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Generating functions of timed languages‹

Eugene Asarin‹‹1, Nicolas Basset2, Aldric Degorre1, and Dominique Perrin2

1 LIAFA, University Paris Diderot and CNRS, France
2 LIGM, University Paris-Est Marne-la-Vallée and CNRS, France

Abstract. In order to study precisely the growth of timed languages,
we associate to such a language a generating function. These functions
(tightly related to volume and entropy of timed languages) satisfy com-
positionality properties and can be characterized by integral equations.
We provide procedures for computation of generating functions for some
classes of timed automata and regular expressions.

1 Introduction

Since the introduction of timed automata in [1], these automata and their lan-
guages are extensively studied both in theoretical perspective and in applications
to verification of real-time systems. However, the natural question of measuring
the size of timed languages was addressed only recently in [4, 3] and a couple of
subsequent works. In those articles we have explored the asymptotic behaviour
of the volume of a timed language when the number of events tends to 8. We
have shown that for most timed automata this volume grows (or decreases) ex-
ponentially, defined entropy as its growth rate, characterized this entropy as a
logarithm of the spectral radius of an integral operator Ψ and shown how to
compute the entropy symbolically or numerically.

In this article, we make a much more precise size analysis of timed languages.
We associate to such a language L a sequence of its volumes VolpLnq, and the
generating function fpzq “

ř
n VolpLnqzn. Thus the function fpzq contains a

complete information on the “size profile” of VolpLnq as a function of n. To
relate it to the previous work, we show that fpzq can be expressed in terms
of the resolvent of the operator Ψ , and that the entropy of a timed language
depends only on the convergence radius of fpzq.

The example in Fig. 1, from [3], is extensively used throughout the paper
to illustrate the notions of volume, generating function and entropy. The timed
language recognized by this automaton is

L “ tt1, a, t2, b, t3, a, . . . |@i pti ` ti`1 ď 1qu.
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(ANR-11-BS02-004) is gratefully acknowledged.

‹‹ A part of the work of this author was done during his stay at the Institute of
Mathematical Sciences (National University of Singapore) within its Programme
“Automata Theory and Applications”.



For any number of events n we have a polytope in IRn:

Ln “ tt1, t2, t3, . . . , tn|@i pti ` ti`1 ď 1qu,

the sequence of volumes Vn of these polytopes is
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1
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;
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3628800
. . . ,

and it was shown in [3] that this sequence behaves asymptotically like p2{πqn.
Here, we will show that the generating function of volumes is tan z ` sec z.

p q

xa, x ď 1, txuy

xb, y ď 1, tyuy

Fig. 1. A timed automaton (our running example)

The convergence radius of the series π{2 is the inverse of the growth rate of
the sequence Vn. This series describes precisely the sequence of volumes, and a
closed-form formula for Vn can be deduced (see [10]):

V2n´1 “
B2np´4qnp1 ´ 4nq

p2nq!
; V2n “

p´1qnE2n

p2nq!
,

where Bs stand for Bernoulli numbers and Es for Euler numbers.
Generating functions behave in a natural way with respect to simple oper-

ations on timed languages (disjoint union, unambiguous concatenation, unam-
biguous star). However in order to obtain an exact characterization and eventu-
ally closed-form expressions for generating function of timed regular languages
a more involved analysis is needed. Such an analysis constitutes the main con-
tribution of the article.

Related work. Generating functions of regular languages have been thoroughly
studied and applied, see e.g. [6, 9]. We are not aware of any work on generating
functions of timed languages. Techniques and ideas used in this article build on
our previous works on volumes and entropy of timed languages, especially on [3]
(however the current article is self-contained). As for automata and languages
under study, we investigate timed regular languages of [1], clock languages and
expressions as in [7], and subclasses of timed automata: regenerating automata
from [11] and their subclass known as real-time automata [8], and 1 3

4
-clocks

automata that extend both regenerating automata and 1 1
2
-clocks automata from

[3].
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Article structure. In Sect. 2 we introduce a formalism (inspired by [7]) for timed
and clock languages, introduce volume functions of such languages, and investi-
gate the properties of these functions. In Sect. 3 we introduce generating func-
tions of timed languages and investigate their general properties. In Sect. 4 we
explain how to compute generating functions for several subclasses of timed au-
tomata. We summarize the contributions and discuss the directions of future
work in Sect. 5.

2 Preliminaries

2.1 Clock languages and timed languages

In this paper, we study timed language (mostly regular) using an approach based
on clock languages due to Bouyer and Petit [7]. We present this approach in a
slightly different form, and we use a multi-stage semantics like in [5]. The gen-
eral idea is as follows: we are interested in timed languages. Timed languages are
obtained as projections of clock languages. Clock languages are homomorphic
images of discrete “triplet languages”. Triplet languages, in their turn, are gen-
erated by automata, regular expressions or grammars. Below we define formally
all these notions and illustrate them on our running example.

