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In this paper, we deal with the preemptive asymmetric stacker crane problem in an heuristic way. We first present some theoretical results which allow us to turn this problem into a specific tree design problem. We next derive from this new representation a simple, efficient local search heuristic, as well as an original LIP model. We conclude by presenting experimental results which aim at both testing the efficiency of our heuristic and at evaluating the impact of the preemption hypothesis

Introduction

Pickup and delivery problems, which consist in scheduling the transportation of sets of goods/passengers from origin nodes to destination nodes while using a given set of vehicles, have been intensively studied for decades from both theoretical and practical points of view. Many variants have been considered and a lot of methods have been designed in order to improve the resolution of such problems. (One can refer to [START_REF] Berbeglia | Static pickup and delivery problems: a classification scheme and survey[END_REF][START_REF] Parragh | A survey on pickup and delivery problems: Part II: Transportation between pickups and delivery locations[END_REF][START_REF] Savelsberg | The general pickup and delivery problem[END_REF] for surveys on these problems and methods.) Among all the pick-up-and-delivery like problems which have been addressed by searchers, the Stacker Crane Problem is characterized by the fact that only one vehicle is involved, which can deal with only one demand unit at the same time. In this paper, we give a heuristic to handle what we call the Preemptive Stacker Crane Problem, that means the case when some demands can be dropped anywhere in the network and reloaded afterwards in order to gain time.

A rough description of the Stacker Crane Problem (SCP) can come as follows: G being some transit network whose oriented links or arcs are endowed with lengths or costs and which is provided with some specific Depot node, we are required to schedule the route of a single vehicle V, which is required to address a Demand set K, each demand k K being defined by some origin node o(k) and by some destination node d(k). Namely, addressing the demand k means transporting some unique load unit L(k) from o(k) to d(k) while using the vehicle V, whose capacity is such that it cannot contain more than one load unit L(k), k K, at a given time. Thus, scheduling V means designing a route inside the network G, which is going to start and end in Depot and to make possible for V to handle every demand k in K, and solving the Stacker Crane Problem will mean computing this route in such a way that this route is the shortest possible. Two versions of the SCP may be distinguished. In the first one, called non-preemptive Stacker Crane Problem (NPSCP), every demand has to be directly carried from its origin to its destination. In the second version, which is called Preemptive Stacker Crane Problem (PSCP), any load unit L(k) related to demand k may be dropped (unloaded) at any node x of the transit network G, before being reloaded a little further and this unload/reload process, which we call reload process, may be performed several times before the load unit L(k) reaches the destination node d(k). In case the cost or length function, which to any arc (x, y), make correspond some length DIST(x, y), is symmetric, we talk about Symmetric SCP (symmetric NPSCP or symmetric PSCP), and in the case the converse is true, we talk about asymmetric SCP (asymmetric NPSCP or asymmetric PSCP).

The Stacker Crane problem was first introduced by Frederickson et al. in [START_REF] Frederickson | Approximation Algorithms for Some Routing Problems[END_REF], under its non preemptive symmetric form. They proved its NP-hardness by using a reduction from the TSP. They also got a 9/5-approximation scheme for this problem. Moreover, they proposed a natural extension of this problem to n identical vehicles, and obtained for this extension a (1+ -1/k)-approximation scheme, where  corresponds to the bound of the approximation for the problem with only one vehicle.

Atallah and Kosaraju [START_REF] Atallah | Efficient Solutions to Some Transportation Problems with Applications to Minimizing Robot Arm Travel[END_REF] were the first to consider the preemptive version of the symmetric SCP. They studied both non-preemptive and preemptive versions of the symmetric SCP in the case when the underlying graph is an elementary path or an elementary cycle. They proved that in such a case, both versions are polynomial-time solvable. Frederickson and Guan [START_REF] Frederickson | Preemptive Ensemble Motion Planning on a Tree[END_REF][START_REF] Frederickson | Nonpreemptive ensemble motion planning on a tree[END_REF] studied both preemptive and non-preemptive versions of the symmetric SCP in the case when the underlying graph is a tree. They proved that the preemptive version is polynomial-time solvable and yielded two exact algorithms. However, the non-preemptive version was shown to be NP-hard and severalapproximations were provided. Kerivin et al. [START_REF] Kerivin | The Eulerian closed walk with precedence path constraints problem[END_REF] first proved that the optimal solutions of the preemptive stacker crane problem can be determined by the simple knowledge of the arc sets related to the vehicle route and to the demand paths. Using this result, they introduced, to the best of our knowledge, the first integer linear model for both symmetric and asymmetric versions of the preemptive SCP [START_REF] Kerivin | Models for the single-vehicle preemptive pickup and delivery problem[END_REF]. This formulation has a polynomial number of variables and an exponential number of constraints. However, the authors showed that the linear relaxation of the formulation can be solved in polynomial time.

Several variants of the pickup and delivery problems closely related to the SCP have been also studied. We should mention the Pickup and Delivery Traveling Salesman Problem (PDTSP) which corresponds to the non-preemptive stacker crane problem where no capacity constraint is taken into account (the vehicle V can contain as many object as required) and where every node of the network G is the origin or the destination of exactly one demand. Rodin and Ruland [START_REF] Ruland | The pickup and delivery problem: Faces and branch-and-cut algorithm[END_REF] presented an integer linear formulation for the PDTSP and used a branch-and-cut algorithm to solve it exactly. A polyhedral study of this formulation and of several other valid constraints was then made by Dumitrescu in [START_REF] Dumitrescu | Polyhedral results for the pickup and delivery travelling salesman problem[END_REF]. The PDTSP has also been well studied from a heuristic point of view and many local search algorithms [START_REF] Healy | A new extension of local search applied to the Dial-A-Ride Problem[END_REF][START_REF] Psaraftis | k-interchange procedures for local search in a precedence constrained routing problem[END_REF][START_REF] Renaud | Perturbation heuristics for the pickup and delivery traveling salesman problem[END_REF][START_REF] Renaud | A heuristic for the pickup and delivery traveling salesman problem[END_REF] have been tested on the PDTSP, which involved a local transformation procedure defined as extensions of the k-interchange procedure defined by Lin [START_REF] Lin | Computer solutions to the traveling salesman problem[END_REF] and Lin et Kernighan [START_REF] Lin | An effective heuristic algorithm for the traveling salesman problem[END_REF] for the TSP. The asymmetric version of the PDTSP was considered by Kalantari et al. [START_REF] Kalantari | An algorithm for the traveling salesman problem with pickup and delivery customers[END_REF] who developed a branch-and-bound algorithm based on Little et al. scheme for the asymmetric TSP [START_REF] Little | An algorithm for the traveling salesman problem[END_REF]. Furthermore, if every node may be incident several demands while the vehicle route is imposed to define a Hamiltonian circuit, one can check that the asymmetric PDTSP is nothing but the Precedence Constrained Asymmetric TSP (PCATSP) also called the Sequential Ordering Problem (SOP). Polyhedral approaches and branch-and-cut algorithms [START_REF] Ascheuer | A cutting plane approach to the sequential ordering problem (with applications to job scheduling in manufacturing)[END_REF][START_REF] Ascheuer | A Branch & Cut algorithm for the Asymmetric Traveling Salesman Problem with Precedence Constraints[END_REF][START_REF] Balas | The precedence constrained asymmetric traveling salesman problem[END_REF][START_REF] Gouveia | On extended formulations for the precedence constrained asymmetric traveling salesman problem[END_REF] as well as heuristics [START_REF] Chen | Commonality and genetic algorithms[END_REF][START_REF] Gambardella | An ant colony system hybridized with a new local search for the sequential ordering problem[END_REF][START_REF] Montemanni | A heuristic manipulation technique for the sequential ordering problem[END_REF] have been devised to solve this problem.

