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Abstract—Classical dictionary learning algorithms (DLA) allow
unicomponent signals to be processed. Due to our interest in
two-dimensional (2D) motion signals, we wanted to mix the two
components to provide rotation invariance. So, multicomponent
frameworks are examined here. In contrast to the well-known
multichannel framework, a multivariate framework is first in-
troduced as a tool to easily solve our problem and to preserve
the data structure. Within this multivariate framework, we then
present sparse coding methods: multivariate orthogonal matching
pursuit (M-OMP), which provides sparse approximation for
multivariate signals, and multivariate DLA (M-DLA), which
empirically learns the characteristic patterns (or features) that
are associated to a multivariate signals set, and combines shift-in-
variance and online learning. Once the multivariate dictionary
is learned, any signal of this considered set can be approximated
sparsely. This multivariate framework is introduced to simply
present the 2D rotation invariant (2DRI) case. By studying 2D
motions that are acquired in bivariate real signals, we want the
decompositions to be independent of the orientation of the move-
ment execution in the 2D space. The methods are thus specified
for the 2DRI case to be robust to any rotation: 2DRI-OMP and
2DRI-DLA. Shift and rotation invariant cases induce a compact
learned dictionary and provide robust decomposition. As valida-
tion, our methods are applied to 2D handwritten data to extract
the elementary features of this signals set, and to provide rotation
invariant decomposition.

Index Terms—Dictionary learning algorithm, handwritten data,
multichannel, multivariate, online learning, orthogonal matching
pursuit, rotation invariant, shift-invariant, sparse coding, trajec-
tory characters.

I. INTRODUCTION

I N the signal processing andmachine-learning communities,
sparsity is a very interesting property that is used more and

more in several contexts. It is usually employed as a criterion
in a transformed domain for compression, compress sensing,
denoising, demoisaicing, etc. [1]. As we will consider, sparsity
can also be used as a feature extraction method, to make emerge
from data the elements that contain relevant information. In our
application, we focus on the extraction of primitives from the
motion signals of handwriting.
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To process signals in a Hilbert space, we define the matrix
inner product as , with repre-
senting the conjugate transpose operator. Its associated Frobe-
nius norm is represented as . Considering a signal
that is composed of samples and a dictionary
composed of atoms , the decomposition of the
signal is carried out on the dictionary such that

(1)

assuming , the coding coefficients, and , the
residual error. The approximation of is . The dictio-
nary is generally normed, which means that its columns (atoms)
are normed, so that the coefficients reflect the energy of each
atom present in the signal. Moreover, the dictionary is said re-
dundant (or overcomplete) when : the linear system of
(1) is thus underdetermined and has multiple possible solutions.
The introduction of constraints, such as positivity, sparsity or
others, allows the solution to be regularized. In particularly, the
decomposition under a sparsity constraint is formalized by

s.t.

where is a constant, and the pseudo-norm is defined
as the cardinal of the support1. The formulation of in-
cludes a term of sparsification to obtain the sparsest vector
and a data-fitting term.
To obtain the sparsest solution for , let us imagine a

dictionary that contains all possible patterns. This allows
any signal to be approximated sparsely, although this would
be too huge to store and the coefficients estimation would be
intractable. Therefore, we have to make a choice about the
dictionary used, with there being three main possibilities.
First, we can choose among classical dictionaries, such as

Fourier, wavelets [2], curvelets [3], etc. If these generic dictio-
naries allow fast transforms, their morphologies deeply influ-
ence the analysis. Wavelets are well adapted for studying tex-
tures, curvelets for edges, etc., each dictionary being dedicated
to particular morphological features. So, to choose the ad hoc
dictionary correctly, we must have an a priori about the ex-
pected patterns.
Second, several of these dictionaries can be concatenated, as

this allows the different components to be separated, each being
sparse on its dedicated subdictionary [4], [5]. If it is more flex-
ible, we always need to have an a priori of the expected patterns.
Third, we let the data choose their optimal dictionary them-

selves. Data-driven dictionary learning allows sparse coding:
elementary patterns that are characteristic of the dataset are
learned empirically to be the optimal dictionary that jointly

1The support of is .
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gives sparse approximations for all of the signals of this
set [6]–[8]. The atoms obtained do not belong to classical
dictionaries: they are appropriate to the considered application.
Indeed, for practical applications, learned dictionaries have
better results than classical ones [9], [10]. The fields of applica-
tions comprise image [6]–[8], [11], audio [12]–[14], video [15],
audio–visual [16], and electrocardiogram [17], [18].
For multicomponent signals, we wish to be able to sparsely

code them. For this purpose, the existing methods concerning
sparse approximation and dictionary learning need to be adapted
to the multivariate case. Moreover, in studying 2D motions ac-
quired in bivariate real signals, we want the decompositions to
be independent of the orientation of the movement execution in
the 2D space. The methods are thus specified for the 2D rotation
invariant (2DRI) case so that they are robust to any rotation.
Here, we present the existing sparse approximation and

dictionary learning algorithms in Section II, and we look at the
multivariate and shift-invariant cases in Section III. We then
present multivariate orthogonal matching pursuit (M-OMP) in
Section IV, and the multivariate dictionary learning algorithm
(M-DLA) in Section V. To process bivariate real signals, these
algorithms are specified for the 2DRI case in Section VI. For
their validation, the proposed methods are applied to hand-
written characters in Section VII for several experiments. We
thus aim at learning an adapted dictionary that provides rotation
invariant sparse coding for these motion signals. Our methods
are finally compared to classical dictionaries and to existing
learning algorithms in Section VIII.

II. STATE OF THE ART

In this section, the state of the art is given for sparse approxi-
mation algorithms, and then for DLAs. These are expressed for
unicomponent signals.

A. Sparse Approximation Algorithms

In general, finding the sparsest solution of the coding problem
is NP-hard [19]. One way to overcome this difficulty is to

simplify in a subproblem:

s.t.

with , a constant. Pursuit algorithms [20] tackle
sequentially by increasing iteratively, although this optimiza-
tion is nonconvex: the solution obtained can be a local min-
imum. Among the multiple -pursuit algorithms, the following
examples are useful here: the famous matching pursuit (MP)
[21] and its orthogonal version, the OMP [22]. Their solutions
are suboptimal because the support recovery is not guaranteed,
especially for a high dictionary coherence2 . Nevertheless,
they are fast when we search very few coefficients [23].
Another way consists of relaxing the sparsification term of
from a norm to a norm. The resulting problem is

called basis pursuit denoising [4]:

s.t.

with a constant. is a convex optimization problem
with a single minimum, which is the advantage with respect
to -Pursuit algorithms. Under some strict conditions [1],

2The coherence of the normed dictionary is .

the solution obtained is the sparsest one. Different algorithms
for solving this problem are given in [20], such as methods
based on basis pursuit denoising [4], homotopy [24], iterative
thresholding [25], etc. However, a high coherence does not
ensure that these algorithms recover the optimal support [1],
and if this is the case, the convergence can be slow.