An alphabet of timed events is the product IR` ˆ Σ where Σ is a finite
alphabet. The meaning of a timed event pt, aq is that t is the time delay before
the event a. A timed word is a sequence of timed events and a timed language is
just a set of timed words.

Inspired by [7] we enrich timed words and languages with d-dimensional
clock vectors. A clock is a variable which takes values in IR`. In our setting,
values of clocks will be bounded by a positive integer M . A clock word is a
timed word together with an initial and a final clock vector, i.e. an element of
IRd ˆ pIR` ˆΣq˚ ˆ IRd. Two clock words px‖w‖yq and px1‖w1‖y1q are said to be
compatible if y “ x1, in this case we define their product by px‖w‖yqpy‖w1‖y1q “
px‖ww1‖y1q. A clock language is a set of clock words. The product of two clock
languages L and L1 is L ¨ L1 “ tc ¨ c1 | c P L, c1 P L1, c and c1 compatibleu. The
neutral element E is tpx‖ǫ‖xq | x P IRdu and the Kleene star of a language L is
as usual L˚ “

Ť
k L

k with L0 “ E .

A clock language L is said to be deterministic whenever for each clock word
the final clock vector is uniquely determined by the initial clock vector and the
timed word, in other word there is a function σL : IRd ˆ pIR` ˆ Σq˚ Ñ IRd

such that for any clock word px‖w‖yq of L, we have that y “ σLpx,wq. In the
following, we work with deterministic clock languages.

To a clock language we associate its timed projections. Given L, we define
Lpx,x1q as the timed language leading from x to an element lower than x1:
Lpx,x1q “ tw | Dypx‖w‖yq P L ^ y ď x1u. We also define the timed language
Lpxq “ tw | Dypx‖w‖yq P Lu as the language starting from x. Remark that
Lpxq “ Lpx,M q where M “ pM, . . . ,Mq is the greatest clock vector possible.
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2.2 Triplet, clock and timed languages

Triplets. Following [7] we define a triplet as a tuple xa, g, ry with: a a letter in
Σ; g a set of constraints, called guard, xi ’ c (i P t1, . . . , du, c P t0, . . . ,Mu,
’P tă,ą,ď,ěu) and r Ď t1 . . . du a set of indices of clocks to be reset. We
suppose moreover that guards bound all the clocks by M . We denote by T the
finite alphabet of such triplets.

Clock semantics of triplets. The clock language of a triplet xa, g, ry is Lpxa, g, ryq “
tpx‖pa, tq‖x1q | x`t |ù g^rpx`tq “ x1u. Here, for a clock vector x “ px1, . . . , xdq,
we denote by x ` t the vector px1 ` t, . . . , xd ` tq. Clock vectors are updated as
follows: rpy1, . . . , ydq “ py1

1, . . . , y
1
dq with y1

i “ 0 if i P r and y1
i “ yi otherwise. The

reader acquainted with timed automata will notice that a triplet corresponds to
a transition of such an automaton.

This definition can be extended to all triplet words by: Lpǫq “ E and
Lpπ1 . . . πnq “ Lpπ1q . . .Lpπnq. Finally for a language L Ď T ˚, we define LpLq “
tLpπq | π P Lu. In fact, L is a morphism between the two Kleene algebras
pPpT ˚q,Y, ¨,H, ǫq and pPpIRd ˆ pIR` ˆ Σq˚ ˆ IRdq,Y, ¨,H, Eq.

Timed automata and their languages. A timed automaton A is a finite automa-
ton with alphabet T . Its discrete semantics L is the language of triplet words
accepted by A seen as a finite automaton; its clock semantics is LA “ LpLq and
its timed semantics is LAp0q. The timed automata considered in this article are
supposed to be deterministic in the sense of [1].

A timed rational expression is defined as expression over the finite alphabet
T . Its discrete, clock and timed semantics are defined similarly to the automata.

These multi-stage timed semantics are equivalent to the usual semantics of
timed automata, timed rational expressions3, etc.

Example 1. Consider our running example on Fig. 1. The discrete semantics
is the set of triplet words of the form xa, x ď 1, txuyxb, y ď 1, tyuyxa, x ď
1, txuyxb, y ď 1, tyuy . . . , captured by a rational expression pxa, x ď 1, txuyxb, y ď
1, tyuyq˚ ¨ pǫ ` xa, x ď 1, txuyq. The clock language is Leven Y Lodd, with

Leven “ tppx, yq‖pt1, aqpt2, bqpt3, aq . . . pt2n, bq‖pt2n, 0qq |

x ` t1 ď 1 ^ y ` t1 ` t2 ď 1 ^ @i P 2..2n ´ 1 pti ` ti`1 ď 1qu

and a similar expression for Lodd. By projection, we obtain the timed language:

tpt1, aqpt2, bqpt3, aq . . . ptn, a{bq|t1 ď 1 ^ @i P 1..n ´ 1 pti ` ti`1 ď 1qu.

