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Abstract

The Capacitated Arc Routing Problem (CARP) occurs in applications like urban waste collection or winter

gritting. It is usually defined in literature on an undirected graplv,g), with a setv of n nodes and a set

e of m edges. A fleet of identical vehicles of capacityis based at a depot node. Each ed¢gs a cost

(length) ¢ and a demand, (e.g. an amount of waste), and it may be traversed any number of times. The

edges with non-zero demands or tasks require service by a vehicle. The goal is to determine a set of vehicle

trips (routes) of minimum total cost, such that each trip starts and ends at the depot, each task is serviced by

one single trip, and the total demand handled by any vehicle does not exceékal the best of our

knowledge the best published method is a memetic algorithm first introduced in 2001.

This article provides a new extension of the NSGA 1l (Non-dominated Sorting Genetic Algorithm) template

to comply with the stochastic sight of the CARP. The main contribution is:

* to introduce mathematical expression to evaluate both cost and duration of the longest trip and also
standard deviation of these two criteria.

* to use a NGA-Il template to optimize simultaneously the cost and the duration of the longest trip
including standard deviation.

The numerical experiments managed on the thee well-known benchmark sets of DeArmon, Belenguer and

Benavent and Eglese, prove it is possible to obtain robust solutions in four simultaneous criteria in rather

short computation times.
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1. INTRODUCTION

1.1. The basic CARP
The Capacitated Arc Routing Proble(CARP) consists of visiting a subset of edges instead of the nodes as the well-
known VRP. CARP applications include for instance urban waste collection, winter gritting and inspection of power

lines. To make the paper more concrete, and without loss of generality, examples are inspired by urban waste collection.

The CARP of literature tackles undirected networks. Each edge models a two-way street which both sides are treated in
parallel and in any directiorbilateral collectior), a common practice in residential areas with narrow streets. A fleet of
identical vehicles of limited capacity is based at a depot node. Each edge can be traversed any times, with a known
traversal cost. Some edges are required, they have a non-zero demand (amount of waste) to be collected by a
vehicle. The CARP consists in determining a set of vehicle trips minimizing the total cost, such that each trip starts and
ends at the depot node. Each required edge is serviced by one single trip, and therefore must be visited at most once.

The total demand processed by a trip must not exceed the vehicle capacity. Each vehicle has the same capacity.

The CARP is NP-hard, even in the single-vehicle case called Rural Postman Problem (RPP). Since exact methods are
still limited to 20-30 edges (Hirabayaddti al, 1992), heuristics are required for large instaneas,Augment-Merge

(Golden and Wong, 1981), Path-Scanning (Goleteal., 1983), Construct-and-strike (Pearn's improved version, 1989),
Augment-Insert (Pearn, 1991) and Ulusoy's tour splitting algorithm (Ulusoy, 1985). The first metaheuristic for the
CARP, a simulated annealing procedure, was designed by Eglese in 1994 for winter gritting problems. Several tabu
search (TS) algorithms are also available, both for special cases like the undirected RPBEt @eri®99) or the

mixed RPP (Corberagt al, 2000) and for the CARP itself (Eglese and Li, 1996) (Hettal, 2000). All these
metaheuristics and classical heuristics can be evaluated thanks to lower bounds, generally based on linear programming
formulations (Benavergt al, 1992), (Belenguer and Benavent, 2003), (Amberg an@, ¥602). On most instances,

the best-known lower bound is obtained by a cutting-plane algorithm (Belenguer and Benavent, 2003). To the best of
our knowledge the best previous published method seems to be the memetic algorithm first introduced in 2001 by

(Lacommeet al, 2001) which outperforms the well-known CARPET method of Hertz.

1.2. The Stochastic CARP

The SCARP problem is similar to a CARP problem, except that positive denggnten become positive random

variablesQ; . To any SCARP problem, can be canonically associated a CARP problem, where the stochastic demands

Q; are replaced by their expectatiap =6ij . To avoid any ambiguity we call “stochastic” an element applied to the

SCARP and “deterministic” an element applied to its associated CARP. The objective in the CARP consists in
determining a set of trips of minimal cost, and the objective solving the SCARP consists in determining a robust set of
trips (a robust solution). Based on the definition of Jensen (Jensen, 2001), robust solutions are solutions well performing
in front of variations in quantities to collect. Let us note:

Q the common capacity of the vehicles used.

C the (deterministic) cost of the edge(c, >0).

q the deterministic demand on edg€0<q <Q).

Q the random demand on edgd0<Q <Q).

X a (deterministic) solution of the CARP (finite set of trips).
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X the finite set of all solutions.

t(x) the deterministic number of trips of.

T(x, w) the random number of trips of (depending on random variatian of demands).

h(x) the deterministic cost of a solution.

H(x, a)) the random variable being the costyof(depending on random variatian of demands). The cost is the sum

of the costs of every edge used by each vehicle, with, sometimes, extra trips to the depot node...

Let us consider a (deterministic) solution. If the random demands serviced by a trip become less important than
expected, the cost does not vary, but, if the vehicle exhausts its capacity before the end of the trip, it must move from its
current position in the network to the depot node and turn back to complete the trip initially planned. Such operations
create an extra trip and imply a (possibly huge) increasing of the total cost. Such events occur in many applications like
waste collection. Calling another vehicle may be impossible for several reasons: the driver can not inform his

colleagues due to the lack of communication systems, the other drivers can not come because all trips are performed in
parallel, the driver is the only one knowing this sector, and so on. Therefore, for any szlutiben g =6, one has

H(x, a))z h(x).

Let us consider, for example, a CARP instance with only 9 tasks, 3 vehicleQwith and demands equal to 1 for

each task. Assume a solution with a deterministic dg&f)=100 and 3 trips (figure 1). The total loads of vehicles

1,2,3 are respectively equal to 3 (serviced tasks 7,8,9), 2 (tasks 1,2) and 4 (tasks 3,4,5,6).

2
™ loaded vehicle move

3 cost : 20

4 unloaded vehicle move
cost : 10
6 \ 5
. . . ) ) ] unloaded vehicle move
Solution with 3 trips Solution with 4 trips _
Solution cost : 100 Solution cost ; 125 cost: 5

Figure 1. A solution for the SCARP Figure 2. The same solution for the SCARP

Random events occurring in practice may affect estimated demands. Assume that after task 4, vehicle load is in fact 3.5
and the actual demands for tasks 5 and 6 become 1.2 and 1.4.

Because the vehicle can not service task 5, it moves from its current position (end of task 4) to the depot node and
moves back to the beginning node of the task 5 to complete its trip (figure 2). This trip can be viewed as an additional
trip. Due to this unproductive move, the solution cost becorfb§ . )=125when h(S)=100. And one has

T(S,w) =4 whent(S)=3.

The objective of the SCARP consists in determining solutions close to the optimal solution of the CARP and robust in
front of the random quantifies variations. (Flewtyal, 2005) proposed a heuristic approach, (Fleury et al., 2004)
proposed a memetic algorithm for determining robust solutions and (Lac@nmmle 2005) proposed a memetic
algorithm to minimize both average cost and standard deviation cost. The computational experiments prove that high

quality solutions can be obtained in computational time not far from the computational time of the CARP.
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1.3. The Multi-Objective CARP

The single objective CARP only deals with: minimizing the total cost of the trips. In fact, most waste management
companies are also interested in balancing the trips. For instance, in Troyes (France), all 19 trucks leave the depot at 6
am and the waste collection must be completed as soon as possible to assign the crews to other tasks, e.g. sorting the
waste at a recycling facility. Hence, the company wishes to solve a bi-objective version of the CARP, in which both the
total duration of the trips and the duration of the longest trip (the makespan in scheduling theory) are to be minimized.
This bi-objective CARP has been investigated first in (Lacorenad, 2005) whose proposed a non-dominated NSGA-

Il framework.
2. PROPOSAL FOR A STOCHASTIC MULTI-OBJECTIVE SCHEME FOR THE STOCHASTIC CARP

2.1. A framework for SCARP resolution

A framework for SCARP is here composed of two steps (figure 3): an optimization step and an evaluation of the
robustness solutions (this second step only being used to evaluate the robustness of the best solution found at the end of
the optimization process, then it can be omitted for the effective implementations): the best solution found is submitted

to a replication phase consisting in statistic evaluations of robustness criteria in front of trials of random demands.

“ Value of the objective
L for the best solution found

Optimization Robustness evaluation of
. solutions

time

Evolution of the best solution EEvaIuntion of the best solutions found
Figure 3. Principle of evaluation of the stochastic problem resolution.

