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Abstract 

 

The Capacitated Arc Routing Problem (CARP) occurs in applications like urban waste collection or winter 
gritting. It is usually defined in literature on an undirected graph ( )EVG ,= , with a set V  of n  nodes and a set 
E  of m  edges. A fleet of identical vehicles of capacity Q  is based at a depot node. Each edge i  has a cost 
(length) ic  and a demand iq (e.g. an amount of waste), and it may be traversed any number of times. The 
edges with non-zero demands or tasks require service by a vehicle. The goal is to determine a set of vehicle 
trips (routes) of minimum total cost, such that each trip starts and ends at the depot, each task is serviced by 
one single trip, and the total demand handled by any vehicle does not exceed Q . To the best of our 
knowledge the best published method is a memetic algorithm first introduced in 2001. 
This article provides a new extension of the NSGA II (Non-dominated Sorting Genetic Algorithm) template 
to comply with the stochastic sight of the CARP. The main contribution is: 
• to introduce mathematical expression to evaluate both cost and duration of the longest trip and also 

standard deviation of these two criteria. 
• to use a NGA-II template to optimize simultaneously the cost and the duration of the longest trip 

including standard deviation. 
The numerical experiments managed on the thee well-known benchmark sets of DeArmon, Belenguer and 
Benavent and Eglese, prove it is possible to obtain robust solutions in four simultaneous criteria in rather 
short computation times. 
 
 

Key Words: CARP, bi-objective, stochastic 
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1. INTRODUCTION 

1.1. The basic CARP 

The Capacitated Arc Routing Problem (CARP) consists of visiting a subset of edges instead of the nodes as the well-

known VRP. CARP applications include for instance urban waste collection, winter gritting and inspection of power 

lines. To make the paper more concrete, and without loss of generality, examples are inspired by urban waste collection. 

 

The CARP of literature tackles undirected networks. Each edge models a two-way street which both sides are treated in 

parallel and in any direction (bilateral collection), a common practice in residential areas with narrow streets. A fleet of 

identical vehicles of limited capacity is based at a depot node. Each edge can be traversed any times, with a known 

traversal cost. Some edges are required, i.e., they have a non-zero demand (amount of waste) to be collected by a 

vehicle. The CARP consists in determining a set of vehicle trips minimizing the total cost, such that each trip starts and 

ends at the depot node. Each required edge is serviced by one single trip, and therefore must be visited at most once. 

The total demand processed by a trip must not exceed the vehicle capacity. Each vehicle has the same capacity. 

 

The CARP is NP-hard, even in the single-vehicle case called Rural Postman Problem (RPP). Since exact methods are 

still limited to 20-30 edges (Hirabayashi et al., 1992), heuristics are required for large instances, e.g. Augment-Merge 

(Golden and Wong, 1981), Path-Scanning (Golden et al., 1983), Construct-and-strike (Pearn's improved version, 1989),  

Augment-Insert (Pearn, 1991) and Ulusoy's tour splitting algorithm (Ulusoy, 1985). The first metaheuristic for the 

CARP, a simulated annealing procedure, was designed by Eglese in 1994 for winter gritting problems. Several tabu 

search (TS) algorithms are also available, both for special cases like the undirected RPP (Hertz et al., 1999) or the 

mixed RPP (Corberan et al., 2000) and for the CARP itself (Eglese and Li, 1996) (Hertz et al., 2000). All these 

metaheuristics and classical heuristics can be evaluated thanks to lower bounds, generally based on linear programming 

formulations (Benavent et al., 1992), (Belenguer and Benavent, 2003), (Amberg and Voβ, 2002). On most instances, 

the best-known lower bound is obtained by a cutting-plane algorithm (Belenguer and Benavent, 2003). To the best of 

our knowledge the best previous published method seems to be the memetic algorithm first introduced in 2001 by 

(Lacomme et al., 2001) which outperforms the well-known CARPET method of Hertz. 

 

1.2. The Stochastic CARP 

The SCARP problem is similar to a CARP problem, except that positive demands ijq  then become positive random 

variables ijQ . To any SCARP problem, can be canonically associated a CARP problem, where the stochastic demands 

ijQ  are replaced by their expectation ijij Qq = . To avoid any ambiguity we call “stochastic” an element applied to the 

SCARP and “deterministic” an element applied to its associated CARP. The objective in the CARP consists in 

determining a set of trips of minimal cost, and the objective solving the SCARP consists in determining a robust set of 

trips (a robust solution). Based on the definition of Jensen (Jensen, 2001), robust solutions are solutions well performing 

in front of variations in quantities to collect. Let us note: 

Q the common capacity of the vehicles used.  

ic  the (deterministic) cost of the edge i  ( 0>ic ). 

iq  the deterministic demand on edge i  ( Qqi ≤<0 ).  

iQ  the random demand on edge i  ( QQi ≤<0 ). 

x  a (deterministic) solution of the CARP (finite set of trips). 
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X  the finite set of all solutions. 

t(x) the deterministic number of trips of x . 

( )ω,xT  the random number of trips of x  (depending on  random variation ω  of demands). 

h( x ) the deterministic cost of a solution x . 

( )ω,xH  the random variable being the cost of x  (depending on random variation ω  of demands). The cost is the sum 

of the costs of every edge used by each vehicle, with, sometimes, extra trips to the depot node... 

 

Let us consider a (deterministic) solution. If the random demands serviced by a trip become less important than 

expected, the cost does not vary, but, if the vehicle exhausts its capacity before the end of the trip, it must move from its 

current position in the network to the depot node and turn back to complete the trip initially planned. Such operations 

create an extra trip and imply a (possibly huge) increasing of the total cost. Such events occur in many applications like 

waste collection. Calling another vehicle may be impossible for several reasons: the driver can not inform his 

colleagues due to the lack of communication systems, the other drivers can not come because all trips are performed in 

parallel, the driver is the only one knowing this sector, and so on. Therefore, for any solution x , when ii Qq = , one has 

( ) ( )xhxH ≥ω, .  

Let us consider, for example, a CARP instance with only 9 tasks, 3 vehicles with 4=Q  and demands equal to 1 for 

each task. Assume a solution with a deterministic cost 100)( =xh  and 3 trips (figure 1). The total loads of vehicles 

1,2,3 are respectively equal to 3 (serviced tasks 7,8,9), 2 (tasks 1,2) and 4 (tasks 3,4,5,6).  
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56
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9

Solution with 3 trips
Solution cost : 100  

 

Figure 1. A solution for the SCARP 

loaded vehicle move
cost : 20

unloaded vehicle move
cost : 10
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56
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8

9

Solution with 4 trips
Solution cost : 125

unloaded vehicle move
cost : 5

 
Figure 2. The same solution for the SCARP 

 

Random events occurring in practice may affect estimated demands. Assume that after task 4, vehicle load is in fact 3.5 

and the actual demands for tasks 5 and 6 become 1.2 and 1.4. 

Because the vehicle can not service task 5, it moves from its current position (end of task 4) to the depot node and 

moves back to the beginning node of the task 5 to complete its trip (figure 2). This trip can be viewed as an additional 

trip. Due to this unproductive move, the solution cost becomes 125),( =ωSH when 100)( =Sh . And one has 

4),( =ωST  when t(S)=3. 

The objective of the SCARP consists in determining solutions close to the optimal solution of the CARP and robust in 

front of the random quantifies variations. (Fleury et al., 2005) proposed a heuristic approach, (Fleury et al., 2004) 

proposed a memetic algorithm for determining robust solutions and (Lacomme et al., 2005) proposed a memetic 

algorithm to minimize both average cost and standard deviation cost. The computational experiments prove that high 

quality solutions can be obtained in computational time not far from the computational time of the CARP. 
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1.3. The Multi-Objective CARP 

The single objective CARP only deals with: minimizing the total cost of the trips. In fact, most waste management 

companies are also interested in balancing the trips. For instance, in Troyes (France), all 19 trucks leave the depot at 6 

am and the waste collection must be completed as soon as possible to assign the crews to other tasks, e.g. sorting the 

waste at a recycling facility. Hence, the company wishes to solve a bi-objective version of the CARP, in which both the 

total duration of the trips and the duration of the longest trip (the makespan in scheduling theory) are to be minimized. 

This bi-objective CARP has been investigated first in (Lacomme et al., 2005) whose proposed a non-dominated NSGA-

II framework.  

 
2. PROPOSAL FOR A STOCHASTIC MULTI-OBJECTIVE SCHEME FOR THE STOCHASTIC CARP 

2.1. A framework for SCARP resolution 

A framework for SCARP is here composed of two steps (figure 3): an optimization step and an evaluation of the 

robustness solutions (this second step only being used to evaluate the robustness of the best solution found at the end of 

the optimization process, then it can be omitted for the effective implementations): the best solution found is submitted 

to a replication phase consisting in statistic evaluations of robustness criteria in front of trials of random demands.  

 

 
Figure 3. Principle of evaluation of the stochastic problem resolution. 

2.2. First phase: the optimization phase 

Typical scheme of iterative methods for minimization of a stochastic criterion 

We address the wide-ranging problem of minimizing a random variable on a finite set. Let us precise the context: 

• X  is a finite set, 

• any x  of X  is associated to a random variable ( )ω,xH . 