A convenient way to see automata is the matrix form. A timed automaton
A over the set of control states Q and alphabet of transitions T is uniquely
described by three ingredients:

3 in the sense of [7], which is different from [2].
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– a Q ˆ Q-matrix T whose element Tqq1 is the set of triplets labelling transi-
tions from q to q1;

– a row vector I describing initial states: for each control state p, its element
Ip “ tǫu iff p is initial, and H otherwise;

– a column vector F describing final states: for each control state q, its element
Fq “ tǫu iff p is final, and H otherwise.

The coefficient pTnqp,q of Tn contains the language of all the triplet words of
length n from p to q. The pth coordinates of the column vector TnF contains
the language recognized from state p and ITnF contains the language of triplet
words of length n recognized by A. For our running example:

I “
`

tǫu H
˘
; T “

ˆ
H txa, x ď 1, txuyu

txb, y ď 1, tyuyu H

˙
; F “

ˆ
tǫu
tǫu

˙
.

2.3 Volume(s) of timed and clock languages

For a timed language L and a word w P Σ˚ of length n ě 0, we define Lpwq as a
subset of IRn by Lpwq “ tt P IRn | pt, wq P Lu. For a clock language L and a word
w P Σ˚ of length n ě 0, we define the clock language Lpwq “ tpx‖pw, tq‖x1q |
px‖pw, tq‖x1q P Lu.

Measurable timed languages and clock languages. A timed language is measur-
able if for any word w, Lpwq is a measurable subset of IRn. A clock language
L is measurable if it is deterministic and for every w P Σ˚, σLp¨, pw, ¨qq is a

measurable function of IRd ˆ IR|w| Ñ IRd. We remark that timed languages and
deterministic clock languages obtained from triplet languages (all the languages
considered here) are measurable.

Volumes of a timed language [3]. The sequence of volumes pVnpLqqnPIN associated
to a measurable timed language is VnpLq “

ř
wPΣn VolpLpwqq, where Vol is

the hyper-volume (i.e. Lebesgue measure) in IRn. For dimension 0 we define
V0pLq “ 1 if ǫ P L, and V0pLq “ 0 otherwise.

Volumes constrained by initial and final clock vectors. Timed regular languages
considered below come from clock languages (which themselves come from triplet
languages). The information about clock vectors is crucial to compute the volume
of timed languages in a compositional manner.

Thus we define parametric volumes depending on initial and final clock vec-
tors as followsV 2

n px, x1q “ VnpLpx,x1qq. We call this function the cumulative
volume function (CVF)4 of L. We also allow the following notations: for a clock
language L and a discrete events word w, V 2

Lpwqpx,x1q “ V 2
|w|pLpwqpx,x1qq; and

for a triplets word π, V 2
π px,x1q “ V|π|pLpπqpx,x1qq. The notion of parametric

volumes can be also applied to the clock language constrained only by initial
clock vector Lpxq: V 1

n pxq “ VnpLpxqq. Clearly V 1
n pxq “ V 2

n px,8q “ V 2
n px,Mq.

4 similarly to cumulative distribution functions in probability theory.
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CVFs for a triplet word. According to the following result, a CVF is easy to
compute for a triplet word, and hence for a finite triplet language.

Proposition 1. For a triplet word π the CVF V 2
π is piecewise polynomial with

rational coefficients of degree less or equal |π|. The pieces are polytopes, and an
expression of this function is computable.

Composing CVFs. In order to define a composition for CVF corresponding to
the concatenation of triplet words and languages, we proceed as follows. We
define composition of two functions of IRd ˆ IRd Ñ IR as:

V 2
1 ‹ V 2

2 px,x1q “

ż

y

V 2
2 py,x1qV 2

1 px, dyq,

where the integral is the Lebesgue-Stieltjes integral5. We also define

V 2
1 ‹ vpxq “

ż

y

vpyqV 2
1 px, dyq,

when v is defined on IRd. Then we can state the key lemma (to transpose con-
catenation of words to the CVFs world):

Proposition 2. For any measurable clock languages L1 and L2 and discrete
words w1 and w2, V

2
L1pw1q ‹ V 2

L2pw2q is well defined and satisfies:

V 2
L1pw1q ‹ V 2

L2pw2q “ V 2
L1pw1q¨L2pw2q.

Volume functions in timed automata. As we did for languages, we introduce a
Q-vector Vnpxq of volumes of clock languages and a Q ˆ Q-matrix Vpx,x1q of
cumulative volume functions of elements of the transition matrix T:

Vn,qpxq “ V 1
n pLqpxqq; Vqq1 px,x1q “ V1pLpTqq1 qďpx,x1qq.

It follows from the proposition above that the matrix element pV‹nqpq (of the
matrix power wrt ‹) contains the CVF of LpTnqpq, that is of the language of all
the clock words of length n leading from p to q. Finally, Vn “ V‹n ‹ VF with
VF a column vector with VF,p “ 1 if p is initial, and VF,p “ 0 otherwise.

