn−1) (3)

The pseudo-codes for dense matrices are recalled in A.
If n = m, pn = detA and pi is the principal minor of the top left i-by-i sub-block of A (therefore the

positive definiteness can be tested with ∀i, pi > 0).
Concerning the forward substitution, since all the divisions are exact in Z [30], one has the property:

∀b ∈ Zn, DL−1b ∈ Zn (4)

therefore DL−1 gets all its entries in Z.
For the backward substitution, only the first n-by-n sub-block Û of U is used. The property related

to the backward substitution is:

∀y = DL−1b, b ∈ Zn, Û−1(det Â)y ∈ Zn (5)

where Â is the first n-by-n sub-block of A, and det Â = pn = Ûn,n.

3 Case of a singular matrix

The case of a full rank surjective matrix A is trivial and has been considered in [10, 20]. We are
concerned herein with the case of a singular square operator (m = n), and the case with more unknowns
than equations (m > n) with a possible rank deficiency.

3.1 Standard LU factorization of a square singular matrix

When detA = 0, a solvability condition should be satisfied for the existence of a solution for the system
Ax = b. If the kernel of the adjoint of A (or the transpose AT of A according to a scalar product on Zn)
is generated by the column vectors stored in matrix S, this solvability condition is

ST b = 0 (6)

Once satisfied, this condition allows to define the set of solutions, up to a vector in the kernel of A:

x = A†b+Ru (7)

R stores independent column vectors generating the kernel of A, and u is the column vector of the
coordinates of a solution in the kernel of A. A† is an arbitrary generalized inverse of A [23, 12, 15] (any
generalized inverse generates the same family of solutions).
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If ST b 6= 0, there is no solution.
For sake of simplicity, we assume that a standard LU factorization of A [9], with a unitary lower

triangular matrix L, can be performed without pivoting. Null diagonal entries of U correspond to null
pivots; they are as numerous as the size of the kernel, which will be denoted with r [19]. The LU
factorization can easily be modified to return the factorization of a regularized matrix Ā and to allow the
extraction of the kernel vector sets R and S. The corresponding generalized inverse is then A† = Ā−1.
This is described in the following developments.

Consider first an arbitrary splitting of the unknowns in two sets, denoted with subscripts 1 and 2.
The matrix A can be split accordingly in several blocks:[

A11 A12

A21 A22

] [
x1

x2

]
=

[
b1
b2

]
(8)

where A11 and A22 are diagonal square blocks. If A11 is regular (which is assumed here), this system
can be condensed onto the second set of unknowns:[

A11 A12

0 A?
22

] [
x1

x2

]
=

[
b1
b?2

]
(9)

with the Schur complement A?
22 = A22 − A21A

−1
11 A12 and the condensed right hand side b?2 = b2 −

A21A
−1
11 b1. The initial system reads:[

I1 0
A21A

−1
11 I2

] [
A11 A12

0 A?
22

]
︸ ︷︷ ︸

A

[
x1

x2

]
=

[
I1 0

A21A
−1
11 I2

] [
b1
b?2

]
︸ ︷︷ ︸

b

(10)

where Ik is the identity matrix (with a size consistent to its use).
The previous condensation operation can also be performed recursively, line per line of the left upper

block A11 of the system (8) to give: [
U11 U12

0 A?
22

] [
x1

x2

]
=

[
c1
b?2

]
(11)

and the initial system reads: [
L11 0
L21 I2

]
︸ ︷︷ ︸

L(1)

[
U11 U12

0 A?
22

]
︸ ︷︷ ︸

U(1)︸ ︷︷ ︸
A

[
x1

x2

]
=

[
L11 0
L21 I2

] [
c1
b?2

]
︸ ︷︷ ︸

b

(12)

for which the same Schur complement has been computed recursively (this can be easily proved using
the sub-block factorization A11 = L11U11, A12 = L11U12, A21 = L21U11 and the uniqueness of the
factorization without pivoting).

Assume now that the second diagonal block, of size r×r, corresponds to all the null pivots (this would
be obtained with a total pivoting strategy): A?

