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Shift & 2D Rotation Invariant Sparse Coding
for Multivariate Signals

Quentin Barthélemy, Anthony Larue, Aurélien Mayoue, David Mercier and Jérôme I. Mars

Abstract—Classical dictionary learning algorithms (DLA) al-
low unicomponent signals to be processed. Due to our interest in
two-dimensional (2D) motion signals, we wanted to mix the two
components to provide rotation invariance. So, multicomponent
frameworks are examined here. In contrast to the well-known
multichannel framework, a multivariate framework is first in-
troduced as a tool to easily solve our problem and to preserve
the data structure. Within this multivariate framework, we then
present sparse coding methods: multivariate orthogonal matching
pursuit (M-OMP), which provides sparse approximation for
multivariate signals, and multivariate DLA (M-DLA), which
empirically learns the characteristic patterns (or features) that
are associated to a multivariate signals set, and combines shift-
invariance and online learning. Once the multivariate dictionary
is learned, any signal of this considered set can be approximated
sparsely. This multivariate framework is introduced to simply
present the 2D rotation invariant (2DRI) case. By studying 2D
motions that are acquired in bivariate real signals, we want
the decompositions to be independent of the orientation of the
movement execution in the 2D space. The methods are thus
specified for the 2DRI case to be robust to any rotation: 2DRI-
OMP and 2DRI-DLA. Shift and rotation invariant cases induce
a compact learned dictionary and provide robust decomposition.
As validation, our methods are applied to 2D handwritten data to
extract the elementary features of this signals set, and to provide
rotation invariant decomposition.

Index Terms—Sparse coding; rotation invariant; shift-
invariant; multivariate; multichannel; orthogonal matching pur-
suit; dictionary learning algorithm; online learning; handwritten
data; trajectory characters.

I. INTRODUCTION

In the signal processing and machine-learning communities,
sparsity is a very interesting property that is used more
and more in several contexts. It is usually employed as a
criterion in a transformed domain for compression, compress
sensing, denoising, demoisaicing, etc. [1]. As we will consider,
sparsity can also be used as a feature extraction method, to
make emerge from data the elements that contain relevant
information. In our application, we focus on the extraction
of primitives from the motion signals of handwriting.

To process signals in a Hilbert space, we define the matrix
inner product as 〈A,B〉= trace(BHA), with (.)H representing
the conjugate transpose operator. Its associated Frobenius
norm is represented as ‖.‖ . Considering a signal y ∈ CN
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that is composed of N samples and a dictionary Φ ∈CN×M
composed of M atoms {φm}Mm=1, the decomposition of the
signal y is carried out on the dictionary Φ such that:

y = Φx+ ε , (1)

assuming x ∈ CM , the coding coefficients, and ε ∈ CN ,
the residual error. The approximation of y is ŷ = Φx. The
dictionary is generally normed, which means that its columns
(atoms) are normed, so that the coefficients x reflect the
energy of each atom present in the signal. Moreover, the
dictionary is said redundant (or overcomplete) when M>N :
the linear system of Eq. (1) is thus under-determined and has
multiple possible solutions. The introduction of constraints,
such as positivity, sparsity or others, allows the solution to be
regularized. In particularly, the decomposition under a sparsity
constraint is formalized by:

minx ‖x‖0 s.t. ‖ y − Φx ‖2≤C0 , (P0)

where, C0 is a constant, and ‖x‖0 the `0 pseudo-norm is
defined as the cardinal of the x support 1. The formulation
of (P0) includes a term of sparsification to obtain the sparsest
vector x and a data-fitting term.

To obtain the sparsest solution for (P0), let us imagine a
dictionary Φ that contains all possible patterns. This allows
any signal to be approximated sparsely, although this would
be too huge to store and the coefficients estimation would be
intractable. Therefore, we have to make a choice about the
dictionary used, with there being three main possibilities.
First, we can choose among classical dictionaries, such as
Fourier, wavelets [2], curvelets [3], etc. If these generic
dictionaries allow fast transforms, their morphologies deeply
influence the analysis. Wavelets are well adapted for studying
textures, curvelets for edges, etc., each dictionary being ded-
icated to particular morphological features. So, to choose the
ad hoc dictionary correctly, we must have an a priori about
the expected patterns.
Secondly, several of these dictionaries can be concatenated,
as this allows the different components to be separated, each
being sparse on its dedicated sub-dictionary [4], [5]. If it is
more flexible, we always need to have an a priori of the
expected patterns.
Thirdly, we let the data choose their optimal dictionary them-
selves. Data-driven dictionary learning allows sparse coding:
elementary patterns that are characteristic of the dataset are
learned empirically to be the optimal dictionary that jointly
gives sparse approximations for all of the signals of this

1The support of x is support(x) = {m∈NM : xm 6=0} .
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set [6]–[8]. The atoms obtained do not belong to classical
dictionaries: they are appropriate to the considered application.
Indeed, for practical applications, learned dictionaries have
better results than classical ones [9], [10]. The fields of
applications comprise image [6]–[8], [11], audio [12]–[14],
video [15], audio-visual [16] and electrocardiogram [17], [18].

For multicomponent signals, we wish to be able to sparsely
code them. For this purpose, the existing methods concern-
ing sparse approximation and dictionary learning need to
be adapted to the multivariate case. Moreover, in studying
2D motions acquired in bivariate real signals, we want the
decompositions to be independent of the orientation of the
movement execution in the 2D space. The methods are thus
specified for the 2D rotation invariant (2DRI) case so that they
are robust to any rotation.

Here, we present the existing sparse approximation and
dictionary learning algorithms in Section II, and we look at the
multivariate and shift-invariant cases in Section III. We then
present multivariate orthogonal matching pursuit (M-OMP) in
Section IV, and the multivariate dictionary learning algorithm
(M-DLA) in Section V. To process bivariate real signals,
these algorithms are specified for the 2DRI case in Section
VI. For their validation, the proposed methods are applied to
handwritten characters in Section VII for several experiments.
We thus aim at learning an adapted dictionary that provides
rotation invariant sparse coding for these motion signals. Our
methods are finally compared to classical dictionaries and to
existing learning algorithms in Section VIII.

II. STATE OF THE ART

In this section, the state of the art is given for sparse
approximation algorithms, and then for DLAs. These are
expressed for unicomponent signals.

A. Sparse approximation algorithms

In general, finding the sparsest solution of the coding
problem (P0) is NP-hard [19]. One way to overcome this
difficulty is to simplify (P0) in a sub-problem:

minx ‖ y − Φx ‖2 s.t. ‖x‖0≤K , (P ′0)

with K � M , a constant. Pursuit algorithms [20] tackle
(P ′0) sequentially by increasing K iteratively, although this
optimization is non-convex: the solution obtained can be a
local minimum. Among the multiple `0-Pursuit algorithms,
the following examples are useful here: the famous matching
pursuit (MP) [21] and its orthogonal version, the OMP [22].
Their solutions are sub-optimal because the support recovery
is not guaranteed, especially for a high dictionary coherence
2 µΦ. Nevertheless, they are fast when we search very few
coefficients [23].

Another way consists of relaxing the sparsification term of
(P0) from a `0 norm to a `1 norm. The resulting problem is
called basis pursuit denoising [4]:

minx ‖x‖1 s.t. ‖ y − Φx ‖2≤C1 , (P1)

2The coherence of the normed dictionary Φ is µΦ = maxi 6=j |〈φi, φj〉|.

with C1 a constant. (P1) is a convex optimization problem
with a single minimum, which is the advantage with respect
to `0-Pursuit algorithms. Under some strict conditions [1],
the solution obtained is the sparsest one. Different algorithms
for solving this problem are given in [20], such as methods
based on basis pursuit denoising [4], homotopy [24], iterative
thresholding [25], etc. However, a high coherence µΦ does not
ensure that these algorithms recover the optimal x support [1],
and if this is the case, the convergence can be slow.