Proposition 3. In a timed automaton A, for n ě 1, the volume functions
Vnpxq and V‹npx,x1q are continuous wrt the initial clock vector x.

We can reformulate propositions 2-3 in the language of functional analysis.
Consider the Banach space F of Q-vectors of continuous functions on clock
valuations. Thus an element of F is a vector v whose components are continuous
vq : r0;M sd Ñ IR, and F “ Cpr0;M sdqQ. The matrix V corresponds to an

5 By definition, Lebesgue-Stieltjes integral
ş
fpxqgpdxq is the Lebesgue integral of f

wrt the measure µ having cumulative distribution function g.
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operator Ψ : F Ñ F defined by Ψpvq “ V ‹ v. It is easy to see that Ψ is a
bounded linear operator on F , represented by a matrix of integral operators6.

Theorem 1 ([3]). For a timed automaton A the volume vector can be obtained
by iteration of operator Ψ : Vn “ ΨnpVF q.

3 Generating functions

3.1 Definitions

To study volume sequences associated to timed and clock languages we define
their generating functions. As usual for generating functions, they allow recover-
ing the sequence, its growth rate, momenta etc; and they have nice compositional
properties. Given a timed language L its generating function is defined as follows:

fLpzq “
ÿ

k

zkVkpLq.

Given a clock language L, we define a (parametric) generating function with a
given initial clock vector

f1
Lpz,xq “

ÿ

k

zkVkpLpxqq “ fLpzq, with L “ Lpxq.

For a clock language L we also define another cumulative generating function
with a given initial clock vector and a bound on the final clock vector:

f2pz,x,x1q “
ÿ

k

zkV 2
k px,x1q “ fLpzq, with L “ Lpx,x1q.

To summarize, we are interested to compute fpzq, but this computation will be
based on f1pz,xq, and sometimes on f2pz,x,x1q.

Given a timed automaton, timed and clock languages, and thus generating
function are naturally associated to its states, for example

f1
q pz,xq “

ÿ

k

zkVkpLqpxqq “ fLpzq, with L “ Lqpxq.

Taken for all states, functions fq and f1
q form |Q|-dimensional vector functions

fpz,xq, f1pz,xq, while functions f2
q,q1 form a Q ˆ Q-matrix function f2pz,x,x1q.

3.2 Analytic characterization

Elementary properties. First, let us state the relations between the three kinds
of generating functions:

6 in [3] a slightly different definition of the operator Ψ was given. Here we add a
matricial point of view but results of [3] extend straightforwardly to the present
setting.
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Proposition 4. Functions f, f1, f2 are related as follows: fpzq “ f1pz,0q;
f1pz,xq “ f2pz,x,Mq.

By definition, f2, f1 and f are analytic functions of z. Since we consider timed
automata with guards bounded by some constant M , all the volumes Vk (with
any initial or final conditions) can be upper bounded by pM |Σ|qk. This implies
that convergence radius of series for f2, f1 and f is at least pM |Σ|q´1 ą 0. More
precisely, the radius of convergence of f is 1{ lim supkÑ8pVkpLqq1{k “ 2´HpLq,

where HpLq is called the volumetric entropy of L (see [3]).
For generating functions associated to timed automata, the following result

is a straightforward corollary of Prop. 3:

Proposition 5. Within its convergence radius, the generating function f1pz,xq
associated to a timed automaton A is continuous wrt the initial clock vector x.

Integral equation and resolvent of Ψ . Consider a timed automaton. Its generating
function can be computed as follows:

f1pz,xq “
ÿ

k

zkVkpLpxqqVk “
ÿ

k

zkV‹k ‹ VF ,

which implies the following characterization of generating functions of timed
regular languages by a system of integral equations.

Theorem 2 (Integral equation). In the interior of its convergence circle, the
generating function f1 is the unique solution of the integral equation

f1 ´ zV ‹ f1 “ VF . (1)

This theorem can be rephrased in terms of the operator Ψ associated to the
automaton. Recall that, by definition, the resolvent of an operatorA is Rpλ,Aq “
pA ´ λIq´1; it is well defined when λ does not belong to the spectrum of A, in
particular for |λ| ą ρpAq, where ρ denotes the spectral radius.

Corollary 1 (Generating function and resolvent). The generating func-
tion f1 satisfies the formula: f1 “ ´z´1Rpz´1, ΨqVF , which holds in the interior
of the circle |z| ă ρpΨq´1.

Example (1, continued). For our running exampleV “

ˆ
0 minp1 ´ x, y1 ´ yq1lx1ě0

minp1 ´ y, x1 ´ xq1ly1ě0 0

˙
; VF “

ˆ
1
1

˙
.

Equation (1) gives:

f1
p pz, x, yq´z

ż y`1´x

y1“y

f1
q pz, 0, y1qdy1 “ 1; f1

q pz, x, yq´z

ż x`1´y

x1“x

f1
p pz, x1, 0qdx1 “ 1.