B. Dictionary Learning Algorithms

The aim of DLAs is to empirically learn a dictionary
adapted to the signals set that we want to sparsely code [26].
We have a training set , which is representative
of all of the signals studied. In dictionary learning, interesting
patterns of the training set are iteratively selected and updated.
Most of the learning algorithms alternate between two steps:
1) the dictionary is fixed, and coefficients are obtained by
sparse approximation;

2) is fixed, and is updated by gradient descent.
Old versions of these DLAs used gradient methods to compute
the coefficients [6], while new versions use sparse approxi-
mation algorithms [7], [11]–[14], [27]. Based on the same prin-
ciple, the method of optimal directions (MOD) [17] updates the
dictionary with the pseudo-inverse. This method is generalized
in [18] under the name of iterative least-squares DLA (ILS-
DLA). There are also methods that do not use this principle of
alternative steps. K-SVD [8] is a simultaneous learning algo-
rithm, where at the 2nd step the support is kept: and are
updated simultaneously by SVD.
At the end of all these learning algorithms, the dictionary that

is learned jointly provides sparse approximations of all of the
signals of the training set: it reflects sparse coding.

III. MULTIVARIATE AND SHIFT-INVARIANT CASES

In this section, we consider more particularly the multivariate
and the shift-invariant cases. Moreover, the link between the
classical (unicomponent) and the multivariate framework is dis-
cussed.

A. Multivariate Case

Up to this point, a unicomponent signal has been ex-
amined and its classical framework approximation is illustrated
in Fig. 1(a). In the multicomponent case, the signal studied be-
comes , with denoting the number of components.
Two problems can be considered, which depending on the na-
tures of and :
• unicomponent and multicompo-
nent, the well-known multichannel framework [Fig. 1(b)];

• multicomponent and unicompo-
nent, the multivariate framework [Fig. 1(c)], which con-
siders as an element-wise product along the dimension
.

The difference between the multichannel and multivariate
frameworks is the approximation model, and we will detail this
for both frameworks.
Multichannel sparse approximation [28]–[31] is also known

as simultaneous sparse approximation (SSA) [32]–[36], sparse
approximation for multiple measurement vector (MMV) [37],
[38], joint sparsity [39] and multiple sparse approximation [40].
In this framework, all of the components have the same dictio-
nary and each component has its own coding coefficient. This
means that all components are described by the same profiles
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Fig. 1. Decomposition with (a) classical, (b) multichannel, and (c) multivariate frameworks. In (c), is considered as an element-wise product along the dimension
.

(atoms), although with different energies: each profile is linearly
mixed in the different channels. This framework is also known
as a blind source separation problem.
The multivariate framework can be considered as the inverse

framework: all of the components have the same coding co-
efficient, and thus the multivariate signal is approximated
sparsely as the sum of a few multivariate atoms . Data that
come from different physical quantities, that have dissimilar
characteristic profiles, can be aggregated in the different com-
ponents of the multivariate kernels: they must only be homoge-
neous in their dimensionalities. To our knowledge, this frame-
work has been considered only in [41] for an MP algorithm,
although with a particular dictionary template that included a
mixing matrix. In the present study, we focus mainly on this
multivariate framework, with multivariate and normed (i.e.,
each multivariate atom is normed, such that ).
In this paragraph, we consider DLAs that deal with multi-

component signals. Based on the multichannel framework, the
dictionary learning presented in [42] uses a multichannel MP
for sparse approximation and the update of K-SVD. We note
that the two channels considered are then updated alternatively.
In bimodal learning with audio–visual data [16], each modality
(audio/video) has its own dictionary and its own coefficient for
the approximation, and the two modalities are updated simulta-
neously.We alsomention [43] based on themultichannel frame-
work: they used multiplicative updates for ensuring the nonneg-
ativity of parameters.

B. The Shift-Invariant Case

In the shift-invariant case, we want to sparsely code the signal
as a sum of a few short structures, known as kernels, that

are characterized independently of their positions. This model is
usually applied to time series data, and it avoids block effects in
the analysis of largely periodic signals and provides a compact
kernel dictionary [12], [13].
The shiftable kernels (or generating functions) of the com-

pact dictionary are replicated at all of the positions, to pro-
vide the atoms (or basis functions) of the dictionary . The
samples of the signal , the residue , and the atoms are

indexed3 by . The kernels can have different lengths.
The kernel is shifted in the samples to generate the atom

: zero padding is carried out to have samples. The

3Remark that and do not represent samples, but the signal
and its translation of samples.

subset collects the active translations of the kernel .
For the few kernels that generate all of the atoms, (1) becomes

(2)

Due to shift-invariance, is the concatenation of Toeplitz
matrices [14], and is times overcomplete. In this case, the
dictionary is said convolutional. As a result, in the present study,
the multivariate signal is approximated as a weighted sum of
a few shiftable multivariate kernels .
Some DLAs are extended to the shift-invariant case. Here all

of the active translations of a considered kernel are taken into
account during the update step [12]–[15], [44], [45]. Further-
more, some of them are modified, to deal with the disturbances
introduced by the overlapping of the selected atoms, such as ex-
tensions of K-SVD [46], [47] and ILS-DLA (with a shift factor
of 1) [48].

C. Remarks on the Multivariate Framework

Usually, the multivariate framework is approached using vec-
torized signals. The multicomponent signal is vertically vector-
ized from to , and the dictionary from

to . After applying the classical
OMP, the processing is equivalent to themultivariate one. In this
paragraph, we explore the advantages of using the multivariate
framework, rather than the classical (unicomponent) one.
In our case, the different components are acquired simulta-

neously, and the multivariate framework allows this temporal
structure of the acquired data to be keep. Moreover, these com-
ponents can be very heterogeneous physical quantities. Vector-
izing components causes a loss of physical meaning for sig-
nals and for dictionary kernels, and more particularly when the
components have dissimilar profiles. We prefer to consider the
data studied as being multicomponent: the signals and the dic-
tionary have several simultaneous components, as illustrated in
the following figures. For the algorithmic implementation, in the
shift-invariant case the multivariate framework is easier to im-
plement and has a lower complexity than the classical one with
vectorized data (see Appendix A).
Moreover, the multivariate framework sheds new light on

the topic when multicomponent signals are being processed
(see Section IV-B). Furthermore, presented in this way, the
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2DRI case is viewed as a simple specification of the multi-
variate framework, mostly involving the selection step (see
Section VI). The rotation mixes the two components which are
acquired simultaneously but which were independent previ-
ously, that is easy to see with multivariate signals as opposed
to vectorized ones.
Consequently, the multivariate framework is principally in-

troduced for the clearness of the explanations and for the ease
of algorithmic implementation. Thus, we are going to present
multivariate methods that existed under another less-adapted
formalism, and were introduced in [49] and [50]: multivariate
OMP and multivariate DLA.