The problem to minimize H on X  is not well defined, for “ 21 xx <  if ( ) ( )ωω ,, 21 xHxH < ” is a random relation. The 

usual way is to transform this problem into a deterministic one, replacing the random variable H  by a deterministic one 

h. H usually depends on a lot of random variables iQ . Then h is evaluated with the same formula but where the random 

variables iQ  are replaced, for example, by their expectation iq  or by any deterministic value depending on the random 

variables iQ . 

 
Thus the deterministic function h  is to be minimized. This technique may be irrelevant when non linear effects can 

strongly modify the value of H . For example, when random events occur, a solution x  can become unrealistic i.e. 

),( ωxH  can be infinite (or very large) with a positive probability. When non linear effects exist, a better way is to 
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replace (if possible) ),( ωxH  itself by its expectation )(xH , or another deterministic quantity associated to H. But 

when H can become infinite (or very high), it can be useful to search solutions x so that the probability { }∞=HP  is at 

the most a given value ({ } ε≤∞=HP ). Other various criteria can of course be minimized. For example h can be either 

the conditional expectation of H given { }∞<H  when { }P H ε= ∞ ≤  and infinite when { }P H ε= ∞ > . In these last 

cases, the first idea is to estimate h for example by ),( nxH  (based on n  trials for the same solution x  with n  large 

enough, multiplying the minimization time nearly by n .)  

 

The outline of such an iterative search process (Fleury, 1993) is described in figure 4. Nearly all stochastic 

metaheuristics which come from simulated annealing, taboo search… have extensions to tackle minimization of 

stochastic functions (Tsutsui and Ghosh, 1997) (Branke, 1998) (Ben-Tal and Nemirowski, 1998). For an introduction to 

stochastic scheduling and neighborhood based robustness approaches for scheduling, it is possible to refer to (Jensen, 

2001). 

 

1. Compute an initial solution 1x   

2. Compute ( )nxH ,1   

2. Repeat 
3.1. Generate a solution 2x  

3.2. Compute ( )nxH ,2  

3.3. If  ( ) ( )nxHnxH ,, 12 ≤   Then  21 xx ←  

3.4. EndIf  
4. Until  (Stop Condition) 
5. Return 1x  

Figure 4. Outline of a basic iterative search process for a stochastic minimization 

However, proving the convergence of such a process is a challenging problem due to convergence conditions which 

highly depend on the function to minimize and on the generation of intermediate solutions. Fleury in 1993 

(Fleury, 1993) has promoted an extension of the previous typical scheme in which the number of replications used to 

evaluate ),( nxH  increases over the iterations of the algorithm. This extension permits to decrease the probability of 

error in accepting a new solution 2x  more promising than 1x . A demonstration in probability is proposed proving that 

under non restrictive hypotheses on the function to minimize the iterative process converges (with the probability one) 

towards robust solutions.  

When an exact calculation or a high quality approximation of H  can be mathematically performed, the minimization 

time is then reduced. Let us remark that mathematical analysis avoids errors due to the randomness of ),( nxH . The line 

of research we here promote consists in coupling a mathematical analysis of solutions to a dedicated searching scheme 

devoted to the CARP.  

CARPs linked to the SCARP 

The only previous works which can be reported on the Stochastic CARP concern the tight and the slack approach of 

(Fleury et al., 2004). The approach we promote here is quite different as regards both the objective and the models used: 

� The Law Approach. This approach consists in the minimization of a deterministic objective depending on the laws 

of quantities to collect, for example )(xH  or )()( xkxH Hσ+  (for a fixed k>0). 
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� The tight approach simply consists in solving the CARP linked to the SCARP using iQ  for the quantities to collect 

on the arc and the capacity Q  of vehicles. The function to minimize only depends on iQ , Q  and on the solution x . 

The experiments are fully available in (Fleury et al., 2005). 

 This approach can be denoted: ),',( xQqfx ia . 

� The slack approach (Fleury et al., 2004) is similar to the previous one but the optimization uses a smaller capacity 

of the vehicles 'Q  ( QQ <' ). The function to minimize is: ),',( xQqfx ia .  

The law approach consists in solving the DCARP with a distribution law to modelize iQ . The function to minimize 

( ),),(( xQQgx iLa ) differs of f and here depends on the laws ( )iQL , on the vehicles capacity Q  and on the solution 

(table 1). 

Table 1. DCARP linked to the SCARP (here we denote the objective function by ( )SQQf i ,, ). 

SCARP – Mono-Objective resolution 
• quantities to collect iQ  are random variables 

• capacity Q  of the vehicles is deterministic, 

• ( )SQQf i ,, depends on the realization of the random variables iQ  

Associated CARP Comments 

Canonically associated CARP 
(tight approach) 

ii Qq = , Q  unchanged, objective 

),,( xQqfx ia  

Associated CARP (slack approach) ii Qq = , Q  becomes QQ <' , 

objective ),',( xQqfx ia  

Associated CARP (law approach) 
ii Qq = , Q  unchanged, objective 

function becomes ),),(( xQQgx iLa  

where )( iQLLLL  is the law of iQ . 

 

2.3. A MULTI-OBJECTIVE FRAMEWORK FOR THE SCARP 

The graph G describing the problem is converted into an entirely directed internal graph H. The nodes are dropped and 

an arc index is used. Shortest path costs are pre-computed in a matrix D. For any pair of arcs (u,v), D(u,v) is the 

traversal cost of a shortest path from u to v. 

NSGA-II Template graph

SPLIT method Auxiliary graph

A CARP
solution

 

Figure 4. NSGA-II template for SCARP resolution 

Today, several MOGA frameworks are available in literature and selecting the best one for a given problem is not 

obvious. A recent survey (Coello, 2000) and two comparative studies (Deb, 1999) (Zitzler et al., 2000) try to provide 

guide-lines for selection, but these papers consider unconstrained problems, continuous objective functions, and specific 

sets of benchmarks. It is very difficult to draw conclusions for constrained combinatorial optimization problems. 
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(Lacomme et al., 2005), finally turned their choice on the NSGA-II template to provide a multi-objective resolution of 

the CARP. A complete description of the NSGA-II template is available in (Lacomme et al., 2005). 

Each chromosome is an ordered set of required arcs assuming the same vehicle performs all trips in turn. This encoding 

is appealing because there always one optimal sequence. As stressed by (Lacomme et al, 2001) Ulusoy's algorithm 

provide a powerful technique for keeping a chromosome. The method consists in building a auxiliary graph in which 

each arc denotes a subsequence of required arcs. A shortest path algorithm in this graph gives the optimal split into trips 

taking into account the vehicles capacity (figure 5). 

To tune this framework to the SCARP consist in defining the two stochastic criteria linked to the solution after the 

execution of the SPLIT method. The two criteria of interest are:  

• the expected cost of a solution (expected total duration of the trips) and its standard deviation; 

• the expected duration of the longest trip and its standard deviation. 

Let us note )(1 xf  and )(2 xf  the two criteria to minimize. 

2.4.  A MULTI-OBJECTIVE FRAMEWORK FOR THE SCARP 

The NSGA-II or Non-Dominated Sorting GA is an efficient multi-objective GA based on a non-dominated sorting of a 

population P  of ns solutions. The sorting process starts by computing the non-dominated set of P  which defines the 

solutions of level 1 or front 1. Then, this set is temporarily removed from P  and the non-dominated set of the residual 

population is extracted to give the front 2 and son on until all solutions are classified as stressed in figure 5. 

 

Figure 5. NSGA-II template for SCARP resolution 

In NSGA-II, to each solution is assigned a fitness: its front number (1 being the best found value). To get well-spread 

fronts, parents are selected using a crowded tournament operator. A solution x wins a tournament with y if x has a better 

fitness (smaller front number) or if x  and y  are in the same front but x  has a larger crowding distance. This distance 

is depicted in the middle of figure 5 for a front R  of t  solutions. By convention, it is infinite for the two extreme points 

1R  and tR . For kR , tk <<1 , it is equal to half of the perimeter of an enclosing rectangle with 1−kR  and 1+kR  placed 

on two vertices. This crowding distance is a kind of measure of the search space around kR  which is not occupied by 

any other solution. 

Starting from an initial population sorted by non-domination, one NSGA-II iteration consist of selecting 2
ns  of parents 

with the crowded tournament operator, applying crossovers and mutations and adding the ns resulting offspring's at the 

end of P , thus doubling its size. Finally, P  is reduced to its ns best elements, using again a non-dominated sorting. 

An algorithm derived from NSGA-II is described in (Lacomme et al., 2005) for the bi-objective CARP. Most 

components of the MA are recycled: the encoding of chromosomes, the OX-like crossover, the evaluation procedure 

Split and all the moves tested in the local search. The ways of integrating a local search (not foreseen in NSGA-II) 

without degrading solution dispersal are also studied. The best results are obtained by periodically applying to front 1 a 

local search with a direction depending on solution position, like on the right of figure 5.  
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More precisely, a move yx →  is accepted if: 

( ) ( )( ) ( ) ( ) ( )( ) 0.1. 221111 <−−+− xfyfxfyf ππ  

with weight 1π  computed as in equation 1 where min
kf (resp. max

kf ) denotes the min (resp. max) value of the criterion 

kf , 2,1=k . 