2.2.First phase: the optimization phase

Typical scheme of iterative methods for minimization of a stochastic criterion

We address the wide-ranging problem of minimizing a random variable on a finite set. Let us precise the context:
* X is afinite set,

» anyx of X is associated to a random variatlrlk(x, a)).
The problem to minimizél on X is not well defined, for % <X, if H(xi,a))< H(xz,a)) " is a random relation. The

usual way is to transform this problem into a deterministic one, replacing the random vHIriddyl@ deterministic one

h. H usually depends on a lot of random variatiles Then h is evaluated with the same formula but where the random
variablesQ, are replaced, for example, by their expectatipror by any deterministic value depending on the random

variablesQ .

Thus the deterministic functioh is to be minimized. This technique may be irrelevant when non linear effects can
strongly modify the value oH . For example, when random events occur, a solutiocan become unrealistice.

H(x,w) can be infinite (or very large) with a positive probability. When non linear effects exist, a better way is to
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replace (if possible)H (x,w) itself by its expectationH(x), or another deterministic quantity associatedHtoBut
whenH can become infinite (or very high), it can be useful to search solwtismghat the probabilit)P{H = oo} is at
the most a given vaIueP{H = oo} < ¢). Other various criteria can of course be minimized. For exampda be either

the conditional expectation &f given {H <} when P{H =} <& and infinite whenP{H =} > . In these last

cases, the first idea is to estimatéor example byH(x,n) (based onn trials for the same solutiom with n large

enough, multiplying the minimization time nearly hy)

The outline of such an iterative search process (Fleury, 1993) is described in figure 4. Nearly all stochastic
metaheuristics which come from simulated annealing, taboo search... have extensions to tackle minimization of
stochastic functions (Tsutsui and Ghosh, 1997) (Branke, 1998) (Ben-Tal and Nemirowski, 1998). For an introduction to
stochastic scheduling and neighborhood based robustness approaches for scheduling, it is possible to refer to (Jensen,
2001).

1. Compute an initial solutiony

2. ComputeHixl,ni

2. Repeat
3.1. Generate a solutiox,

3.2. ComputeHixz,ni

3.3.1f H(%,n)< H(x,n) Then x < x,
3.4.EndIf

4. Until (Stop Condition)

5.Return x

Figure 4. Outline of a basic iterative search process for a stochastic minimization
However, proving the convergence of such a process is a challenging problem due to convergence conditions which
highly depend on the function to minimize and on the generation of intermediate solutions. Fleury in 1993

(Fleury, 1993) has promoted an extension of the previous typical scheme in which the number of replications used to
evaluate H(x,n) increases over the iterations of the algorithm. This extension permits to decrease the probability of
error in accepting a new solutiag, more promising thang . A demonstration in probability is proposed proving that

under non restrictive hypotheses on the function to minimize the iterative process converges (with the probability one)

towards robust solutions.
When an exact calculation or a high quality approximatiorh_-lok:an be mathematically performed, the minimization
time is then reduced. Let us remark that mathematical analysis avoids errors due to the randohhfres}.dfhe line

of research we here promote consists in coupling a mathematical analysis of solutions to a dedicated searching scheme
devoted to the CARP.

CARPs linked to the SCARP

The only previous works which can be reported on the Stochastic CARP concern the tight and the slack approach of
(Fleuryet al, 2004). The approach we promote here is quite different as regards both the objective and the models used:

= ThelLaw Approach This approach consists in the minimization of a deterministic objective depending on the laws

of quantities to collect, for example (x) or H(X) + ko (x) (for a fixedk>0).
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= Thetight approachsimply consists in solving the CARP linked to the SCARP u@qg‘or the quantities to collect

on the arc and the capaci€y of vehicles. The function to minimize only depends@n Q and on the solutiorx .

The experiments are fully available in (Fleatyal., 2005).
This approach can be denotext—> f(q,Q',X) .

= Theslack approacHFleuryet al., 2004) is similar to the previous one but the optimization uses a smaller capacity

of the vehiclesQ' (Q'<Q). The function to minimize isx— f(q,Q',X) .
The law approachconsists in solving the DCARP with a distribution law to modefe The function to minimize
( = 9(£(Q),Q,x)) differs off and here depends on the Iaw(Q,), on the vehicles capacit9 and on the solution

(table 1).

Table 1. DCARP linked to the SCARP (here we denote the objective functitﬂ@b@ S)).

SCARP — Mono-Objective resolution
* quantities to collec), are random variables

« capacityQ of the vehicles is deterministic,
. f(Q, Q S)depends on the realization of the random variales

AssociatedCARP Comments
Canonically associated CARP g =Q ., Q unchanged, objective
(tight approach) x— (q,Q,x)

q =6,, Q becomesQ'<Q,

Associated CARPs{ackapproach) biecti £(q.Q.%)
objective x— f(q,Q',X

q =6, Q unchanged, objective
Associated CARPIgw approach) function becomes— 9(£(Q),Q,x)
where £(Q,) is the law ofQ .

2.3.A MULTI-OBJECTIVE FRAMEWORK FOR THE SCARP

The graphG describing the problem is converted into an entirely directed internal graphe nodes are dropped and

an arc index is used. Shortest path costs are pre-computed in a Dnaffix any pair of arcgu,v), D(u,v) is the

A CARP
solution

traversal cost of a shortest path frarto v.

NSGA-Il Template

SPLIT method Auxiliary graph

|

Figure 4. NSGA-II template for SCARP resolution

Today, several MOGA frameworks are available in literature and selecting the best one for a given problem is not
obvious. A recent survey (Coello, 2000) and two comparative studies (Deb, 1999) @itale2000) try to provide
guide-lines for selection, but these papers consider unconstrained problems, continuous objective functions, and specific

sets of benchmarks. It is very difficult to draw conclusions for constrained combinatorial optimization problems.

8
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(Lacommeet al,, 2005), finally turned their choice on the NSGA-II template to provide a multi-objective resolution of

the CARP. A complete description of the NSGA-II template is available in (Lacahaie2005).

Each chromosome is an ordered set of required arcs assuming the same vehicle performs all trips in turn. This encoding
is appealing because there always one optimal sequence. As stressed by (Lat@hr2€01) Ulusoy's algorithm

provide a powerful technique for keeping a chromosome. The method consists in building a auxiliary graph in which
each arc denotes a subsequence of required arcs. A shortest path algorithm in this graph gives the optimal split into trips
taking into account the vehicles capacity (figure 5).

To tune this framework to the SCARP consist in defining the two stochastic criteria linked to the solution after the
execution of the SPLIT method. The two criteria of interest are:

» the expected cost of a solution (expected total duration of the trips) and its standard deviation;

» the expected duration of the longest trip and its standard deviation.

Let us note f;(x) and f,(x) the two criteria to minimize.

2.4, A MULTI-OBJECTIVE FRAMEWORK FOR THE SCARP

The NSGA-II or Non-Dominated Sorting GA is an efficient multi-objective GA based on a non-dominated sorting of a
population P of ns solutions. The sorting process starts by computing the non-dominatedBetvbich defines the
solutions of level 1 or front 1. Then, this set is temporarily removed ffoand the non-dominated set of the residual

population is extracted to give the front 2 and son on until all solutions are classified as stressed in figure 5.

1.,
s
-

g\n\tq Sfront3
\)\—ﬂ front2

Figure 5. NSGA-II template for SCARP resolution

frant |

>/,

In NSGA-II, to each solution is assigned a fitness: its front number (1 being the best found value). To get well-spread
fronts, parents are selected using a crowded tournament operator. A solution x wins a tournament with y if x has a better
fitness (smaller front number) or ¥ and y are in the same front bt has a larger crowding distance. This distance

is depicted in the middle of figure 5 for a froRt of t solutions. By convention, it is infinite for the two extreme points

R and R . For R, 1<k<t, it is equal to half of the perimeter of an enclosing rectangle Rjth and R ,; placed
on two vertices. This crowding distance is a kind of measure of the search spaceRrouhith is not occupied by
any other solution.

Starting from an initial population sorted by non-domination, one NSGA-II iteration consist of se%r‘@f parents

with the crowded tournament operator, applying crossovers and mutations and addingehbelting offspring's at the

end of P, thus doubling its size. Finallyp is reduced to it best elements, using again a nhon-dominated sorting.