IV. MULTIVARIATE ORTHOGONAL MATCHING PURSUIT

In the present study, sparse approximation can be achieved by
any algorithm that can overcome the high coherence that is due
to the shift-invariant case. For real-time applications, OMP is
chosen because of its tradeoff between speed and performance
[23]. In this section, OMP and M-OMP are explained step by
step.

A. OMP Presentation

As introduced in [22], OMP is presented here for the uni-
component case and with complex signals. Given a redundant
dictionary, OMP produces a sparse approximation of a signal
(Algorithm 1). It solves the least squares problem on an
iteratively selected subspace.
After initialization (step 1), at the current iteration , OMP

selects the atom that produces the absolute strongest decrease
in the mean square error (MSE) . This is equivalent to
finding the atom that is the most correlated to the residue
(see Appendix B). In the shift-invariant case, the inner product
between the residue and each atom is now replaced by the
correlation with each kernel (step 4), which is generally com-
puted by fast Fourier transform. The noncircular complex cor-
relation between signals and is given by

(3)

The selection (step 6) determinates the optimal atom, charac-
terized by its kernel index and its position . An ac-
tive dictionary is formed, which collects all of the selected
atoms (step 7), and the signal is projected onto this selected
subspace. Coding coefficients are computed via the orthog-
onal projection of on (step 8). This is carried out recur-
sively, by block matrix inversion [22]. The vector obtained,

, is reduced to its
active (i.e., nonzero) coefficients, denoting by , the trans-
pose operator.
Different stopping criteria (step 11) can be used: a threshold

on , the number of iterations, a threshold on the relative root
MSE (rRMSE) , or a threshold on the decrease in
the rRMSE. In the end, the OMP provides a -sparse approxi-
mation of

(4)

The convergence of OMP is demonstrated in [22], and its
recovery properties are analyzed in [23] and [51].

Algorithm 1:

1: initialization: dictionary
2: repeat
3: for do
4: Correlation:
5: end for
6: Selection:
7: Active Dictionary:
8: Active Coefficients:
9: Residue:
10:
11: until stopping criterion

B. Multivariate OMP Presentation

After the necessaryOMP review,we now present theM-OMP
(Algorithm 2), to handle the multivariate framework described
previously (Sections III-A and III-C). The multivariate frame-
work is mainly taken into account in the computation of the
correlations (step 4) and the selection (step 6). The following
notation is introduced: is the th component of the mul-
tivariate signal .
For a comparison between the two frameworks from

Section III-A, we look at the selection step, with the objective
function named as :

(5)

In the multichannel framework, selection is based on the inter-
channel energy:

(6)

with , or [38]. The search for the maximum of the
norms applied to the vectors is equivalent to applying a

mixed norm to the correlation matrix . This provides a struc-
tured sparsity that is similar to the Group-lasso, as explained in
[40].
In the multivariate framework that we will consider, the selec-
tion is based on the average correlation of the components.
Using the definition of the inner product given in Section I, we
have

(7)

In fact, this selection is based on the inner product, which is
comparable to the classical OMP, but in the multivariate case.
Added to the difference of the approximation models
(Section III-A), these two frameworks do not select the
same atoms. Due to the absolute values, the noncollinearity or
anticollinearity of components are not taken into account
in (6), and the multichannel selection is only based on the
energy. The multivariate selection (7) is more demanding, and
it searches for the optimal tradeoff between components :
it keeps the atom that best-fits the residue in each component.
The selections are equivalent if all are collinear and in
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the same direction. The differences between these two types of
selection have also been discussed in [41] and [52].
The active dictionary is also multivariate (step 7). For

the orthogonal projection (step 8), the multivariate signal
(respectively, dictionary ) is vertically

unfolded along the dimension of the components in a unicompo-
nent vector (respectively, matrix ).
Then, the orthogonal projection of on is recursively com-
puted, as in the unicomponent case, using block matrix inver-
sion [22]. For this step, in the multichannel framework coeffi-
cients are simply computed via the orthogonal projection of
on the active dictionary [31].
At the end of this, the M-OMP provides a multivariate
-sparse approximation of . Compared to the OMP, the

complexity of the M-OMP is only increased by a factor of ,
the number of components.

Algorithm 2:

1: initialization: , dictionary
2: repeat
3: for do
4: Correlation:
5: end for
6: Selection :
7: Active Dictionary:
8: Active Coefficients:
9: Residue:
10:
11: until stopping criterion

V. MULTIVARIATE DICTIONARY LEARNING ALGORITHM

In this section, we first provide a global presentation of the
Multivariate DLA, and then remarks are given. Added to the
multivariate aspect, the novelty of this DLA is to combine shift-
invariance and online learning.

A. Algorithm Presentation

For more simplicity, a non-shift-invariant formalism is used
in this short introduction, with the atoms dictionary . We have
a training set of multivariate signals and the index
is added to the variables. In our learning algorithm, named

M-DLA (Algorithm 3), each training signal is treated one
at a time. This is an online alternation between two steps: a
multivariate sparse approximation and a multivariate dictionary
update. Themultivariate sparse approximation (step 4) is carried
out by M-OMP:

s.t. (8)

and the multivariate dictionary update (step 5) is based on max-
imum likelihood criterion [6], on the assumption of Gaussian
noise

s.t. (9)

This criterion is usually optimized by gradient descent
[12]–[14]. To achieve this optimization, we set up a sto-
chastic Levenberg–Marquardt second-order gradient descent
[53]. This increases the convergence speed, blending together

the stochastic gradient and Gauss–Newton methods. The cur-
rent iteration is denoted as . For each multivariate kernel ,
the update rule is given by (see Appendix B):

(10)

with as the indices limited to the temporal support, the
adaptive descent step, and the Hessian computed as ex-
plained in Appendix C. This step is called LM-update (step 5).
There are multiple strategies concerning the adaptive step:
the classical choice is made (with . The
multivariate framework is taken into account in the dictionary
update, with all of the components of the multivariate
kernel updated simultaneously. Moreover, the kernels are
normalized at the end of each iteration, and their lengths can
be modified. Kernels are lengthened if there is some energy in
their edges and shortened otherwise.
At the beginning of the algorithm, the kernels initialization

(step 1) is based as white Gaussian noise. At the end, different
stopping criteria (step 8) can be used: a threshold on the rRMSE
computed for the whole of the training set, or a threshold on ,
the number of iterations. In M-DLA, the M-OMP is stopped by
a threshold on the number of iterations. We cannot use rRMSE
here, because at the beginning of the learning, the kernels of
white noise cannot span a given part of the space studied.