( ) ( ) ( )














−
−+

−
−















−
−=

min
2

max
12

min
22

min
1

max
1

min
11

min
1

max
1

min
11

1
ff

fxf

ff

fxf

ff

fxfπ   (1) 

The computational evaluation (Lacomme et al., 2005) shows that, adding the local search sketched above provides 

better approximations of the Pareto set, while strongly accelerating convergence. Moreover, on a set of classical 

instances, the leftmost solution obtained at the end corresponds in most cases to the optimal or best-known solution of 

the single objective case. 

2.5. MATHEMATICAL ANALYSIS OF SOLUTIONS 

The challenging problem consists in applying the law approach simultaneously in two function denoted )(1 xf  and 

)(2 xf . These two deterministic functions must combine both an average value and standard deviation by positive 

penalties (ρ >0 and µ >0) in a linear combination: 

( )xxHxf Hσρ.)()(2 +=  

( )xxMxf Mσµ.)()(2 +=   

where 

)(xH  is the expected cost of x  ; 

( )xHσ  is the standard deviation of the expected cost ; 

)(xM  is the expected duration of the longest trip of x  ; 

( )xMσ  is the standard deviation of the duration of the longest trip. 

Proposal for )(xH  and ( )xHσ  (here we choose ii Qq = ) 

Considering the CARP associated to a SCARP, each trip jG  of a solution ( ) )(1 xtiiGx ≤≤=  satisfies: Qq
iGj

j ≤∑
∈

. Its 

(deterministic) cost is ∑
∈ iGj

jc . Then the deterministic cost of the solution x  is ∑∑
= ∈

=
)(

1

)(
xt

j Gi
i

j

cxh . In the SCARP, the cost 

jC  of jG  is greater than ∑
∈ jGi

ic  when QQ
jGi

i >∑
∈

, because the vehicle must then go to the depot before continuing its 

task, thus )(),(
)(

1

xhCxH
xt

j
j ≥=∑

=

ω . Hence, for any solution x , )(xh  is the best possible value of ),( ωxH (let us recall 

that the cost of a trip only depends on the costs of arcs used but not on the collected quantities). 

 
 
 
Probability of additional move to the depot.  
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For any trip jG  of the CARP, the total amount of demand serviced is Qq
jGi

i ≤∑
∈

. In the SCARP, as soon as 

QQ
jGi

i >∑
∈

, the vehicle must turn back to the depot. The probability jp  to report at most one move to the depot node 

during the trip jG  of a solution x  is given by: 













>= ∑

∈

QQPp
jGi

ij . But ∑
∈ jGi

iQ  being a Gaussian random variable in 

the case of waste collection (thanks to the central limit theorem: the collected quantities along an arc is the sum of a 

large enough sum of the random quantities present in each container) with the expectation ∑
∈ jGi

iq  and the variance 

∑∑
∈∈

=














jj Gi
i

Gi
iH QQ 2

2

)(σσ (the random variables Qi are assumed to be independent, )( iQσ being their standard 

deviation), so that 



















 −

−=
∑

∑

∈

∈

j

j

Gi
i

Gi
i

j
Q

qQ

p
2)(

1
σ

ϕ  where ϕ  is the cumulative probability of N(0,1): ( ) dtex
x

t

.
.2

1 2

2

∫ ∞−

−
=

π
ϕ . 

In the following, we assume (hypothesis 1) that the random variables Qi satisfy iii qkQkQ ..)( ==σ  for a fixed k>0, 

these formulas become respectively: ∑∑
∈∈

=














jj Gi
i

Gi
iH qkQ 22

2

.σ  and 



















 −

−=
∑

∑

∈

∈

j

j

Gi
i

Gi
i

j
qk

qQ

p
2.

1 ϕ . Hence, it is possible to 

evaluate, as soon as the demands are independent Gaussian random variables ),( 22
ikik qkqN  the following 

characteristics: 

� Probability of at most one additional trip in the solution is { } )1(1)(),(
)(

1
j

xt

j

pxtxTP −−=> ∏
=

ω  where jp  is 

calculated as above. 

� Probability of the most m additional trip in the solution is { }mxtxTP +> )(),( ω  (for a fixed integer 1≥m ) which is 

multinomial. 

According to the capacity of the vehicle in front of the quantity to be collected on one arc, it seems reasonable to 

assume that at most one move can occur for any trip. This hypothesis (hypothesis 2) has been confirmed by the study 

(Fleury et al., 2005) and hence, the average number of trips is ∑
=

+=
)(

1

)()(
xt

j
jpxtxT  and its standard deviation is 

( ) ( )∑
=

−=
)(

1

2
xt

j
jjT ppxσ . 

Position in a trip of an additional move to the depot. Moreover, with a high probability, this additional move to the 

depot node will occur at the end of the trip, just before the last serviced arc of the trip (hypothesis 3). For a robust 

solution, the probability of an interruption is low, and therefore, it occurs with a high probability, just before the last 

serviced arc. In the following, we occasionally assume both following hypotheses are satisfied:  
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(H2) any trip can be split into at the most two trips, 

(H3) the additional move can occur only before the last serviced arc of the trip. 

Let us note js  the cost of an unproductive move from the last serviced arc of Gj to the depot and from the depot to the 

next serviced arc of Gj. Under the hypotheses )H( 1  and )H( 2 , with the probability 1- jp , the trip cost is 

j

j i
i G

C c
∈

= ∑  

and with the probability jp  it is ( )
j

j i i
i G

C c s
∈

= +∑ . Under these hypotheses, it possible to compute some helpful 

characteristics of the random trip cost: 

� the average cost of the trip: ( ) ( ).

j

j i i i
i G

H G c s p
∈

= +∑ . 

� its standard deviation ( ) ( )2. .H j j i i iG s c s pσ = + . 

For a solution ( )
)(1 xtjjGx

≤≤
=  composed of t(x) trips, assuming the demands are independent, the following 

properties can be established: 

• The deterministic cost of solution is 
( )

1

( )

j

t x

i
j i G

h x c
= ∈

= ∑ ∑ . 

• The stochastic cost is ∑
=

=
)(

1

),(
xt

j
jCxH ω . 

• The average cost is 
( )

1

( ) ( ) .
t x

j j
j

H x h x s p
=

= +∑ . 

• The standard deviation of the cost is ( ) ( )∑
=

−=
)(

1

22.
xt

j
jjjH ppsxσ . 

Proposal for )(xM  and ( )xMσ  

Let us, at first define the following deterministic numbers. 

If no trip required a supplementary move to the depot node, i
xti

Cx
)(1

0 max
≤≤

= . 

Consider that only one trip requires a supplementary move to the depot node. For a trip u ( )(1 xtu ≤≤ ), 

[ ]01 ,max xsCx uu
u +=  

f two trips u and v ( )(,1 xtvu ≤≤  and vu ≠ ) require a supplementary move to the depot node, 

[ ]u
vvuu

uv xsCsCx 12 ,,max ++=  

If three different trips u, v, w ( twvu ≤≤ ,,1 ) require a supplementary move to the depot node, 

[ ]uv
wwvvuu

uvw xsCsCsCx 23 ,,,max +++= , and so on… 

When all trips require a supplementary move to the depot, ( )ii
xti

xt sCx +=
≤≤ )(1

)( max . 

Thus, we have: { } ( ) 0
)(1

0 1 π=−==
≤≤
∏ i

xti
pxXP  the probability that no trip requires any supplementary move to the 

depot: 
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{ } ( )
u

u
i

ui
xti

u
u

p

p
ppxXP

−
=−==

≠
≤≤
∏

1

.
1. 0

)(1
1

π
 the probability that exactly one trip requires a supplementary move to the depot 

node; 

{ } ( ) ( )( )vu

vu
i

vi
ui

xti
vu

uv

pp

pp
pppxXP

−−
=−==

≠
≠

≤≤
∏

11

..
1.. 0

)(1
2

π
 the probability that exactly two trips require a supplementary move 

to the depot node 

{ } ( ) ( )( )( )wvu

wvu
i

wi
vi
ui

xti
wvu

uvw

ppp

ppp
ppppxXP

−−−
=−==

≠
≠
≠

≤≤
∏

111

...
1... 0

)(1
3

π
 the probability that exactly three trips require a 

supplementary move to the depot node 

And finally, { } i
xti

xt pxXP
)(1

)(
≤≤
∏==  is the probability that every trip requires a supplementary move to the depot.  

The average length of the longest trip of x  can then be computed: 

=)(xM 00.πx ( )∑
≤≤ −

+
)(1

0
1 1

.
.

xtu u

uu

p

p
x

π
( )( )∑∑

=

−

= −−
+

)(

2

1

1

0
2 11

..
.

xt

u

u

v vu

vuuv

pp

pp
x

π
 

( )( )( )∑∑∑
=

−

=

−

= −−−
+

)(

3

1

2

1

1

0
3 111

...
.

xt

u

u

v

v

w wvu

wvuuvw

ppp

ppp
x

π
L+ j

xtj
xt px

)(1
)( .