Variants of the pickup and delivery problem with a single vehicle and capacity constraints have also been considered. For instance, Hernández-Pérez and Salazar-González [START_REF] Hernández-Pérez | The multicommodity one-to-one pickup-anddelivery traveling salesman problem[END_REF] considered the SOP with capacity constraints, which they called the multi-commodity one-to-one pickup-and-delivery Traveling Salesman Problem (m-PDTSP). They gave mixed-integer linear formulations which they solved through branch-and-cut algorithms. Furthermore, the method given by Kalantari et al. in [START_REF] Kalantari | An algorithm for the traveling salesman problem with pickup and delivery customers[END_REF] may also be applied for the asymmetric PDTSP with capacity constraints. Kerivin et al. [START_REF] Kerivin | Models for the single-vehicle preemptive pickup and delivery problem[END_REF] extended their model for the preemptive asymmetric stacker crane problem when the vehicle (respectively demands) has a capacity (respectively volume). Some of the previously mentioned problems have also been studied with additional constraints such as time windows [START_REF] Mitrovic-Minic | Pickup and delivery problem with time windows: A survey[END_REF][START_REF] Parragh | A survey on pickup and delivery problems: Part II: Transportation between pickups and delivery locations[END_REF][START_REF] Savelsberg | The general pickup and delivery problem[END_REF], precedence constraints imposed to demand processes [START_REF] Fiala Timlin | Precedence constrained routing and helicopter scheduling[END_REF][START_REF] Fiala Timlin | Precedence constrained routing and helicopter scheduling: heuristic design[END_REF] or LIFO loading policy [START_REF] Cordeau | A branch-and-cut algorithm for the pickup and delivery traveling salesman problem with LIFO loading[END_REF]. Moreover, when the transportation involve human beings, the objective may not only to minimize the total cost of the vehicle route but may also put at stake people dissatisfaction [START_REF] Cordeau | The dial-a-ride problem: models and algorithms[END_REF][START_REF] Psaraftis | A Dynamic Programming Solution to the Single-Vehicle Manyto-Many Immediate Request Dial-a-Ride Problem[END_REF] (which can be expressed using people riding time or difference between desired time and arrival one).

The stacker crane problem can be extended to the case where every demand has several origins and destinations. This extension, named the Swapping Problem, belongs to the class of many-to-many pickup and delivery problems (See [START_REF] Berbeglia | Static pickup and delivery problems: a classification scheme and survey[END_REF] for a classification of routing problems). Usually, symmetric costs are considered. Moreover, it is assumed that every node is the origin of one demand and the destination of another one (a null demand may be considered if necessary). Swapping problems may be preemptive, non-preemptive, symmetric or non symmetric. They were first introduced by Anily and Hassin [START_REF] Anily | The swapping problem[END_REF], which exhibited a 2.5-approximation scheme for some mixed version of the problem. Anily et al. [START_REF] Anily | The preemptive swapping problem on a tree[END_REF] also considered the preemptive swapping problem in the case when the network is a tree. They proved that the problem remains NP-hard and gave in this case a 1.5-approximation. Recently, Bordenave et al. [START_REF] Bordenave | A branch-and-cut algorithm for the preemptive swapping problem[END_REF] presented a branch-and-cut algorithm for the preemptive swapping problem which allowed them to deal with instances with 100 nodes and 8 demands. They also designed a two-phase heuristic [START_REF] Bordenave | Heuristics for the mixed swapping problem[END_REF] for the asymmetric mixed swapping problem and applied to instances with up to 10000 nodes with an average optimality gap which did not exceed 1%.

Though many variants of single-vehicle pickup and delivery problems have been studied, we still may notice that few of them take into account the possibility of reloads in the transportation of the demands. In fact, what is more often considered is the case when reloads correspond to transshipments, that is, when a demand is unloaded from a vehicle in order to be reloaded into another vehicle. Such possibility may appear to pickup and delivery problems involving several vehicles. Despite the fact that these problems are quite different from the SCP, one must mention some of them in order to complete our bibliographic overview: Pickup and Delivery Problem with Transfers (PDPT) [START_REF] Cortés | The Pickup and Delivery Problem with Transfers: Formulation and Solution Approaches[END_REF], the Pickup and Delivery Problem with Time-Windows and Transshipments (PDPTWT) [START_REF] Mitrovic-Minic | The pickup and delivery problem with time windows and transshipment[END_REF] and the Pickup and Delivery Problem with Reloads (RPDP) [START_REF] Oertel | Routing with Reloads[END_REF]. When dealing with these problems, which sometimes involve account time-windows and capacity constraints, authors often prefer the terms transfer or transshipment to the words reloads or preemption.

Mitrovic-Minic and Laporte [START_REF] Mitrovic-Minic | The pickup and delivery problem with time windows and transshipment[END_REF] gave a two-phase heuristic to approximately solve the PDPTWT. They first construct an initial solution using multi-start cheapest insertion procedure, and next improve this solution by successively removing and reinserting every demand, with one or no reload. The experimental results they obtained show that allowing transshipment may be very useful to reduce total travel distance.

In order to get a model for the RPDP, Oertel [START_REF] Oertel | Routing with Reloads[END_REF] defined an auxiliary graph by considering two copies of every origin/destination node. Using this new graph, he first proposed a mixed-integer formulation for the problem, and next designed a tabu search insertion based algorithm, which could efficiently deal with instances with more that seventy demands. Cortés et al. [START_REF] Cortés | The Pickup and Delivery Problem with Transfers: Formulation and Solution Approaches[END_REF] used the same kind of trick and handled their model Benders decomposition.

The focus of this paper will be on the preemptive asymmetric stacker crane problem, which we shall denote by APSCP. We are first going (Section II) by setting our problem in a formal way, while assuming the triangle inequality for the cost function and while doing in such a way that origin/destination pairs of nodes become pairwise disjoint, that network be complete and that the asymmetric costs satisfy the triangle inequalities. Next (Section III) we shall prove some structural results which will allow us to turn our problem into a non constrained tree design problem. Thus reformulation of the problem will lead us to design (Section IV) in a natural way local search heuristic scheme together with a linear integer programming model, which will be implemented and tested in Section V, providing us with rather satisfactory numerical results.