Algorithm 3:

1: initialization: kernels of white noise
2: repeat
3: for do
4: Sparse Approximation:
5: Dictionary Update: -update
6:
7: end for
8: until stopping criterion

B. Remarks About the Learning Processes

In this paragraph, a non-shift-invariant formalism is used for
simplicity, with the atom dictionary . We define
as the training set.
The learning algorithms K-SVD [8] and ILS-DLA [18] have

batch alternation: sparse approximation is carried out for the
whole finite training set , and then the dictionary is updated. If
the usual convergence of the algorithms is observed empirically,
theoretical proof of the strict decrease in the MSE at each iter-
ation is not available, due to the nonconvexity of the sparse ap-
proximation step carried out using -Pursuit algorithms. Con-
vergence properties for dictionary learning are discussed in [54]
and [55].
An online (also known as continuous or recursive) alterna-

tion can be set up, where each training signal is processed one
at a time. The dictionary is updated after the sparse approxi-
mation of each signal (so there is more updates than for
batch alternation). The processing order of the training signals
is often random, so as not to influence the optimization path in
a deterministic way. The first-order stochastic gradient descent
used in [11] provides a learning algorithmwith lowmemory and
computational requirements, with respect to batch algorithms.
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Bottou and Bousquet [56] explained that in an iterative process,
each step does not need to be minimized perfectly to reach the
expected solution. Thus, they proposed the use of stochastic gra-
dient methods. Based on this, the faster performances of on-
line learning are shown in [57] and [58], for small and large
datasets. An online alternation of ILS-DLA, known as recur-
sive least-squares DLA (RLS-DLA), is presented in [59], and
this also shows better performances. Our learning algorithm is
an online alternation, and we can tolerate fluctuations in the
MSE. The stochastic nature of the online optimization allows
a local minimum to be drawn out. Contrary to the K-SVD and
ILS-DLA, we have never observed that the learning gets stuck
in a local minimum close to the initial dictionary.
The nonconvex optimization of the M-OMP, the alternating

minimization and the stochastic nature of our online algorithm
do not allow to ensure the convergence of the M-DLA towards
the global minimum. However we find a dictionary, minimum
local or global, which assures the decompositions sparsity.

VI. THE 2D ROTATION INVARIANT CASE

Having presented the M-OMP and the M-DLA, these algo-
rithms are now simply specified for the 2D rotation invariant
case.

A. Method Presentation

To process bivariate real data, we specify the multivariate
framework for the bivariate signals. The signal under study,

, is now considered. Equation (2) becomes

(11)

with representing the multivariate concatenation, not the
vertical one. This case will be referred to as the oriented case
in the following, as bivariate real kernels cannot rotate and are
defined in a fixed orientation.
Studying bivariate data, such as 2D movements, we aspire to

characterize them independently of their orientations. M-OMP
is now specified for this particular 2DRI case. The rotation in-
variance implies the introduction of a rotation matrix
of angle for each bivariate real atom . So (11) be-
comes

(12)

Now, in the selection step (Algorithm 2, step 6), the aim is
to find the angle that maximizes the correlations

. A naive approach is the sampling of into
angles and the addition of a new degree of freedom in the

correlations computation (Algorithm 2, step 4). The complexity
is increased by a factor of with respect to the M-OMP used
in the oriented case. Note that this idea is used for processing
bidimensionnal signals such as images [60],
although this represents a problem different from ours.
To avoid this additional cost, we transform the signal from

to (i.e., , with the imaginary number
). The kernels and coding coefficients are now complex as well.

Retrieving (2), the M-OMP is now applied. For the coding co-
efficients, the modulus gives the coefficient amplitude and the
argument gives the rotation angle:

(13)

Finally, the decomposition of signal is given as

(14)

Now the kernel can be rotated, as here kernels are no longer
learned through a particular orientation, as in the previous ap-
proach as oriented (M-OMP with and ). Thus,
the kernels are shift and rotation invariant, providing a non-ori-
ented decomposition (M-OMP with and ).
This 2DRI specification of the sparse approximation (re-

spectively, dictionary learning) algorithm is now denoted as
2DRI-OMP (respectively, 2DRI-DLA). It is important to note
that the 2DRI implementations are not different from the algo-
rithms presented before; they are just specifications. Only the
initial arrangement of the data and the use of the argument of
the coding coefficients are different.

B. Notes

In the multisensor case, sensors that acquire bivariate sig-
nals are considered. The sensors are physically linked, and so
they are under the same rotation. For example, bivariate real
signals from a velocity sensor (for velocities and ), an ac-
celerometer (for accelerations and ), a gyrometer (for an-
gular velocities and ), etc., can be studied. These signals
can be aggregated together in such that

(15)

Here, the common rotation angle is jointly chosen between the
three complex components due to the multivariate methods.
Thus, when used with several complex components, M-OMP
(respectively, M-DLA) can be viewed as a joint 2DRI-OMP
(respectively, 2DRI-DLA).
We also note that when the number of active atoms ,

the 2DRI problem considered is similar to 2D curve matching
[61]. Schwartz and Sharir provided an analytic solution to com-
pute , although their approach is very long, as it is com-
puted for each and each . The use of the complex signals indi-
cated above allows this problem to be solved nicely and cheaply.
Still considering , Vlachos et al. [62] provided rotation

invariant signatures for trajectory recognition. However, as with
most of methods based on invariant descriptors, their method
loses rotation parameters, which is contrary to our approach.

VII. APPLICATION DATA AND EXPERIMENTS

After having defined our methods, we present in this section
the data that are processed and then the experimental results.