≤≤
∏+  

It is possible to also obtain: 

=)( 2xM ( ) 0
2

0 .πx ( ) ( )∑
≤≤ −

+
)(1

02
1 1

.
.

xtu u

uu

p

p
x

π ( ) ( )( )∑∑
=

−

= −−
+

)(

2

1

1

02
2 11

..
.

xt

u

u

v vu

vuuv

pp

pp
x

π
 

( ) ( )( )( )∑∑∑
=

−

=

−

= −−−
+

)(

3

1

2

1

1

02
3 111

...
.

xt

u

u

v

v

w wvu

wvuuvw

ppp

ppp
x

π
L+ ( ) j

xtj
xt px

)(1

2
)( .

≤≤
∏+ . 

The standard deviation can then be computed: ( ) ( )22 )()( xMxMxM −=σ  

Implementation of )(xM  and ( )xMσ  

Because zu
kx ..  is greater than 0x  and less than )(xtx , one has 

( ) ( )( )











−−
+

−
+≥ ∑∑∑

=

−

==

)(

2

1

1
2

)(

2
100 11

.

1
..)(

xt

u

u

v vu

vuuv
xt

u u

uu

pp

pp
x

p

p
xxxM π + ( ) ( )( )












−−
−

−
−− ∑∑∑

=

−

==

)(

2

1

1

0
)(

2

0
00 11

..

1
1.

xt

u

u

v vu

vu
xt

u u

u

pp

pp

p

p
x

πππ  

and  

( ) ( )( )











−−
+

−
+≤ ∑∑∑

=

−

==

)(

2

1

1
2

)(

2
100 11

.

1
..)(

xt

u

u

v vu

vuuv
xt

u u

uu

pp

pp
x

p

p
xxxM π + ( ) ( )( )












−−
−

−
−− ∑∑∑

=

−

==

)(

2

1

1

0
)(

2

0
0)( 11

..

1
1.

xt

u

u

v vu

vu
xt

u u

u
xt pp

pp

p

p
x

πππ . 

One can of course inprove these approximations using: 

( )( )( ) ≤
−−−∑∑∑

=

−

=

−

=

)(

3

1

2

1

1

0
0 111

...
.

xt

u

u

v

v

w wvu

wvu

ppp

ppp
x

π
( )( )( )∑∑∑

=

−

=

−

= −−−

)(

3

1

2

1

1

0
3 111

...
.

xt

u

u

v

v

w wvu

wvuuvw

ppp

ppp
x

π
( )( )( )∑∑∑

=

−

=

−

= −−−
≤

)(

3

1

2

1

1

0
)( 111

...
xt

u

u

v

v

w wvu

wvu
xt ppp

ppp
x

π
 

and so on… 

Similar considerations are valid for )( 2xM . 
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The previous remarks show that, if ExMe ≤≤ )(  and CxMc ≤≤ )( 2 , then ( ) 22 )(,0max eCxEc M −≤≤− σ  and then: 

2
)(

Ee
xM

+≈  and ( ) ( )
2

,0max 22 eCEc
xM

−+−
≈σ . 

2.6. EVALUATION OF ROBUSTNESS AND EVALUATION OF SOLUTIONS QUALITY 

Robustness of solutions 

The second phase consists in gathering statistics. Let x  be one of the best solutions obtained at the end of the 

optimization phase. n  replications can be performed for a careful analysis of solution properties as regards robustness 

criteria. The statistics can include (but are not limited to): 

• ( , )H x n : the average cost over n  independent evaluations of ( , )H x ω . This estimates the expectation ( )H x . 

• ),( nxM : the average cost over n  independent evaluations of ),( ωxM . This estimates the expectation )(xM  

• ),(.
1

nx
n

n
Hσ

−
 where ( ),H x nσ  is the standard deviation of the cost over n  independent evaluations of x . This 

estimates the standard deviation )(xHσ . 

• ),(.
1

nx
n

n
Mσ

−
 where ),( nxMσ is the standard deviation of the number of trips over n  independent evaluations of 

x . This estimates the standard deviation )(xMσ . 

• 100
),(

),()(
)(

×−=
nxH

nxHxH
E

xH
 represents the gap (in percent) between ),( nxH  and )(xH  and 

100
),(

),()(
)(

×−=
nxM

nxMxM
E

xM
 represents the gap (in percent) between ),( nxM  and )(xM . 

• 100
)(

),()(
)( ×−=

xH

nxx
E HH

xH

σσ
σ  is the relative importance (in percent) of the error in the standard deviation 

evaluation for )(xH  and 100
)(

),()(
)( ×−=

xM

nxx
E MM

xM

σσ
σ  is the relative importance (in percent) of the error in the 

standard deviation evaluation for )(xM  

For convenience, we note 1
)(xH

E , 1
)(xM

E , 1
)(xH

Eσ , 1
)(xM

Eσ  the values of the leftmost solution and 2
)(xH

E , 2
)(xM

E , 

2
)(xH

Eσ , 2
)(xM

Eσ  the values of the rightmost solution. 

Representation of solutions 

Representing the solutions, we propose (figure 6) to highlight the standard deviation of both objective functions (figure 

6). The square represent solutions for which both the expected cost of a solution and the expected duration of the 

longest trip are included in the average value plus/minus the standard deviation. The size of the squares gives a 

graphical representation of solutions robustness: large size squares denote high sensitive solutions and small size 

squares denotes robust solutions. Mathematical expressions and replications evaluation can conduct to different 

evaluation of both criteria and of standard deviations. 



Research Report LIMOS/ RR-08-06 

 15 

 ( )H x

)(xM

( )xxH Hσρ.)( +( )xxH Hσρ.)( −

( )xxM Mσµ.)( +

( )xxM Mσµ.)( −

 ( , )H x n

),( nxM

( )nxnxM M ,.),( σρ+

( )nxnxM M ,.),( σρ−

( )nxnxH H ,.),( σρ−( )nxnxH H ,.),( σρ+
 

Figure 6. Representation of one solution as square depending on the”exact” or evaluated expressions. 

Quality of evaluations of the solutions 

Let ( )11 )(;)( xMxH  be the leftmost solution of the first front and ( )22 )(;)( xMxH  be the rightmost solution of the first 

front. These two solutions can be respectively compared to the leftmost solution ( )11 )(;)( xmxh  and the rightmost one 

( )22 )(;)( xmxh  (Lacomme et al., 2005) obtained by solving the bi-objective (deterministic) CARP. Both solutions can 

also be compared to the best solution )(xH  found solving the (stochastic mono-objective) SCARP (Fleury et al., 2004) 

(Fleury et al., 2005). To avoid any ambiguity, this value is denoted 
Mono

xH )(  in the rest of the paper. Of course, neither 

( )11 )(;)( xmxh  nor ( )22 )(;)( xmxh  are a lower bound, but the best found solution solving the CARP using a bi-objective 

optimization scheme. Figure 7 gives a graphical representation of all the solutions available depending on the resolution 

scheme applied. 

)(xM

 ( )H x







 11

)(;)( xMxH







 22

)(;)( xMxH

1)(xh

( )11 )(;)( xmxh

( )22 )(;)( xmxh

2)(xm

)(xH
 

Figure 7. Evaluation of solutions for the bi-objective resolution of the SCARP as regard previous published results on 
the SCARP (mono-objective) and on the CARP (bi-objective resolution). 

 
The leftmost and rightmost solutions obtained using the bi-objective resolution scheme of the SCARP, can be compared 

to the leftmost and the rightmost solutions found using the bi-objective resolution of the (deterministic) CARP. Let us 
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note 1

)()( 11
xhxH

E
−

, 1

)()( 11
xmxM

E
−

, 2

)()( 22
xhxH

E
−

 and 2

)()( 22
xmxM

E
−

 the gap (in percent) from rightmost and leftmost 

solutions. These gaps can be computed according to the next formula: 

100
)(

)()(
1

11

1

)()( 11 ×





















 −

=
− xh

xhxH
E

xhxH
 100

)(

)()(
2

22

2

)()( 22 ×





















 −

=
− xh

xhxH
E

xhxH
 

100
)(

)()(
1

11

1

)()( 11 ×





















 −

=
− xm

xmxM
E

xmxM
 100

)(

)()(
2

22

2

)()( 22 ×





















 −

=
− xm

xmxM
E

xmxM
 

The leftmost solution of the SCARP resolution by the bi-objective scheme can be compared with the solution obtained 

using a mono-objective resolution scheme of the SCARP. This gap can be computed thinks to: 

100
)(

)()(
1

1

)()(
1 ×






















 −

=
− MONO

MONO

xHxH xH

xHxH
E MONO  

Figure 8 provides a graphical representation of solutions quality criteria as regards previous published results on the 

mono-objective resolution of the SCARP and on the bi-objective resolution of the CARP.  

)(xM

 ( )H x

2

)()( 22
xhxH

E
−

2

)()( 22
xmxM

E
−

1

)()(
1 M ONO

xHxH
E

−

1

)()( 11
xmxM

E
−

1

)()( 11
xhxH

E
−

MONO
xH )(

 
Figure 8. Graphical representation of solutions quality criteria 

3. NUMERICAL EXPERIMENTS 

The experiments have been carried out using the well-known instances introduced by (Belenguer and Benavent, 2003), 

(Eglese and Li, 1996) and (DeArmon, 1981). These computational evaluations have been achieved on a Pentium IV 2.8 

GHz with 512Mo using Windows XP operating system. The program has been developed using Delphi 7.0 package. 