An algorithm derived from NSGA-II is described in (Lacomme al, 2005) for the bi-objective CARP. Most
components of the MA are recycled: the encoding of chromosomes, the OX-like crossover, the evaluation procedure
Split and all the moves tested in the local search. The ways of integrating a local search (not foreseen in NSGA-II)
without degrading solution dispersal are also studied. The best results are obtained by periodically applying to front 1 a

local search with a direction depending on solution position, like on the right of figure 5.
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More precisely, a move - y is accepted if:
m(£(y)- £(x))+ @-m)(£(y)- £.() <0

with weight 7z, computed as in equation 1 whef@™ (resp. f,"**) denotes the min (resp. max) value of the criterion

_( fu(x)- £ fy(x)= ™ Fo(x)- £
= flmax _ flmin flmax — §min + £ max _ ¢ min @)

1 12 2

f, k=12,

The computational evaluation (Lacomraeal, 2005) shows that, adding the local search sketched above provides
better approximations of the Pareto set, while strongly accelerating convergence. Moreover, on a set of classical
instances, the leftmost solution obtained at the end corresponds in most cases to the optimal or best-known solution of

the single objective case.

2.5.MATHEMATICAL ANALYSIS OF SOLUTIONS

The challenging problem consists in applying the law approach simultaneously in two function dérf@jednd
f,(X). These two deterministic functions must combine both an average value and standard deviation by positive
penalties {p >0 and £ >0) in a linear combination:
(%) = H(X) + p.o (x)
H() = M(X) + oy (X)
where
m is the expected cost of ;

Oy (x) is the standard deviation of the expected cost ;

M(X) is the expected duration of the longest tripxof

O (x) is the standard deviation of the duration of the longest trip.

Proposal for H(x) and oy (x) (here we choose =6,)

Considering the CARP associated to a SCARP, eachGyipof a solution x=(Gi )]Sist(x) satisfies: qu <Q. Its
oG

t(x)
(deterministic) cost isch . Then the deterministic cost of the solutivns h(x) = z Z(:i . In the SCARP, the cost
joG, j=1i0G;

C; of G; is greater thaan when ZQ >Q, because the vehicle must then go to the depot before continuing its
i0G; i0G;

t(x)
task, thus H( x w) =Z C; = h(x) . Hence, for any solutiox, h(x) is the best possible value f(x,) (let us recall
=1

that the cost of a trip only depends on the costs of arcs used but not on the collected quantities).

Probability of additional move to the depot.

10
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For any trip G; of the CARP, the total amount of demand servicedEsq <Q. In the SCARP, as soon as
i0G;

ZQ >Q, the vehicle must turn back to the depot. The probabpityto report at most one move to the depot node
i0G;

during the tripG; of a solutionx is given by: p = P ZQ >Q;. But ZQ, being a Gaussian random variable in
i0G; i0G;

the case of waste collection (thanks to the central limit theorem: the collected quantities along an arc is the sum of a

large enough sum of the random quantities present in each container) with the expeanjorand the variance
i0G;

2
Oy ZQ, =Z:c7(Q,)2 (the random variable®); are assumed to be independeot(Q, ) being their standard
i0G; i0G;

Q- Z Gi t?
S, (x)= %ﬁe 2 dt.

deviation), so thatp; =1-¢| ————| where ¢ is the cumulative probability df(0,1} ¢

> o@)?
i0G;

In the following, we assume (hypothesis 1) that the random varighleatisfy o (Q) = k§= kg for a fixedk>0,

2 Q- ZQi
these formulas become respectivelyy, ZQ = kz.z:qi2 and p; =1-¢ 106 = |- Hence, it is possible to

i0G, i0G, k. 0;

i0G,

evaluate, as soon as the demands are independent Gaussian random vaﬁ(aplelszqiﬁ) the following

characteristics:

t(x)
= Probability of at most one additional trip in the solution P;%T(x,a))>t(x)}:1—l_| @-p;) wherep; is
j=1

calculated as above.

= Probability of the mostn additional trip in the solution isF[ T(xw) > t(X) + m} (for a fixed integerm=1) which is

multinomial.
According to the capacity of the vehicle in front of the quantity to be collected on one arc, it seems reasonable to
assume that at most one move can occur for any trip. This hypothesis (hypothesis 2) has been confirmed by the study

_ ()
(Fleury et al., 2005) and hence, the average number of tripg xs= t(x)+ij and its standard deviation is
=1

JT(X): g(pj - plz)

Position in a trip of an additional move to the depdbreover, with a high probability, this additional move to the

depot node will occur at the end of the trip, just before the last serviced arc of the trip (hypothesis 3). For a robust
solution, the probability of an interruption is low, and therefore, it occurs with a high probability, just before the last

serviced arc. In the following, we occasionally assume both following hypotheses are satisfied:

11
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(H,) any trip can be split into at the most two trips,
(H») the additionalmove can occur only before the last serviced arc of the trip.

Let us notes; the cost of an unproductive move from the last serviced & tofthe depot and from the depot to the

next serviced arc d&;. Under the hypothese@#;) and (H;), with the probabilityl- p; , the trip cost isC; = z G
i0G
J

and with the probabilityp; it is C; = Z (q + $). Under these hypotheses, it possible to compute some helpful
i0G;
i

characteristics of the random trip cost:

. the average cost of the trip (Gj ) => (G+s.p).
iG,
. its standard deviatiow, (Gj ) =Js(¢+5.p).

For a solution x=(G composed oft(x) trips, assuming the demands are independent, the following

i)Js j<t(x)
properties can be established:

t(x)
«  The deterministic cost of solution l{x) =" >" g.
j=li[Gj
t(x)
» The stochastic cost isl(x,w) = ZCJ» .
=
t(x)
» The average cost ikl (x) = h(X) + Z S-R-
=1
t(x)
«  The standard deviation of the costdg (¥ = z gz.(pj - p]z)
j=1
Proposal for M(x) and oy, (x)

Let us, at first define the following deterministic numbers.

If no trip required a supplementary move to the depot nggle, ma(x) C.
I<i<t(x

Consider that only one trip requires a supplementary move to the depot node. For ua (Irpu<t(x)),

% =ma{ G, +,, %)

f two trips u and v (1<suv<t(x) and u#v) require a supplementary move to the depot node,

8V=maX{Q+ %vQ/"'SquI

If three different tripsu, v, w (1<uv,w<t) require a supplementary move to the depot node,

xg'" = ma><{ G+ s G+5,.Ct sN,xg“’J, and so on...
When all trips require a supplementary move to the deg&;;]_ma(x)(q + s).
<i<t(x

Thus, we have:P[X =x0}= r! (1— pi)=7T0 the probability that no trip requires any supplementary move to the
1<i<t(x)

depot:

12
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F‘[X = Xf}z Py - |_J )(1 p,) 1pi po the probability that exactly one trip requires a supplementary move to the depot
I<t(Xx u
iZu

node;

F’[X= >§V}= Py -Py - rl (1— p,)=M the probability that exactly two trips require a supplementary move
¥ P S Y (B
i£v

to the depot node

F{X >§"W} Py Ry P rt!)(l— pi)=(1_ mpsj(fzg,v)g)—p) the probability that exactly three trips require a
I<i<t(X W

i£u
i#zv
iZwW

supplementary move to the depot node

And finally, P{X = xt(x)}= r! p; is the probability that every trip requires a supplementary move to the depot.
I<i<t(x)

The average length of the longest tripottan then be computed:

t(x) u-1
M(X) = Xo.7T + z x{‘ p” 7T0 Zz LO)
I<ust(x) U u=2 v=1 Py
t(x) u-1 v-1
>SS AR [] b
u=3v=2w=1 pv)(l_ pw) 1<<t(x)

It is possible to also obtain:

WG = aF e 3 (Fqt S S B

1<ust(x) (1_ pu) u=2 v=1 - pu)(l_ pv)
t(x) u-1 v-1
N o pumpwﬂo R o
;v 2w—l( )2 ~ Pw ) ( t(X))z 1< j<t(x) !

The standard deviation can then be computqgj(x) = M) - (M(x))2

Implementation ofM (x) _and oy, (x)

Becausex, is greater tharx, and less tham,, , one has

were Seply S et 4 Lt B

L u=2 pU) u=2v=1 ] u u=2v=1
and
i t(x) t(x) u-1 ] t(x) t(x) u-1
M(X)Sﬂ + u' pu + XUV pupv + X 1-77, — pu”O _ pupvﬂo
o0t 2 n) " 22 T nfaon) | O A n) 26 al-p)
One can of course inprove these approximations using:
t(x) u-1 v-1 t(x) u-1 v-1 t(x) u-1 v-1
Py-By- pw 770 uvw pu pv Pw-"h Pu-Pv-Pw-"h
Xo- < X3 . <X
222 n)o- i n)” 22 1 ) =022 n) Al n)
and so on...