A. Application Data

Our methods are applied to the Character Trajectory motion
signals that are available from the University of California at
Irvine (UCI) database [63]. They have been initially dealt with
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Fig. 2. Non-oriented learned dictionary (NOLD) of the velocities processed
by 2DRI-DLA. Each kernel is composed of the real part (solid line) and the
imaginary part (dotted line).

a probabilistic model and an expectation-maximization (EM)
learning method [64], although without real sparsity in the
resulting decompositions. The data comprise 2858 handwritten
characters that were acquired with a Wacom tablet sampled at
200 Hz, with about a hundred occurrences of 20 letters written
by the same person. The temporal signals are the Cartesian
pen-tip velocities and . As the velocity units are not stated
in the dataset description, we cannot define this here.
Using the raw data, we aim to learn an adapted dictionary to

code the velocity signals sparsely. A partition of the database
signals is made, as a training set for applying M-DLA, which
is composed of 20 occurrences of each letter ( char-
acters), and a test set for qualifying the sparse coding efficiency
( characters). These two sets are used in the following
sections.
Although some of the comparisons are madewith the oriented

case, the results are mainly presented in the non-oriented case.
For the differences in data arrangement, we note that in the ori-
ented case, the signals are set as , whereas in
the non-oriented case they are set as . In these two
cases, the dictionary learning algorithms begin their optimiza-
tion with kernels initialized on white Gaussian noise.
Three experiments are now detailed, for the dictionary

learning, the decompositions on the data, and the decomposi-
tions on the revolved data.

B. Experiment 1: Dictionary Learning

In this experiment, the 2DRI-DLA is going to provide a non-
oriented learned dictionary (NOLD). The velocities are used to
have the kernels as null at their edges. This avoids the introduc-
tion of discontinuities in the signal during the sparse approxi-
mation.4 The kernel dictionary is initialized on white Gaussian
noise, and 2DRI-DLA is applied to the training set. We obtain a
velocity kernel dictionary as shown in Fig. 2, where each kernel
is composed of the real part (solid line) and the imaginary
part (dotted line). This convention for the line style in Fig. 2
will be used henceforth.
The velocity signals are integrated only to provide a more vi-

sual representation. However, due to the integration, the two dif-
ferent velocities kernels provide very similar trajectories (inte-
grated kernels). The integrated kernel dictionary (Fig. 3) shows

4Note also that contrary to the position signals, the velocity signals allow
spatial invariance (different from the temporal shift-invariance).

Fig. 3. Rotatable trajectory dictionary associated to the non-oriented learned
dictionary (NOLD) processed by 2DRI-DLA.

Fig. 4. Utilization matrix of the dictionary computed on the learning set. The
means of the coefficient absolute values are given as a function of the kernel
indices and the letters.

that motion primitives are successfully extracted by the 2DRI-
DLA. Indeed, the straight and curved strokes shown in Fig. 3
correspond to the elementary patterns of the set of handwritten
signals.
The question is how to choose the dictionary size hyperpa-

rameter . In the non-oriented case, 9 kernels are used, whereas
in the oriented case, 12 are required. The choice is an empir-
ical tradeoff between the final rRMSE obtained on the training
set, the sparsity of the dictionary, and the interpretability of the
resulting dictionary (criteria that depend on the application can
also be considered).
As interpretability is a subjective criterion, a utilization ma-

trix is used in supervised cases (Fig. 4). The mean of the co-
efficients absolute values (gray shading level) computed on the
learning set is mapped as a function of the kernel index (or-
dinate), with the signal class as a letter (abscissa). The letters
are organized according to the similarities of their utilization
profiles. We can say that a dictionary has a good interpretability
whenwell-used kernels are common to different letters that have
related shapes (intuitively, other tools can be imagined to define
a dictionary). For example, letters and have some similar-
ities and share kernel 7. Similarly, and share kernel 9.
We also note here that during M-DLA, M-OMP provides a
-sparse approximation (Section V-A). is the number of ac-

tive coefficients, and it determinates the number of underlying
primitives (atoms) that are searched and then learned from each
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Fig. 5. Original (a) and reconstructed (b) velocity signals of five occurrences of
the letter (real part, solid line; imaginary part, dotted line), and their associated
spikegram (c).

signal. If the dictionary size is too small compared to the
ideal total number of primitives we are searching, the kernels
will not be characteristic of any particular shape and the rRMSE
will be high. Conversely, if and are particularly important,
the dictionary learning will tend to scatter the information into
the plentiful kernels. Here, the utilization matrix will be very
smooth, without any kernel characteristics for particular letters.
If is particularly important and is optimal, we can see that
some kernels will be characteristic and well used, while others
will not be. The utilization matrix rows of unused kernels are
white, and it is easy to prune these to obtain the optimal dic-
tionary. Typically, in our dictionary, kernel 8 can obviously be
pruned (Fig. 4). Therefore, it is preferable to slightly overesti-
mate .
Finally, the crucial question is how to choose the parameter
. Indeed, this choice is empirical, as it depends on the number

of primitives that the user forecasts to be in each signal of the
dataset studied. In our experiment, we choose , as 2–3
primary primitives coding the main information, and the re-
maining ones coding the variabilities.
The nonconvex optimization of the M-OMP and the random

processing of the training signals induce different dictionaries
that are obtained with the same parameters. However, the vari-
ance of the results is small, and sometimes we obtain exactly the
same dictionaries, or they have similar qualities (rRMSE, dictio-
nary size, interpretability). For the following experiments, note
that an oriented learned dictionary (OLD) is also processed by
M-DLA.

C. Experiment 2: Decompositions on the Data

To evaluate the sparse coding qualities, non-oriented decom-
positions of five occurrences of the letter on the NOLD are
considered in Fig. 5. The velocities [Fig. 5(a)] [respectively,
Fig. 5(b)] are the original (respectively, reconstructed, i.e.,
approximated) signals, which are composed of the real part
(solid line) and the imaginary part (dotted line). The rRMSE
on the velocities is around 12%, with 4–5 atoms used for the

Fig. 6. Letter (respectively, ). Original (a) [respectively, (d)], oriented re-
constructed (b) [respectively, (e)], and non-oriented reconstructed (c) [respec-
tively, (f)] trajectories.

reconstruction (i.e., approximation). The coding coefficients
are illustrated using a time-kernel representation [Fig. 5(c)]

called spikegram [13]. This provides the four variables:
1) the temporal position (abscissa);
2) the kernel index (ordinate);
3) the coefficient amplitude (gray shading level);
4) the rotation angle (number next to each spike, in de-
grees).