The demands iq  are replaced by independent truncated random variables ( )2 2, .i iN q r q  with 0.1r = . The penalties ρ  

and µ  in the linear combination used for 1f  and 2f  are equal to 10. All the experiments have been carried out with a 

population of 60 chromosomes, 1000 iterations and a directed local search applied every 10 iterations. This set of 

parameters has been applied for all the experiments. When the first front was composed of one solution only, this 

solution is considered for being both leftmost and rightmost solution. 
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3.1. ROBUSTNESS OF SOLUTIONS FOR THE GDB INSTANCES 

The solutions can be represented as points in a set of fronts (figure 9) or can be represented as squares in a set of fronts 

(figure 10) for the initial population. 

 

Figure 9. Representation of the initial solutions of 
Gdb1 instance 

 
Figure 10. Representation by domains of the initial 
solutions of Gdb1 instance 

One can note, that the second representation permits to show if the considered solutions have or not a great standard 

deviation (figure 11). 

 

Figure 11. Representation by domains of the 
solutions of Gdb1 instance after 1000 iterations  

 
Figure 12. Representation by domains of the solutions 
of Gdb1 instance after 1000 iterations – Same scale 
than figure 9 

 

Table 2 presents an analysis of solutions for Gdb instances. The aim is to highlight the high correlation between the 

mathematical evaluation of solutions and the evaluation provides by replications. The evaluation concerns the rightmost 

and the leftmost solutions obtained at the end of the optimization phase. 
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Table 2. Mathematical evaluation and replications evaluation of the rightmost and of the leftmost solutions of Gdb 
instances 

 Numerical values provided by 
mathematical expressions 

Numerical values provided by 
replications phase 

Gdb ( )H x  ( )M x  ( )H xσ  ( )M xσ  ( , )H x n  ( , )M x n  ( ),H x nσ  ( ),M x nσ  

1 337.0 63.0 0.0 0.0 337.0 63.0 0.0 0.0 
 337.0 63.0 0.0 0.0 337.0 63.0 0.0 0.0 
2 367.0 62.0 0.0 0.0 367.0 62.0 0.0 0.0 
 417.0 59.0 0.0 0.0 417.0 59.0 0.0 0.0 
3 296.0 60.0 0.0 0.0 296.0 60.0 0.0 0.0 
 347.0 59.0 0.0 0.0 347.0 59.0 0.0 0.0 
4 317.0 72.0 0.0 0.0 317.0 72.0 0.0 0.0 
 350.0 64.0 0.0 0.0 350.0 64.0 0.0 0.0 
5 433.0 68.0 0.0 0.0 433.0 68.0 0.0 0.0 
 479.0 64.0 0.0 0.0 479.0 64.0 0.0 0.0 
6 324.0 68.0 0.0 0.0 324.0 68.0 0.0 0.0 
 351.0 64.0 0.0 0.0 351.0 64.0 0.0 0.0 
7 359.0 68.0 0.0 0.0 359.0 68.0 0.0 0.0 
 368.0 66.0 0.0 0.0 368.0 66.0 0.0 0.0 
8 399.1 44.0 0.6 0.1 399.1 44.0 0.6 0.0 
 493.0 39.0 0.0 0.0 493.0 39.0 0.0 0.0 
9 361.2 38.0 0.9 0.1 361.2 38.0 0.7 0.0 
 379.1 37.0 0.7 0.0 379.1 37.0 0.6 0.0 

10 283.0 66.0 0.0 0.0 283.0 66.0 0.0 0.0 
 329.0 57.0 0.0 0.0 329.0 57.0 0.0 0.0 

11 409.0 81.0 0.0 0.0 409.0 81.0 0.0 0.0 
 439.0 61.0 0.0 0.0 439.0 61.0 0.0 0.0 

12 523.7 99.1 3.9 2.6 523.6 99.1 3.9 2.7 
 613.1 93.0 1.6 0.0 613.1 93.0 1.7 0.0 

13 556.0 128.0 0.1 0.0 556.0 128.0 0.0 0.0 
 556.0 128.0 0.1 0.0 556.0 128.0 0.0 0.0 

14 104.0 20.0 0.0 0.0 104.0 20.0 0.0 0.0 
 108.0 17.0 0.0 0.0 108.0 17.0 0.0 0.0 

15 58.0 16.0 0.0 0.0 58.0 16.0 0.0 0.0 
 60.0 13.0 0.0 0.0 60.0 13.0 0.0 0.0 

16 131.0 20.0 0.0 0.0 131.0 20.0 0.0 0.0 
 135.0 18.0 0.0 0.0 135.0 18.0 0.0 0.0 

17 91.0 17.0 0.0 0.0 91.0 17.0 0.0 0.0 
 91.0 17.0 0.0 0.0 91.0 17.0 0.0 0.0 

18 172.0 33.0 0.0 0.0 172.0 33.0 0.0 0.0 
 182.0 27.0 0.0 0.0 182.0 27.0 0.0 0.0 

19 63.0 17.0 0.0 0.0 63.0 17.0 0.0 0.0 
 63.0 18.0 0.0 0.0 63.0 18.0 0.0 0.0 

20 123.0 33.0 0.0 0.0 123.0 33.0 0.0 0.0 
 127.0 21.0 0.0 0.0 127.0 21.0 0.0 0.0 

21 160.0 28.0 0.0 0.0 160.0 28.0 0.0 0.0 
 166.0 22.0 0.0 0.0 166.0 22.0 0.0 0.0 

22 207.0 26.0 0.1 0.0 207.0 26.0 0.0 0.0 
 208.0 20.0 0.0 0.0 208.0 20.0 0.0 0.0 

23 239.0 28.0 0.1 0.0 239.0 28.0 0.0 0.0 
 245.0 19.0 0.1 0.0 245.0 19.0 0.0 0.0 
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Table 3. Error (in percentage) between mathematical 
expressions and replications evaluations for the rightmost 
and of the leftmost solutions  

Gdb )(xH
E  

)(xM
E  

)(xH
Eσ  )(xM

Eσ  

1 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 
8 0.00 0.00 0.00 0.14 
 0.00 0.00 0.01 0.00 
9 0.01 0.00 0.05 0.34 
 0.01 0.00 0.03 0.00 

10 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 

11 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 

12 0.02 -0.01 0.00 -0.18 
 0.00 0.00 -0.02 0.00 

13 0.00 0.00 0.02 0.00 
 0.00 0.00 0.00 0.00 

14 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 

15 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 

16 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 

17 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 

18 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 

19 0.00 0.00 0.01 0.00 
 0.00 0.00 0.01 0.00 

20 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 

21 0.00 0.00 0.05 0.00 
 0.00 0.00 0.00 0.00 

22 0.00 0.00 0.03 0.00 
 0.00 0.00 0.02 0.00 

23 0.00 0.00 0.00 0.00 
 0.00 0.00 0.00 0.00 

Avg. 0.00 0.00 0.0 0.01 
Max 0.02 0.00 0.05 0.34 
Min 0.00 -0.01 -0.02 0.18 

 

 
The equation between mathematical expressions and 

replications evaluations is In the table 4, for the 23 

instances, over 46 solutions, the average  

• 
)(xH

E  is the gap between ),( nxH  and )(xH  

• 
)(xM

E  is the gap between ),( nxM  and )(xM . 

• )(xH
Eσ  is the relative importance (in percent) of 

the error in the standard deviation evaluation for 

)(xH  

• )(xM
Eσ  is the relative importance (in percent) of 

the error in the standard deviation evaluation for 

)(xM  

The average gap between ),( nxH  and )(xH  remains 

0 over the 46 solutions investigated. The same is true 

for the gap between ),( nxM  and )(xM , and for the 

relative importance of the error in standard deviation of 

)(xH  and )(xM .  

Similar high quality results are also reported for the 

Val instances and for the Eglese instances. This study 

implies that the mathematical formulas provide high 

quality estimations of the four studied criteria. 

In the next section, the quality of the solutions is 

compared to the previous published on the SCARP 

with a mono-objective approach and on the CARP with 

a bi-objective one (figure 8). 
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3.2. REMARKS ON THE MATHEMATICAL FORMULAE (VAL INSTANCES) 

To obtain a suitable evaluation of mathematical formula performance, table 4a and table 4b give the error between 

mathematical formula and replications evaluation. One can note, that whatever the criteria and whatever the solution 

(leftmost or rightmost) the error is less than 0.02%. In appendix; table A1, gives all the values obtained for the standard 

deviation. 