22 = 0. In this case, the factorization is completed and
L = L(1), U = U (1). Existence of a solution is ensured if and only if b?2 = 0, which is the aforementioned
solvability condition. This condition reads: b?2 = BTL−1b = 0, where B ∈ Zn×r is a Boolean matrix
containing non null terms only on its second block, which is an identity block of size r×r: BT =

[
0 I2

]
.

By identification with (6), the kernel of AT is therefore

S = L−TB (13)

One way to resume the solution of the system is to ‘clamp’ the undetermined unknowns (the last
ones) to an arbitrary fixed value, for instance identity, and to backsolve the remaining regular left upper
block. Null pivots in the partial factorization are therefore replaced with identity, and dedicated partially
condensed right hand sides (as many as the kernel size) are settled:[

U11 U12

0 I2

]
︸ ︷︷ ︸

Ū

R = B =

[
0
I2

]
(14)

3



Ū is then invertible and the solution of this system is a generating set of independent vectors of the
kernel of A:

R = Ū−1B (15)

This is the factorization of a regularized version of A:

Ā = LŪ = L

(
U +

[
0 0
0 I2

])
= LU +

[
L11 0
L12 I2

] [
0 0
0 I2

]
= A+

[
0 0
0 I2

]
(16)

A and Ā only differ with the kernel sub-space.

3.2 Completely fraction-free factorization of a singular square matrix

The goal of this section is to extend the previous factorization, regularization and kernel extraction to
fraction-free computations. The proposed factorization requires a total pivoting strategy [26, 2] (though
only the first non null pivot is searched for, not the pivot with maximal amplitude). In this case, the
null pivots are postponed to the last degree-of-freedom positions, and a null block is built at the stage
where no pivoting is possible anymore. Assuming at a first step that pivoting was not necessary for sake

of simplicity, the system to solve is identical to (11) with a null block A
(1)
22 = 0, and a regular block U11:[

U11 U12

0 0

] [
x1

x2

]
=

[
c1

b
(1)
2

]
(17)

and the initial system reads:[
L11 0
L21 I2

]
︸ ︷︷ ︸

L

[
D11 0

0 I2

]−1

︸ ︷︷ ︸
D−1

[
U11 U12

0 0

]
︸ ︷︷ ︸

U︸ ︷︷ ︸
A

[
x1

x2

]
= LD−1

[
c1

b
(1)
2

]
︸ ︷︷ ︸

b

(18)

The blocks U11, U12, L11, L21 and D11 are given from expressions in (1), (3) and (2). The solvability

condition is still b
(1)
2 = 0.

To provide a fraction-free factorization and kernel extraction, two approaches can be derived: (i)
using a fraction-free regularization Ā of A that allows to fulfill the standard fraction-free factorization,
(ii) deal directly with the equivalent rectangular system (once the solvability condition is satisfied):

[
U11 U12

] [x1

x2

]
= c1 (19)

Choosing one solution or the other depends on implementation issues. The first solution is described
in the following, while the second one is discussed in Section 3.3.

As previously, to resume the factorization of a regularized matrix Ā ∈ Zn×n, the replacement of

the null block A
(1)
22 should be performed in a suited way: Referring to the recursion formula on line 20

in algorithm 1, the null pivots should be replaced with the last non null pivot found in the previous

factorization of the first block, i.e. pn−r (therefore, for k ≥ n− r + 1, Ai,k = 0, and the new block A
(1)
22

is not modified by the factorization). Finally, one gets the modified blocks:

L̄22 =

[
pn−rIr−1 0

0 Ir

]
, D̄22 =

[
p2
n−rIr−1 0

0 pn−r

]
and Ū22 = pn−rIr (20)

the modified factorization:

L̄ =

[
L11 0
L21 L̄22

]
, D̄ =

[
D11 0

0 D̄22

]
and Ū =

[
U11 U12

0 Ū22

]
(21)

and one recovers (16):

det Ā = pn−r, Ā = L̄D̄−1Ū = A+

[
0 0
0 L̄22D̄

−1
22 Ū22

]
= A+

[
0 0
0 I2

]
(22)

with the regularized problem:
Ūx = D̄L̄−1b (23)
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The fraction-free forward and backward substitution algorithms are preserved as previously; their
usage on the factorization of a regularized matrix ensures that the solutions are still taking their entries
in Z.