B. Dictionary learning algorithms

The aim of DLAs is to empirically learn a dictionary Φ
adapted to the signals set that we want to sparsely code [26].
We have a training set Y = {yp}Pp=1, which is representative
of all of the signals studied. In dictionary learning, interesting
patterns of the training set are iteratively selected and updated.
Most of the learning algorithms alternate between two steps:

1) the dictionary Φ is fixed, and coefficients x are obtained
by sparse approximation,

2) x is fixed, and Φ is updated by gradient descent.
Old versions of these DLAs used gradient methods to com-
pute the coefficients x [6], while new versions use sparse
approximation algorithms [7], [11]–[14], [27]. Based on the
same principle, the method of optimal directions (MOD) [17]
updates the dictionary with the pseudo-inverse. This method
is generalized in [18] under the name of iterative least-squares
DLA (ILS-DLA). There are also methods that do not use this
principle of alternative steps. K-SVD [8] is a simultaneous
learning algorithm, where at the 2nd step the x support is
kept: Φ and x are updated simultaneously by SVD.

At the end of all these learning algorithms, the dictionary
that is learned jointly provides sparse approximations of all of
the signals of the training set: it reflects sparse coding.

III. MULTIVARIATE AND SHIFT-INVARIANT CASES

In this section, we consider more particularly the multivari-
ate and the shift-invariant cases. Moreover, the link between
the classical (unicomponent) and the multivariate framework
is discussed.

A. Multivariate case

Up to this point, a unicomponent signal y ∈ CN has
been examined and its classical framework approximation
is illustrated in Fig. 1a. In the multicomponent case, the
signal studied becomes y ∈ CN×V , with V denoting the
number of components. Two problems can be considered,
which depending on the natures of Φ and x:
• Φ ∈ CN×M unicomponent and x ∈ CM×V multicompo-

nent, the well-known multichannel framework (Fig. 1b),
• Φ ∈ CN×M×V multicomponent and x ∈ CM unicompo-

nent, the multivariate framework (Fig. 1c), which consid-
ers Φx as an element-wise product along the dimension
M .

The difference between the multichannel and multivariate
frameworks is the approximation model, and we will detail
this for both frameworks.
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(a) (b) (c)

Fig. 1. Decomposition with classical (a), multichannel (b) and multivariate (c) frameworks. In (c), ∗̂ is considered as an element-wise product along the
dimension M .

Multichannel sparse approximation [28]–[31] is also known
as simultaneous sparse approximation (SSA) [32]–[36], sparse
approximation for multiple measurement vector (MMV) [37],
[38], joint sparsity [39] and multiple sparse approximation
[40]. In this framework, all of the components have the same
dictionary and each component has its own coding coefficient.
This means that all components are described by the same
profiles (atoms), although with different energies: each profile
is linearly mixed in the different channels. This framework is
also known as a blind source separation problem.

The multivariate framework can be considered as the inverse
framework: all of the components have the same coding
coefficient, and thus the multivariate signal y is approximated
sparsely as the sum of a few multivariate atoms φm. Data
that come from different physical quantities, that have dissim-
ilar characteristic profiles, can be aggregated in the different
components of the multivariate kernels: they must only be
homogeneous in their dimensionalities. To our knowledge,
this framework has been considered only in [41] for an MP
algorithm, although with a particular dictionary template that
included a mixing matrix. In the present study, we focus
mainly on this multivariate framework, with Φ multivariate
and normed (i.e. each multivariate atom is normed, such that
‖φm‖=1).

In this paragraph, we consider DLAs that deal with mul-
ticomponent signals. Based on the multichannel framework,
the dictionary learning presented in [42] uses a multichannel
MP for sparse approximation and the update of K-SVD.
We note that the two channels considered are then updated
alternatively. In bimodal learning with audio-visual data [16],
each modality (audio/video) has its own dictionary and its own
coefficient for the approximation, and the two modalities are
updated simultaneously. We also mention [43] based on the
multichannel framework: they used multiplicative updates for
ensuring the non-negativity of parameters.

B. The shift-invariant case

In the shift-invariant case, we want to sparsely code the
signal y as a sum of a few short structures, known as kernels,
that are characterized independently of their positions. This
model is usually applied to time series data, and it avoids
block effects in the analysis of largely periodic signals and
provides a compact kernel dictionary [12], [13].

The L shiftable kernels (or generating functions) of the
compact dictionary Ψ are replicated at all of the positions,
to provide the M atoms (or basis functions) of the dictionary
Φ. The N samples of the signal y, the residue ε, and the
atoms φm are indexed 3 by t. The kernels {ψl}Ll=1 can have
different lengths. The kernel ψl(t) is shifted in the τ samples
to generate the atom ψl(t− τ): zero padding is carried out to
have N samples. The subset σl collects the active translations
τ of the kernel ψl(t). For the few kernels that generate all of
the atoms, Eq. (1) becomes:

y(t)=

M∑
m=1

xmφm(t)+ε(t)=

L∑
l=1

∑
τ∈σl

xl,τψl(t−τ)+ε(t) . (2)

Due to shift-invariance, Φ is the concatenation of L Toeplitz
matrices [14], and is L times overcomplete. In this case, the
dictionary is said convolutional. As a result, in the present
study, the multivariate signal y is approximated as a weighted
sum of a few shiftable multivariate kernels ψl.

Some DLAs are extended to the shift-invariant case. Here
all of the active translations of a considered kernel are taken
into account during the update step [12]–[15], [44], [45].
Furthermore, some of them are modified, to deal with the
disturbances introduced by the overlapping of the selected
atoms, such as extensions of K-SVD [46], [47] and ILS-DLA
(with a shift factor of 1) [48].

C. Remarks on the multivariate framework

Usually, the multivariate framework is approached using
vectorized signals. The multicomponent signal is vertically
vectorized from y ∈CN×V to y ∈CNV×1, and the dictionary
from Φ∈CN×M×V to Φ∈CNV×M . After applying the classical
OMP, the processing is equivalent to the multivariate one. In
this paragraph, we explore the advantages of using the mul-
tivariate framework, rather than the classical (unicomponent)
one.

In our case, the different components are acquired simulta-
neously, and the multivariate framework allows this temporal
structure of the acquired data to be keep. Moreover, these
components can be very heterogeneous physical quantities.
Vectorizing components causes a loss of physical meaning

3Remark that a(t) and a(t− t0) do not represent samples, but the signal
a and its translation of t0 samples.
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for signals and for dictionary kernels, and more particularly
when the components have dissimilar profiles. We prefer to
consider the data studied as being multicomponent: the signals
and the dictionary have several simultaneous components,
as illustrated in the following figures. For the algorithmic
implementation, in the shift-invariant case the multivariate
framework is easier to implement and has a lower complexity
than the classical one with vectorized data (see Appendix A).

Moreover, the multivariate framework sheds new light on
the topic when multicomponent signals are being processed
(see Section IV-B). Furthermore, presented in this way, the
2DRI case is viewed as a simple specification of the mul-
tivariate framework, mostly involving the selection step (see
Section VI). The rotation mixes the two components which
are acquired simultaneously but which were independent pre-
viously, that is easy to see with multivariate signals as opposed
to vectorized ones.

Consequently, the multivariate framework is principally in-
troduced for the clearness of the explanations and for the ease
of algorithmic implementation. Thus, we are going to present
multivariate methods that existed under another less-adapted
formalism, and were introduced in [49], [50]: Multivariate
OMP and Multivariate DLA.

IV. MULTIVARIATE ORTHOGONAL MATCHING PURSUIT

In the present study, sparse approximation can be achieved
by any algorithm that can overcome the high coherence that
is due to the shift-invariant case. For real-time applications,
OMP is chosen because of its trade-off between speed and
performance [23]. In this section, OMP and M-OMP are
explained step by step.