II. A Formal Description of the APSC Problem.

Notations.

For any sequence = {x 1 , .., x n } and any object x = x i in , we denote by Succ( ,x) (Pred( ,x)), the successor (predecessor) x i+1 (x i-1 )of x in , and by Rank( ,x) the rank i of x = x i in . A sequence with only one element x is denoted by {x} and the empty sequence is denoted by Nil. We call subsequence of any sequence ' which may be written {x i1 , .., x ip } with i 1 < i 2 < .. < i p . The first (last) element x 1 (x n ) of is denoted by First( ) (Last( )). The number n of element of is denoted by Length( ). We denote by the concatenation of operator, which takes two sequences = {x 1 , .., x n } and ' = {y 1 , .., y m } and concatenates them into a unique sequence ' = {x 1 , .., x n , y 1 , .., y m }. We denote by * the operator which construct a sequence from its first element x 1 and from its tail subsequence Tail( ) = {x 2 , .., x n }: = First( )* Tail( ) = {x 1 , .., x n }. If x = x i and y = x j are two elements of such that i = Rank( , x) ≤ j = Rank( ,y), then we denote by I( , x, y) the subsequence {x i , .., x j } of  which is defined by all z such that Rank( , x) ≤ Rank( ,z) ≤ Rank( ,y). Any subsequence ' of which may be written I( , x, y) is also called a segment of . We call cut of any decomposition c = ( ', ") of as a concatenation ' " where both 'and " are segments of .

Modelling the Asymmetric Pre-emptive Stacker Crane Problem (APSCP);

At it was told in the introduction, the Asymmetric Pre-emptive Stacker Crane Problem can be roughly described as follows:

-a single vehicle V is required in order to address a set K of transportation demands, while performing some tour inside a given transit network G. Any demand k K is expressed as a pair (o(k), d(k)) of nodes of G, according to the following semantics: o(k) is the origin node of k; d(k) is the destination node of k;

V must transport exactly one load unit L(k) from o(k) to d(k). -the load capacity of V is equal to 1; -V is allowed to address the demands of K in a pre-emptive way: it may, while carrying the load L(k), stop at some node x, unload L(k), deal with other demands and next come back to x, load again L(k), and keep on with the handling of demand k. Such an intermediate load is then called a reload node for the demand k. -V starts and ends its tour in a "Depot" node, and try to do it as fast as possible, in the sense of a cost (length) function which is supposed to be defined on the arcs of the network G.

In order to set a formal model for this problem, we make copies of the original nodes of the network G in such a way that the nodes Depot, o(k), d(k), k K, and the eventual reload nodes becomes all distinct. That means that we consider a node set X which may be written according to the following partition:

X = {Depot} X O X D X R in such a way that: X O = {o(k), k K); X D = {d(k), k K};
X R contains a copy of every element in {Depot} X O X D together with a set of other eventual reload nodes. Then the original cost (length) function which was defined on the arc set of the network G gives rise, through a shortest path computing process, to a X.X indexed (shortest path) distance matrix DIST, such that if x is in {Depot} X O X D and if x' is the copy of x in X R then DIST(x, x') = 0. We suppose of course that DIST satisfies the Triangle Inequality Property, but that it does not need to be symmetric.

Then we define labelled link (L.L), as being any triple r = (x, y, k), where x and y are nodes of X and k is a label in the set {0} K: x (y) is called the starting node (ending node) of the labelled link r and is denoted by Start(r) (End(r)); k is called the label of r and is denoted by Label(r).

It comes that a tour defined on X is going to be a sequence of labelled links. For such a tour , and for any label k in {0} K, we denote by (k) the labelled link sequence which derives in a natural way from by only considering the labelled link r such that Label(r) = k, and we call it the deriving subsequence of G related to the label k. Of course, we understand that the meaning of the label k = Label(r) of some labelled link which appears in a tour G related to the activity of the vehicle V, is that k = 0 means that V is empty when running from x = Start(r) to y = End(r) and that k ≠ 0 means that V is then carrying the unit load L(k).

The cost of is then defined in a natural way as the quantity:

Cost( ) =  r DIST(Start(r), End(r)).
Clearly, not any tour may be viewed as reflecting the activity of a vehicle V which conveniently handles every demand k K. We see that in order to get it, we need to impose G to be valid, which will mean that:

- 

III. Some Structural Results.

We are now going to state and prove some results which will be the basis for the design of the heuristics which will be described in Section IV.

III. 1. A Theorem.

Let some valid tour. For any labelled link r = (x, o(k), 0) in , we denote by ( , r) the unique labelled link (d(k), y, 0) which is also in . By the same way, if x is some node in X R , such that a triple a labelled link r = (y, x, k), k ≥ 1, is in , then we also denote by ( , r) the unique triple r' = (x, z, k) which exists in G and which is such that: -Rank( , r') > Rank( , r); -Rank( , r') is minimal with this property. We say that two Labelled links r and r' in are overlapping if we have: Rank( , ( , r')) > Rank( , ( , r)) > Rank( , r') > Rank( , r).

Then we may state:

Theorem 1.
Let be some optimal tour for the APSCP Problem, which we suppose chosen in such a way that: -(A): Length( ) is the smallest possible; -(B): the number of labelled links r in which are such that Label(r) ≠ 0 is the smallest possible, (A) being supposed to be satisfied; Then, the following assertions must be true:

-(S1): does not contain two occurrences of the same labelled link r = (x, y, k), with k ≠ 0; -(S2): does not contain two consecutive labelled links r and r' such that Label(r) = Label(r'); -(S3): does not contain two overlapping labelled links r and r'; -(S4): does not contain two labelled links r and r' such that End(r) = End(r').

Proof.

We assume that is given, which is an optimal solution of APSCP and which is such that (A) and (B) are true. Part (S1). If r = (x, y, k), k > 0 appears twice in , with respectively rank s and s', then x and y are both reload nodes, and we may replace, in any labelled link r" which is such that: -s ≤ Rank( , r") < s'; -Label( r") = k; the label value Label(r") by 0. While doing it, we keep on with a valid tour which is an optimal solution of APSCP and we get a contradiction on the (B) hypothesis.

Part (S2).

If r = (x, y, k) and r' = (y, z, k) were two consecutive labelled links of such that Label(r) = Label(r'), then we would be able to remove both r and r' from , and replace them by a unique labelled link (x, z, k). While doing this, we would also keep, because of the Triangle property on the DIST matrix, an optimal solution of APSCP, and this solution would contradict the (A) hypothesis.

Part (S3).

Let us suppose that there exists two labelled links r = (y, x, k) and r' = (y', x', k') which are overlapping in . We may choose them in such a way that Rank( , ( , r')) -Rank( , r) is the smallest possible.