For kernel construction, one needs some matrices B and C in Zn×r with a regular second block of
size r × r:

B =

[
0
B22

]
and C =

[
0
C22

]
(24)

Then, S = L̄−T D̄B and R = Ū−1C.
Suitable choices for B22 and C22 can be made to preserve fraction-free computations. In a first step,

one can choose B22 = I2, Indeed, since D̄L̄−1 ∈ Zn×n, see (4), its transpose has also its entries in Z
which allows to conclude that S ∈ Zn×r. In a second step, we propose to select C22 = (det Ā)D̄22.

Indeed, L̄D̄−1
[
0 D̄22

]T ∈ Zn×r and since L̄D̄−1ŪR = (det Ā)L̄D̄−1
[
0 D̄22

]T
, the solving fraction-

free algorithm will provide R ∈ Zn×r by design (5).
If pivoting was necessary, the previous proofs are still valid since the pivoting does not alter the

intrinsic properties. The factorization of A reads A = PL̄D̄−1UQ and the factorization of the regularized
matrix is Ā = PL̄D̄−1ŪQ. P and Q are permutation matrices. They are orthogonal matrices and
the reverse permutation operation is PT and QT . This is used for notation purpose only since the
permutation matrices are not explicitly stored in the pseudo-codes of this article in A and B, conforming
to the BLAS implementation standards [6]. The associated kernels are:

S = PL̄−T D̄B and R = QT Ū−1(det Ā)C (25)

In practice, these expressions are used as follows. For the kernel S, once the multiple r right hand sides
are stored in B, a call to the forward substitution routine that allows to solve for a transpose left hand
side (algorithm 5) is performed. The result is then permuted with P to produce the kernel S. Concerning
the kernel R, the multiple r right hand sides stored in C are used. This time, the call to the backward
substitution routine (algorithme 3) is performed, and a reverse permutation with Q on the result allows
to obtain R.

3.3 Case of a rectangular matrix

The extension of the previous algorithm to matrix A ∈ Zn×m with m > n is easy to derive for the
standard case [16].

For the fraction-free case, we will first consider the case where rankA = n. In this case, the fac-
torization up to the stage (19) leads to a regular block U11. For an original rectangular system, it
reads:

A =
[
A11 A12

]
= LD−1

[
U11 U12

]
and b = LD−1c1 (26)

For any case, the problem is:
U11x1 = c1 − U12x2 (27)

With a regular block U11, the kernel R is such that U11R is proportional to U12 = DL−1A12. With
the same argument as before (5), to get R ∈ Zn×(m−n), it is proposed to choose R = U−1

11 (detA11)U12.
Indeed, in such a case, LD−1U11R = (detA11)A12. With rankA = n, no solvability condition apply and
S does not exist.

With a rank-deficient matrix A (rankA = n − r) and a total pivoting strategy, using the same
regularization as before, the stage (19) reads:

[
Ū11 U12

] [x′1
x′2

]
= D̄L̄−1PT b with

[
x′1
x′2

]
= Q

[
x1

x2

]
(28)

or
Ū11x

′
1 = D̄L̄−1PT b− U12x

′
2 (29)

This problem has the same structure as (23), therefore, the kernel of AT has the same expression:

S = PL̄−T D̄B ∈ Zn×r (30)

and the kernel of A is:

R = QT

[
Ū−1

11 0
0 I

]
d

[
C U12

0 I

]
∈ Zm×(r+m−n) (31)
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where d is the (n− r, n− r) entry of Ū11. Once the matrix A has been factorized, and the permutations
built, this kernel is obtained by: (i) calling the backward substitution routine with the multiple (r+m−n)
right hand sides

[
C U12

]
, (ii) the completion of the results with the (m − n) lines d

[
0 I

]
, and (iii)

the reverse permutation of the result.

3.4 Implementation issues

Since the regularization procedure is quite easy to code, and does not require memory management for
intermediate storage, this is the preferred solution we chose for dealing with the singular case. The
treatment of the rectangular case also embeds this regularization procedure when rankA < n. The
pseudo-codes in B describe this implementation.