(2)
In Section 4.1 below we develop a technique for solving such equations (for a
subclass of automata including this one), and compute the generating function
for this language.

8



3.3 Inductive characterisation of generating function

The form of generating functions of finite triplet languages is immediate from
Prop. 1:

Proposition 6. For a finite triplet language L with maximal word length ℓ,
the generating functions f2, f1 are piecewise polynomial in z,x,x1 (pieces are
polytopes in x,x1) of degree ď ℓ wrt z and wrt x and x1.

More complex language can be obtained from fined ones using Kleene algebra
operations. We consider first the simple case of timed languages.

Proposition 7. Generating functions behave well for unambiguous operations
on measurable timed languages: fL1YL2

“ fL1
` fL2

whenever L1 X L2 “ H;
fL1¨L2

“ fL1
fL2

whenever the product is non ambiguous; fL˚ “ 1 ` fLfL˚

whenever ǫ R L and the star is not ambiguous.

However, in order to obtain general timed regular languages we need opera-
tions on clock languages, which are more involved.

Proposition 8. Generating functions f2 behave well for unambiguous opera-
tions on deterministic measurable clock languages: f2

L1YL2
“ f2

L1
`f2

L2
whenever

L1 X L2 “ H; f2
L1¨L2

“ f2
L1

‹ f2
L2

whenever the product is non ambiguous;
f2
L˚ “ 1lxďx1 ` f2

L
‹ f2

L˚ whenever ǫ R L and the Kleene star is not ambiguous.

Corollary 2. Generating function f1 for compositions of clock languages can
be computed as follows. f1

L1`L2
“ f1

L1
` f1

L2
whenever L1 X L2 “ H; f1

L1¨L2
“

f2
L1

‹ f1
L2

whenever the product is non ambiguous; f1
L˚ “ 1 ` f2

L
‹ f1

L˚ whenever
ǫ R L and the Kleene star is not ambiguous.

4 Computing generating functions

The generating function of a timed language represented by an automaton is
characterized by a system of integral equations (1). The generating function of
a timed language represented by a rational expression can be found recursively
from piecewise polynomial functions using operations `, ‹ and solving fixpoint
integral equations of Prop. 8 and Cor. 2. Unfortunately, both procedures involve
computation of integrals, and solution of integral equations, for this reason, the
result cannot be always presented by an explicit formula. Below we consider
several subclasses of timed automata, for which generating functions can be
obtained in closed form, or at least admit a simpler characterization.

4.1 Generating functions for particular classes of automata

System of equations. Our closed-form solutions for subclasses of timed automata
will be obtained using a variant of language equations.
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Let Q “ G Y B be a disjoint partition of the states of a timed automaton
A into good and bad. We want to describe the vector L of triplet languages Lq

recognized from good states q P G only. This vector satisfies the equation:

L “ T ¨ L ` F, (3)

where T is a G ˆ G-matrix and F is a G-vector of triplet languages. Their
elements are defined as follows: T pq consists of all words leading from p to q via
bad states only; F p consists of all words leading from p to a final state via bad
states only7.

Automata with regeneration. Following [11], we call an automaton regenerating
if there exists a partition Q “ G Y B having two properties:

– every cycle in the automaton contains a state in G (good);
– all the transitions coming into a good state reset all clocks.

W.l.o.g. we suppose that the initial state is good. The first condition implies
that no cycle is possible within bad states, and thus all the elements of T and F
are finite triplet languages (with maximal word length ď |B| ` 1). The second
condition means that (3) can be rewritten in timed languages (instead of clock
languages), since when entering in a good state all clocks are reset. This gives

Ltimed “ Ttimed ¨ Ltimed ` Ftimed. (4)

Applying simple compositionality conditions for generating functions for timed
languages (Prop. 7) we obtain that

f “ ff ` fF . (5)

Due to Prop. 6 all the coefficients (elements of matrix f and vector fF ) are
polynomials of z. Solving the linear |G|-dimensional system (5) we express f as
a vector of rational functions of z:

f “
`
I ´ f˘´1

fF . (6)

The generating function f of the timed language accepted by the automaton is
just one element of this vector f . We conclude.

Theorem 3. For a regenerating automaton the generating function fpzq is a
rational function.

Example 2. Consider a regenerating automaton on Fig. 2 (left). We choose good
and bad states as follows: G “ tp, qu;B “ tru. The system of equations on timed
languages of good states takes the form

ˆ
Lp

Lq

˙
“

ˆ
H Tpq

Tqp H

˙
¨

ˆ
Lp

Lq

˙
`

ˆ
Fp

H

˙
with (7)

Tpq “tpt1, aqpt2, bq|2 ă t1 ă 3 ^ t1 ` t2 ă 5u Y tpt, bq|t ă 8u;

Tqp “tpt, bq|t ă 7u;

Fp “tpt, aq|2 ă t ă 3u.