Similar considerations are valid fovl (x?) .

13



Research Report LIMOS/ RR-08-06

The previous remarks show that,é& M(x) < E and cs M(x®)<C, then/ maqo, c- Ezis oy (Y<VC-€* and then:

m:e"'E

5 and oy, (x)= \/ma>{0, c- 52)+\/C—e2 |

2.6.EVALUATION OF ROBUSTNESS AND EVALUATION OF SOLUTIONS QUALITY

Robustness of solutions
The second phase consists in gathering statistics.xLéte one of the best solutions obtained at the end of the
optimization phasen replications can be performed for a careful analysis of solution properties as regards robustness

criteria. The statistics can include (but are not limited to):

e H(x,n): the average cost over independent evaluations &f (X, w) . This estimates the expectati¢h(x) .

 M(xn): the average cost over independent evaluations & (x,«w) . This estimates the expectatidh(x)

. 1/%0,4 (x,n) where gy (x, n) is the standard deviation of the cost ovelindependent evaluations of. This
n_

estimates the standard deviatiop (X) .

. 1/il.cr,\,l (x,n) where gy, (x,n) is the standard deviation of the number of trips avéndependent evaluations of
n —

X . This estimates the standard deviatmy (X) .

. E% =leoo represents the gap (in percent) betweehRl(x,n) and H_(x) and
XN
e :leoo represents the gap (in percent) betwéd(x,n) and M(x) .
xn

_ 0w ()= (xN)
0y (%) H(X)

x100 is the relative importance (in percent) of the error in the standard deviation

_ oy (X -ogy (xn)

evaluation forH(x) and E,, (,) = 00
X

%100 is the relative importance (in percent) of the error in the

standard deviation evaluation fou (x)

For convenience, we noté& ., EW’ Es., 0+ Eo, g the values of the leftmost solution al%, EW'
EﬁH ) EgM (v the values of the rightmost solution.

Representation of solutions

Representing the solutions, we propose (figure 6) to highlight the standard deviation of both objective functions (figure

6). The square represent solutions for which both the expected cost of a solution and the expected duration of the
longest trip are included in the average value plus/minus the standard deviation. The size of the squares gives a
graphical representation of solutions robustness: large size squares denote high sensitive solutions and small size
squares denotes robust solutions. Mathematical expressions and replications evaluation can conduct to different

evaluation of both criteria and of standard deviations.

14
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M(x)+/1.aM(x) 777777777777

M(x,n) - — — — — ;
(<) Mo :
M(xn)+poylxn) - — — T ] /% N
M(x) - poy (x) I%/ //é |
W_p-UH (X) | W |m+p,gH (Xb

| -
H(xm)+poy (xn) HD  Hxn)- poy (xn)

Figure 6. Representation of one solution as square depending on the”exact” or evaluated expressions.

Quality of evaluations of the solutions

Let (H(x)l; M(x)l) be the leftmost solution of the first front afdl(x)?; M(x)z) be the rightmost solution of the first

front. These two solutions can be respectively compared to the leftmost sc(lt(tk)»h n(x)l) and the rightmost one

(f( X2 n(x)z) (Lacommeet al, 2005) obtained by solving the bi-objective (deterministic) CARP. Both solutions can

also be compared to the best solutm() found solving the (stochastic mono-objective) SCARP (Fletuaf, 2004)

(Fleury et al., 2005). To avoid any ambiguity, this value is denétéx) Mono in the rest of the paper. Of course, neither

(P(x)l; n(x)l) nor (f(x)z; n(x)z) are a lower bound, but the best found solution solving the CARP using a bi-objective

optimization scheme. Figure 7 gives a graphical representation of all the solutions available depending on the resolution

scheme applied.

——1—

M (ji) \ { H(X) ; M(X) ) Front - for the b -objective
\ / resolution of the SCARP
|
‘I Froni - for the b -objective
i / resolution of the CARF

1. 1
(k9% w02

mx)? - -

(r(»%mx2)

h(x)l H(X) monc-objective resolution
of the SCARP

Figure 7. Evaluation of solutions for the bi-objective resolution of the SCARP as regard previous published results on

the SCARP (mono-objective) and on the CARP (bi-objective resolution).

The leftmost and rightmost solutions obtained using the bi-objective resolution scheme of the SCARP, can be compared

to the leftmost and the rightmost solutions found using the bi-objective resolution of the (deterministic) CARP. Let us

15
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note EX , R = , B2, and E2_, the gap (in percent) from rightmost and leftmost
H() =h()* M(% =m(x)* H(Y"=h(x)? M(% " =m(x)?

solutions. These gaps can be computed according to the next formula:

. .,
HO) —h(x)lj/ (FC3 —h(x)z)/

El = ( X E2 = X

HOY—h(xt h(x)* 100 H(92-h(x)? h(x)? 100

. [Wl—m(x)l)/ . [Wz—m(x)z)/
SR - X100 EZ_, .= 0° x100

The leftmost solution of the SCARP resolution by the bi-objective scheme can be compared with the solution obtained

using a mono-objective resolution scheme of the SCARP. This gap can be computed thinks to:

—71 ———MONO
1 (HOY' -HR"™™)
%1_mmomo = WMONO *x100

Figure 8 provides a graphical representation of solutions quality criteria as regards previous published results on the

mono-objective resolution of the SCARP and on the bi-objective resolution of the CARP.

HO-H0

2 |
EM(xf—m(x)z:
I

I
2 I
_______ RO

WMONO

Figure 8. Graphical representation of solutions quality criteria

3. NUMERICAL EXPERIMENTS
The experiments have been carried out using the well-known instances introduced by (Belenguer and Benavent, 2003),
(Eglese and Li, 1996) and (DeArmon, 1981). These computational evaluations have been achieved on a Pentium IV 2.8

GHz with 512Mo using Windows XP operating system. The program has been developed using Delphi 7.0 package.
The demandsy; are replaced by independent truncated random variab(eqs, r2.q2) with r =0.1. The penaltieso

and y in the linear combination used fdy and f, are equal to 10. All the experiments have been carried out with a

population of 60 chromosomes, 1000 iterations and a directed local search applied every 10 iterations. This set of
parameters has been applied for all the experiments. When the first front was composed of one solution only, this
solution is considered for being both leftmost and rightmost solution.
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3.1.ROBUSTNESS OF SOLUTIONS FOR THE GDB INSTANCES

The solutions can be represented as points in a set of fronts (figure 9) or can be represented as squares in a set of fronts

(figure 10) for the initial population.

M (x)

180} -4--oooo- doooe e Fooeees boooes dooooees
1704- : : : ;
1604-
1504-
1404-
1304-
1204-
LELIE S R
1004+
anf-i-
B0 -4
704-:

T T T T T T T T T T i T T T
330 400 430 =00 =30 BO0 B30 J0O —— 350 400 450 S00 S50 E00 650 700 %

Figure 9. Representation of the initial solutions dfigure 10. Representation by domains of the initial
Gdbl instance solutions of Gdb1 instance

One can note, that the second representation permits to show if the considered solutions have or not a great standard

deviation (figure 11).

M) M
a4 -
a2 4-
a0
78
76
74
72
70
68
66
64

3 BRBARARRREAR) T et BRAARRARREE]
340 360 380 400 420 440 460 450500 520 540 560 530 600 620 640 660 630 700 720

H(x)

338 340 342 344 346 348 350 352 354 355

H{x)
Figure 11. Representatiorby domains of the Figure 12. Representation by domains of the solutions
solutions of Gdb1 instancter 1000 iterations of Gdb1l instance after 1000 iterations — Same scale
than figure 9

Table 2 presents an analysis of solutions for Gdb instances. The aim is to highlight the high correlation between the
mathematical evaluation of solutions and the evaluation provides by replications. The evaluation concerns the rightmost

and the leftmost solutions obtained at the end of the optimization phase.
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Table 2. Mathematical evaluation and replications evaluation of the rightmost and of the leftmost solutions of Gdb
instances

Nunerical val ues provided by Nunerical val ues provided by
mat hemat i cal expressi ons replications phase