(E1) Because of (E1), we see that x and x' must be reload nodes: if, for instance, x were an origin node o(h), then we would have k' ≠ h and there would exist an labelled link r" such that:

-Label(r") = h; -Rank(G, r) < Rank(G, r") < Rank(G, r') < Rank(G, ( , r")) < Rank(G, ( , r)) < Rank(G, ( , r')). Then we might deduce a new overlapping pair (r", r') which would induce a contradiction on the minimality assumption (E1). By the same way, we may check that x' cannot be an origin node o(h). Thus x and x' are both reloads nodes, and we clearly have: k ≠ k' ≠ 0. It comes that we may write:

-r = (y, x, k), r' = (y', x', k') ; -( , r) = (x, z, k), ( , r') = (x', z', k'). So, we set : 5 . Of course, the lengths of and are Aux equal, as well as their respective costs. So we state:

Lemma 1.

Aux defined above is a valid tour.

Proof-Lemma.

We only need to check that switching 2 , 3 and 4 does not break any sequence (k), or, in other words, that for any k ≠ 0, we have (k) = Aux (k). If the converse were true, we would be able to find k" ≠ k', k, k" ≠ 0, as well as two labelled links r" and ( , r"), with label k" or with the ending node of r" equal to o(k"), such that one of the three following relations would be true:

-r" 2 and ( , r") 3 ;

(E2); -r" 2 and ( , r") 4 ;

(E3); -r" 3 and ( , r") 4 ;

(E4); In case (E2) or (E3) were true, r" and r' would be overlapping, and would contradict the (E1) hypothesis, related to the minimality of Rank( , ( , r')) -Rank( , r) In case (E4) were true, r and r" would be overlapping, and would contradict the (E1) hypothesis, related to the minimality of Rank( , ( , r')) -Rank( , r). In any case, we become able to conclude. END-LEMMA.

The above lemma allows us to conclude the proof of (S3) by noticing that r and ( , r) become consecutive in the valid tour Aux , which implies (proof of statement (S2)) that r and ( , r) may be replaced in Aux by a unique labelled link (y, z, k) in such a way that Cost( Aux ) does not increase and that Length( Aux ) decreases, inducing a contradiction on the (A) hypothesis.

Part (S4).

Let us suppose that contains two labelled links r and r' such that End(r) = End(r') and such that Rank( , r) < Rank( , r'). Since the starting node x of r cannot be in {Depot} X D , it must be a reload node in X R which is used twice as a reload node. So, r, ( , r) and r' and ( , r') may be written:

-r = (y, x, k), k ≠ 0; -r' = (y', x, k'), k' ≠ 0, k; -( , r) = (x, z, k); -( , r') = (x, z', k'). Because of (S3) we must have:

-Rank( , r) < Rank( , ( , r)) < Rank( , r') < Rank( , ( , r')) (E5) or -Rank( , r) < Rank( , r') < Rank( , ( , r')) < Rank( , ( , r)).

(E6) Let us first suppose that (E5) holds. Then we set: 5 . Of course, the lengths of and are Aux equal, as well as their respective costs, and we proceed as in the proof of (S3) in order to prove that Aux must be a valid tour. But we also notice, as in the proof of (S3), that Aux can be shortened by replacing the consecutive labelled links r and r* by a unique labelled link (y, z, k), in such a way that Cost( Aux ) does not increase and that Length( Aux ) decreases, inducing a contradiction on the (A) hypothesis.

We apply exactly the same kind of reasoning in case (E6) holds. END-THEOREM.

III. 2. A Tree Representation of the APSCP Problem.

Theorem 1 leads us to introduce the following definition:

Strongly Valid Tour: a valid tour is a strongly valid tour if it satisfies the (S1)…(S4) properties which are listed into the statement of Theorem 1.

The following figure 2 shows us how the valid tour of Figure 1 may be turned into a strongly valid tour whose cost ' is no more than the cost of : Clearly, solving the APSCP Problem means finding a strongly valid tour with minimal cost value. Now, we are going to see that any strongly valid tour may be represented as some kind of tree, and this will provide us with the basis (section IV) for the algorithms which we are going to design in order to deal with APSCP.

Bipartite Ordered Trees: we say that a tree T is a bipartite ordered tree if: its nodes can be split into two classes A and B in such way that nodes in class A have their sons in class B and conversely;

for every node x in T which is not a terminal node (leaf) the son set (T, x) associated with x is linearly ordered: thus (T, x) is described as a sequence.

We say that a bipartite ordered tree T is consistent from the APSCP instance defined by the demand set K and by the node set X if:

-the nodes in T can be identified with the demands k K (we shall then talk about demand nodes) or with nodes in {Depot} X R , (and then we talk about reload nodes) and any possible demand node k K appears in T, while only some of nodes of {Depot} X R appear in T: those nodes in {Depot} X R define the active reload node set ACTIVE(T) of T;

(S5) -The root of T is the Depot node and the terminal nodes (leafs) of T must belong to the demand node set; (S6) -For any demand node k, its linearly ordered son set RELOAD(T, k) in T is made with active reload nodes and its father FATHER(T, k) is in ACTIVE(T); (S7) -For any reload node x, its linearly ordered son set DEMAND(T, x) in T is made with demand nodes and its father FATHER(T, x) is in K. (S8)

For such a bipartite ordered tree T, we may define a cost value Tree-Cost as follows:

- Theorem 2 : There is a one-to-one correspondence Tree between the strongly valid tours and the bipartite ordered tour which are consistent with X and K, which is such that, for any strongly valid tour , we have: Tree-Cost(Tree( )) = Cost( ).

Proof.

We first consider a strongly valid tour and perform the following construction, which make us get Tree( ) from :

-ACTIVE(T( )) is defined as the set of the nodes of {Depot} X R which appear in some labelled link of , and which are then said to be active reload nodes for ; -For any demand node k K, the son set Reload(T( ), k) is made with the reload nodes which appear in some labelled link of (k), ordered according to their appearance order in (k); -For any active reload node x in {Depot} X R , we denote by (x) = (x, y, 0) and by (x) = (z, x, 0) the two labelled links with label 0 which involve x in and which are such that: Rank( , (x)) < Rank( , (x)). Then we define the son set Demand(T( ), x) by setting that a demand k K is a son of x if the unique labelled link r(k) = (o(k), t, k) which appears in is such that: Rank( , (x)) < Rank( , r(k)) < Rank( , (x)) there exists no reload node y such that Rank( , (x)) < Rank( , (y)) < Rank( , r(k)) < Rank( , (y)) < Rank( , (x)).

Figure 3:

The bipartite tree Tree( ') which derives from the strongly valid tout ' of Figure 2.

Then it comes next that checking that the so defined Tree correspondence is as it is claimed in the statement of Theorem 2 is purely routine. END-THEOREM.

We deduce:

Corollary 1: Solving a APSCP instance (X, DIST, K) means finding a bipartite ordered tree T consistent with (X and K) such that Tree-Cost(T) is the smallest possible.

The interest of this last statement is clearly that it provides us with a bipartite tree formulation of the APSCP problem which is far less constrained that the original one.