7 if this final state is good the word should be ǫ.
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p q

r

xb, x ă 7, txuy

xa, 2 ă x ă 3,Hy xb, x ă 5, txuy

xb, x ă 8, txuy
p q

r

b, r1; 9s

a, r2; 3s a, r1; 5s

b, r2; 8s

Fig. 2. A regenerating automaton (left) and a real-time automaton (right)

For generating functions this yields:
ˆ
fp
fq

˙
“

ˆ
0 2.5z2 ` 8z
7z 0

˙
¨

ˆ
fp
fq

˙
`

ˆ
z

0

˙
. (8)

Solving this linear system we find the required

fppzq “
2z

2 ´ 35z3 ´ 112z2
.

It converges for |z| ă 0.1309, its Taylor coefficients (i.e. volumes Vn for n “ 0..11)
are

0; 1; 0; 56; 17
1

2
; 3136; 1960; 175922

1

4
; 164640; 9885946; 12298479

3

8
; 556494176.

Real-time automata. We consider here transition-labeled real-time automata (t-
RTA) from [8]. They are automata, in which to any transition p

a
Ñ q is associated

a time interval rl, us. This transition can be taken after spending between l and
u time units in p. Equivalently, a real-time automaton can be seen as a timed
automaton with only one clock, which is reset on any transition.

It is easy to see that real-time automata are regenerating (all their states are
good). Thus equation (6) applies. Its coefficients can be found in a more explicit
form:

f “ pI ´ zAq´1VF , (9)

where matrix Apq is the sum of lengths of all time intervals associated to tran-
sitions from p to q, and, as before, VFq “ 1 iff q is final, and 0 otherwise. This
can be seen as a simplified version of the resolvent equation (1) for real-time
automata: instead of a matrix of integral operators, a matrix of polynomials is
inverted.

Example 3. For the real-time automaton on the right of Fig. 2 equation (9) takes
the form: ¨

˝
fp
fq
fr

˛
‚“

¨
˝I ´ z

¨
˝

0 6 1
8 0 0
0 4 0

˛
‚

˛
‚

´1

¨

¨
˝

0
0
1

˛
‚,
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which gives the required generating function:

fp “
z

1 ´ 48z2 ´ 32z3

with convergence circle |z| ă 0.13812 and first 11 Taylor coefficients (volumes
Vn):

0; 1; 0; 48; 32; 2304; 3072; 111616; 221184; 5455872; 14188544; 268959744.

1 3
4
-clocks automata. We call an automaton 1 3

4
-clocks if there exists a partition

of Q “ G Y B into good and bad states having two properties:

– every cycle in the automaton contains a good state;
– all the transitions coming into a good state reset all clocks except one.

W.l.o.g. we make two other assumptions:

– the initial state is a good one (this can be achieved by adding a new initial
state);

– for each good state p there is at most one clock xippq non reset by incoming
transition (this can be achieved by splitting good states).

Similarly to regenerating automata, we apply equations (3), and observe that
all the coefficients are finite triplet languages. Unfortunately, since some clocks
are not reset, we cannot write an equation on timed languages similar to (4).
Instead, we pass to clock languages and their generating functions, as in the
general case. This gives:

f1 “ f2 ‹ f1 ` f1F , (10)

an integral equation with piecewise polynomial coefficients. We notice that func-
tions in the last equation depend on the clock vector x P IRd (or on two clock
vectors x,x1), but in fact for any good state p P G only one clock xippq mat-
ters. This allows extracting simpler integral equations from (10), involving only
functions of scalar argument.

We proceed as follows: given a G-vector v whose elements vp are functions on

IRd, we define reduced functions on IR: rvppxq “ vpp0, . . . , 0, x, 0, . . . , 0q, with the
argument x at position ippq. Reduced G-vector rv consists of reduced elements
rvp. Reduced version of matrices are defined similarly.

The following identity is based on the requirement of clock resets:

Lemma 1. For a 1 3
4
-clocks automaton the following holds:

Čf2 ‹ f1 “
rf2 ‹

r
f1.

Equation (10), reduced to
r
f1 “

rf2 ‹
r
f1 `

Ą
f1F , implies that the reduced vector

of generating functions is a solution of equations of the form:

fpz, xq “ pA ‹ fqpz, xq ` bpz, xq, (11)

where all the coefficients are piecewise polynomial functions of z and a scalar
argument x.

12



Lemma 2. An integral equation of the form (11) can be transformed into a sys-
tem of linear ordinary differential equation with piecewise polynomial coefficients
(depending on x and z).

Theorem 4. For a 1 3
4
-clocks automaton the generating function f can be ob-

tained by solving a system of linear ordinary differential equations with piecewise
polynomial coefficients.

We notice that the theorem gives a rather explicit characterization of f , but not
always a closed-form expression.

Example (1, completed). For our running example, we chooseG “ tp, qu, B “ H.
The matrix A and the vector b areA “

ˆ
0 zminp1 ´ x, x1q1lx1ě0

zminp1 ´ x, x1q1lx1ě0 0

˙
; b “

ˆ
1
1

˙
.