&b H) M oH(x) om(X) Hxm  Mxn  on(xn)  om(xn)
1 337.0 63.0 0.0 0.0 337.0 63.0 0.0 0.0
337.0 63.0 0.0 0.0 337.0 63.0 0.0 0.0
2 367.0 62.0 0.0 0.0 367.0 62.0 0.0 0.0
417.0 59.0 0.0 0.0 417.0 59.0 0.0 0.0
3 296.0 60. 0 0.0 0.0 296.0 60.0 0.0 0.0
347.0 59.0 0.0 0.0 347.0 59.0 0.0 0.0
4 317.0 72.0 0.0 0.0 317.0 72.0 0.0 0.0
350.0 64.0 0.0 0.0 350.0 64.0 0.0 0.0
5 433.0 68.0 0.0 0.0 433.0 68.0 0.0 0.0
479.0 64.0 0.0 0.0 479.0 64.0 0.0 0.0
6 324.0 68.0 0.0 0.0 324.0 68.0 0.0 0.0
351.0 64.0 0.0 0.0 351.0 64.0 0.0 0.0
7 359.0 68.0 0.0 0.0 359.0 68.0 0.0 0.0
368.0 66. 0 0.0 0.0 368.0 66.0 0.0 0.0
8 399.1 44. 0 0.6 0.1 399.1 44.0 0.6 0.0
493.0 39.0 0.0 0.0 493.0 39.0 0.0 0.0
9 361.2 38.0 0.9 0.1 361.2 38.0 0.7 0.0
379.1 37.0 0.7 0.0 379.1 37.0 0.6 0.0
10 283.0 66.0 0.0 0.0 283.0 66. 0 0.0 0.0
329.0 57.0 0.0 0.0 329.0 57.0 0.0 0.0
11 409.0 81.0 0.0 0.0 409.0 81.0 0.0 0.0
439.0 61.0 0.0 0.0 439.0 61.0 0.0 0.0
12 523.7 99.1 3.9 2.6 523.6 99.1 3.9 2.7
613.1 93.0 1.6 0.0 613.1 93.0 1.7 0.0
13 556.0 128.0 0.1 0.0 556.0 128.0 0.0 0.0
556.0 128.0 0.1 0.0 556. 0 128.0 0.0 0.0
14 104.0 20.0 0.0 0.0 104.0 20.0 0.0 0.0
108. 0 17.0 0.0 0.0 108.0 17.0 0.0 0.0
15 58.0 16.0 0.0 0.0 58.0 16.0 0.0 0.0
60.0 13.0 0.0 0.0 60. 0 13.0 0.0 0.0
16 131.0 20.0 0.0 0.0 131.0 20.0 0.0 0.0
135.0 18.0 0.0 0.0 135.0 18.0 0.0 0.0
17 91.0 17.0 0.0 0.0 91.0 17.0 0.0 0.0
91.0 17.0 0.0 0.0 91.0 17.0 0.0 0.0
18 172.0 33.0 0.0 0.0 172.0 33.0 0.0 0.0
182.0 27.0 0.0 0.0 182.0 27.0 0.0 0.0
19 63.0 17.0 0.0 0.0 63.0 17.0 0.0 0.0
63.0 18.0 0.0 0.0 63.0 18.0 0.0 0.0
20 123.0 33.0 0.0 0.0 123.0 33.0 0.0 0.0
127.0 21.0 0.0 0.0 127.0 21.0 0.0 0.0
21 160.0 28.0 0.0 0.0 160.0 28.0 0.0 0.0
166. 0 22.0 0.0 0.0 166. 0 22.0 0.0 0.0
22 207.0 26.0 0.1 0.0 207.0 26.0 0.0 0.0
208.0 20.0 0.0 0.0 208.0 20.0 0.0 0.0
23 239.0 28.0 0.1 0.0 239.0 28.0 0.0 0.0
245.0 19.0 0.1 0.0 245.0 19.0 0.0 0.0
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expressions and replications evaluations for the rightmost The equation between mathematical expressions and
and of the leftmost solutions

Gb  Bu Buw Bowew  Bowe
1 0. 00 0. 00 0. 00 0. 00
0. 00 0.00 0. 00 0. 00

2 0. 00 0. 00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

3 0. 00 0.00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

4 0. 00 0. 00 0. 00 0. 00
0. 00 0.00 0. 00 0. 00

5 0. 00 0. 00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

6 0. 00 0.00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

7 0. 00 0. 00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

8 0. 00 0. 00 0. 00 0.14
0. 00 0. 00 0.01 0. 00

9 0.01 0. 00 0.05 0.34
0.01 0. 00 0. 03 0. 00

10 0. 00 0. 00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

11 0. 00 0. 00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

12 0.02 -0.01 0. 00 -0.18
0. 00 0. 00 -0.02 0. 00

13 0. 00 0. 00 0.02 0. 00
0. 00 0. 00 0. 00 0. 00

14 0. 00 0. 00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

15 0. 00 0. 00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

16 0. 00 0. 00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

17 0. 00 0. 00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

18 0. 00 0. 00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

19 0. 00 0. 00 0.01 0. 00
0. 00 0. 00 0.01 0. 00

20 0. 00 0. 00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

21 0. 00 0. 00 0.05 0. 00
0. 00 0. 00 0. 00 0. 00

22 0. 00 0. 00 0.03 0. 00
0. 00 0. 00 0.02 0. 00

23 0. 00 0. 00 0. 00 0. 00
0. 00 0. 00 0. 00 0. 00

Avg. 0. 00 0. 00 0.0 0.01
Max 0.02 0. 00 0. 05 0. 34
M n 0. 00 -0.01 -0.02 0.18

replications evaluations is In the table 4, for the 23

instances, over 46 solutions, the average

EW is the gap betweemd(x,n) and H_(x)

. EW is the gap betweeM(x,n) and M(X) .
Es, (v is the relative importance (in percent) of
the error in the standard deviation evaluation for
HX

* E;,(x Is the relative importance (in percent) of

the error in the standard deviation evaluation for

M(X)
The average gap betwee‘m) and H_(x) remains
0 over the 46 solutions investigated. The same is true
for the gap betweerim) and M_(x), and for the
relative importance of the error in standard deviation of
m andm.
Similar high quality results are also reported for the
Val instances and for the Eglese instances. This study

implies that the mathematical formulas provide high

guality estimations of the four studied criteria.

In the next section, the quality of the solutions is
compared to the previous published on the SCARP
with a mono-objective approach and on the CARP with

a bi-objective one (figure 8).
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3.2.REMARKS ON THE MATHEMATICAL FORMULAE (VAL INSTANCES)

To obtain a suitable evaluation of mathematical formula performance, table 4a and table 4b give the error between
mathematical formula and replications evaluation. One can note, that whatever the criteria and whatever the solution
(leftmost or rightmost) the error is less than 0.02%. In appendix; table Al, gives all the values obtained for the standard

deviation.

Table 4a and Table 4b. Error between mathematical expressions and replications evaluations for the rightmost and of
the leftmost solutions