 

Table 4a and Table 4b. Error between mathematical expressions and replications evaluations for the rightmost and of 
the leftmost solutions 

 
     

Leftmost 
solution 

Rightmost 
solution 

Val 1
)(xH

E  1
)(xM

E  2
)(xH

E  2
)(xM

E  

1a 0.00 0.00 0.00 0.00 
1b 0.00 0.00 0.00 0.00 
1c 0.00 0.00 0.00 0.00 
2a 0.00 0.00 0.00 0.00 
2b 0.00 0.00 0.00 0.00 
2c -0.01 0.00 0.00 0.00 
3a 0.00 0.00 0.00 0.00 
3b -0.04 -0.06 0.00 0.00 
3c 0.00 0.00 0.00 0.00 
4a 0.00 0.00 0.00 0.00 
4b 0.00 0.00 0.00 0.00 
4c 0.00 0.00 0.00 0.00 
4d -0.15 -1.08 0.00 0.00 
5a 0.00 0.00 0.00 0.00 
5b 0.00 0.00 0.00 0.00 
5c 0.00 0.00 0.00 0.00 
5d 0.00 0.00 0.00 0.00 
6a 0.00 0.00 0.00 0.00 
6b 0.00 0.00 0.00 0.00 
6c 0.00 0.00 0.00 0.00 
7a 0.00 0.00 0.00 0.00 
7b 0.00 0.00 0.00 0.00 
7c -0.06 -0.07 0.00 0.00 
8a 0.00 0.00 0.00 0.00 
8b 0.00 0.00 0.00 0.00 
8c 0.00 0.00 0.00 0.00 
9a 0.00 0.00 0.00 0.00 
9b 0.00 0.00 0.00 0.00 
9c 0.00 0.00 0.00 0.00 
9d 0.00 0.00 0.00 0.00 

10a 0.00 0.00 0.00 0.00 
10b 0.00 0.00 0.00 0.00 
10c 0.00 0.00 0.00 0.00 
10d 0.00 0.00 0.00 0.00 
Avg -0.01 -0.04 0.00 0.00 
Max 0.00 0.00 0.00 0.00 
Min -0.15 -1.08 0.00 0.00  

 
     

Leftmost 
solution 

Rightmost 
solution 

Val 1
)(xH

Eσ  1
)(xM

Eσ  2
)(xH

Eσ  2
)(xM

Eσ  

1a 0.00 0.00 0.00 0.00 
1b 0.00 0.00 0.00 0.00 
1c 0.13 0.13 0.00 0.00 
2a 0.00 0.00 0.00 0.00 
2b 0.00 0.00 0.00 0.00 
2c -0.02 0.00 0.59 0.00 
3a 0.00 0.00 0.00 0.00 
3b 0.01 0.00 0.03 0.00 
3c 0.01 0.01 0.00 0.00 
4a 0.05 0.00 0.07 0.00 
4b 0.00 0.00 0.00 0.00 
4c 0.00 0.00 0.00 0.00 
4d -0.82 0.00 -6.11 0.00 
5a 0.00 0.00 0.00 0.00 
5b 0.00 0.00 0.00 0.00 
5c 0.00 0.00 0.00 0.00 
5d 0.00 0.00 0.00 0.00 
6a 0.00 0.00 0.00 0.00 
6b 0.00 0.00 0.00 0.00 
6c 0.14 0.13 0.00 0.00 
7a 0.00 0.00 0.00 0.00 
7b 0.00 0.00 0.00 0.00 
7c -0.11 0.00 0.07 0.00 
8a 0.00 0.00 0.00 0.00 
8b 0.00 0.00 0.00 0.00 
8c 0.05 0.00 0.07 0.00 
9a 0.00 0.00 0.00 0.00 
9b 0.00 0.00 0.00 0.00 
9c 0.00 0.00 0.00 0.00 
9d 0.03 0.00 0.26 0.00 

10a 0.00 0.00 0.00 0.00 
10b 0.00 0.00 0.00 0.00 
10c 0.00 0.00 0.00 0.00 
10d 0.00 0.00 0.00 0.00 
Avg -0.02 0.01 -0.15 0.00 
Max 0.14 0.13 0.59 0.00 
Min -0.11 0.00 -6.11 0.00  

 

3.3. CONCLUDING REMARKS ON QUALITY OF THE MATHEMATICAL FORMULAE 

Table 5 sums up all the error in criteria evaluation using mathematical formulae. One can note the high quality of 

evaluation: the error is never greater than 0.3%. On average, considering both leftmost and rightmost solution, over the 

4 criteria, the average error is about 0.06%. These results push into considering that mathematical formulae provide us 

high quality evaluation of criteria. 
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Table 5. Quality of the mathematical formulas 

Means of the instances 1
)(xH

E  1
)(xM

E  2
)(xH

E  2
)(xM

E  1
)(xH

Eσ  1
)(xM

Eσ  2
)(xH

Eσ  2
)(xM

Eσ  

Gdb  0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 

Val -0.01 -0.04 0.00 0.00 -0.02 0.01 -0.15 0.00 

Eglese 0.02 0.03 -0.13 -0.45 0.02 -0.03 -0.01 -0.68 

 

3.4. QUALITY OF THE SOLUTIONS OF THE GDB INSTANCES 

Table 6 provides solutions for the 23 Gdb instances. When the obtained values are better or equal to solutions found 

solving the CARP by a bi-objective scheme, they are underlined. The rightmost solution solving the SCARP by a bi-

objective approach is compared with the rightmost solution solving the CARP by a bi-objective approach. Similar 

comments remain true for the leftmost solutions. But, in the bi-objective resolution of the CARP, the standard 

deviations were not relevant. the comparison is achieved only on the expected cost and on the expected duration. The 

underline values report values better than (or equal to) the values obtained solving the SCARP by a mono-objective 

approach. The last column is the computational time in seconds. Note that the leftmost solutions found is 20 times better 

or equal using the SCARP bi-objective resolution than the CARP bi-objective resolution for the expected duration. The 

rightmost solutions are 15 times better than the best solutions found for the CARP bi-objective resolution in the 

expected cost. The SCARP resolution with a bi-objective resolution 9 times a best solution than the CARP resolution 

for the rightmost solution. 

 

Table 6. Solutions for the Gdb instances  

 CARP resolution SCARP Resolution 

 Bi-objective resolution Mono- 
objective Bi-objective resolution 

Gdb 1)(xh  1)(xm  2)(xh  2)(xm  Mono
xH )(  

1
)(xH  

1
)(xM  

2
)(xH  

2
)(xM  t  

1 316 74 337 63 337.0 337.0 63.0 337.0 63.0 52s 
2 339 69 395 59 388.0 367.0 62.0 417.0 59.0 58s 
3 275 65 339 59 296.0 296.0 60.0 347.0 59.0 52s 
4 287 74 350 64 313.0 317.0 72.0 350.0 64.0 46s 
5 377 78 447 64 409.0 433.0 68.0 479.0 64.0 58s 
6 298 75 351 64 324.0 324.0 68.0 351.0 64.0 52s 
7 325 68 381 61 351.0 359.0 68.0 368.0 66.0 58s 
8 350 44 390 38 372.1 399.0 44.0 493.0 39.0 92s 
9 309 43 333 37 326.3 361.2 38.0 379.0 37.0 100s 

10 275 71 297 54 283.0 283.0 66.0 329.0 57.0 58s 
11 395 81 421 64 396.0 409.0 81.0 439.0 61.0 92s 
12 458 97 547 91 534.0 523.7 99.1 613.0 93.0 56s 
13 544 128 544 128 552.0 556.0 128.0 556.0 128.0 70s 
14 100 21 112 17 96.6 104.0 20.0 108.0 17.0 52s 
15 58 15 60 13 58.0 58.0 15.0 60.0 13.0 52s 
16 127 27 135 19 129.0 131.0 20.0 135.0 18.0 62s 
17 91 15 91 15 91.0 91.0 17.0 91.0 17.0 66s 
18 164 33 178 27 161.5 172.0 33.0 182.0 27.0 84s 
19 55 21 63 17 63.0 63.0 17.0 63.0 18.0 36s 
20 121 36 131 20 123.0 123.0 29.0 127.0 21.0 52s 
21 156 30 160 22 154.6 160.0 28.0 166.0 22.0 76s 
22 200 26 207 20 201.1 207.0 26.0 208.0 20.0 94s 

 23 235 23 241 20 237.1 239.0 28.0 245.0 19.0 120s 

 

Table 7 gives the 5 quality criteria for the solutions of the Gdb instances. For the leftmost solutions there is a gap of:  

6.82% between the expected cost )(xH  and the cost )(xh ; 

-4.99% between the expected duration )(xM  and the duration )(xm ; 

2.04% between the expected cost )(xH  and 
MONO

xH )( . 
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Remember that )(xh and )(xm  have been obtained by a bi-criteria scheme applied to the CARP. For the rightmost 

solution there is a gap of: 

7.74% between the expected cost )(xH  and the cost )(xh ; 

5.05 % between the expected duration )(xM  and the duration )(xm . 

 

Table 7. Quality criteria of the solutions of Gdb instances (SCARP by a bi-objective scheme). 