The main drawback of the fraction-free algorithms is the large growing rate of the terms during the
factorization and the substitutions (though this is reduced when compared to a division-free algorithm
since exact divisions are taken into account here). For instance, for integer computations, Z = Z, the
growth in the dynamic range of the integers that must be represented is recalled in [33]: if the length of
a ∈ Z, a 6= 0, is defined as λ(a) = blog |a|+ 1c where b·c is the rounding down to the nearest integer, and
if the lengths of the elements of A are bounded by `, then the elements of L and U have their lengths
bounded by n(`+ log n).

A classical storage strategy for the integers is to use a double precision declaration and to certify that
no cancellation error will occur. With IEEE standard for binary floating-point arithmetic (ANSI-IEEE
754-1985) on 32-bit architectures, to avoid cancellation error, integers stored in REAL*8 should be less
than 253 − 1, i.e. their length should be less than 16. For integer storage the value is limited to 231 − 1,
i.e. their length should be less than 10.

For the case of large-size systems, alternative solutions consist in using arbitrary adaptive precision
algebra libraries [17, 13], modular methods such as a residue number system (RNS) [31], or high-order
lifting techniques [28].

Though additional gain in dynamic range can be reached by using greatest common divisor searches
per completed line of the matrix, this may not improve the worst case.

4 Test cases

For illustration and eventual checking purposes, we propose two examples for Z = Z. The first one arise
from computational geometry: To match incompatible 3D finite element meshes, the core problem for
mesh intersection of linear elements is to intersect a line (defined by a segment A1, A2) with a plane
(defined by a triangle M1,M2,M3). Though using barycentric coordinates may not be the most efficient
approach [25], these coordinates are required for the associated information transfer problem from one

mesh to another [11]. Therefore, the problem is to find the point M =
∑3

i=1 λiMi =
∑2

j=1 µjAj with the

partition of unity
∑3

i=1 λi =
∑2

j=1 µj = 1. The problem therefore reduces to find x =
[
λ2 λ3 µ2

]T
such that Ax = b with A =

[
M1M2 M1M3 −A1A2

]
and b = [M1A1]. For robustness purposes, a

snap rounding of nodal coordinates is used; this leads to integer coordinates. Checking singularities is
mandatory due to singular positions that occur for instance on planar boundaries of the triangulated
domain where segments and triangles are parallel. This is for instance the case when (see Figure 1)

M1 =

0
0
0

 , M2 =

16
8
0

 , M3 =

0
0
4

 , A1 =

 12
6
−1

 , A2 =

−4
−2

3


which leads to:

A =

16 0 16
8 0 8
0 4 −4

 and b =

 12
6
−1


The in-place factorization of A gives the matrix (the two last rows have been permuted: P is stored

as [1 3 3] and Q is stored as [1 2 3] in the pseudo-code provided1, conforming to the BLAS standard [6])16 0 16
0 64 −64
8 0 64


1some possible duplicates in P or Q arise from the choice of using an incremental permutation strategy for efficiency

purposes, see associated pseudo-codes.
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Figure 1: Test case of a 3D segment-triangle intersection

for which the fraction-free factorization of the regularized matrix Ā can be extracted:

L =

16 0 0
0 64 0
8 0 1

 , D =

16 0 0
0 1024 0
8 0 64

 , Ū =

16 0 16
0 64 −64
0 0 64


The determinant of Ā is d = Ū3,3 = 64, while the factorization of the singular matrix A would have

given:

U =

16 0 16
0 64 −64
0 0 0

 and LD−1U =

16 0 16
0 4 −4
8 0 8


LD−1U is indeed the permutation of A, and the permutation of Ā (with lnp = [3]) is

LD−1Ū =

16 0 16
0 4 −4
8 0 9


Backward permutations of the kernels give their expressions in the original basis: R =

[
−64 64 64

]T
and S =

[
−32 64 0

]T
. One can check that AR = AT S = 0 and that the solvability condition is sat-

isfied: ST b = 0. With the particular choice of pseudo-inverse of A being A† = Ā−1, the classical

fraction-free forward substitution gives (in the permuted basis): y = (LD−1)−1P−1b =
[
12 −16 0

]T
and the backward substitution gives (in the original basis): x = Q−1Ū−1y =

[
48 −16 0

]T
.