Lef t npst Ri ght npst Lef t npst Ri ght npst

sol ution sol ution sol ution sol ution

1 1 2 2 1 1 2 2
val Eiw EBvx Bz Evm val Eovw  Boww  Eouw  Eou
la 0. 00 0. 00 0.00 0. 00 la 0.00 0.00 0. 00 0.00
1b 0. 00 0.00 0.00 0.00 1b 0. 00 0. 00 0. 00 0. 00
lc 0. 00 0.00 0.00 0.00 lc 0.13 0.13 0. 00 0. 00
2a 0. 00 0.00 0.00 0.00 2a 0. 00 0. 00 0. 00 0. 00
2b 0. 00 0.00 0.00 0.00 2b 0. 00 0. 00 0. 00 0. 00
2c  -0.01 0.00 0.00 0.00 2c -0.02 0. 00 0.59 0. 00
3a 0. 00 0.00 0.00 0.00 3a 0. 00 0. 00 0. 00 0. 00
3b -0.04 -0.06 0.00 0.00 3b 0.01 0. 00 0.03 0. 00
3c 0. 00 0.00 0.00 0.00 3c 0.01 0.01 0. 00 0. 00
4a 0.00 0. 00 0.00 0. 00 4a 0.05 0.00 0.07 0.00
4b 0. 00 0.00 0.00 0.00 4b 0.00 0. 00 0. 00 0. 00
4c 0.00 0. 00 0.00 0.00 4c 0.00 0.00 0.00 0.00
4d  -0.15 -1.08 0.00 0.00 4d -0.82 0. 00 -6.11 0. 00
5a 0.00 0.00 0.00 0. 00 5a 0. 00 0. 00 0.00 0. 00
5b 0.00 0. 00 0.00 0.00 5b 0. 00 0.00 0.00 0.00
5¢c 0. 00 0.00 0.00 0. 00 5¢c 0. 00 0. 00 0. 00 0. 00
5d 0.00 0. 00 0.00 0.00 5d 0. 00 0.00 0.00 0.00
6a 0. 00 0.00 0.00 0. 00 6a 0. 00 0. 00 0. 00 0. 00
6b 0.00 0. 00 0.00 0. 00 6b 0. 00 0.00 0.00 0.00
6¢c 0. 00 0.00 0.00 0.00 6¢c 0.14 0.13 0. 00 0.00
7a 0.00 0.00 0.00 0. 00 7a 0. 00 0. 00 0.00 0. 00
7b 0.00 0. 00 0.00 0.00 7b 0. 00 0.00 0.00 0.00
7c  -0.06 -0.07 0.00 0. 00 7c -0.11 0.00 0. 07 0.00
8a 0. 00 0. 00 0.00 0. 00 8a 0.00 0.00 0. 00 0.00
8b 0. 00 0. 00 0. 00 0.00 8b 0.00 0.00 0. 00 0. 00
8c 0. 00 0. 00 0.00 0. 00 8c 0.05 0.00 0. 07 0.00
9a 0. 00 0.00 0.00 0.00 9a 0. 00 0. 00 0. 00 0. 00
9b 0. 00 0.00 0.00 0.00 9b 0. 00 0. 00 0. 00 0. 00
9c 0. 00 0.00 0.00 0.00 9c 0. 00 0. 00 0. 00 0. 00
9d 0. 00 0.00 0.00 0.00 9d 0.03 0. 00 0.26 0. 00
10a 0. 00 0.00 0. 00 0.00 10a 0. 00 0. 00 0. 00 0.00
10b 0.00 0.00 0. 00 0.00 10b 0. 00 0. 00 0. 00 0.00
10c 0.00 0.00 0. 00 0.00 10c 0. 00 0. 00 0. 00 0.00
10d 0.00 0.00 0.00 0.00 10d 0.00 0. 00 0. 00 0. 00
Avg___-0.01___-0.04 0.00 0. 00 Avg  -0.02 0.01 -0.15 0. 00
VBX 0. 00 0.00 0.00 0.00 VBX 0. 14 0.13 0.59 0. 00
Mn -0.15 -1.08  0.00 0.00 Mn__ -0.11 0.00  -6.11 0.00

3.3.CONCLUDING REMARKS ON QUALITY OF THE MATHEMATICAL FORMULAE

Table 5 sums up all the error in criteria evaluation using mathematical formulae. One can note the high quality of
evaluation: the error is never greater than 0.3%. On average, considering both leftmost and rightmost solution, over the
4 criteria, the average error is about 0.06%. These results push into considering that mathematical formulae provide us

high quality evaluation of criteria.
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Table 5. Quality of the mathematical formulas

Means of the instances E— E— E3 E2—~ El EL E2 E2

H(x) M(%) H(x) M (x) I (X) am (X) H (%) M (X)

Cdb 0. 00 0. 00 0. 00 0. 00 0.01 0.01 0. 00 0. 00
Val -0.01  -0.04 0. 00 0.00 -0.02 0.01 -0.15 0.00
Egl ese 0.02 0.03 -0.13 -0.45 0.02 -0.03  -0.01 -0.68

3.4.QUALITY OF THE SOLUTIONS OF THE GDB INSTANCES

Table 6 provides solutions for the 23 Gdb instances. When the obtained values are better or equal to solutions found
solving the CARP by a bi-objective scheme, they are underlined. The rightmost solution solving the SCARP by a bi-
objective approach is compared with the rightmost solution solving the CARP by a bi-objective approach. Similar
comments remain true for the leftmost solutions. But, in the bi-objective resolution of the CARP, the standard
deviations were not relevant. the comparison is achieved only on the expected cost and on the expected duration. The
underline values report values better than (or equal to) the values obtained solving the SCARP by a mono-objective
approach. The last column is the computational time in seconds. Note that the leftmost solutions found is 20 times better
or equal using the SCARP bi-objective resolution than the CARP bi-objective resolution for the expected duration. The
rightmost solutions are 15 times better than the best solutions found for the CARP bi-objective resolution in the
expected cost. The SCARP resolution with a bi-objective resolution 9 times a best solution than the CARP resolution

for the rightmost solution.

Table 6. Solutions for the Gdb instances

CARP resol ution SCARP Resol ution
Bi - obj ective resol ution obngtr:"?i-ve Bi - obj ecti ve resol ution
Gdb | h(x)" mx)" h(x)? mx? | HR™C HR ME H®S M-t
1 316 74 337 63 337.0 337.0 63.0 337.0 63.0 52s
2 339 69 395 59 388.0 367.0 62.0 417.0 59.0 58s
3 275 65 339 59 296.0 296.0 60.0 347.0 59.0 52s
4 287 74 350 64 313.0 317.0 72.0 350.0 64.0 46s
5 377 78 447 64 409.0 433.0 68.0 479.0 64.0 58s
6 298 75 351 64 324.0 324.0 68.0 351.0 64.0 52s
7 325 68 381 61 351.0 359.0 68.0 368.0 66.0 58s
8 350 44 390 38 372.1 399.0 44.0 493.0 39.0 92s
9 309 43 333 37 326.3 361.2 38.0 379.0 37.0 100s
10 275 71 297 54 283.0 283.0 66.0 329.0 57.0 58s
11 395 81 421 64 396.0 409.0 81.0 439.0 61.0 92s
12 458 97 547 91 534.0 523.7 99.1 613.0 93.0 56s
13 544 128 544 128 552.0 556.0 128.0 556.0 128.0 70s
14 100 21 112 17 96.6 104.0 20.0 108.0 17.0 52s
15 58 15 60 13 58.0 58.0 15.0 60.0 13.0 52s
16 127 27 135 19 129.0 131.0 20.0 135.0 18.0 62s
17 91 15 91 15 91.0 91.0 17.0 91.0 17.0 66s
18 164 33 178 27 161.5 172.0 33.0 182.0 27.0 84s
19 55 21 63 17 63.0 63.0 17.0 63.0 18.0 36s
20 121 36 131 20 123.0 123.0 29.0 127.0 21.0 52s
21 156 30 160 22 154.6 160.0 28.0 166.0 22.0 76s
22 200 26 207 20 201.1 207.0 26.0 208.0 20.0 94s
23 235 23 241 20 237.1 239.0 28.0 245.0 19.0 120s

Table 7 gives the 5 quality criteria for the solutions of the Gdb instances. For the leftmost solutions there is a gap of:

6.82% between the expected cosfx) and the cosh(x) ;

-4.99% between the expected duratii{x) and the duratiom(x) ;

2.04% between the expected cosfx) and H(x) MONO.
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Remember thath(x) and m(x) have been obtained by a bi-criteria scheme applied to the CARP. For the rightmost
solution there is a gap of:

7.74% between the expected cosfx) and the cosh(x) ;

5.05 % between the expected duratidr{x) and the durationm(x) .

Table 7. Quality criteria of the solutions of Gdb instances (SCARP by a bi-objective scheme).

1 1 2 2 1
Gdb HOY - h(x)* MR - m(x)* A ~h(x)? O -mx? G-
1 6. 65 -14. 86 0. 00 0. 00 0. 00
2 8. 26 -10. 14 5.57 0. 00 5.41
3 7.64 -7.69 2. 36 0. 00 0. 00
4 10. 45 -2.70 0. 00 0. 00 1.28
5 14. 85 -12.82 7.16 0. 00 5.87
6 8.72 -9.33 0. 00 0. 00 0. 00
7 10. 46 0. 00 -3.41 8. 20 2.28
8 14. 00 0. 00 26. 41 2.63 7.23
9 16. 89 -11.63 13.81 0. 00 10.70
10 2.91 -7.04 10. 77 5.56 0. 00
11 3.54 0. 00 4.28 -4.69 3.28
12 14. 34 2.16 12. 07 2.20 1.93
13 2.21 0. 00 2.21 0. 00 0.72
14 4. 00 -4.76 -3.57 0. 00 7. 66
15 0. 00 0. 00 0. 00 0. 00 0. 00
16 3.15 -25.93 0. 00 -5.26 1.55
17 0. 00 13. 33 0. 00 13. 33 0. 00
18 4.88 0. 00 2.25 0. 00 6. 50
19 14. 55 19. 05 0. 00 5.80 0. 00
20 1.65 19. 44 -3.05 5.00 0. 00
21 2.56 -6.67 3.75 0. 00 3.49
22 3. 50 0. 00 0. 48 0. 00 2.93
23 1.70 21.74 1. 66 -5.00 0. 80
Avg 6. 82 -4.99 3. 60 1.21 2.04
Max 16. 89 21. 74 26. 41 13. 33 10. 70
Mn 0. 00 -19. 44 -3.57 5.00 5.41