A. OMP presentation

As introduced in [22], OMP is presented here for the uni-
component case and with complex signals. Given a redundant
dictionary, OMP produces a sparse approximation of a signal
y (Algorithm 1). It solves the least squares problem (P ′0) on
an iteratively selected subspace.

After initialization (step 1), at the current iteration k, OMP
selects the atom that produces the absolute strongest decrease
in the mean square error (MSE)

∥∥εk−1
∥∥2

2
. This is equivalent to

finding the atom that is the most correlated to the residue εk−1

(see Appendix B). In the shift-invariant case, the inner product
between the residue and each atom φm is now replaced by the
correlation with each kernel ψl (step 4), which is generally
computed by fast Fourier transform. The non-circular complex
correlation between signals a(t) and b(t) is given by:

Γ {a, b} (τ) = 〈a(t), b(t− τ)〉 = bH(t− τ) a(t) . (3)

The selection (step 6) determinates the optimal atom, char-
acterized by its kernel index lkmax and its position τkmax.
An active dictionary Dk is formed, which collects all of the
selected atoms (step 7), and the signal y is projected onto this
selected subspace. Coding coefficients xk are computed via
the orthogonal projection of y on Dk (step 8). This is carried
out recursively, by block matrix inversion [22]. The vector
obtained, xk =

[
xl1max;τ1

max
;xl2max,τ2

max
... xlkmax,τkmax

]T
, is

reduced to its active (i.e. nonzero) coefficients, denoting by
(.)T , the transpose operator.

Different stopping criteria (step 11) can be used: a threshold
on k, the number of iterations, a threshold on the relative root
MSE (rRMSE)

∥∥εk∥∥
2
/‖y‖2, or a threshold on the decrease

in the rRMSE. In the end, the OMP provides a K-sparse
approximation of y:

ŷK =

K∑
k=1

xmkmaxφmkmax =

K∑
k=1

xlkmax,τkmaxψlkmax(t−τkmax). (4)

The convergence of OMP is demonstrated in [22], and its
recovery properties are analyzed in [23], [51].

Algorithm 1 : x = OMP (y,Ψ)

1: initialization : k = 1, ε0 =y, dictionary D0 =∅
2: repeat
3: for l← 1, L do
4: Correlation : Ckl (τ)← Γ

{
εk−1, ψl

}
(τ)

5: end for
6: Selection : (lkmax, τ

k
max)← arg max l,τ

∣∣ Ckl (τ)
∣∣

7: Active Dictionary : Dk ← Dk−1 ∪ ψlkmax(t− τkmax)

8: Active Coefficients : xk←arg minx
∥∥ y −Dkx

∥∥2

2
9: Residue : εk ← y −Dkxk

10: k ← k + 1
11: until stopping criterion

B. Multivariate OMP presentation

After the necessary OMP review, we now present the M-
OMP (Algorithm 2), to handle the multivariate framework de-
scribed previously (Section III-A and III-C). The multivariate
framework is mainly taken into account in the computation
of the correlations (step 4) and the selection (step 6). The
following notation is introduced: a[u](t) is the uth component
of the multivariate signal a(t).

For a comparison between the two frameworks from Section
III-A, we look at the selection step, with the objective function
named as S:

(lkmax, τ
k
max)← arg max l,τ Sl(τ) . (5)

In the multichannel framework, selection is based on the inter-
channel energy:

Sl(τ) =

V∑
u=1

∣∣ Γ
{
εk−1[u], ψl

}
(τ)
∣∣s =

V∑
u=1

| Γ[u](τ) |s

= ‖ Γ(τ) ‖ss , (6)

with s = 1, 2 or ∞ [38]. The search for the maximum of
the `s norms applied to the vectors Γ(τ) is equivalent to
applying a mixed norm to the correlation matrix Γ. This
provides a structured sparsity that is similar to the Group-
lasso, as explained in [40].
In the multivariate framework that we will consider, the selec-
tion is based on the average correlation of the V components.
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Using the definition of the inner product given in section I,
we have:

Sl(τ) =

∣∣∣∣∣
V∑
u=1

Γ
{
εk−1[u], ψl[u]

}
(τ)

∣∣∣∣∣ =

∣∣∣∣∣
V∑
u=1

Γ[u](τ)

∣∣∣∣∣
= | trace( Γ(τ) ) | =

∣∣ 〈εk−1(t), ψl(t− τ)
〉 ∣∣ . (7)

In fact, this selection is based on the inner product, which is
comparable to the classical OMP, but in the multivariate case.
Added to the difference of the approximation models (Sec-
tion III-A), these two frameworks do not select the same
atoms. Due to the absolute values, the non-collinearity or
anticollinearity of components Γ[u] are not taken into account
in Eq. (6), and the multichannel selection is only based
on the energy. The multivariate selection (Eq. (7)) is more
demanding, and it searches for the optimal trade-off between
components Γ[u]: it keeps the atom that best-fits the residue in
each component. The selections are equivalent if all Γ[u] are
collinear and in the same direction. The differences between
these two types of selection have also been discussed in [41],
[52].

The active dictionary Dk is also multivariate (step 7). For
the orthogonal projection (step 8), the multivariate signal y∈
CN×V (resp. dictionary Dk ∈CN×k×V ) is vertically unfolded
along the dimension of the components in a unicomponent
vector yc ∈ CNV×1 (resp. matrix Dkc ∈ CNV×k). Then, the
orthogonal projection of yc on Dc is recursively computed, as
in the unicomponent case, using block matrix inversion [22].
For this step, in the multichannel framework coefficients x
are simply computed via the orthogonal projection of y on the
active dictionary D [31].

At the end of this, the M-OMP provides a multivariate
K-sparse approximation of y. Compared to the OMP, the
complexity of the M-OMP is only increased by a factor of
V , the number of components.

Algorithm 2 : x = Multivariate OMP (y,Ψ)

1: initialization : k = 1, ε0 =y, dictionary D0 =∅
2: repeat
3: for l← 1, L do
4: Correlation : Ckl (τ)←

∑V
u=1Γ

{
εk−1[u], ψl[u]

}
(τ)

5: end for
6: Selection : (lkmax, τ

k
max)← arg max l,τ

∣∣ Ckl (τ)
∣∣

7: Active Dictionary : Dk ← Dk−1 ∪ ψlkmax(t− τkmax)

8: Active Coefficients : xk←arg minx
∥∥ yc−Dkcx

∥∥2

9: Residue : εk ← y −Dkxk

10: k ← k + 1
11: until stopping criterion

V. MULTIVARIATE DICTIONARY LEARNING ALGORITHM

In this section, we first provide a global presentation of the
Multivariate DLA, and then remarks are given. Added to the
multivariate aspect, the novelty of this DLA is to combine
shift-invariance and online learning.