One can finally check that any combination of the form (7) is a solution, for instance: Ax− d b = 0.
In this case, the solution of the intersection problem is λ1 = 1/2, λ2 = (48−64u)/d, λ3 = (−16+64u)/d,
µ1 = (d − 64u)/d, µ2 = 64u/d, with an arbitrary u; this is indeed the whole line (A1, A2). Extremal
solutions (for which at least one of the barycentric coordinate is in {0, 1} and all are in [0, 1]) can therefore
easily be checked. They are the intersections with the triangle edges: (λ1 = λ3 = 1/2, λ2 = 0, µ1 = 1/4,
µ2 = 3/4) and (λ1 = λ2 = 1/2, λ3 = 0, µ1 = 3/4, µ2 = 1/4).

The next example is extracted from [7], with a singular matrix obtained by replacing two columns by
linear combination of others. It is designed to illustrate the growth in the dynamical range of the entries
in Z. Consider the following problem:

A =


68 25 11 26 55
66 −36 −32 −51 17

134 −11 −21 −25 72
−5 85 58 −22 −25
−73 60 47 −48 −80

 and b =


5

10
15
30
25


The in-place factorization of Ā gives the matrix (with the permutation of rows corresponding to [1 2 4 4 5]
and no column permutation, but with final pivots lnp = [4 5]):

68 25 11 26 55
66 −4098 −2902 −5184 −2474
−5 5905 11006 532491 300715
134 −4098 0 11006 0
−73 5905 11006 0 11006


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where

L =


68 0 0 0 0
66 −4098 0 0 0
−5 5905 11006 0 0
134 −4098 0 11006 0
−73 5905 11006 0 1



D =


68 0 0 0 0
0 −278664 0 0 0
0 0 −45102588 0 0
0 0 0 121132036 0
0 0 0 0 11006



Ū =


68 25 11 26 55
0 −4098 −2902 −5184 −2474
0 0 11006 532491 300715
0 0 0 11006 0
0 0 0 0 11006


The permuted kernels are:

R =


−51585 −36105
363161 206307
−532491 −300715

11006 0
0 11006

 and S =


−11006 11006
−11006 0

0 −11006
11006 0

0 11006


and one solution is obtained as: x =

[
−14110 108710 −154840 0 0

]T
with d = 11006.

5 Conclusions

This article proposes an extension of complete fraction-free algorithms, first to square singular matrices
in an integral domain, A ∈ Zn×n with detA = 0, providing: (i) the factorization of a regularized matrix
Ā ∈ Zn×n whose inverse is a pseudo-inverse of A, and (ii) the fraction-free determination of the kernels
of A and of AT . Second, the case with rectangular matrices A ∈ Zn×m with m > n, and exhibiting
a rank deficiency, is derived as an other extension. As for the original algorithm, all computations are
exact in any integral domain and singular linear systems can be solved within their input domain.

A Pseudo-code for complete fraction-free factorization

The pseudo-codes for dense matrices are recalled in algorithms 1, 2 and 3. Supplementary information
from reference [33] are: the matrices L and U are overwritten on A during the factorization (the diagonal
of L is not stored), the vector y is overwritten on b during the forward substitution (where b has been
permuted if needed), and the vector x is overwritten on y during the backward substitution; the permu-
tations are stored in a list P giving indexes for row permutations (consistent with the standard LAPACK
[1] factorization routine dgetf2, and BLAS [6] substitution routine dtrsm); and a typo correction has
been fixed with respect to the original article (line 8 in algorithm 2). All the involved divisions are proved
to be exact in Z, and the tests are strict [30, 33].

B Pseudo-code for singular complete fraction-free factorization
with kernel extraction

The additional codes for singular cases are given in algorithms 4 and 6. Note that the last one, for
kernel extraction, deals only with a square matrix, which can be the first n-by-n block of a permuted
factorization of a n-by-m (m > n) rectangular matrix. The algorithm 5 is a modified forward substitution
with a transpose left hand side. All the divisions are exact in Z due to the property (DL−1)T ∈ Zn.
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Algorithm 1 Completely fraction-free factorization of dense A

1: Inputs: A
2: (n,m)← size(A)
3: oldpivot← 1
4: for k = 1, 2, . . . , n do
5: P (k)← k
6: if A(k, k) = 0 then
7: Search for the first non null pivot A(kpivot, k), for kpivot ∈ [k + 1, n]
8: if No pivot found then
9: Error: Matrix is rank deficient