III.3. A related Integer Linear Programming formulation of APSCP.

This ILP formulation is going to allow us to compare, in the case of small instances, the results obtained through the heuristic methods which will be described in Section IV with exact results. In order to get it, we first need to proceed to the following construction:

-An auxiliary network G = (X*, E). We first consider a copy X* R of the reload node set X R and a copy Depot* of the Depot node, and we set: X* = X X* R {Depot*}; For any node x in X R , we denote by x* its copy in X* R . Also, for any origin node x = o(k) in X O , we denote by x* the related node d(k). Then we define, on the node set X*, the arc set E as follows:

-

E = {(Depot, x), x X O } {(x, Depot*), x X D } {(o(k), d(k)), k K} {(d(k'), o(k)), k ≠ k' K} {(x, y), (y, x), x X O , y X R } {(x, y) (y, x), x X* R , y X D } {(x, y), x X* R , y X R }.
-every arc e in E is then provided with a length DIST*(e) which derives from the DIST distance matrix in a natural way.

Let us recall that a path of a such a network G is a node sequence such that, for any node x in , the pair (x, Succ( , x)) defines an arc of E. One easily checks that any strongly valid tour can be turned into a path * of the network G, in such a way that: -(S9): * starts from Depot and ends into Depot* and * is an elementary path, i.e, its visits any node at most once; -(S10): for every k in K, * visits o(k) and d(k), according to this order and for every x in X R , * visits x if and only if it visits x*, and, in case it does it, it does it according to this order; -(S11): for any pair x, y, x ≠ y, in X R X O the following implication is true: Rank( *, x) < Rank( *, y) and Rank( *, y) < Rank( *, x*) => Rank( *, y*) < Rank( *, x*). This condition is called the non overlapping condition.

-(S12): Cost( ) = x

x ≠ Depot* DIST*(x, Succ( *, x)) = Length of * for the DIST* length function. A path of the network G which satisfies (S9)…(S12) above will be said to be a strongly valid path.

Theorem 3.

For any strongly valid path , there exists a strongly valid tour such that * = .

Proof.

Let us first describe in an accurate the way is going to derives from . It will occur through the following RECONSTRUCT procedure: The instruction (I1) works here because of (S10) above, and because an arc of G which arrives on (x) must come from an origin node o(k) or from a node z in X* R . In this last case, a simple induction reasoning makes appear the fact that k is different from 0. We get our result while proceeding by induction on the length (the number of nodes) of . In case involves no node in X R , then the results come in a trivial way. Else, we consider x 0 X R which is the first node of X R which appears in . We notice that Pred( , x 0 ) must be some node o(k), k K. Thus the arc (Pred( , x 0 ), Succ( ,x 0 *)) belongs to the arc set E, and the removal of the subpath I( , x 0 , x 0 *) from provides us with an other path 1 of the graph G. Let us set: K 1 = { k K such that o(k) and d(k) are nodes of 1 }; K 2 = { k K such that o(k) and d(k) are nodes of 2 = I( , x 0 , x 0 *)}; K 1 and K 2 define a partition of K, and one sees that 2 can be viewed as a strongly valid path, if we restrict ourselves to K 2 as a demand set and if we consider that x 0 and x 0 * play the role of Depot and Depot*. Thus it comes from the induction hypothesis that it may be written, under this restriction, according to the form 2 = * 2 . By the same way, 1 is also a strongly valid path if we restrict the demand node set to K 1 , and it comes from the induction hypothesis that it may be written, under this restriction, according to the form 1 = * 1 . We only need to insert 2 between Pred( , x 0 ), x 0 , k) and (x 0 , Succ( , x 0 *), k) in 1 , in order to get such that = *. END-THEOREM.

RECONSTRUCT

Corollary 2: Solving a APSCP instance (X, DIST, K) means finding a strongly valid path with minimal length (for the DIST* length function) value in the network G.

This corollary allows us to set an Integer Linear Programming model as follows:

This model involves a {0, 1} vector flow z = (z e , e E), a Rank integral vector R = (R x , x X), as well as a positional {0, 1}vector t, which is indexed on the pairs (x, y), x ≠ y, x, y X R X O , with the following semantics:

-for any arc e in E, z e = 1 iff the arc e is in the strongly valid path ;

-for any node x in , R x will provide us with the rank of x in ; -for any pair (x, y), x ≠ y, x, y X R X O : t x,y = 1 iff Rank( , y) < Rank( , x*); t x,y = 0 iff Rank( , x*) < Rank( , y);

Then the translation of (S9)…(S12) into Integer Linear Programming constraints provides us with the following linear integer program:

APSCP Integer Linear Programming Formulation.

Unknown vectors.

z = (z e , e E), with values in {0,1}; R = (R x , x X) Integral and ≥0; t = (t x,y , x ≠ y, x, y X R X O ) with values in {0,1}.

Performance Criterion.

Minimize e E DIST*(e).z e (translation of (S12)) Constraints.

-z is a flow vector, which satisfies the usual Kirshoff law in any node but in Depot and Depot*; -the inflow induced by z in Depot (Depot*) is equal to 0 (1), while the related outflow is equal to 1 (0); (translation of (S9)) -in any node of X D X O , the inflow induced by z is equal to 1; (translation of (S10)) -in any node of X R X* R , the inflow induced by z is at most equal to 1, and the inflow value in x is equal to the inflow value in x*; (translation of (S10) and (S9)) -for any k in K, we have R o(k) ≤ R d(k) -1; (translation of (S10)) -for any x in X R , we have R x ≤ R x* -1; (translation of (S10)) -for any arc e = (x,y) in E, we have z e + (R x + 1 -R y )/Card(X*) ≤1; (translation of the implication z e = 1 -> (R x + 1 -R y ) ≤0) -for any pair (x, y), x ≠ y, x, y X R X O : (translation of the non overlapping condition) t x,y + (R y + 1 -R x* )/Card(X*) ≤1 ; t x,y + (R y -1 -R x* )/Card(X*) 0 ; t x,y + (R y* + 1 -R x* )/Card(X*) ≤1.

Corollary 2: Solving a APSCP instance (X, DIST, K) means solving the above Integer Linear Programming model.

IV. Tree Based Heuristics for the APSCP Problem.

The algorithms which we are going to describe here, and which will be tested in the next Section, derive in a straightforward way from the tree representation of the APSCP Problem which we got in Section III.2. These algorithms are very simple greedy insertion algorithms and descent algorithms, based upon the use of 2 classes of operators:

Insertion Operators: these operators act on some bipartite ordered tree T consistent with the node set X and with a subset K' of the demand set K, and insert some demand k K -K' in T. We use two operators:

INSERT-SIMPLE: its parameters are some active reload node x in {Depot} X R , and some cut (l 1 , l 2 ) of the sequence DEMANDE(T, x) = l 1 l 2 . It acts by inserting the segment {k} into this cut: DEMANDE(T, x) <-l 1 {k} l 2 .