A. Algorithm presentation

For more simplicity, a non-shift-invariant formalism is used
in this short introduction, with the atoms dictionary Φ. We
have a training set of multivariate signals Y = {yp}Pp=1 and
the index p is added to the variables. In our learning algorithm,
named M-DLA (Algorithm 3), each training signal yp is
treated one at a time. This is an online alternation between two
steps: a multivariate sparse approximation and a multivariate
dictionary update. The multivariate sparse approximation (step
4) is carried out by M-OMP:

xp = arg minx ‖ yp − Φx ‖2 s.t. ‖x‖0 ≤ K , (8)

and the multivariate dictionary update (step 5) is based on
maximum likelihood criterion [6], on the assumption of Gaus-
sian noise:

Φ=arg minΦ ‖ yp − Φxp ‖2 s.t. ∀m∈NM , ‖φm‖=1. (9)

This criterion is usually optimized by gradient descent
[12]–[14]. To achieve this optimization, we set up a stochas-
tic Levenberg-Marquardt second-order gradient descent [53].
This increases the convergence speed, blending together the
stochastic gradient and Gauss-Newton methods. The current
iteration is denoted as i. For each multivariate kernel ψl, the
update rule is given by (see Appendix B):

ψil(t) = ψi−1
l (t)+(Hi

l +λi.I)−1·
∑
τ∈σl

xi ∗l,τ ;p ε
i−1
p (t+τ) , (10)

with t as the indices limited to the ψl temporal support, λ
the adaptive descent step, and Hl the Hessian computed as
explained in Appendix C. This step is called LM-update (step
5). There are multiple strategies concerning the adaptive step:
the classical choice λi = λ0 · i is made (with λ0 = 1). The
multivariate framework is taken into account in the dictionary
update, with all of the components ψl[u] of the multivariate
kernel ψl updated simultaneously. Moreover, the kernels are
normalized at the end of each iteration, and their lengths can
be modified. Kernels are lengthened if there is some energy
in their edges and shortened otherwise.

At the beginning of the algorithm, the kernels initialization
(step 1) is based as white Gaussian noise. At the end, different
stopping criteria (step 8) can be used: a threshold on the
rRMSE computed for the whole of the training set, or a
threshold on i, the number of iterations. In M-DLA, the M-
OMP is stopped by a threshold on the number of iterations.
We cannot use rRMSE here, because at the beginning of the
learning, the kernels of white noise cannot span a given part
of the space studied.

B. Remarks about the learning processes

In this paragraph, a non-shift-invariant formalism is used for
simplicity, with the atom dictionary Φ. We define Y ={yp}Pp=1
as the training set.

The learning algorithms K-SVD [8] and ILS-DLA [18]
have batch alternation: sparse approximation is carried out
for the whole finite training set Y , and then the dictionary is
updated. If the usual convergence of the algorithms is observed
empirically, theoretical proof of the strict decrease in the MSE
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Algorithm 3 : Ψ = Multivariate DLA ({yp}Pp=1)

1: initialization : i = 1,Ψ0 = {L kernels of white noise}
2: repeat
3: for p← 1, P do
4: Sparse Approximation : xip ← M-OMP (yp,Ψ

i−1)
5: Dictionary Update : Ψi←LM-update(yp, x

i
p,Ψ

i−1)
6: i← i+ 1
7: end for
8: until stopping criterion

at each iteration is not available, due to the non-convexity
of the sparse approximation step carried out using `0-Pursuit
algorithms. Convergence properties for dictionary learning are
discussed in [54], [55].
An online (also known as continuous or recursive) alternation
can be set up, where each training signal is processed one at a
time. The dictionary is updated after the sparse approximation
of each signal yp (so there is P more updates than for batch
alternation). The processing order of the training signals is
often random, so as not to influence the optimization path
in a deterministic way. The first-order stochastic gradient
descent used in [11] provides a learning algorithm with low
memory and computational requirements, with respect to batch
algorithms. Bottou and Bousquet [56] explained that in an
iterative process, each step does not need to be minimized
perfectly to reach the expected solution. Thus, they proposed
the use of stochastic gradient methods. Based on this, the
faster performances of online learning are shown in [57], [58],
for small and large datasets. An online alternation of ILS-
DLA, known as recursive least-squares DLA (RLS-DLA), is
presented in [59], and this also shows better performances.
Our learning algorithm is an online alternation, and we can
tolerate fluctuations in the MSE. The stochastic nature of the
online optimization allows a local minimum to be drawn out.
Contrary to the K-SVD and ILS-DLA, we have never observed
that the learning gets stuck in a local minimum close to the
initial dictionary.

The non-convex optimization of the M-OMP, the alternating
minimization and the stochastic nature of our online algorithm
do not allow to ensure the convergence of the M-DLA towards
the global minimum. However we find a dictionary, minimum
local or global, which assures the decompositions sparsity.

VI. THE 2D ROTATION INVARIANT CASE

Having presented the M-OMP and the M-DLA, these algo-
rithms are now simply specified for the 2D rotation invariant
case.

A. Method presentation

To process bivariate real data, we specify the multivariate
framework for the bivariate signals. The signal under study,
y∈RN×2, is now considered. Eq. (2) becomes:{

y[1](t)

y[2](t)

}
=

L∑
l=1

∑
τ∈σl

xl,τ

{
ψl[1](t− τ)

ψl[2](t− τ)

}
+ ε(t) , (11)

with { · } representing the multivariate concatenation, not the
vertical one. This case will be referred to as the oriented case
in the following, as bivariate real kernels cannot rotate and are
defined in a fixed orientation.

Studying bivariate data, such as 2D movements, we aspire to
characterize them independently of their orientations. M-OMP
is now specified for this particular 2DRI case. The rotation
invariance implies the introduction of a rotation matrix R ∈
R2×2 of angle θl,τ for each bivariate real atom ψl(t− τ). So
Eq. (11) becomes:{

y[1](t)

y[2](t)

}
=

L∑
l=1

∑
τ∈σl

xl,τR(θl,τ )

{
ψl[1](t−τ)

ψl[2](t−τ)

}
+ ε(t) .

(12)
Now, in the selection step (Algorithm 2, step 6), the aim is
to find the angle θlkmax,τkmax that maximizes the correlations∣∣Ckl (τ, θl,τ )

∣∣. A naive approach is the sampling of θl,τ into
Θ angles and the addition of a new degree of freedom
in the correlations computation (Algorithm 2, step 4). The
complexity is increased by a factor of Θ with respect to the M-
OMP used in the oriented case. Note that this idea is used for
processing bidimensionnal signals y∈RN1×N2 such as images
[60], although this represents a problem different from ours.

To avoid this additional cost, we transform the signal y from
RN×2 to CN (i.e. y ← y[1]+y[2]i, with the imaginary number
i). The kernels and coding coefficients are now complex as
well. Retrieving Eq. (2), the M-OMP is now applied. For
the coding coefficients, the modulus gives the coefficient
amplitude and the argument gives the rotation angle:

xl,τ = |xl,τ | · e i θl,τ . (13)

Finally, the decomposition of signal y∈CN is given as:

y(t) =

L∑
l=1

∑
τ∈σl

|xl,τ | · e i θl,τ · ψl(t− τ) + ε(t) . (14)

Now the kernel can be rotated, as here kernels are no longer
learned through a particular orientation, as in the previous
approach as oriented (M-OMP with V = 2 and y ∈ RN×2).
Thus, the kernels are shift and rotation invariant, providing a
non-oriented decomposition (M-OMP with V =1 and y∈CN ).

This 2DRI specification of the sparse approximation (resp.
dictionary learning) algorithm is now denoted as 2DRI-OMP
(resp. 2DRI-DLA). It is important to note that the 2DRI
implementations are not different from the algorithms pre-
sented before; they are just specifications. Only the initial
arrangement of the data and the use of the argument of the
coding coefficients are different.

B. Notes

In the multisensor case, V sensors that acquire bivariate
signals are considered. The sensors are physically linked, and
so they are under the same rotation. For example, bivariate
real signals from a velocity sensor (for velocities vx and vy),
an accelerometer (for accelerations ax and ay), a gyrometer
(for angular velocities gx and gy), etc. can be studied. These
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signals can be aggregated together in y∈CN×3 such that:

y =


vx + vyi

ax + ayi

gx + gyi

 . (15)

Here, the common rotation angle is jointly chosen between
the 3 complex components due to the multivariate methods.
Thus, when used with several complex components, M-OMP
(resp. M-DLA) can be viewed as a joint 2DRI-OMP (resp.
2DRI-DLA).