10: else
11: {Row interchange}
12: A(k, 1 : m)↔ A(kpivot, 1 : m), P (k)← kpivot
13: end if
14: end if
15: pivot← A(k, k)
16: for i = k + 1, . . . , n do
17: Aik ← A(i, k)
18: for j = k + 1, . . . ,m do
19: {Integer exact division}
20: A(i, j)← (pivot ∗A(i, j)−Aik ∗A(k, j))/oldpivot
21: end for
22: end for
23: oldpivot← pivot
24: end for
25: Return: modified A (storing L, D and U), P

Algorithm 2 Forward substitution: solve y from LD−1y = b for a permuted b

1: Inputs: A (storing L and D), b
2: n← size(b)
3: oldpivot← 1
4: for k = 1, 2, . . . , n− 1 do
5: pivot← A(k, k)
6: for i = k + 1, . . . , n do
7: {Integer exact division}
8: b(i)← (pivot ∗ b(i)−A(i, k) ∗ b(k))/oldpivot
9: end for

10: oldpivot← pivot
11: end for
12: Return: modified b (storing y)

Algorithm 3 Backward substitution: solve x from Ux = d y with d = detA

1: Inputs: A (storing U), y
2: n← size(y)
3: d← A(n, n)
4: for i = n, n− 1,..., 1 do
5: {Integer exact division}
6: y(i)← (d ∗ y(i)−

∑n
k=i+1A(i, k) ∗ y(k))/A(i, i)

7: end for
8: Return: modified y (storing x), scaling factor d
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Algorithm 4 Completely fraction-free factorization of a dense regularization of A with full pivoting

1: Inputs: A
2: (n,m)← size(A)
3: np ← 0
4: oldpivot← 1
5: for k = 1, 2, . . . , n do
6: P (k)← k, Q(k)← k
7: if A(k, k) = 0 then
8: Search for the first non null pivot A(kpivot, lpivot), for kpivot ∈ [k+ 1, n] and lpivot ∈ [k+ 1, n]
9: if No pivot found then

10: {Matrix is rank deficient}
11: np ← np + 1, lnp(np)← k
12: {Apply a suited regularization}
13: A(k, k)← oldpivot
14: else
15: {Row interchange}
16: A(k, 1 : m)↔ A(kpivot, 1 : m), P (k)← kpivot
17: {Column interchange}
18: A(1 : n, k)↔ A(1 : n, lpivot), Q(k)← kpivot
19: end if
20: end if
21: {No more singularity here: Apply CFF transformation}
22: pivot← A(k, k)
23: for i = k + 1, . . . , n do
24: Aik ← A(i, k)
25: for j = k + 1, . . . ,m do
26: {Integer exact division}
27: A(i, j)← (pivot ∗A(i, j)−Aik ∗A(k, j))/oldpivot
28: end for
29: end for
30: oldpivot← pivot
31: end for
32: Return: modified A (storing L, D and U of the regularized matrix Ā), P , Q and lnp

Algorithm 5 Modified forward substitution: solve y from LTD−1y = b

1: Inputs: A (storing L and D), b
2: n← size(b)
3: for i = n, n− 1,..., 1 do
4: if i = 1 then
5: oldpivot← 1
6: else
7: oldpivot← A(i− 1, i− 1)
8: end if
9: {Integer exact division}

10: b(i)← oldpivot ∗ b(i)− (
∑n

k=i+1A(k, i) ∗ b(k))/A(i, i)
11: end for
12: Return: modified b (storing y)
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Algorithm 6 Find kernels from a fraction-free factorization of a regularized square matrix A

1: Inputs: A (storing L, D, U), lnp (for original nul pivot locations)
2: n← size(A, 1)
3: np ← length(lnp)
4: d← A(n, n)
5: {Initialize right-hand-sides for kernel extractions}
6: for i = 1, 2, . . . , np do
7: R(lnp(i), i)← d
8: S(lnp(i), i)← 1
9: end for

10: Solve U R = d b where the np right-hand-sides b are stored in R on input, with fraction-free backward
substitution (algorithm 3)

11: Solve LT D−1 S = b where the np right-hand-sides b are stored in S on input, with fraction-free
forward modified substitution (algorithm 5)

12: Return: kernels R and S
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