INSERT-with-RELOAD: its parameters are some demand node k' in K', a cut c = (l 1 , l 2 ) of the sequence RELOAD(T, k'), and a non active reload node x. It acts by:

-inserting the segment {x} into the cut c: RELOAD(T, x) <-l 1 {x} l 2 ; -by making x be active and setting: DEMAND(T, x) <-{k}; RELOAD(T, k) <-Nil.

Local Transformation Operators: these operators act through side effect on some bipartite ordered tree T consistent with X and K, and they modify T. We use 6 operators:

-MOVE-RELOAD: its parameters are some active reload node x and some non active reload node y. It replaces x by y in T. -MOVE-RELOADS: its parameters are two different demand nodes k and k', a segment l of RELOAD(T, k) and a cut c = (l 1 , l 2 ) of RELOAD(T, k'). It removes l from RELOAD(T, k) and it inserts it into the cut c. Its precondition is that k does not dominate k' in the tree T, i.e, that k cannot be obtained from k' through a succession of applications of the FATHER operator. -MOVE-RELOADS1: its parameters are some demand node k, some segment l of RELOAD(T, k) which induces a decomposition RELOAD(T, k) = l 3 l l 4 , and a cut c = (l 1 , l 2 ) of l 3 l 4 . It first remove l and next insert it into the cut c: RELOAD(T, k') <-l 1 l l 2 . -MOVE-DEMANDS: its parameters are two different active reload nodes x and y, a segment l of DEMAND(T, x), and a cut c = (l 1 , l 2 ) of DEMAND(T, x'). It removes l from DEMAND(T, x) and it inserts it into the cut c. In case l 1 = l 2 = Nil, it remove the reload node x from T, which becomes non active. Its precondition is that x does not dominate y in the tree T. -MOVE-DEMAND1: its parameters are some reload node x, some segment l of DEMAND(T,

x) which induces a decomposition DEMAND(T, x) = l 3 l l 4 , and a cut c = (l 1 , l 2 ) of l 3 l 4 . It first remove l and next insert it and it into the cut c: DEMAND(T, x) <-l 1 l l 2 . -MOVE-DEMANDS-RELOAD: its parameters are an active reload node x, a non active reload node y, a demand node k, a segment l of DEMAND(T, x) and a cut c = (l 1 , l 2 ) of RELOAD(T, k). It first turns y into an active reload node, next removes l from DEMAND(T, x) and inserts it into DEMAND(T, y), and ends in inserting the segment {y}into the cut c. In case l = DEMAND(T, x), it turns x into a non active reload node. Its precondition is that k is dominated by not demand node k' in l.

Then we can propose a first insertion greedy algorithm for dealing with APSCP:

Algorithm APSCP-INSERTION:

Randomly define a linear ordering on the elements of K; T = {the tree reduced to the root node Depot}; For k K, K being scanned according to the linear order do Compute the insertion operator I (among INSERT-SIMPLE and INSERT-with-RELOAD) and the related parameter u (u = (x, (l 1 , l 2 )) in case I = INSERT-SIMPLE, u = (k', (l 1 , l 2 ), x) in case I = INSERT-with-RELOAD), such that the insertion of k through I(u) induces the smallest possible increase of Tree-Cost(T); Apply I(u) to T;

Filtering the search for the good value of the parameter u.

In case I = INSERT-SIMPLE, the related optimal value of u can be obtained in a very fast way through exhaustive scanning of the sequences DEMAND(T, x) for all the active reload nodes x. In case I = INSERT-with-RELOAD, one must deal with the search for the new reload node x, which may be time consuming in case X R is large. In order to avoid spending too much time while trying all the possible reload nodes x, we try to identify in a fast way those nodes which are likely to provide us with an efficient insertion by proceeding as follows:

-for every node x in X R , we keep in memory a set N(x) of neighbours of x, that means of nodes y which are such that DIST(x, y) ≤ R, where R is some threshold which is chosen in such a way that the induced neighbour graph be connected, and that the cardinality of any set N(x) remains small enough.

-by the same way, we keep in memory, for every pair of reload nodes (x, y), what we call the middle of x and y, that means some node z = MID(x, y) which is such that the difference between DIST(x, z) + DIST(z, y) -DIST(x, y) remains small, both quantities DIST(x, z) and DIST(y, z) being close to each other; -if we denote by y the last reload node in l 1 and by z the first reload node in l 2 , then we see that we should try to select x in such a way that DIST(y, Filtering the search for the good value of the parameter vectors. In the case of the (1) above instruction, the active nodes x are scanned in an exhaustive way, but the search for the y value is restricted to the neighbourhood set N(x).

In the case of the instruction (2) and (3), the threshold value H is involved as followed:

-the segment l is tried only if the decomposition RELOAD(T, k) = l 3 l l 4 is such that DIST(Last(l 3 ), First (l)) and DIST (Last(l), First(l 4 )) ≥ H; -the cut c = (l 1 , l 2 ) is tried only if DIST(Last(l 1 ), First (l 2 )) ≥ H.

In the case of the instruction (4) and ( 5), the threshold value H is involved as followed:

-the segment l is tried only if the decomposition DEMAND(T, x) = l 3 l l 4 is such that DIST(d(Last(l 3 )), o(First (l))) and DIST (d(Last(l)), o(First(l 4 ))) ≥ H; -the cut c = (l 1 , l 2 ) is tried only if DIST(d(Last(l 1 )), o(First (l 2 ))) ≥ H. In the case of the (6) instruction, the threshold value H is involved as in ( 4) and ( 5), and the search for y is performed, once x, k, l, c = (l 1 , l 2 ) have been determined inside the neighbour set N(t) of t = MID(MID(Last(l 1 ), o(First(l))), MID(d(last(l)), First(l 2 ))).

Remark: of course, it would be possible to improve the performance of the APSCP-DESCENT algorithm by casting it into a scheme like the Simulated Annealing scheme or the Tabu List scheme. But it is not really the purpose of the paper: as we shall see in Section V, our tree representation of the APSCP problem, together with the operators which we just described above, are sufficiently powerful to provide us, under small computing costs, with very good solutions for our APSCP problem.

V. Experiments.

We have been performing experiments, on PC IntelXeonwith 1.86 GHz, 3.25 Go Ram, while using a Visual Studio C++ compiler, and while focusing on several points:

-the ability of APSCP-INSERTION and APSCP-DESCENT to get solutions close to the optimal theoretical solutions; -the running time of those algorithms; -the characteristics of the solutions: number of reload nodes which appear in the solution, improvement of the Cost-Tree value induced by pre-emption; -the impact of the different local transformation operators on the behaviour of the algorithms.