We also note that when the number of active atoms K=1,
the 2DRI problem considered is similar to 2D curve matching
[61]. Schwartz and Sharir provided an analytic solution to
compute R(θl,τ ), although their approach is very long, as it
is computed for each l and each τ . The use of the complex
signals indicated above allows this problem to be solved nicely
and cheaply.

Still considering K=1, Vlachos et al. [62] provided rotation
invariant signatures for trajectory recognition. However, as
with most of methods based on invariant descriptors, their
method loses rotation parameters, which is contrary to our
approach.

VII. APPLICATION DATA AND EXPERIMENTS

After having defined our methods, we present in this section
the data that are processed and then the experimental results.

A. Application data

Our methods are applied to the Character Trajectory motion
signals that are available from the University of California at
Irvine (UCI) database [63]. They have been initially dealt with
a probabilistic model and an expectation-maximization (EM)
learning method [64], although without real sparsity in the
resulting decompositions. The data comprise 2858 handwritten
characters that were acquired with a Wacom tablet sampled at
200 Hz, with about a hundred occurrences of 20 letters written
by the same person. The temporal signals are the cartesian pen-
tip velocities vx and vy . As the velocity units are not stated
in the dataset description, we cannot define this here.

Using the raw data, we aim to learn an adapted dictionary to
code the velocity signals sparsely. A partition of the database
signals is made, as a training set for applying M-DLA, which
is composed of 20 occurrences of each letter (P = 400
characters), and a test set for qualifying the sparse coding
efficiency (Q = 2458 characters). These two sets are used in
the following sections.

Although some of the comparisons are made with the ori-
ented case, the results are mainly presented in the non-oriented
case. For the differences in data arrangement, we note that
in the oriented case, the signals are set as y ← { vx ; vy }T ,
whereas in the non-oriented case they are set as y ← vx+vyi.
In these two cases, the dictionary learning algorithms begin
their optimization with kernels initialized on white Gaussian
noise.

Three experiments are now detailed, for the dictionary learn-
ing, the decompositions on the data, and the decompositions
on the revolved data.

B. Experiment 1: Dictionary learning
In this experiment, the 2DRI-DLA is going to provide a

non-oriented learned dictionary (NOLD). The velocities are
used to have the kernels as null at their edges. This avoids the
introduction of discontinuities in the signal during the sparse
approximation 4. The kernel dictionary is initialized on white
Gaussian noise, and 2DRI-DLA is applied to the training set.
We obtain a velocity kernel dictionary as shown in Fig. 2,
where each kernel is composed of the real part vx (solid line)
and the imaginary part vy (dotted line). This convention for
the line style in Fig. 2 will be used henceforth.

Fig. 2. Non-oriented learned dictionary (NOLD) of the velocities processed
by 2DRI-DLA. Each kernel is composed of the real part vx (solid line) and
the imaginary part vy (dotted line).

The velocity signals are integrated only to provide a more
visual representation. However, due to the integration, the two
different velocities kernels provide very similar trajectories
(integrated kernels). The integrated kernel dictionary (Fig. 3)
shows that motion primitives are successfully extracted by the
2DRI-DLA. Indeed, the straight and curved strokes shown in
Fig. 3 correspond to the elementary patterns of the set of
handwritten signals.

The question is how to choose the dictionary size hyper-
parameter L. In the non-oriented case, 9 kernels are used,
whereas in the oriented case, 12 are required. The choice
is an empirical trade-off between the final rRMSE obtained
on the training set, the sparsity of the dictionary, and the
interpretability of the resulting dictionary (criteria that depend
on the application can also be considered).

As interpretability is a subjective criterion, a utilization
matrix is used in supervised cases (Fig. 4). The mean of
the coefficients absolute values (gray shading level) computed
on the learning set is mapped as a function of the kernel
index l (ordinate), with the signal class as a letter (abscissa).
The letters are organized according to the similarities of
their utilization profiles. We can say that a dictionary has a
good interpretability when well-used kernels are common to
different letters that have related shapes (intuitively, other tools
can be imagined to define a dictionary). For example, letters c,
e and a have some similarities and share kernel 7. Similarly,
d and p share kernel 9.

4Note also that contrary to the position signals, the velocity signals allow
spatial invariance (different from the temporal shift-invariance).
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Fig. 3. Rotatable trajectory dictionary associated to the non-oriented learned
dictionary (NOLD) processed by 2DRI-DLA.

Fig. 4. Utilization matrix of the dictionary computed on the learning set.
The means of the coefficient absolute values are given as a function of the
kernel indices and the letters.

We also note here that during M-DLA, M-OMP provides
a K-sparse approximation (section V-A). K is the number of
active coefficients, and it determinates the number of underly-
ing primitives (atoms) that are searched and then learned from
each signal.
If the dictionary size L is too small compared to the ideal total
number of primitives we are searching, the kernels will not be
characteristic of any particular shape and the rRMSE will be
high. Conversely, if L and K are particularly important, the
dictionary learning will tend to scatter the information into
the plentiful kernels. Here, the utilization matrix will be very
smooth, without any kernel characteristics for particular letters.
If L is particularly important and K is optimal, we can see
that some kernels will be characteristic and well used, while
others will not be. The utilization matrix rows of non-used
kernels are white, and it is easy to prune these to obtain the
optimal dictionary. Typically, in our dictionary, kernel 8 can
obviously be pruned (Fig. 4). Therefore, it is preferable to
slightly overestimate L.

Finally, the crucial question is how to choose the parameter
K. Indeed, this choice is empirical, as it depends on the

number of primitives that the user forecasts to be in each signal
of the dataset studied. In our experiment, we choose K=5, as
2-3 primary primitives coding the main information, and the
remaining ones coding the variabilities.

The non-convex optimization of the M-OMP and the ran-
dom processing of the training signals induce different dictio-
naries that are obtained with the same parameters. However,
the variance of the results is small, and sometimes we obtain
exactly the same dictionaries, or they have similar qualities
(rRMSE, dictionary size, interpretability). For the following
experiments, note that an oriented learned dictionary (OLD)
is also processed by M-DLA.

C. Experiment 2: Decompositions on the data

To evaluate the sparse coding qualities, non-oriented decom-
positions of five occurrences of the letter d on the NOLD are
considered in Fig. 5. The velocities (Fig. 5a) (resp. Fig. 5b)
are the original (resp. reconstructed, i.e. approximated) signals,
which are composed of the real part vx (solid line) and the
imaginary part vy (dotted line). The rRMSE on the velocities
is around 12%, with 4-5 atoms used for the reconstruction (i.e.
approximation). The coding coefficients xl,τ are illustrated
using a time-kernel representation (Fig. 5c) called spikegram
[13]. This provides the four variables:
• the temporal position τ (abscissa),
• the kernel index l (ordinate),
• the coefficient amplitude |xl,τ | (gray shading level),
• the rotation angle θl,τ (number next to each spike, in

degrees).

Fig. 5. Original (a) and reconstructed (b) velocity signals of five occurrences
of the letter d (real part, solid line; imaginary part, dotted line), and their
associated spikegram (c).

The low number of atoms used for the signal reconstruction
shows the decomposition sparsity, which we refer to as the
sparse code. The primary atoms are the largest amplitude
ones, like kernels 2, 4 and 9, and these concentrate the
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relevant information. The secondary atoms code the vari-
abilities between different realizations. The reproducibility
of the decompositions is highlighted by the primary-atom
repetition (amplitudes and angles) of the different occurrences.
The sparsity and reproducibility are the proof of an adapted
dictionary. Note that the spikegram is the result of the signal
deconvolution through the learned dictionary.