Gdb 
1

)()( 11
xhxH

E
−

 1

)()( 11
xmxM

E
−

 2

)()( 22
xhxH

E
−

 2

)()( 22
xmxM

E
−

 1

)()(
1 MONO

xHxH
E

−
 

1  6.65 -14.86 0.00 0.00 0.00 
2  8.26 -10.14 5.57 0.00 -5.41 
3  7.64 -7.69 2.36 0.00 0.00 
4  10.45 -2.70 0.00 0.00 1.28 
5  14.85 -12.82 7.16 0.00 5.87 
6  8.72 -9.33 0.00 0.00 0.00 
7  10.46 0.00 -3.41 8.20 2.28 
8  14.00 0.00 26.41 2.63 7.23 
9  16.89 -11.63 13.81 0.00 10.70 
10 2.91 -7.04 10.77 5.56 0.00 
11 3.54 0.00 4.28 -4.69 3.28 
12 14.34 2.16 12.07 2.20 -1.93 
13 2.21 0.00 2.21 0.00 0.72 
14 4.00 -4.76 -3.57 0.00 7.66 
15 0.00 0.00 0.00 0.00 0.00 
16 3.15 -25.93 0.00 -5.26 1.55 
17 0.00 13.33 0.00 13.33 0.00 
18 4.88 0.00 2.25 0.00 6.50 
19 14.55 -19.05 0.00 5.80 0.00 
20 1.65 -19.44 -3.05 5.00 0.00 
21 2.56 -6.67 3.75 0.00 3.49 
22 3.50 0.00 0.48 0.00 2.93 
 23 1.70 21.74 1.66 -5.00 0.80 
Avg 6.82 -4.99 3.60 1.21 2.04 
Max 16.89 21.74 26.41 13.33 10.70 
Min 0.00 -19.44 -3.57 -5.00 -5.41 

 

3.5. QUALITY OF THE SOLUTIONS OF THE VAL INSTANCES 

Table A2 (see Appendix) provides the results for the Val instances. One can note the high quality of the results obtained 

in front of those obtained solving the CARP with a bi-objective approach. The leftmost solutions are 4 times equal or 

better than solutions of the CARP using a bi-objective approach for the solution cost and 17 times better or equal for the 

solution duration of the longest trip. For the rightmost solutions. solution cost is 12 times better (or equal) solving the 

SCARP using a bi-objective approach than solving the CARP using a bi-objective one. 
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Table 8. Solutions quality criteria of Val instances solving the SCARP by a bi-objective scheme 

Val 
1

)()( 11
xhxH

E
−

 1

)()( 11
xmxM

E
−

 2

)()( 22
xhxH

E
−

 2

)()( 22
xmxM

E
−

 1

)()(
1 MONO

xHxH
E

−
 

1a 0.00 1.72 0.00 1.72 0.00 
1b 3.47 -11.48 -5.39 2.38 0.00 
1c 15.92 2.44 14.52 5.00 5.97 
2a 0.00 0.00 -0.74 1.11 0.00 
2b 3.08 -9.90 -0.33 2.56 3.08 
2c 21.60 0.00 31.10 0.00 -0.88 
3a 0.00 0.00 0.00 0.00 0.00 
3b 6.90 0.00 17.14 0.00 6.90 
3c 27.54 0.00 27.54 0.00 8.64 
4a 0.50 2.99 3.59 4.35 0.50 
4b 7.77 -12.38 -0.43 -1.20 5.21 
4c 11.16 1.01 6.85 6.25 5.29 
4d 12.10 2.62 18.74 0.00 4.82 
5a 5.44 -12.77 0.00 2.08 4.21 
5b 6.28 -13.39 0.00 3.49 5.29 
5c 5.27 7.29 -7.76 28.75 0.81 
5d 2.35 -2.47 -11.22 9.72 -3.50 
6a 1.79 2.67 -3.86 0.00 1.79 
6b 5.15 -20.59 2.66 2.00 0.00 
6c 13.25 -18.18 9.73 0.00 3.43 
7a 1.43 -30.59 -2.08 0.00 1.43 
7b 0.00 6.90 4.01 7.84 0.00 
7c 7.16 -10.00 22.73 -2.50 1.99 
8a 2.33 -21.71 0.47 1.15 0.74 
8b 6.08 -3.00 2.42 2.53 2.44 
8c 12.11 -4.05 8.69 0.00 4.80 
9a 1.53 8.54 4.20 2.94 2.48 
9b 3.37 -14.63 8.24 6.90 1.51 
9c 5.12 -5.80 0.00 1.96 2.65 
9d 10.53 -6.00 8.29 0.00 4.75 

10a 2.80 -7.69 3.79 6.59 2.80 
10b 4.36 -13.51 5.01 9.09 4.36 
10c 4.46 -3.23 5.62 9.09 1.96 
10d 12.29 6.56 6.22 5.56 7.30 
Avg 6.56 -5.25 5.29 3.51 2.67 
Max 27.54 7.29 31.10 28.75 8.64 
Min 0.00 -30.59 -11.22 -2.50 -3.50 

 
Table 8 gives the solutions quality criteria for the Gdb instances. For the leftmost solution. there is a gap of: 6.56% 

between the expected cost )(xH  and the cost )(xh ; -5.25% between the expected duration )(xM  and the duration 

)(xm ; 2.67% between the expected cost )(xH  and 
MONO

xH )( . For the rightmost solution. there is a gap of: 5.29% 

between the expected cost )(xH  and the cost )(xh ; 3.51 % between the expected duration )(xM  and the duration 

)(xm . 

3.6. QUALITY OF SOLUTIONS FOR THE EGLESE INSTANCES 

Results for the Eglese instances are provided in table A3 and table 9 provides results on the gap between the two criteria 

for both the leftmost and the rightmost solution between the bi-objective resolution of the CARP and of the SCARP. 

The gap from solution duration is not relevant: around 3% for both leftmost and rightmost solutions between the bi-

objective resolution of the CARP and the bi-objective resolution of the SCARP. For the solution cost one can note a gap 

around 30% for both leftmost and rightmost solutions but gap of only 6.44% with the best solution found solving the 

SCARP with a mono-objective approach. 
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Table 9. Solutions quality criteria of Val instances solving the SCARP by a bi-objective scheme 

egl- 
1

)()( 11
xhxH

E
−

 1

)()( 11
xmxM

E
−

 2

)()( 22
xhxH

E
−

 2

)()( 22
xmxM

E
−

 1

)()(
1 MONO

xHxH
E

−
 

e1-A 17.90 -13.04 9.39 0.00 3.64 
e1-B 25.50 -2.26 24.19 0.00 15.13 
e1-C 28.67 0.00 32.23 0.00 4.08 
e2-A 23.22 -8.71 27.09 3.66 9.84 
e2-B 24.30 47.34 26.85 0.00 3.23 
e2-C 32.32 2.81 33.11 4.16 6.01 
e3-A 23.37 -4.47 5.12 0.85 10.88 
e3-B 27.84 0.24 28.86 3.41 -1.47 
e3-C 28.83 -2.87 39.79 2.32 10.49 
e4-A 27.76 4.04 21.80 2.32 7.86 
e4-B 29.32 0.46 30.92 6.34 5.56 
e4-C 31.77 7.16 42.81 5.73 0.80 
s1-A 25.66 3.91 14.18 0.00 1.44 
s1-B 27.89 -3.86 21.84 0.00 2.46 
s1-C 23.42 4.65 42.61 2.85 -2.07 
s2-A 32.10 -1.70 12.59 4.90 18.37 
s2-B 34.57 -4.73 48.49 0.00 4.76 
s2-C 34.07 5.36 45.42 0.92 5.55 
s3-A 32.35 -1.46 19.28 5.52 14.20 
s3-B 33.86 0.10 36.84 0.00 0.15 
s3-C 34.29 6.23 40.38 0.00 4.77 
s4-A 29.67 21.16 32.34 1.27 14.37 
s4-B 34.90 4.51 48.13 4.67 5.34 
s4-C 39.46 13.51 52.56 24.59 9.14 
Avg 29.29 3.27 30.70 3.06 6.44 
Max 39.46 47.34 52.56 24.59 15.13 
Min 17.90 -13.04 5.12 0.00 0.15 

3.7. CONCLUDING REMARKS ON SOLUTIONS QUALITY CRITERIA 

Table 10 provides the average gap over the 5 criteria for all the instances including Gdb. Val and Eglese instances. On 

average. one can note that for the leftmost solution. there is a gap of:  

14.22% between the expected cost )(xH  and the cost )(xh ; 

-2.32% between the expected duration )(xM  and the duration )(xm ; 

5.31% between the expected cost )(xH  and 
MONO

xH )( ; 

Remember that )(xh and )(xm  have been obtained by a bi-criteria scheme applied to the CARP. For the rightmost 

solution. there is a gap of: 

14.58% between the expected cost )(xH  and the cost )(xh ; 

3.87 % between the expected duration )(xM  and the duration )(xm  

 

Table 10. Solutions quality criteria of Val instances solving the SCARP by a bi-objective scheme 

Instances   
1

)()( 11
xhxH

E
−

 1

)()( 11
xmxM

E
−

 2

)()( 22
xhxH

E
−

 2

)()( 22
xmxM

E
−

 1

)()(
1 MONO

xHxH
E

−
 

Gdb 6.82 -4.99 3.60 1.21 2.04 
Val 6.56 -5.25 5.29 3.51 2.67 

Eglese 29.29 3.27 30.70 3.06 6.44 

 

Let us note that Eglese instances seem to be more difficult to solve since a gap of around 30% is expected for both 

1

)()( 11
xhxH

E
−

 and 2

)()( 22
xhxH

E
−

. These value must be analyzed taking into account the short gap of 6% between the 

mono-objective resolution of the SCARP and the bi-objective resolution one. These results push into accepting that 

random events consequences are more dramatic for Eglese's instances which are true CARP with non required arcs. 
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4. CONCLUDING REMARKS 

It is possible to solve a multi-objective and stochastic CARP problem as soon as the laws of the random variables 

modeling the demand are known. The required hypotheses (a trip requires at most a move to the depot, and this move is 

just before the last arc to collect) permit to introduce mathematical analysis to obtain satisfactory estimation of criteria 

to minimize. The formalization concerns a Gaussian law since the demand on each arc can be considered as the sum of 

independent random variables (having a mean and a standard deviation). 