Equations (11) on generating functions take the form8:

Ăf1
p pz, xq “ z

ż 1´x

x1“0

Ăf1
q pz, x1q dx1 ` 1; Ăf1

q pz, xq “ z

ż 1´x

x1“0

Ăf1
p pz, x1q dx1 ` 1.

By symmetry the two generating functions Ăf1
p and Ăf1

q are equal to a unique
function f1 which satisfies

f1pz, xq “ z

ż 1´x

x1“0

f1pz, x1q dx1 ` 1.

Differentiating it twice w.r.t x we obtain:

Bf1

Bx
pz, xq “ ´zf1pz, 1 ´ xq;

B2f1

Bx2
pz, xq “ ´z2f1pz, xq.

The solution has the form f1pz, xq “ Apzq cos zx`Bpzq sin zx. Using Bf1

Bx pz, 0q “
´zf1pz, 1q “ ´z we obtain zBpzq “ ´z and thus Bpzq “ ´1. Then f1pz, 1q “ 1
implies Apzq cos z ´ sin z “ 1 and thus Apzq “ 1`sin z

cos z
“ tan z ` sec z. We are

done since fpzq “ f1pz, 0q “ Apzq “ tan z ` sec z.

Example (Airy).
Consider the automaton on Fig. 3. We choose G “ tp, qu, B “ tru. As in

the previous example we have Apqpx, x1q “ minp1 ´ x, x1q1lx1ě0. For Aqp, we
must compute the volume of the language Lcbpx2, x

1
1q “ Lcbpx, x1q “ tt1, t2 ě

0 | x ` t1 ` t2 ď 1 ^ t1 ` t2 ď x1u. This is the area of the right-angled triangle

of equations t1, t2 ě 0, t1 ` t2 ď u where u “ minp1´x, x1q i.e. minp1´x,x1q2

2
. We

can now give the matrix A and the vector b:A “

˜
0 zminp1 ´ x, x1q1lx1ě0

z2
minp1´x,x1q2

2
1lx1ě0 0

¸
; b “

ˆ
1
0

˙
.

8 It is in fact the reduced form of equation (2).
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p

q

r

xa, x1 ď 1, tx1uy

xc, x2 ď 1,Hy

xb, x2 ď 1, tx2uy

Fig. 3. The Airy automaton

Equations (11) on generating functions take the form:

Ăf1
p pz, xq “ z

ż 1´x

x1“0

Ăf1
q pz, x1q dx1; Ăf1

q pz, xq “ z2
ż 1´x

x1“0

x1Ăf1
p pz, x1q dx1 ` 1.

Differentiating w.r.t x we obtain:

BĂf1
p

Bx
pz, xq “ ´zĂf1

q pz, 1 ´ xq;
BĂf1

q

Bx
pz, xq “ ´z2p1 ´ xqĂf1

p pz, 1 ´ xq.

Differentiate once again the former equation gives:
B2 Ăf1

p

Bx2 pz, xq “ z
B Ăf1

q

Bx pz, 1 ´ xq,
combining with the latter one this gives:

B2f1

Bx2
pz, xq “ ´z3xf1pz, xq with f1 “ Ăf1

p .

The solution has the form f1pz, xq “ αpzqAip´zxq ` βpzqBip´zxq where Ai
and Bi are the Airy’s functions and αpzq, βpzq two functions to be determined

with the border conditions f1pz, 1q “ 1, Bf1

Bx pz, 0q “ 0. We obtain the following
equations:

αpzqAip´zq ` βpzqBip´zq “ 1; αpzqAi1p0q ` βpzqBi1p0q “ 0.

Solving this system and simplifying using classical formulae for Aip0q, Ai1p0q,
Bip0q, Bi1p0q and Euler’s reflection formula, we obtain the final result:

fpzq “ f1pz, 0q “
4

π
¨

1

Bi1p0qAip´zq ´ Ai1p0qBip´zq
.

5 Conclusions

In this article, we have introduced generating functions of timed languages, ex-
plored their properties and characterized them by integral equations. For sub-
classes of timed regular languages we have presented closed-form expressions or
simpler characterization of generating functions. Generating functions describe
with a high precision the quantitative behaviour of timed languages.

At the current stage of research, the computation of generating functions
is a tedious semi-manual task, and important restrictions are imposed to the
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automata. We are planning to explore theoretical and practical algorithmics
of timed generating functions, and to implement the algorithm. On the other
hand, we want to see whether some analysis is possible beyond the class of 1 3

4

languages.
We hope that this approach will lead to various combinatorial results for

timed regular languages, better quantitative characterization of such languages
with applications to information theory and algorithm analysis. On the other
hand, the approach can be extended to non-regular timed languages or to richer
models such as hybrid automata.
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A Proof of Proposition 1

Proof. The clock language Lpπq is a polytope in IRdˆIRnˆIRd. Its timed section
Lpπqpx,x1q is a polytope in IRn whose coefficients are linear function of x and
x1. Volume of such polytopes are computable and have the required form.