The low number of atoms used for the signal reconstruc-
tion shows the decomposition sparsity, which we refer to as the
sparse code. The primary atoms are the largest amplitude ones,
like kernels 2, 4, and 9, and these concentrate the relevant in-
formation. The secondary atoms code the variabilities between
different realizations. The reproducibility of the decompositions
is highlighted by the primary-atom repetition (amplitudes and
angles) of the different occurrences. The sparsity and repro-
ducibility are the proof of an adapted dictionary. Note that the
spikegram is the result of the signal deconvolution through the
learned dictionary.
The trajectory of the original letter [Fig. 6(a)] [respectively,
, Fig. 6(d)] is reconstructed with the primary atoms. We com-
pare the oriented case [Fig. 6(b)] [respectively, Fig. 6(e)] using
the OLD and the non-oriented case [Fig. 6(c)] [respectively,
Fig. 6(f)] using the NOLD. For instance, for the reconstruction,
the letter [Fig. 6(c)] is rebuilt as the sum of the NOLD kernels
2, 4, and 9 (the shapes can be seen in Fig. 3), which are specified
by the amplitudes and the angles of the spikegram (Fig. 5(c)).
We now focus on the principal vertical stroke that is common
to letters and [Fig. 6(a) and (d)]. To code this, the oriented
case uses two different kernels: kernel 5 for [Fig. 6(b), dotted
line] and kernel 12 for [Fig. 6(e), dashed line]. However, the
non-oriented case needs only one kernel for these two letters:
kernel 9 [Fig. 6(c) and (f), solid line], which is used with an av-
erage rotation of 180 . Thus, the non-oriented approach reduces
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Fig. 7. Velocity signals revolved by 45 (a) [respectively, 90 (d)] and
reconstructed (b) [respectively, (e)] for two occurrences of the letter , and their
associated spikegram (c) [respectively, (f)].

Fig. 8. Trajectory of letter revolved by (a) an angle of 90 , and (b) the
oriented reconstructed and (c) the non-oriented reconstructed.

the dictionary redundancy and provides an even more compact
rotatable kernel dictionary. The detection of rotational invari-
ants allows the dictionary size to decrease from 12 for the OLD,
to 9 for the NOLD.

D. Experiment 3: Decompositions on Revolved Data

To simulate the rotation of the acquiring tablet, we artifi-
cially revolved the data of the test set, with the characters now
rotated by angles of 45 and 90 (with the previous dic-
tionaries kept). Fig. 7 shows the non-oriented decompositions
of the second and third occurrences of the examples used in
Fig. 5. The velocity signals rotated by 45 [Fig. 7(a)] [respec-
tively, 90 , Fig. 7(d)] are reconstructed in a non-oriented ap-
proach [Fig. 7(b)] [respectively, Fig. 7(e)]. In these two cases,
the rRMSE is identical to the previous experiment, when the
characters were not revolved. Fig. 7(c) [respectively, Fig. 7(f)]
shows the associated spikegrams. The angle differences of the
primary kernels between the spikegrams [Figs. 5(c), 7(c), and
(f)] correspond to the angular perturbation we applied. This
shows the rotation invariance of the decomposition.
The trajectory of letter revolved by 90 [Fig. 8(a)] is

reconstructed with the primary kernels, with a comparison of
the oriented case [Fig. 8(b)] using the OLD, and the non-ori-
ented case [Fig. 8(c)] using the NOLD. In the oriented case, the
rRMSE increases from 15% [Fig. 6(b)] to 30% [Fig. 8(b)], and
the sparse coding is less efficient. Moreover, the selected kernels

Fig. 9. Reconstruction rate on the test set as a function of the sparsity of
the approximation for the different dictionaries.

are different, with there being no more reproducibility. The dif-
ference between these two reconstructions shows the necessity
to be robust to rotations. In the non-oriented case, the rRMSE is
equal to whatever the rotation angle is [Figs. 6(c) and 8(c)], and
it is always less than the oriented case. The selected kernels are
identical in the two cases, and they show the rotation invariance
of the decomposition.
To conclude this section, the methods have been validated

on bivariate signals and have shown rotation invariant sparse
coding.

VIII. COMPARISONS

Three comparisons are made in this section: the dictionaries
learned by our algorithms are first compared to classical dictio-
naries, then they are compared together, and finally the M-DLA
is compared to the other dictionary learning algorithms.

A. Comparison With Classical Dictionaries

In this section, the test set is used for the comparison,
although the characters are not rotated any more, and only com-
ponent is considered (to be in the real unicomponent case).
We compare the previous learned dictionaries for the non-ori-
ented approach (the NOLD, with ) and the oriented
approach (the OLD, with ) to the classical dictionaries
based on fast transforms, including: discrete Fourier transform
(DFT), discrete cosine transform (DCT), and biorthogonal
wavelet transform (BWT) (different types of wavelets that give
similar performances; we only present the CDF 9/7). For each
dictionary, -sparse approximations are computed on the test
set, and the reconstruction rate is then computed. This is
defined as:

(16)

The rate is represented as a function of in Fig. 9.
We see that for a very few coefficients, the signals are re-

constructed better with learned dictionaries (NOLD and
OLD ) than with Fourier based dictionaries (DFT and
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TABLE I
RECONSTRUCTION RATE RESULTS ON THE TEST SET

Fig. 10. Utilization matrix for the OLD on set . The means of the
absolute values of the coefficients is given as a function of the kernel indices
and the letters. The letters with are those that are revolved.

DCT), which are themselves better than5 wavelets (BWT). The
results show the optimality of learned dictionaries over generic
ones. If the dictionary learning is long compared to fast trans-
forms, it is computed a single time for a given application. For
the NOLD, only 7 atoms are needed to reach a rate of 90%, and
the asymptote is at 93%. Furthermore, what-
ever . Rotation invariance is thus useful even without data
rotation, as it provides a better fit of the variabilities between
the different realizations.
Rates beyond are not represented in Fig. 9, although

the classical dictionaries can be seen to reach a reconstruction
rate of 100%; they span all of the space, in contrast to learned
dictionaries. This is because generic dictionaries are bases of the
space, whereas learned dictionaries can be considered as a sort
of bases of the studied phenomenon. In DLAs, the sparse ap-
proximation algorithm selects strong energy patterns, and these
are then learned. So all of the signal parts that are never selected
are never learned, which generally means the noise, although
not always.

B. Comparison Between Oriented and Non-Oriented Learning

In Section VII-D, we only evaluated the rotation invariance
of the decompositions with rotated data, and not the rotation
invariance of the learning. The data in the test set were revolved,
but not the data of the learning set. Here, we propose to study the
rotation invariance of the whole learning method with rotated
training signals.

5Note that this is due to the piecewise sinus aspect of the signals studied. This
confirms that DCT appears to be the more adapted to motion data [65].