3.5.QUALITY OF THE SOLUTIONS OF THE VAL INSTANCES

Table A2 (see Appendix) provides the results for the Val instances. One can note the high quality of the results obtained
in front of those obtained solving the CARP with a bi-objective approach. The leftmost solutions are 4 times equal or
better than solutions of the CARP using a bi-objective approach for the solution cost and 17 times better or equal for the
solution duration of the longest trip. For the rightmost solutions. solution cost is 12 times better (or equal) solving the

SCARP using a bi-objective approach than solving the CARP using a bi-objective one.
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Table 8. Solutions quality criteria of Val instances solving the SCARP by a bi-objective scheme

1 1 2 2 1

val HOY - h(x)* MR - m(x)* A ~h(x)? e T
la 0. 00 1.72 0. 00 1.72 0. 00
1b 3. 47 11. 48 -5.39 2.38 0. 00
1c 15. 92 2.44 14. 52 5.00 5.97
2a 0. 00 0. 00 -0.74 1.11 0. 00
2b 3.08 -9.90 -0.33 2.56 3.08
2c 21. 60 0. 00 31.10 0. 00 0. 88
3a 0. 00 0. 00 0. 00 0. 00 0. 00
3b 6. 90 0. 00 17. 14 0. 00 6. 90
3c 27.54 0. 00 27.54 0. 00 8. 64
4a 0. 50 2.99 3.59 4. 35 0.50
4b 7.77 -12. 38 -0.43 -1.20 5.21
4c 11.16 1.01 6. 85 6. 25 5.29
4d 12.10 2.62 18. 74 0. 00 4. 82
5a 5.44 -12. 77 0. 00 2.08 4. 21
5b 6. 28 -13. 39 0. 00 3. 49 5.29
5c 5.27 7.29 -7.76 28.75 0.81
5d 2.35 -2.47 -11. 22 9.72 3.50
6a 1.79 2.67 -3.86 0. 00 1.79
6b 5.15 -20.59 2. 66 2.00 0. 00
6C 13. 25 -18. 18 9.73 0. 00 3.43
7a 1.43 -30.59 -2.08 0. 00 1.43
7b 0. 00 6. 90 4.01 7.84 0. 00
7c 7.16 10. 00 22.73 -2.50 1.99
8a 2.33 21.71 0. 47 1.15 0.74
8b 6. 08 -3.00 2.42 2.53 2.44
8c 12. 11 -4.05 8. 69 0. 00 4. 80
9a 1.53 8.54 4.20 2.94 2.48
9b 3. 37 -14. 63 8. 24 6. 90 1.51
9c 5.12 -5.80 0. 00 1.96 2.65
9d 10. 53 -6.00 8.29 0. 00 4.75
10a 2.80 -7.69 3.79 6. 59 2.80
10b 4. 36 -13.51 5.01 9.09 4. 36
10c 4. 46 -3.23 5.62 9.09 1.96
10d 12. 29 6. 56 6. 22 5.56 7.30
Avg 6. 56 -5.25 5.29 3.51 2.67
Max 27.54 7.29 31.10 28. 75 8. 64
Mn 0. 00 -30.59 -11. 22 2.50 3.50

Table 8 gives the solutions quality criteria for the Gdb instances. For the leftmost solution. there is a gap of: 6.56%

between the expected cokt(x) and the costh(x) ; -5.25% between the expected duratibh(x) and the duration

m(x) ; 2.67% between the expected cd4${x) and H(x)MONO. For the rightmost solution. there is a gap of: 5.29%

between the expected cokt(x) and the costh(x); 3.51 % between the expected duratibi(x) and the duration

m(x).

3.6. QUALITY OF SOLUTIONS FOR THE EGLESE INSTANCES

Results for the Eglese instances are provided in table A3 and table 9 provides results on the gap between the two criteria
for both the leftmost and the rightmost solution between the bi-objective resolution of the CARP and of the SCARP.
The gap from solution duration is not relevant: around 3% for both leftmost and rightmost solutions between the bi-
objective resolution of the CARP and the bi-objective resolution of the SCARP. For the solution cost one can note a gap
around 30% for both leftmost and rightmost solutions but gap of only 6.44% with the best solution found solving the

SCARP with a mono-objective approach.

23



Research Report LIMOS/ RR-08-06

Table 9. Solutions quality criteria of Val instances solving the SCARP by a bi-objective scheme

1 1 2 2 1
gl Rt -hoot MR - m(x)* A ~h(x)? e T
el-A 17.90 -13. 04 9. 39 0. 00 3.64
el-B 25.50 -2.26 24. 19 0. 00 15.13
el-C 28. 67 0. 00 32.23 0. 00 4.08
e2-A 23.22 -8.71 27.09 3. 66 9. 84
e2-B 24. 30 47. 34 26. 85 0. 00 3.23
e2-C 32.32 2.81 33.11 4.16 6. 01
e3-A 23. 37 -4. 47 5.12 0. 85 10. 88
e3-B 27. 84 0. 24 28. 86 3.41 -1.47
e3-C 28. 83 -2.87 39.79 2.32 10. 49
e4-A 27.76 4. 04 21. 80 2.32 7. 86
e4-B 29. 32 0. 46 30. 92 6. 34 5.56
e4-C 31.77 7.16 42. 81 5.73 0. 80
s1-A 25. 66 3.91 14. 18 0. 00 1.44
s1-B 27. 89 -3.86 21. 84 0. 00 2.46
s1-C 23.42 4. 65 42. 61 2.85 -2.07
s2-A 32.10 -1.70 12.59 4. 90 18. 37
s2-B 34. 57 -4.73 48. 49 0. 00 4.76
s2-C 34. 07 5. 36 45. 42 0.92 5.55
s3-A 32.35 -1.46 19. 28 5.52 14. 20
s3-B 33. 86 0. 10 36. 84 0. 00 0. 15
s3-C 34. 29 6. 23 40. 38 0. 00 4.77
s4-A 29. 67 21. 16 32.34 1.27 14. 37
s4-B 34. 90 4.51 48. 13 4. 67 5.34
s4-C 39. 46 13.51 52.56 24.59 9.14
Avg 29. 29 3.27 30.70 3. 06 6. 44
Max 39. 46 47. 34 52.56 24.59 15. 13
Min 17.90 -13. 04 5.12 0. 00 0. 15

3.7.CONCLUDING REMARKS ON SOLUTIONS QUALITY CRITERIA

Table 10 provides the average gap over the 5 criteria for all the instances including Gdb. Val and Eglese instances. On

average. one can note that for the leftmost solution. there is a gap of:

14.22% between the expected coktx) and the costh(x);
-2.32% between the expected duratii{x) and the duratiom(x) ;

5.31% between the expected cm and WMONO;

Remember thath(x) and m(x) have been obtained by a bi-criteria scheme applied to the CARP. For the rightmost

solution. there is a gap of:

14.58% between the expected cobtx) and the cost(X) ;

3.87 % between the expected duratid{x) and the duratiomm(x)

Table 10. Solutions quality criteria of Val instances solving the SCARP by a bi-objective scheme

1 1 2 2 1

E E E E B,
I nstances HOI'-hto!  MOJ-m0)'  H) -h(0> MR -m9® AR
Cdb 6. 82 -4.99 3.60 1.21 2.04

Val 6. 56 -5.25 5.29 3.51 2.67

Egl ese 29. 29 3.27 30.70 3. 06 6. 44

Let us note that Eglese instances seem to be more difficult to solve since a gap of around 30% is expected for both

1 2

1 and EZ__, . These value must be analyzed taking into account the short gap of 6% between the
H(X) —h(x)! H(X) " -h(x)?

mono-objective resolution of the SCARP and the bi-objective resolution one. These results push into accepting that

random events consequences are more dramatic for Eglese's instances which are true CARP with non required arcs.
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4. CONCLUDING REMARKS

It is possible to solve a multi-objective and stochastic CARP problem as soon as the laws of the random variables
modeling the demand are known. The required hypotheses (a trip requires at most a move to the depot, and this move is
just before the last arc to collect) permit to introduce mathematical analysis to obtain satisfactory estimation of criteria
to minimize. The formalization concerns a Gaussian law since the demand on each arc can be considered as the sum of
independent random variables (having a mean and a standard deviation).