B Proof of Proposition 2

Proof. First recall that

V 2
L1pw1q¨L2pw2qpx,x1q “ Voltt | σL1¨L2

px, pw1w2, tqq ď x1u

“

ż

t

dt ¨ 1lσL1¨L2
px,pw1w2,tqqďx1 ,

which gives

V 2
L1pw1q¨L2pw2qpx,x1q “

ż

t1,t2

dt1dt2 ¨ 1lσL2
pσL1

px,pw1,t1qq,pw2,t2qqďx1 .

By Fubini’s theorem this can be rewritten as

V 2
L1pw1q¨L2pw2qpx,x1q “

ż

t1

dt1

ˆż

t2

dt21lσL2
pσL1

px,pw1,t1qq,pw2,t2qqďx1

˙
.

Applying again the formula for V 2
L2pw2q, we get that

V 2
L1pw1q¨L2pw2qpx,x1q “

ż

t1

dt1 ¨ V 2
L2pw2qpσL1

px, pw1, t1qq,x1q

“

ż

x1

V 2
L2pw2qpx1,x

1qV 2
L1pw1qpx, dx1q,

as required. The last change of variables can be justified as follows. It has the
form: ż

t1

dt1 ¨ upσL1
px, pw1, t1qqq “

ż

x1

upx1qV 2
L1pw1qpx, dx1q, (12)

and we have to prove that it holds for any measurable u. Indeed, whenever upyq is
an indicator 1lyďa, both left-hand and right-hand sides equal V 2

L1pw1qpx, aq, thus

(12) holds. Any other function u can be obtained as a limit of linear combinations
of such indicators.

C Proof of Proposition 3

Proof. We prove the result for V 2
π for a triplet word π. It is then straightforward

to lift the result to the cumulative and non-cumulative volume functions of the
n-language of an automaton (finite sum of triplet words).

For a triplet word π, Lpπqpx,x1q is actually a polytope, intersection of half-
spaces H of equations of one of the following forms:
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– either xi ` sj ’ c,

– xi ` s|π| ’ x1
i,

– sj ´ sl ’ c

– or s|π| ´ sl ’ x1
i

Choices of i, j,’ and c depend onH . Here sj is the time since the beginning of the

word after j transitions, i.e. sj “
řj

i“1 ti, in particular s0 is the constant 0. Note
that the Jacobian of the change of variables t “ pt1, . . . , t|π|q to s “ ps1, . . . , s|π|q
is 1. So we can write:

V 2
π px,x1q “

ż
1lLpπqpx,x1qptqdt “

ż ź

H:half-space

1lHps,x,x1qds,

thus, for any i P 1..d:

BV 2
π px,x1q

Bxi

“

ż ÿ

Hl:xi appears

˘δpxi ` sji ´ cl or xi ` s|π| ´ x1
iq

ź

H‰Hl

1lHds

“

ż ÿ

Hl:xi appears

˘
ź

H‰Hl

1lHrxi Ð x1
i
´s|π| or xi Ð cl´sjl sds̃.

where s̃ is the vector of coordinates of s different from jl for all l such that
Hl : xi ` sjl ’kl

ckl
. We note that the Dirac’s δs were all eliminated after

the integration by sjl and that the expression that remains under the integral
is a proper function of x,x1 and s̃. This implies that V 2

π px,x1q was actually
continuous with respect to xi for all i and thus continuous.

D Proof of Proposition 8

Proof. Recall that:

f2
L1¨L2

px,x1, zq “
ÿ

wPΣ˚

z|w|V 2
L1¨L2pwqpx,x1q.

Since the product is non ambiguous,

pL1 ¨ L2qpwq “
ě

w1,w2PΣ˚

w“w1w2

L1pw1q ¨ L2pw2q,

and thus

V 2
L1¨L2pwq “

ÿ

w1,w2PΣ˚

w“w1w2

V 2
L1pw1q¨L2pw2q “

ÿ

w1,w2PΣ˚

w“w1w2

V 2
L1pw1q ‹ V 2

L2pw2q,
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with the last equality given by proposition 2. We deduce:

ÿ

wPΣ˚

z|w|V 2
L1¨L2pwq “

ÿ

wPΣ˚

ÿ

w1,w2PΣ˚

w“w1w2

z|w1|V 2
L1pw1q ‹ z|w2|V 2

L2pw2q

“
ÿ

w1PΣ˚

ÿ

w2PΣ˚

z|w1|V 2
L1pw1q ‹ z|w2|V 2

L2pw2q

“
ÿ

w1PΣ˚

z|w1|V 2
L1pw1q ‹

ÿ

w2PΣ˚

z|w2|V 2
L2pw2q,

and finally:
f2
L1¨L2

“ f2
L1

‹ f2
L2
.
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