TABLE II
SIMILARITY CRITERION RESULTS ON THE TEST SET

In this comparison, learning and decompositions are carried
out on datasets (including the training set and the test set),
which are revolved at different angles. contains the original
data, contains the original data and the data revolved by 120
contains the original data and the data revolved by 120 and

240 , and contains the original data and the data revolved by
random angles. The training sets allow the learning of different
dictionaries: the NOLD with 9 kernels and the OLD with 12,
18, 24, and 30 kernels. The decompositions on the test sets give
the reconstruction rates , with .
Table I gives the results of the reconstruction rates according

to the datasets (columns) and the dictionary type (rows). For
the non-oriented learning, the results are similar, whatever the
dataset. For oriented learnings, the approximation quality in-
creases with the kernel number. The extra kernels can span the
space better. However, even with 30 kernels, the OLD shows re-
sults worse than the NOLD with only 9 kernels. Moreover, the
reconstruction rate decreases when number of different angles
in the dataset increases, with revolved letters are considered as
new letters.
These results only allow the approximation quality to be seen,

and not the rotation invariance and the reproducibility of the
decompositions. So, a similarity criterion is going to be set up,
using the utilization matrix. As explained in Section VII-B, this
matrix is formed by computing the means of coefficients abso-
lute values of the test-set decompositions. As seen in Fig. 10, the
values are given as a function of the kernel indices (ordinate)
and the letters (abscissa). Fig. 10 shows the utilization matrix
computed on for the OLD, with . It can be seen that
it is not the same kernels that are used to code a letter and its ro-
tation, denoted by . To evaluate this phenomenon, the simi-
larity criterion is defined as the mean of the normalized scalar
products between the column of a letter and that of its rotation.
Table II summarizes the mean scalar product given in the

percentage according to the datasets (columns) and the dictio-
nary type (rows). The criterion definition and the test-set de-
sign were chosen to give 100% in the reference non-ori-
ented case. This remains at 100% whatever the dataset, which
shows the rotation invariance. However, in reality, it is no use to
carry out learning on the rotated data. As seen in Section VII-D,
non-oriented learning on the original data is sufficient for an
adapted dictionary that is robust to rotations.
For the oriented learnings, although bigger dictionaries give

better reconstruction rates (Table I), they have poorer similarity
criteria, as multiple kernels tend to scatter the information.
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Therefore, artificially increasing the dictionary size is not a
good idea for sparse coding, because it damages the results.
Furthermore, increasing the number of different angles in the
dataset gives better reproducibility, as the signals no longer
influence the learning through a fixed orientation, and conse-
quently the oriented kernels are the more general.

C. Comparison With Other Dictionary Learning Algorithms

We now compare our method to other DLAs. The advantages
of online learning have already been pointed out in [11], [57],
[58], so our experiment is on the robustness to shift-invariance.
M-DLA is used in real and unicomponent cases, to compare
it with the existing learning methods: K-SVD [8], the shift-in-
variant version of K-SVD [46] known as SI-K-SVD, and the
shift-invariant ILS-DLA [48] (the shift factor is set as up to 1),
which is indicated as SI-ILS-DLA in the following.
This comparison is based on the experience described in [46].

A dictionary of kernels is created randomly and the
kernel length is 18 samples. The training set is composed of

2000 signals of length 20, and it is synthetically gen-
erated from this dictionary. For the kernels, circular shifts are
not allowed, and so only three shifts are possible. Each training
signal is composed of the sum of three atoms, for which the
amplitudes, kernels indices and shift parameters are randomly
drawn. White Gaussian noise is also added at several levels: an
SNR of 10, 20, and 30 dB, and without noise. All of the learning
algorithms are applied with the same parameters, with the dic-
tionary initialization made on the training set, and the sparse
approximation step carried out by OMP. The learned dictionary
is returned after 80 iterations. Classical K-SVD is also tested,

with hopes of recovering an atoms dictionary of 135 atoms (the
45 kernels in the three possible shifts).
In the experiment, a learned kernel is considered as detected,
i.e., recovered, if its inner product with its corresponding
original kernel is such that

(17)

The high threshold of 0.99 was chosen by [46]. For each
learning algorithm, the detection rate of the kernels is plotted
as a function of the noise level, which was averaged over five
tests (Fig. 11).
This experiment only tests the algorithm precision. In our

case, the online alternation provides learning that is fast, but
not so precise, due to the stochastic noise that is induced by the
random choice of a training signal at each iteration. We observe
that 80% of the are between 0.97 and 1.00, with only a
few above the severe threshold of 0.99. To be comparable with
batch algorithms, which are more precise at each step, the clas-
sical strategy for the adaptive step proposed in Section V-A is
adapted to the constraints of this experiment.With 2000 training
signals, we prefer to keep a constant step for one loop of the
training set. Moreover, the step is increased faster, to provide
satisfactory convergence after 80 iterations. For the first 40 it-
erations, the step is set up as: , and then it
is kept constant for the last iterations: . The results
obtained are now plotted in Fig. 11.
Fig. 11 shows that having a shift-invariant model is obviously

relevant. For shift-invariant DLAs, this underlines their ability
to recover the underlying shift-invariant features. However, we
observe that the M-DLA performance decreases when the noise

Fig. 11. Detection rate as a function of noise level for K-SVD (diamonds),
SI-K-SVD (squares), SI-ILS-DLA (circles) and M-DLA (stars).

levels increase, contrary to SI-K-SVD and SI-ILS-DLA, which
appear not to be influenced in this way. Despite its stochastic up-
date, our algorithm recovers the original dictionary in a similar
proportion to the batch algorithms. This experiment supports the
analysis of [56] relating to learning, where each step does not
need to be minimized exactly to converge towards the expected
solution.

IX. DISCUSSION

Dictionary learning allows signal primitives to be recovered.
The resulting dictionary can be thought of as a catalog of el-
ementary patterns that are dedicated to the application consid-
ered and that have a physical meaning, as opposed to classical
dictionaries such as wavelets, curvelets, etc. Therefore, decom-
positions based on such a dictionary are made sparsely on the
underlying features of the signal set studied. For the rRMSE,
the few atoms used in the decompositions shows the efficiency
of this sparse-coding method.
The non-oriented approach for sparse coding reduces the dic-

tionary size in two ways:
1) when the signals studied cannot rotate, the non-oriented ap-
proach detects rotational invariants (the vertical strokes of
letters and , for example), which reduces the dictionary
size;

2) when the signals studied can rotate. To provide efficient
sparse coding, the oriented approach needs to learn motion
primitives for each of the possible angles. Conversely, in
the non-oriented case, single learning is sufficient. This
provides a noticeable reduction of the dictionary size.

In this way, the shift-invariant and rotation invariant cases
provide a compact learned dictionary . Moreover, the
non-oriented approach allows robustness for any writing direc-
tion (tablet rotation) and for any writing inclination (intra- and
inter-user variabilities). When added to a classification step,
the angles information allows the orientation of the writing
baseline to be given.
Recently, Mallat notes [66] that the key for the classifica-

tion is not the representation sparsity but its invariances. In
our 2DRI case, the decompositions are invariant to temporal
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shift (parameter ), to rotation (parameter ), to scale (param-
eter ) and to spatial translation (use of velocity signals in-
stead of position signals). Based on these considerations, we are
also working on the classification of sparse codes, to carry out
gesture recognition, and the first experiments look promising.
Spikegrams appear to be good representations for classification,
and their reproducibility can be exploited. The classification re-
sults are interesting, because kernels are learned only with
data-fitting criterion of unsupervised dictionary learning, and so
without discriminative constraints. It appears that recovering the
primitives underlying the features of a signal set via a sparsity
constraint allows this set to be described discriminatively.
Motion data is new with regards to custom sparse coding

applications. Recently, we have taken cognizance of a work
made on multicomponent motion signals. In [67], Kim et al.
use a tensor factorization with tensor constraints to make a
multicomponent dictionary learning. Modelized by the multi-
variate framework and processed by our proposed algorithms,
this problem is solved without the heavy tensor formalism.