The trajectory of the original letter d (Fig. 6a) (resp. p,
Fig. 6d) is reconstructed with the primary atoms. We compare
the oriented case (Fig. 6b) (resp. Fig. 6e) using the OLD
and the non-oriented case (Fig. 6c) (resp. Fig. 6f) using the
NOLD. For instance, for the reconstruction, the letter d (Fig.
6c) is rebuilt as the sum of the NOLD kernels 2, 4 and 9
(the shapes can be seen in Fig. 3), which are specified by
the amplitudes and the angles of the spikegram (Fig. 5c). We
now focus on the principal vertical stroke that is common to
letters d and p (Fig. 6a and Fig. 6d). To code this, the oriented
case uses two different kernels: kernel 5 for d (Fig. 6b, dotted
line) and kernel 12 for p (Fig. 6e, dashed line). However, the
non-oriented case needs only one kernel for these two letters:
kernel 9 (Fig. 6c and Fig. 6f, solid line), which is used with
an average rotation of 180◦. Thus, the non-oriented approach
reduces the dictionary redundancy and provides an even more
compact rotatable kernel dictionary. The detection of rotational
invariants allows the dictionary size to decrease from 12 for
the OLD, to 9 for the NOLD.

Fig. 6. Letter d (resp. p). Original (a) (resp. (d)), oriented reconstructed (b)
(resp. (e)) and non-oriented reconstructed (c) (resp. (f)) trajectories.

D. Experiment 3: Decompositions on revolved data

To simulate the rotation of the acquiring tablet, we arti-
ficially revolved the data of the test set, with the characters
now rotated by angles of -45◦ and -90◦ (with the previous
dictionaries kept). Fig. 7 shows the non-oriented decompo-
sitions of the second and third occurrences of the examples
used in Fig. 5. The velocity signals rotated by -45◦ (Fig.

7a) (resp. -90◦, Fig. 7d) are reconstructed in a non-oriented
approach (Fig. 7b) (resp. Fig. 7e). In these two cases, the
rRMSE is identical to the previous experiment, when the
characters were not revolved. Fig. 7c (resp. Fig. 7f) shows the
associated spikegrams. The angle differences of the primary
kernels between the spikegrams (Fig. 5c, Fig. 7c and Fig. 7f)
correspond to the angular perturbation we applied. This shows
the rotation invariance of the decomposition.

Fig. 7. Velocity signals revolved by -45◦ (a) (resp. -90◦ (d)) and reconstructed
(b) (resp. (e)) for two occurrences of the letter d, and their associated
spikegram (c) (resp. (f)).

The trajectory of letter d revolved by -90◦ (Fig. 8a) is
reconstructed with the primary kernels, with a comparison
of the oriented case (Fig. 8b) using the OLD, and the non-
oriented case (Fig. 8c) using the NOLD. In the oriented case,
the rRMSE increases from 15% (Fig. 6b) to 30% (Fig. 8b),
and the sparse coding is less efficient. Moreover, the selected
kernels are different, with there being no more reproducibility.
The difference between these two reconstructions shows the
necessity to be robust to rotations. In the non-oriented case,
the rRMSE is equal to whatever the rotation angle is (Fig. 6c
and Fig. 8c), and it is always less than the oriented case. The
selected kernels are identical in the two cases, and they show
the rotation invariance of the decomposition.

Fig. 8. Trajectory of letter d revolved by an angle of -90◦ (a), and the
oriented reconstructed (b) and the non-oriented reconstructed (c).

To conclude this section, the methods have been validated
on bivariate signals and have shown rotation invariant sparse
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coding.

VIII. COMPARISONS

Three comparisons are made in this section: the dictionaries
learned by our algorithms are first compared to classical dic-
tionaries, then they are compared together, and finally the M-
DLA is compared to the other dictionary learning algorithms.

A. Comparison with classical dictionaries

In this section, the test set is used for the comparison,
although the characters are not rotated any more, and only
component vx is considered (to be in the real unicomponent
case). We compare the previous learned dictionaries for the
non-oriented approach (the NOLD, with L = 9) and the
oriented approach (the OLD, with L = 12) to the classi-
cal dictionaries based on fast transforms, including: discrete
Fourier transform (DFT), discrete cosine transform (DCT),
and biorthogonal wavelet transform (BWT) (different types
of wavelets that give similar performances; we only present
the CDF 9/7). For each dictionary, K-sparse approximations
are computed on the test set, and the reconstruction rate ρ is
then computed. This is defined as:

ρ = 1− 1

Q

Q∑
q=1

‖εq‖2
‖yq‖2

. (16)

The rate ρ is represented as a function of K in Fig. 9.

Fig. 9. Reconstruction rate ρ on the test set as a function of the sparsity K
of the approximation for the different dictionaries.

We see that for a very few coefficients, the signals are
reconstructed better with learned dictionaries (NOLD L = 9
and OLD L= 12) than with Fourier based dictionaries (DFT
and DCT), which are themselves better than 5 wavelets (BWT).
The results show the optimality of learned dictionaries over
generic ones. If the dictionary learning is long compared to fast

5Note that this is due to the piecewise sinus aspect of the signals studied.
This confirms that DCT appears to be the more adapted to motion data [65].

transforms, it is computed a single time for a given application.
For the NOLD, only 7 atoms are needed to reach a rate of 90%,
and the asymptote is at 93%. Furthermore, ρNOLD ≥ ρOLD
whatever K. Rotation invariance is thus useful even without
data rotation, as it provides a better fit of the variabilities
between the different realizations.

Rates beyond K=25 are not represented in Fig. 9, although
the classical dictionaries can be seen to reach a reconstruction
rate of 100%; they span all of the space, in contrast to learned
dictionaries. This is because generic dictionaries are bases of
the space, whereas learned dictionaries can be considered as a
sort of bases of the studied phenomenon. In DLAs, the sparse
approximation algorithm selects strong energy patterns, and
these are then learned. So all of the signal parts that are never
selected are never learned, which generally means the noise,
although not always.

B. Comparison between oriented and non-oriented learning

In Section VII-D, we only evaluated the rotation invariance
of the decompositions with rotated data, and not the rotation
invariance of the learning. The data in the test set were
revolved, but not the data of the learning set. Here, we propose
to study the rotation invariance of the whole learning method
with rotated training signals.

In this comparison, learning and decompositions are carried
out on datasets Y (including the training set and the test set),
which are revolved at different angles. Y1 contains the original
data, Y2 contains the original data and the data revolved by
120◦, Y3 contains the original data and the data revolved by
120◦ and 240◦, and Y4 contains the original data and the
data revolved by random angles. The training sets allow the
learning of different dictionaries: the NOLD with 9 kernels and
the OLD with 12, 18, 24 and 30 kernels. The decompositions
on the test sets give the reconstruction rates ρ, with K=5.

Table I gives the results of the reconstruction rates according
to the datasets (columns) and the dictionary type (rows). For
the non-oriented learning, the results are similar, whatever
the dataset. For oriented learnings, the approximation quality
increases with the kernel number. The extra kernels can span
the space better. However, even with 30 kernels, the OLD
shows results worse than the NOLD with only 9 kernels.
Moreover, the reconstruction rate decreases when number of
different angles in the dataset increases, with revolved letters
are considered as new letters.

TABLE I
RECONSTRUCTION RATE RESULTS ON THE TEST SET

ρ (%) Y1 Y2 Y3 Y4

NOLD L=9 85.8 85.6 85.9 85.0

OLD L=12 81.6 79.6 77.0 77.5

OLD L=18 83.0 81.4 79.98 78.9

OLD L=24 83.9 82.6 81.3 79.4

OLD L=30 84.8 83.5 82.8 80.7
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These results only allow the approximation quality to be
seen, and not the rotation invariance and the reproducibility
of the decompositions. So, a similarity criterion is going to be
set up, using the utilization matrix. As explained in Section
VII-B, this matrix is formed by computing the means of
coefficients absolute values of the test-set decompositions. As
seen in Fig. 10, the values are given as a function of the kernel
indices (ordinate) and the letters (abscissa). Fig. 10 shows the
utilization matrix computed on Y2 for the OLD, with L=12.
It can be seen that it is not the same kernels that are used to
code a letter and its rotation, denoted by (.)′. To evaluate this
phenomenon, the similarity criterion c is defined as the mean
of the normalized scalar products between the column of a
letter and that of its rotation.