The NSGA-II template is used to simultaneously optimize both solution cost and the length of the longest trip. The
experiments were carried out using the well known standard benchmarks of the state of the art literature on CARP.

The results prove that mathematical formulae are high quality ones and that the NSGA Il template is able to optimize
the SCARP : the stochastic solution of the first front are very close to the best one found solving the CARP by the
NSGA Il template and very close to the best solution found solving the SCARP by a mono-objective approach.

The work presented is a step forward stochastic resolution of routing problem with the aim to obtain in rather short
computation time, robust solution on several criteria. Our work is now directed to:

» extension of the NSGA-II template for optimization of more than two criteria simultaneously;

» extension of the mathematical formulae to address the problem of a heterogonous fleet of vehicles.
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6. APPENDIX

Table Al. Standard deviation of cost and duration for the leftmost and rightmost solutions according to mathematical
expressions and replications values for the Val files.

Val ues obtai ned by mathematical expression Val ues obtained by replications
St andard devi ati on St andard devi ati on Standard devi ation Standard devi ation
cost dur ati on cost duration

Val 0’; (x) Uf‘ (x) U:’\l/l (x) 0’; (x) 0’; (x,n) Js (x,n) U:’\l/l (x,n) J,\ZA (x,n)
la 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
1b 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
1c 0. 38 0. 38 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
2a 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
2b 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
2c 0.59 0. 00 0.42 0. 00 0.72 0. 00 0. 00 0. 00
3a 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
3b 0. 30 0. 00 0.16 0. 00 0.29 0. 00 0.15 0. 00
3c 0.02 0. 02 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
4a 0.22 0. 00 0.10 0. 00 0. 00 0. 00 0. 00 0. 00
4b 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
4c 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
4d 1.30 0.10 1.10 0. 00 6. 28 0. 09 6. 12 0. 00
5a 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
5b 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
5c 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
5d 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
6a 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
6b 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
6¢C 0.49 0. 47 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
7a 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
7b 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
7c 0.76 0. 00 0. 26 0. 00 1.17 0. 00 0.23 0. 00
8a 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
8b 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
8c 0. 29 0.03 0. 05 0. 00 0. 00 0. 00 0. 00 0. 00
9a 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
9b 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
9c 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
9d 0.12 0. 00 0.12 0. 00 0. 00 0. 00 0. 00 0. 00
10a 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
10b 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
10c 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
10d 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
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Table A2. Solutions for the Val instances compared to previous published results

CARP resol ution SCARP Resol ution
Bi - obj ective resol ution _I\/bno_— Bi - obj ective resol ution
obj ective
val | hO)t m)t h()? mx)? | Hxn) T A" M) HEZ M~
la 173 58 173 58 173.0 173.0 59.0 173.0 59.0 97s
1b 173 61 204 42 179.0 179.0 54.0 193.0 43.0 111s
1c 245 41 248 40 268.0 284.0 42.0 284.0 42.0 91s
2a 227 114 270 90 227.0 227.0 114.0 268.0 91.0 78s
2b 260 101 307 78 260.0 268.0 91.0 306.0 80.0 75s
2c 463 71 463 71 568. 0 563.0 71.0 607.0 71.0 74s
3a 81 41 88 31 81.0 81.0 41.0 88.0 31.0 80s
3b 87 32 105 27 87.0 93.0 32.0 123.0 27.0 79s
3c 138 27 138 27 162.0 176.0 27.0 176.0 27.0 92s
4a 400 134 446 92 400.0 402.0 138.0 462.0 96.0 155s
4b 412 105 468 83 422.0 444.0 92.0 466. 0 82.0 152s
4c 430 99 482 80 454.0 478.0 100. 0 515.0 85.0 160s
4d 539 80 539 80 576. 4 604. 2 82.1 640.0 80.0 158s
5a 423 141 474 96 428.0 446.0 123.0 474.0 98.0 147s
5b 446 112 506 86 450. 2 474.0 97.0 506. 0 89.0 155s
5¢c 474 96 541 80 495.0 499.0 103.0 499.0 103.0 146s
5d 595 81 686 72 631.1 609. 0 79.0 609.0 79.0 131s
6a 223 75 259 56 223.0 227.0 77.0 249.0 56.0 110s
6b 233 68 263 50 245.0 245.0 54.0 270.0 51.0 110s
6C 317 55 329 45 347. 1 359.0 45.0 361.0 45.0 163s
7a 279 85 289 59 279.0 283.0 59.0 283.0 59.0 167s
7b 283 58 299 51 283.0 283.0 62.0 311.0 55.0 171s
7c 335 50 352 40 352.0 359.0 45.0 432.0 39.0 150s
8a 386 129 429 87 392.1 395.0 101.0 431.0 88.0 142s
8b 395 100 455 79 409.0 419.0 97.0 466.0 81.0 135s
8c 545 74 610 67 583.0 611.0 71.0 663.0 67.0 134s
9a 326 82 333 68 323.0 331.0 89.0 347.0 70.0 230s
9b 326 82 340 58 332.0 337.0 70.0 368.0 62.0 214s
9c 332 69 389 51 340.0 349.0 65.0 389.0 52.0 221s
ad 399 50 434 44 421.0 441.0 47.0 470.0 44.0 210s
10a 428 143 449 91 428.0 440.0 132.0 466. 0 97.0 236s
10b 436 111 459 77 436.0 455.0 96.0 482.0 84.0 230s
10c 448 93 498 66 459.0 468.0 90.0 526.0 72.0 223s
10d 537 61 595 54 562. 0 603. 0 65.0 632.0 57.0 235s
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Table A3. Solutions for the Eglese's instances compared to previous published results
CARP resol ution

30

SCARP Resol ution

Bi - obj ective resol ution !\/bno.- Bi - obj ective resol ution
obj ective

egl- ho' mx)t h? m? | Hxn) o H)' M) H) M) t

el-A 3548 943 3824 820 4036.0 4183.0 820.0 4183.0 820.0 195s
el-B 4525 839 4573 820 4932.7 5679.0 820.0 5679.0 820.0 164s
el-C 5687 836 5764 820 7030. 8 7317.6 836.0 7621.6 820.0 165s
e2-A 5018 953 6072 820 5629.0 6183.0 870.0 7717.0 850.0 148s
e2-B 6411 564 6810 820 7720.1 7969. 1 831.0 8638. 2 820.0 170s
e2-C 8440 854 8651 820 10534.5 11168.0 878.0 11515. 4 854.1 154s
e3-A 5956 917 7935 820 6627. 1 7348.0 876.0 8341.0 827.0 180s
e3-B 7911 872 8455 820 10264. 3 10113.2 874.1 10895. 0 848.0 186s
e3-C| 10349 864 10511 820 12066. 3 13332.5 839. 2 14693. 2 839.0 225s
ed-A 6548 890 7362 820 7756.5 8366.0 926.0 8967.0 839.0 260s
e4-B 9116 874 9584 820 11168. 4 11789.0 878.0 12547.8 872.0 237s
e4-C| 11802 820 11802 820 15427.9 15551. 4 878.7 16854. 4 867.0 218s
s1-A 5102 1023 6582 924 6320.5 6411. 3 1063.0 7515.0 924.0 151s
s1-B 6500 984 8117 912 8113.5 8313.1 946. 0 9890.0 912.0 150s
s1-C 8694 946 9205 912 10957.6 10730.5 990.0 13127.0 938.0 160s
s2-A| 10207 1058 12222 979 11390. 7 13483.0 1040.0 13761.0 1027.0 315s
s2-B| 13548 1058 14334 979 17403.1 18232.0 1008. 0 21284. 8 979.0 300s
s2-C| 16932 1040 16975 979 21507. 3 22701.5 1095. 7 24684. 3 988.0 352s
s3-A| 10456 1099 12605 979 12118.6 13838.9 1083.0 15035. 2 1033.0 404s
s3-B| 14004 1040 15103 979 18717.6 18745. 4 1041.0 20666. 7 979.0 336s
s3-C| 17825 998 18043 979 22847.5 23936. 6 1060. 2 25329.4 979.0 406s
s4-A| 12730 1040 12912 1027 14433. 8 16507. 3 1260.1 17088. 1 1040.0 397s
s4-B| 16792 1027 16792 1027 21503. 6 22651. 6 1073. 3 24873. 4 1075.0 411s
s4-C| 21309 1027 21309 1027 27226.9 29716.5 1165.7 32509. 7 1279.5 474s
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