In order to do this, we performed several tests, while using node sets X and distance matrices DIST proposed by the TSPLIB libraries, and by selecting origin/destination pairs (o(k), d(k), k K) in a random way inside the set X. We dealt with instances which involves from 20 to 300 nodes, and from 10 to 100 origin destination pairs, and, in case of small instances, got exact results through the use of the LIP formulation of Section III.3, augmented with cutting planes techniques (see [START_REF] Kerivin | Models for the single-vehicle preemptive pickup and delivery problem[END_REF][START_REF] Kerivin | The Eulerian closed walk with precedence path constraints problem[END_REF]). The results which we get may be summarized as follows: 

Comments:

We see that the results which we get through application of a combination of a greedy scheme and a Monte-Carlo diversification scheme are most often rather goods, in the sense that its allows us to get in a fast way solutions which are not too far from the best theoretical ones. Still, we also notice that our greedy scheme is in trouble when it comes to pre-emption handling, that means when it comes to creating reload nodes. Thus, the results which derive from the application of APSCP-INSERTION get worse as soon as there is an increase of the gap between the optimal preemptive optimal value and the non pre-emptive one. The results which we get may be summarized as follows: 

  for any consecutive pair of labelled links r, r'= Succ(G, r) in G, we have End(r) = Start(r'); -Start(First( )) = End(Last( )) = Depot; -Any node x in X O X D is involved in exactly two labelled links r and r' = Succ( , r): this means that V moves to o(k) (d(k)), k K, only when it comes to start (finish) dealing with demand k; -The Depot node is involved only in both labelled links r = First( ) and r' = Last( ); -For any demand k K, the deriving subsequence (k) related to k is such that: Start(First( (k)) = o(k); End(Last(d(k)) = d(k); For any consecutive labelled link pair r, r' = Succ( (k), r'), we have End(r) = Start(r'). The following figure 1 provides us with a visualization of a valid tour = {(Depot, o 1 , 0), (o 1 , x, 1), (x, o 2 , 0), (o 2 , y, 2), (y, o 3 , 0), (o 3 , x, 3), (x, d 1 , 1), (d 1 , y, 0), (y, d 2 , 2), (d 2 , 0, x), (x, d 3 , 3), (d 3 , Depot, 0)}.

Figure 1 :

 1 Figure 1: Visualizing a valid tour . All these definitions allow us to formally set our APSCP (Asymmetric Pre-emptive Stacker Crane Problem) Problem as follows:APSCP Problem:

- 1 =

 1 I( , First( ), r) ; -2 = I( , Succ( ,r), r') ; -3 = I( , Succ( ,r'), Pred( , ( , r))) ; -4 = I( , ( , r), Pred( , ( , r'))) ; -5 = I( , ( , r'), Last( )),a and we replace by the concatenation Aux = 1 4 3 2

- 1 =

 1 I( , First( ), r) ; -2 = I( , Succ( ,r), Pred( , ( , r))) ; -3 = I( , ( , r), r') ; -4 = I( ,Succ( ,r'), Pred( , ( , r'))) ; -5 = I( , ( , r'), Last( )), and we replace by the concatenation Aux =

Figure 2 :

 2 Figure 2: A derivation of the valid tour of figure 1 into a strongly valid tour '.

  for any demand node k K: we set: If k is not a terminal node then Cost-Demand(T, k) = DIST(o(k), First(Reload(T,k))) + DIST(Last(Reload(T, k)), d(k)) + x Reload(T, k), x ≠ Last(Reload(T,k)) DIST(x, Succ(Reload(T, k), x))) else Cost-Demand(T, k) = DIST(o(k), d(k)) -for any reload node x {Depot} X R , we set: Cost-Reload(T, k) = DIST(x, o(First(Demand(T,x)))) + DIST(d(Last(Demand(T, x))), x) + k Demand(T, x), k ≠ Last(Demand(T,x)) DIST(d(k), o(Succ(Reload(T, x), k))); -Tree-Cost(T) = Cost( ) = k K Cost-Demand(T, k) + x ACTIVE(T) Cost-Reload(T, x).

  Procedure x <-Depot; <-Nil; While x <> Depot* do y <-Succ( , x); If y may be written y = z*, with z {Depot} X R , then we set (y) = z, else we set (y) = y; If (multi-case branching instruction) 1. x = Depot then <-(x, y, 0)* ; 2. x = o(k), k K then <-(x, y, k)* ; 3. x X R then <-(x, (y), 0)* ; 4. x X D then <-(x, (y), 0)* ; 5. x X* R then <-(x, y, k)* , where k ≠ 0 is such that the labelled link (Pred( , (x)), (x), k) is already in ; (I1)

  x) + DIST(x, o(k)) + DIST(d(k), x) + DIST(x, z) be the smallest possible. Instead of trying all the possible nodes of X R we do it by selecting t = MID(MID(y, o(k)), MID(d(k), z)) and by trying all the nodes x in N(t). Of course, the algorithm APSCP-INSERTION may be used inside a Monte-Carlo Scheme as follows: Parameter : For i = 1 to run the APSCP-INSERTION Procedure; Keep the best result. This greedy insertion algorithm may now used in order to initialize the following APSCP-DESCENT descent algorithm: Algorithm APSCP-DESCENT: Initialize the tree T through APSCP-INSERTION; Initialize the filtering threshold value H; (1): Search (in a filtered way) parameter values x, y for the MOVE-RELOAD operator in such a way that applying MOVE-RELOAD(x, y) to T improves the Tree-Cost quantity; If Success then Go To (1); (2): Search (in a filtered way) parameter values k, k', l, c for the MOVE-RELOADS operator in such a way that applying MOVE-RELOADS(k, k', l, c) to T improves the Tree-Cost quantity; If Success then Go To (1); (3): Search (in a filtered way) parameter values k, l, c for the MOVE-RELOADS1 operator in such a way that applying MOVE-RELOADS1(k, l, c) to T improves the Tree-Cost quantity; If Success then Go To (1); (4): Search (in a filtered way) parameter values x, y, l, c for the MOVE-DEMANDS operator in such a way that applying MOVE-DEMANDS(x, y, l, c) to T improves the Tree-Cost quantity; If Success then Go To (1); (5): Search (in a filtered way) parameter values x, l, c for the MOVE-DEMANDS1 operator in such a way that applying MOVE-DEMANDS1(x, l, c) to T improves the Tree-Cost quantity; If Success then Go To (1); (6): Search (in a filtered way) parameter values x, y, k, l, c for the MOVE-DEMANDS-RELOAD operator in such a way that applying MOVE-DEMANDS-RELOAD(x, y, k, l, c) to T improves the Tree-Cost quantity; If Success then Go To (1); (7): If H is small enough then Stop else set H = H/2 and go to (1).

  Our first experiment is related to the procedure APSCP-INSERTION: we run the APSCP-INSERTION Monte-Carlo scheme with = 100, and we keep memory, for every test with name INST, of the following quantities: REF: Optimal theoretical Tree-cost value; MIN (MAX): Minimal (Maximal) Tree-cost value obtained through iterations of APSCP-INSERTION; MEAN: Maximal (worse) Tree-cost value obtained; EGI: Gap (in %) between REF and the global solution produced by the APSCP-INSERTION Monte Carlo scheme (MIN value). REL: Mean number of reload nodes involved in a solution produced by APSCP-INSERTION; DE/REL: Mean number of demands related to every reload node x (length of the list DEMAND(x)), for x different from Depot; CPU: CPU Mean Time (in milliseconds) for any iteration of APSCP-GREEDY-INSERTION.