Fig. 10. Utilization matrix for the OLD (L = 12) on set Y2. The means
of the absolute values of the coefficients is given as a function of the kernel
indices and the letters. The letters with ′ are those that are revolved.

Table II summarizes the mean scalar product c given in
the percentage according to the datasets (columns) and the
dictionary type (rows). The criterion definition and the test-
set design were chosen to give c = 100% in the reference
non-oriented case. This remains at 100% whatever the dataset,
which shows the rotation invariance. However, in reality, it is
no use to carry out learning on the rotated data. As seen in
Section VII-D, non-oriented learning on the original data is
sufficient for an adapted dictionary that is robust to rotations.

TABLE II
SIMILARITY CRITERION RESULTS ON THE TEST SET

c (%) Y2 Y3 Y4

NOLD L=9 100 100 100

OLD L=12 18.7 24.7 67.3

OLD L=18 14.1 17.2 60.6

OLD L=24 15.2 12.3 58.8

OLD L=30 6.3 9.0 57.8

For the oriented learnings, although bigger dictionaries give
better reconstruction rates (Table I), they have poorer similarity
criteria, as multiple kernels tend to scatter the information. So,
artificially increasing the dictionary size is not a good idea for

sparse coding, because it damages the results. Furthermore,
increasing the number of different angles in the dataset gives
better reproducibility, as the signals no longer influence the
learning through a fixed orientation, and consequently the
oriented kernels are the more general.

C. Comparison with other dictionary learning algorithms

We now compare our method to other DLAs. The advan-
tages of online learning have already been pointed out in [11],
[57], [58], so our experiment is on the robustness to shift-
invariance. M-DLA is used in real and unicomponent cases, to
compare it with the existing learning methods: K-SVD [8], the
shift-invariant version of K-SVD [46] known as SI-K-SVD,
and the shift-invariant ILS-DLA [48] (the shift factor is set as
up to 1), which is indicated as SI-ILS-DLA in the following.

This comparison is based on the experience described in
[46]. A dictionary Ψ of L= 45 kernels is created randomly
and the kernel length is T = 18 samples. The training set is
composed of P = 2000 signals of length N = 20, and it is
synthetically generated from this dictionary. For the kernels,
circular shifts are not allowed, and so only three shifts are
possible. Each training signal is composed of the sum of
three atoms, for which the amplitudes, kernels indices and
shift parameters are randomly drawn. White Gaussian noise
is also added at several levels: an SNR of 10, 20 and 30 dB,
and without noise. All of the learning algorithms are applied
with the same parameters, with the dictionary initialization
made on the training set, and the sparse approximation step
carried out by OMP. The learned dictionary Ψ̂ is returned after
80 iterations. Classical K-SVD is also tested, with hopes of
recovering an atoms dictionary of 135 atoms (the 45 kernels
in the three possible shifts).
In the experiment, a learned kernel ψ̂l is considered as
detected, i.e. recovered, if its inner product µl with its cor-
responding original kernel ψl is such that:

µl =
∣∣∣〈ψl, ψ̂l〉∣∣∣ ≥ 0.99 . (17)

The high threshold of 0.99 was chosen by [46]. For each
learning algorithm, the detection rate of the kernels is plotted
as a function of the noise level, which was averaged over five
tests (Fig. 11).

This experiment only tests the algorithm precision. In our
case, the online alternation provides learning that is fast, but
not so precise, due to the stochastic noise that is induced by
the random choice of a training signal at each iteration. We
observe that 80% of the {µl}Ll=1 are between 0.97 and 1.00,
with only a few above the severe threshold of 0.99. To be
comparable with batch algorithms, which are more precise at
each step, the classical strategy for the adaptive step proposed
in Section V-A is adapted to the constraints of this experiment.
With 2000 training signals, we prefer to keep a constant step
for one loop of the training set. Moreover, the step is increased
faster, to provide satisfactory convergence after 80 iterations.
For the first 40 iterations, the step is set up as: λi = (i −
p + 1)1.5, and then it is kept constant for the last iterations:
λi = 401.5. The results obtained are now plotted in Fig. 11.
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Fig. 11. Detection rate as a function of noise level for K-SVD (diamonds),
SI-K-SVD (squares), SI-ILS-DLA (circles) and M-DLA (stars).

Fig. 11 shows that having a shift-invariant model is ob-
viously relevant. For shift-invariant DLAs, this underlines
their ability to recover the underlying shift-invariant features.
However, we observe that the M-DLA performance decreases
when the noise levels increase, contrary to SI-K-SVD and SI-
ILS-DLA, which appear not to be influenced in this way. De-
spite its stochastic update, our algorithm recovers the original
dictionary in a similar proportion to the batch algorithms. This
experiment supports the analysis of [56] relating to learning,
where each step does not need to be minimized exactly to
converge towards the expected solution.

IX. DISCUSSION

Dictionary learning allows signal primitives to be recovered.
The resulting dictionary can be thought of as a catalog
of elementary patterns that are dedicated to the application
considered and that have a physical meaning, as opposed to
classical dictionaries such as wavelets, curvelets, etc. There-
fore, decompositions based on such a dictionary are made
sparsely on the underlying features of the signal set studied.
For the rRMSE, the few atoms used in the decompositions
shows the efficiency of this sparse-coding method.

The non-oriented approach for sparse coding reduces the
dictionary size in two ways:
• when the signals studied cannot rotate, the non-oriented

approach detects rotational invariants (the vertical strokes
of letters d and p, for example), which reduces the
dictionary size.

• when the signals studied can rotate. To provide ef-
ficient sparse coding, the oriented approach needs to
learn motion primitives for each of the possible angles.
Conversely, in the non-oriented case, single learning is
sufficient. This provides a noticeable reduction of the
dictionary size.

In this way, the shift-invariant and rotation invariant cases
provide a compact learned dictionary Ψ. Moreover, the non-

oriented approach allows robustness for any writing direction
(tablet rotation) and for any writing inclination (intra and
inter user variabilities). When added to a classification step,
the angles information allows the orientation of the writing
baseline to be given.

Recently, Mallat notes [66] that the key for the classification
is not the representation sparsity but its invariances. In our
2DRI case, the decompositions are invariant to temporal shift
(parameter τ ), to rotation (parameter θl,τ ), to scale (param-
eter |xl,τ |) and to spatial translation (use of velocity signals
instead of position signals). Based on these considerations,
we are also working on the classification of sparse codes,
to carry out gesture recognition, and the first experiments
look promising. Spikegrams appear to be good representations
for classification, and their reproducibility can be exploited.
The classification results are interesting, because kernels are
learned only with `2 data-fitting criterion of unsupervised dic-
tionary learning, and so without discriminative constraints. It
appears that recovering the primitives underlying the features
of a signal set via a sparsity constraint allows this set to be
described discriminatively.

Motion data is new with regards to custom sparse coding
applications. Recently, we have taken cognizance of a work
made on multicomponent motion signals. In [67], Kim et al.
use a tensor factorization with tensor constraints to make a
multicomponent dictionary learning. Modelized by the multi-
variate framework and processed by our proposed algorithms,
this problem is solved without the heavy tensor formalism.