The NSGA-II template is used to simultaneously optimize both solution cost and the length of the longest trip. The 

experiments were carried out using the well known standard benchmarks of the state of the art literature on CARP. 

The results prove that mathematical formulae are high quality ones and that the NSGA II template is able to optimize 

the SCARP : the stochastic solution of the first front are very close to the best one found solving the CARP by the 

NSGA II template and very close to the best solution found solving the SCARP by a mono-objective approach. 

The work presented is a step forward stochastic resolution of routing problem with the aim to obtain in rather short 

computation time, robust solution on several criteria. Our work is now directed to: 

• extension of the NSGA-II template for optimization of more than two criteria simultaneously; 

• extension of the mathematical formulae to address the problem of a heterogonous fleet of vehicles. 
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6. APPENDIX 

Table A1. Standard deviation of cost and duration for the leftmost and rightmost solutions according to mathematical 
expressions and replications values for the Val files. 

 Values obtained by mathematical expression Values obtained by replications 

 
Standard deviation  

cost 
Standard deviation  

duration 
Standard deviation 

cost 
Standard deviation 

duration 

Val )(
1

xHσ  )(
2

xHσ  )(
1

xMσ  )(
2

xMσ  ),(
1

nxHσ  ),(
2

nxHσ  ),(
1

nxMσ  ),(
2

nxMσ  
1a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1c 0.38 0.38 0.00 0.00 0.00 0.00 0.00 0.00 
2a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2c 0.59 0.00 0.42 0.00 0.72 0.00 0.00 0.00 
3a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3b 0.30 0.00 0.16 0.00 0.29 0.00 0.15 0.00 
3c 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
4a 0.22 0.00 0.10 0.00 0.00 0.00 0.00 0.00 
4b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4d 1.30 0.10 1.10 0.00 6.28 0.09 6.12 0.00 
5a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
6a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
6b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
6c 0.49 0.47 0.00 0.00 0.00 0.00 0.00 0.00 
7a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
7b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
7c 0.76 0.00 0.26 0.00 1.17 0.00 0.23 0.00 
8a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
8b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
8c 0.29 0.03 0.05 0.00 0.00 0.00 0.00 0.00 
9a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
9b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
9c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
9d 0.12 0.00 0.12 0.00 0.00 0.00 0.00 0.00 
10a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
10b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
10c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
10d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A2. Solutions for the Val instances compared to previous published results 

 CARP resolution SCARP Resolution 

 Bi-objective resolution 
Mono- 

objective 
Bi-objective resolution 

Val 1)(xh  1)(xm  2)(xh  2)(xm  Mono
nxH ),(  

1
)(xH  

1
)(xM  

2
)(xH  

2
)(xM  t  

1a 173 58 173 58 173.0 173.0 59.0 173.0 59.0 97s 
1b 173 61 204 42 179.0 179.0 54.0 193.0 43.0 111s 
1c 245 41 248 40 268.0 284.0 42.0 284.0 42.0 91s 
2a 227 114 270 90 227.0 227.0 114.0 268.0 91.0 78s 
2b 260 101 307 78 260.0 268.0 91.0 306.0 80.0 75s 
2c 463 71 463 71 568.0 563.0 71.0 607.0 71.0 74s 
3a 81 41 88 31 81.0 81.0 41.0 88.0 31.0 80s 
3b 87 32 105 27 87.0 93.0 32.0 123.0 27.0 79s 
3c 138 27 138 27 162.0 176.0 27.0 176.0 27.0 92s 
4a 400 134 446 92 400.0 402.0 138.0 462.0 96.0 155s 
4b 412 105 468 83 422.0 444.0 92.0 466.0 82.0 152s 
4c 430 99 482 80 454.0 478.0 100.0 515.0 85.0 160s 
4d 539 80 539 80 576.4 604.2 82.1 640.0 80.0 158s 
5a 423 141 474 96 428.0 446.0 123.0 474.0 98.0 147s 
5b 446 112 506 86 450.2 474.0 97.0 506.0 89.0 155s 
5c 474 96 541 80 495.0 499.0 103.0 499.0 103.0 146s 
5d 595 81 686 72 631.1 609.0 79.0 609.0 79.0 131s 
6a 223 75 259 56 223.0 227.0 77.0 249.0 56.0 110s 
6b 233 68 263 50 245.0 245.0 54.0 270.0 51.0 110s 
6c 317 55 329 45 347.1 359.0 45.0 361.0 45.0 163s 
7a 279 85 289 59 279.0 283.0 59.0 283.0 59.0 167s 
7b 283 58 299 51 283.0 283.0 62.0 311.0 55.0 171s 
7c 335 50 352 40 352.0 359.0 45.0 432.0 39.0 150s 
8a 386 129 429 87 392.1 395.0 101.0 431.0 88.0 142s 
8b 395 100 455 79 409.0 419.0 97.0 466.0 81.0 135s 
8c 545 74 610 67 583.0 611.0 71.0 663.0 67.0 134s 
9a 326 82 333 68 323.0 331.0 89.0 347.0 70.0 230s 
9b 326 82 340 58 332.0 337.0 70.0 368.0 62.0 214s 
9c 332 69 389 51 340.0 349.0 65.0 389.0 52.0 221s 
9d 399 50 434 44 421.0 441.0 47.0 470.0 44.0 210s 
10a 428 143 449 91 428.0 440.0 132.0 466.0 97.0 236s 
10b 436 111 459 77 436.0 455.0 96.0 482.0 84.0 230s 
10c 448 93 498 66 459.0 468.0 90.0 526.0 72.0 223s 
10d 537 61 595 54 562.0 603.0 65.0 632.0 57.0 235s 
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Table A3. Solutions for the Eglese's instances compared to previous published results 

 CARP resolution SCARP Resolution 

 Bi-objective resolution 
Mono-

objective 
Bi-objective resolution 

egl- 1)(xh  1)(xm  2)(xh  2)(xm  Mono
nxH ),(  

1
)(xH  

1
)(xM  

2
)(xH  

2
)(xM  t  

e1-A 3548 943 3824 820 4036.0 4183.0   820.0 4183.0  820.0 195s 
e1-B 4525 839 4573 820 4932.7 5679.0   820.0 5679.0  820.0 164s 
e1-C 5687 836 5764 820 7030.8 7317.6   836.0 7621.6  820.0 165s 
e2-A 5018 953 6072 820 5629.0 6183.0   870.0 7717.0  850.0 148s 
e2-B 6411 564 6810 820 7720.1 7969.1   831.0 8638.2  820.0 170s 
e2-C 8440 854 8651 820 10534.5 11168.0   878.0 11515.4  854.1 154s 
e3-A 5956 917 7935 820 6627.1 7348.0   876.0 8341.0  827.0 180s 
e3-B 7911 872 8455 820 10264.3 10113.2   874.1 10895.0  848.0 186s 
e3-C 10349 864 10511 820 12066.3 13332.5   839.2 14693.2  839.0 225s 
e4-A 6548 890 7362 820 7756.5 8366.0   926.0 8967.0  839.0 260s 
e4-B 9116 874 9584 820 11168.4 11789.0   878.0 12547.8  872.0 237s 
e4-C 11802 820 11802 820 15427.9 15551.4   878.7 16854.4  867.0 218s 
s1-A 5102 1023 6582 924 6320.5 6411.3  1063.0 7515.0  924.0 151s 
s1-B 6500 984 8117 912 8113.5 8313.1   946.0 9890.0  912.0 150s 
s1-C 8694 946 9205 912 10957.6 10730.5   990.0 13127.0  938.0 160s 
s2-A 10207 1058 12222 979 11390.7 13483.0  1040.0 13761.0  1027.0 315s 
s2-B 13548 1058 14334 979 17403.1 18232.0  1008.0 21284.8   979.0 300s 
s2-C 16932 1040 16975 979 21507.3 22701.5  1095.7 24684.3   988.0 352s 
s3-A 10456 1099 12605 979 12118.6 13838.9  1083.0 15035.2  1033.0 404s 
s3-B 14004 1040 15103 979 18717.6 18745.4  1041.0 20666.7  979.0 336s 
s3-C 17825 998 18043 979 22847.5 23936.6  1060.2 25329.4  979.0 406s 
s4-A 12730 1040 12912 1027 14433.8 16507.3  1260.1 17088.1  1040.0 397s 
s4-B 16792 1027 16792 1027 21503.6 22651.6  1073.3 24873.4  1075.0 411s 
s4-C 21309 1027 21309 1027 27226.9 29716.5  1165.7 32509.7  1279.5 474s 
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