X. CONCLUSION

In contrast to the well-known multichannel framework, a
multivariate framework was introduced to more easily present
our methods relating to bivariate signals. First, the multivariate
sparse-coding methods were presented: Multivariate OMP,
which provides sparse approximations for multivariate sig-
nals, and Multivariate DLA, which is a learning algorithm
that empirically learns the optimal dictionary associated to
a multivariate signal set. All of the dictionary components
are updated simultaneously. The resulting dictionary jointly
provides sparse approximations of all of the signals of the set
considered. This DLA is an online alternation between a sparse
approximation step carried out by M-OMP, and a dictionary
update that is optimized by stochastic Levenberg–Marquardt
second-order gradient descent. The online learning does not
disturb the performance of the dictionary obtained, even in the
shift-invariant case.
Then in dealing with bivariate signals, we wanted the de-

compositions to be independent of the orientation of the move-
ment execution in 2D space. To provide rotation invariant sparse
coding, the methods were simply specified to the 2D rotation
invariant case, known as 2DRI-OMP and 2DRI-DLA. Rotation
invariance is useful, but not only when the data are rotated, as
it allows to code variabilities. Moreover, shift-invariant and ro-
tation invariant cases induce a compact learned dictionary and
are useful for classification. As validation, these methods were
applied to 2D handwritten data.
The methods applications are dimensionality reduction, de-

noising, gesture representation and analysis, and all of the other
processing that is based on multivariate feature extraction. The
prospects under consideration are to extend these methods to
3D rotation invariance for trivariate signals, and to present the
classification step that is applied to the spikegrams and the as-
sociated results.

APPENDIX A
CONSIDERATIONS FOR THE IMPLEMENTATION

We are going to look at the OMP complexity for the dif-
ferent approaches in the shift-invariant case. Often enough, the

acquired signals are dyadic (i.e., the signal size is a power
of 2). If they are not, they are lengthened by zero-padding to

samples, with as the first power of 2 to the . So,
in the unicomponent case, the correlation is computed by FFT
in for each kernel. In the multivariate case, the
multivariate correlation is the sum of the component correla-
tions, and it is computed in for each kernel.
To retrieve the classical case, we can simply vectorize the

signal from to . However, zero-padding be-
tween the components is necessary, otherwise the kernel compo-
nents can overlap two consecutive signal components during the
correlation. Limiting the kernels length to samples (which
is a loss of flexibility) with the size of the longest kernel,
zero-padding of samples has to be carried out between two
consecutive components.
This zero-padded signal of samples is lengthened

again, in order to be dyadic. Finally, the correlation complexity
is for each kernel.
Moreover, for the selection step, investigations need to be lim-
ited to the first samples of the correlation obtained. To
conclude, themultivariate framework is easier to implement and
has lower complexity than the classical framework with vector-
ized data.

APPENDIX B
COMPLEX GRADIENT OPERATOR

The gradient operator was introduced by Brandwood in [68].
Assuming , the complex derivation rules are

and

[68] showed that the direction of maximum rate of change of an
objective function with is

1) The derivation of with respect to

Thus: . This gives the selection
step of the OMP (algorithm 1).
2) The derivation of with respect to

Thus: . This gives the first-order part of the
update of theM-DLA. The complex least mean squares (CLMS)
obtained by the pseudo-gradient [69] is retrieved (give or take
a factor of 2). For the complex Hessian, we make reference to
[70].
In the shift-invariant case, all of the translations of a consid-

ered kernel are taken into account in the dictionary update:
, with the error localized at and

restrained to the temporal support (i.e., ).
This gives the shift-invariant update of the M-DLA (10).
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APPENDIX C
CALCULUS OF THE HESSIAN

In this Appendix, we explain the calculation of the Hessian
. This allows the adaptive step to be specified to each kernel
, and the convergence of the well-used kernels to be stabilized

at the beginning of the learning.
An average Hessian is computed for each kernel , not

for each sample, to avoid fluctuations between neighboring sam-
ples. is thus reduced to a scalar. Assuming the hypothesis
of sparsity (a few atoms are used for the approximation), the
overlap of selected atoms is initially considered as nonexistent.
So the cross-derivative terms of are null, and we have

(18)

For overlapping atoms, the learning method can become un-
balanced, due to the error in the gradient estimation. We over-
estimate the Hessian slightly to compensate for this. All

are sorted and then indexed by , such that:
, with as the cardinal of

the set . Denoting as the length of the kernel at the
iteration , the set is defined as:

. This allows for the identification of overlap
situations. The cross-derivative terms of are no longer con-
sidered to be null, and their contributions are proportional to

. Double-overlap
situations are not considered, when . Due to
the hypothesis of sparsity, these situations are considered to be
very rare (as is verified in practice), and they are compensated
for by overestimating . The absolute value of the cross terms
is taken: . The absolute value
is not disturbing, even without double overlap, as it is better
to slightly overestimate than to underestimate it (it would
better move a little but surely). Finally, we propose for the
following approximation quickly computed:

(19)

The following comments can be made regarding (19):
• if the gap between two atoms is always greater than , the
first approximation of (18) is recovered;

• when the overlap is weak, the cross-products have little
influence on the Hessian;

• intra-kernel overlaps have been considered, but not inter-
kernel ones. However, we see that inter-kernel overlaps do
not disturb the learning, so we ignore their influence.

The update step based on (10) and (19) is called LM-update
(step 5, Algorithm 3).
Without the Hessian in (10), a first-order update is retrieved.

In this case, the convergence speed of a kernel is directly linked
to the sum of its decomposition coefficients. Advantage of the
Hessian is to tend to make the convergence speed similar for all
kernels, independently of their uses in the decompositions. Con-
cerning the approximation of the Hessian, at the beginning of the
learning, kernels which are still white noises overlap frequently
and method can become unbalanced. Increasing the Hessian,
the approximation thus stabilizes the beginning of the learning
process. After, since kernels converge, overlaps are quite rare
and the approximation of the Hessian is closed to (18).
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