X. CONCLUSION

In contrast to the well-known multichannel framework, a
multivariate framework was introduced to more easily present
our methods relating to bivariate signals. First, the multi-
variate sparse-coding methods were presented: Multivariate
OMP, which provides sparse approximations for multivariate
signals, and Multivariate DLA, which is a learning algorithm
that empirically learns the optimal dictionary associated to
a multivariate signal set. All of the dictionary components
are updated simultaneously. The resulting dictionary jointly
provides sparse approximations of all of the signals of the set
considered. This DLA is an online alternation between a sparse
approximation step carried out by M-OMP, and a dictionary
update that is optimized by stochastic Levenberg-Marquardt
second-order gradient descent. The online learning does not
disturb the performance of the dictionary obtained, even in
the shift-invariant case.

Then in dealing with bivariate signals, we wanted the
decompositions to be independent of the orientation of the
movement execution in 2D space. To provide rotation invariant
sparse coding, the methods were simply specified to the 2D
rotation invariant case, known as 2DRI-OMP and 2DRI-DLA.
Rotation invariance is useful, but not only when the data are
rotated, as it allows to code variabilities. Moreover, shift-
invariant and rotation invariant cases induce a compact learned
dictionary and are useful for classification. As validation, these
methods were applied to 2D handwritten data.

The methods applications are dimensionality reduction,
denoising, gesture representation and analysis, and all of
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the other processing that is based on multivariate feature
extraction. The prospects under consideration are to extend
these methods to 3D rotation invariance for trivariate signals,
and to present the classification step that is applied to the
spikegrams and the associated results.

APPENDIX A
CONSIDERATIONS FOR THE IMPLEMENTATION

We are going to look at the OMP complexity for the
different approaches in the shift-invariant case. Often enough,
the acquired signals are dyadic (i.e. the signal size N is a
power of 2). If they are not, they are lengthened by zero-
padding to dNe samples, with dNe as the first power of
2 to the N . So, in the unicomponent case, the correlation
is computed by FFT in O(dNelogdNe) for each kernel.
In the multivariate case, the multivariate correlation is the
sum of the V component correlations, and it is computed in
O(V · dNelogdNe) for each kernel.

To retrieve the classical case, we can simply vectorize the
signal from N×V to NV ×1. However, zero-padding between
the components is necessary, otherwise the kernel components
can overlap two consecutive signal components during the
correlation. Limiting the kernels length to NL samples (which
is a loss of flexibility) with NL the size of the longest kernel,
zero-padding of NL samples has to be carried out between
two consecutive components.

This zero-padded signal of V (N+NL) samples is lengthened
again, in order to be dyadic. Finally, the correlation complexity
is O((dV (N +NL)e)log(dV (N +NL)e)) for each kernel.
Moreover, for the selection step, investigations need to be
limited to the first N+NL samples of the correlation obtained.

To conclude, the multivariate framework is easier to imple-
ment and has lower complexity than the classical framework
with vectorized data.

APPENDIX B
COMPLEX GRADIENT OPERATOR

The gradient operator was introduced by Brandwood in [68].
Assuming z ∈ C, the complex derivation rules are:

∂z∗/∂z = ∂z/∂z∗ = 0 and ∂z/∂z = ∂z∗/∂z∗ = 1 .

[68] showed that the direction of maximum rate of change of
an objective function J = ‖ε‖22 with z is ∂J/∂z∗:

∂J/∂z∗ = ∂(εHε)/∂z∗ = εH ∂ε/∂z∗ + ∂εH/∂z∗ ε .

1) The derivation of J with respect to xm:

∂ε/∂x∗m = ∂(y−Φx)/∂x∗m = 0 ,

∂εH/∂x∗m = ∂(yH−xHΦH)/∂x∗m = −φHm .

Thus: −∂J/∂x∗m = φHm ε = 〈ε, φm〉 . This gives the selection
step of the OMP (algorithm 1).
2) The derivation of J with respect to φm:

∂ε/∂φ∗m = ∂(y−Φx)/∂φ∗m = 0 ,

∂εH/∂φ∗m = ∂(yH−xHΦH)/∂φ∗m = −x∗m .

Thus: −∂J/∂φ∗m = x∗m ε. This gives the first-order part of
the update of the M-DLA. The complex least mean squares

(CLMS) obtained by the pseudo-gradient [69] is retrieved (give
or take a factor of 2). For the complex Hessian, we make
reference to [70].

In the shift-invariant case, all of the translations of a consid-
ered kernel ψl are taken into account in the dictionary update:
−∂J/∂ψ∗l =

∑
τ∈σl x

∗
l,τ ετ , with ετ the error localized at τ and

restrained to the ψl temporal support (i.e. ετ = ε|t=τ..τ+Tl ).
This gives the shift-invariant update of the M-DLA (Eq. (10)).

APPENDIX C
CALCULUS OF THE HESSIAN

In this appendix, we explain the calculation of the Hessian
Hl. This allows the adaptive step to be specified to each
kernel ψl, and the convergence of the well-used kernels to
be stabilized at the beginning of the learning.

An average Hessian Hl is computed for each kernel ψl, not
for each sample, to avoid fluctuations between neighboring
samples. Hl is thus reduced to a scalar. Assuming the hypoth-
esis of sparsity (a few atoms are used for the approximation),
the overlap of selected atoms is initially considered as non-
existent. So the cross-derivative terms of Hl are null, and we
have:

Hi
l =

∑
τ∈σl

∣∣xil,τ ∣∣2 . (18)

For overlapping atoms, the learning method can become
unbalanced, due to the error in the gradient estimation. We
overestimate the Hessian Hl slightly to compensate for this.
All τ ∈ σl are sorted and then indexed by j, such that: τ1 <
τ2 ...<τj<τj+1 ...<τ|σl|, with |σl| as the cardinal of the set
σl. Denoting T il as the length of the kernel ψl at the iteration
i, the set Jl is defined as: Jl=

{
j∈N|σl−1| : τj+1−τj<T il

}
.

This allows for the identification of overlap situations. The
cross-derivative terms of Hl are no longer considered to be
null, and their contributions are proportional to xi ∗l,τj x

i
l,τj+1

+

xil,τj x
i ∗
l,τj+1

= 2<(xi ∗l,τj x
i
l,τj+1

). Double-overlap situations are
not considered, when τj+2−τj < T il . Due to the hypothesis
of sparsity, these situations are considered to be very rare
(as is verified in practice), and they are compensated for by
overestimating Hl. The absolute value of the cross terms is
taken:

∣∣∣xi ∗l,τj xil,τj+1

∣∣∣ ≥ 2<(xi ∗l,τj x
i
l,τj+1

). The absolute value
is not disturbing, even without double overlap, as it is better
to slightly overestimate Hl than to underestimate it (it would
better move a little but surely). Finally, we propose for Hl the
following approximation quickly computed:

Hi
l =
∑
τ∈σl

∣∣xil,τ ∣∣2+2
∑
j∈Jl

T il −(τj+1−τj)
T il

∣∣∣xi ∗l,τj xil,τj+1

∣∣∣ . (19)

Some comments can be made regarding Eq. (19):
• if the gap between two atoms is always greater than Tl,

the first approximation of Eq. (18) is recovered;
• when the overlap is weak, the cross-products have little

influence on the Hessian;
• intra-kernel overlaps have been considered, but not inter-

kernel ones. However, we see that inter-kernel overlaps
do not disturb the learning, so we ignore their influence.

The update step based on Eq. (10) and Eq. (19) is called LM-
update (step 5, Algorithm 3).
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Without the Hessian in Eq. (10), a first-order update is
retrieved. In this case, the convergence speed of a kernel is
directly linked to the sum of its decomposition coefficients.
Advantage of the Hessian is to tend to make the convergence
speed similar for all kernels, independently of their uses
in the decompositions. Concerning the approximation of the
Hessian, at the beginning of the learning, kernels which are
still white noises overlap frequently and method can become
unbalanced. Increasing the Hessian, the approximation thus
stabilizes the beginning of the learning process. After, since
kernels converge, overlaps are quite rare and the approximation
of the Hessian is closed to Eq. (18).
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