  Our second experiment is related to APSCP-DESCENT. We run APSCP-DESCENT from a solution provided by only 1 application of APSCP-INSERTION, and we keep memory, for every test with name INST, of the following quantities: REF: Optimal theoretical value; VAL: The cost value obtained after application of APSCP-DESCENT; EGI: Gap (in %) between REF and the solution produced by APSCP-INSERTION; ED: Gap between REF and the solution produced by APSCP-DESCENT; ETDS: Part of the gap between EGI and ED which is induced by the operators MOVE-DEMANDS and MOVE-DEMANDS1 and MOVE-DEMAND-with-RELOAD; REL: Number of reloads involved in the solution produced by APSCP-DESCENT; TNB: Number of times a local transformation operator is effectively applied inside the APSCP-DESCENT process; CPU: Cpu Running Time (in milliseconds).

Table 1 :

 1 Tests

	INST	REF	MIN	MAX	MEAN	EGI	REL	DE/REL	CPU

performed on 10 instances which we got from the gr24 instance with 49 nodes of the TSPLIB library by randomly sorting 12 demands, and no reload nodes which is not the depot node, the copy of an origin node o(k) or the copy of a destination node d(k), k 1..12.

Table 3 :

 3 Tests performed on 10 instances which we got from the gr120 instance with 241 nodes of the TSPLIB library by randomly sorting 60 demands, and no reload nodes which is not the depot node,

	INST	REF	MIN	MAX	MEAN	EGI	REL	DE/REL	CPU
	Gr_120_v01	Unknown	327070	344139	335480	*	0.42	5.13	78
	Gr_120_v02	Unknown	332679	353240	343622	*	0.64	4.60	78
	Gr_120_v03	Unknown	326189	345859	335567	*	0.27	8.95	78
	Gr_120_v04	Unknown	366750	380409	374350	*	0.36	5.74	78
	Gr_120_v05	Unknown	310179	330002	320326	*	1.53	3.05	78
	Gr_120_v06	Unknown	319619	337921	327146	*	0.64	3.24	78
	Gr_120_v07	Unknown	285989	302602	293394	*	0.70	4.46	78
	Gr_120_v08	Unknown	345100	365379	355230	*	0.56	7.33	78
	Gr_120_v09	Unknown	333909	350171	342549	*	0.47	11.11	78
	Gr_120_v10	318099	337259	354809	345393	6.02	0.36	9.19	78

the copy of an origin node o(k) or the copy of a destination node d(k), k 1..60.

Table 4 :

 4 Tests performed on 10 instances RELn, , which we built in such a way that:

	-the related instance involves n nodes, p = (n/2 -1)/3 -1 reload nodes, (n -p -1)/2 demands;
	INST	REF	MIN	MAX	MEAN	EGI	REL	DE/REL	CPU

-its optimal value is the sum k K DIST(o(k), d(k)), and that the related optimal solution involves all the reload nodes.

Table 5 :

 5 Tests performed on 10 instances which we got from the gr24 instance with 49 nodes of the TSPLIB library by randomly sorting 12 demands, and no reload nodes which is not the depot node, the copy of an origin node o(k) or the copy of a destination node d(k), k 1..12.

	INST	REF	VAL	EGI	ED	ETDS	REL	TNB	CPU
	Gr24_v01	24654	24654	10.3	0	10.3	1	12	93
	Gr24_v02	21395	21914	5.0	2.4	2.6	1	3	47
	Gr24_v03	22834	22874	9.9	0.1	9.8	1	9	46
	Gr24_v04	23255	23435	3.9	0.7	3.2	2	4	31
	Gr24_v04	23993	23993	0	0	0	0	0	31
	Gr24_v06	23233	23763	8.3	2.2	6.1	0	3	31
	Gr24_v07	20224	20244	1.2	0.1	0.2	1	3	78
	Gr24_v08	20865	21084	4.9	1.0	3.9	1	6	31
	Gr24_v09	23054	23054	4.9	0	4.9	1	7	47
	Gr24_v10	26704	26754	4.9	0.2	3.7	1	7	63

Table 6 :

 6 Tests performed on 10 instances which we got from the hk48 instance with 97 nodes of the TSPLIB library by randomly sorting 24 demands, and no reload nodes which is not the depot node, the copy of an origin node o(k) or the copy of a destination node d(k), k 1..24. 

	INST	REF	VAL	EGI	ED	ETDS	REL	TNB	CPU (s)

Table 7 :

 7 Tests performed on 10 instances which we got from the gr120 instance with 241 nodes of the TSPLIB library by randomly sorting 60 demands, and no reload nodes which is not the depot node, the copy of an origin node o(k) or the copy of a destination node d(k), k 1..60.

	INST	REF	VAL	EGI	ED	ETDS	REL	TNB	CPU (s)
	Gr_120_v01	Unknown	313315	*	*	5.2	6	89	130
	Gr_120_v02	Unknown	318870	*	*	8.9	1	116	189
	Gr_120_v03	Unknown	314493	*	*	6.2	4	96	125
	Gr_120_v04	Unknown	360902	*	*	3.5	3	107	145
	Gr_120_v05	Unknown	293613	*	*	9.8	4	99	125
	Gr_120_v06	Unknown	303441	*	*	7.7	2	90	80
	Gr_120_v07	Unknown	265713	*	*	6.4	4	84	86
	Gr_120_v08	Unknown	330823	*	*	6.9	4	77	94
	Gr_120_v09	Unknown	314073	*	*	8.5	4	105	70
	Gr_120_v10	318099	318913	9.5	0.25	9.1	4	96	103

Table 8 :

 8 Tests performed on 10 instances RELn, , which we built in such a way that:

	INST	REF	VAL	EGI	ED	ETDS	REL	TNB	CPU
	REL31	11843	11953	16.7	0.9	15.8	4	10	0.04
	REL55	17464	17583	27	0.7	36.3	8	28	0.34
	REL79	21053	21053	29.9	0	29.9	12	56	1.5
	REL91	22323	22605	20.8	1.2	19.6	14	46	2.9
	REL115	24142	24225	28.4	0.34	28.4	18	78	8.4
	REL163	26036	26279	19.3	0.93	18.3	26	79	25
	REL187	26494	26626	26.6	0.49	26.2	30	112	39
	REL211	26775	26851	33.1	0.28	30.1	34	134	78
	REL259	27042	27067	37	0.09	36.9	42	162	232
	REL283	27098	27211	33.1	0.4	32.4	46	202	328

-the related instance involves n nodes, p = (n/2 -1)/3 -1 reload nodes, (n -p -1)/2 demands; -its optimal value is the sum k K DIST(o(k), d(k)), and that the related optimal solution involves all the reload nodes.