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This paper investigates shape optimization of complex thermo-fluid phenomena that occur in welding processes. The linear finite elements dicretization is accomplished. The existence of the discrete optimal solution is established. Some computational results for our approach are presented and discussed.

Introduction

In this paper, we consider a problem modeling analysis of heat transfer in a welding operation. The aim is to identify the liquid/solid interface and estimate the field temperature in the welded parts of the plate in order to predict and control the mechanical effects caused by the process on these parts (residual stresses, distortions. . . ). The considered approach concerned only the solid part of the plate and it consists to simplify the physical phenomena occurring between the welding torch and the plate as well as the liquid bath by introducing a temperature condition imposed on the liquid/solid interface which is unknown. To solve this free boundary problem, an optimal shape design formulation was proposed in [START_REF] Chakib | A shape optimization formulation of weld pool determination[END_REF]. Our interest is the numerical study of the approached shape design problem, obtained by using the finite element method and the parametrization of the liquid/solid interface by Bézier curves. We are interested more precisely by showing the existence of the optimal discrete solution of this approached problem. The main difficulty of this work lies in the fact that the state problem is governed by a noncoercive operator, which complicates the study of existence. At this stage, it must be noted that in the coercive case we can show easily this result, see [START_REF] Haslinger | Introduction to Shape Optimization[END_REF]. The proposed approach for overcoming this difficulty is based on the topological degree tools in finite dimensional spaces [START_REF] Deimling | Nonlinear Functional Analysis[END_REF], and a uniform estimate of discrete solutions norm's. To show the efficiency of our approach, we give some numerical results.

Setting of the problem

We are interest by a numerical realization, using the finite element method, of the optimal shape design formulation of a welding problem given by

                     find Ω * ∈ Θ ad solution of J(Ω * ) = inf Ω∈Θ ad J(Ω) where J(Ω) = 1 2 Γ 0 |T (Ω(x, y)) -T 0 | 2 dσ and T (Ω) the solution of (SP )    K ∂T ∂x = ∇ • (λ∇T ) + f in Ω λ ∂T ∂ν = 0 on Γ 0 ∪ Γ 1 ∪ Γ 2 ∪ Γ 3 T = T d on Γ 4 , T = T f on Γ, ( 1 
)
where the parameters in (1) are such that: K is a constant dependent to the material characteristics (density of the plate and heat capacity,...), λ is the thermal conductivity, f is a given source term. The quantities T d , T 0 and T f are given temperatures. The solid part of plate Ω (see fig. 1), is defined by 

Ω(ϕ) =]0, a[×]0, L y [∪ (x, y) ∈ IR 2 /a ≤ x ≤ b, ϕ(x) ≤ y ≤ L y ∪]b, L x [×]0, L y [ ( 2 
)
where ϕ, the parametrisation of the unknowon boundary Γ, is a Lipschitz function. The set Θ ad is defined by

Θ ad = {Ω(ϕ) ϕ ∈ U ad }
and

U ad = ϕ ∈ C([a, b]) / ∃ a ϕ and b ϕ ∈ [a, b] , ϕ |[a,aϕ] = 0 , ϕ |[bϕ,b] = 0 and ∃ L 0 > 0 / ϕ(x) -ϕ(x ′ ) ≤ L 0 x -x ′ ∀x, x ′ ∈ [a, b] , 0 ≤ ϕ(x) ≤ L y ∀x ∈ [a, b] .
In the sequel we suppose that the parameters of our problem are such that:

D =]0, L x [×]0, L y [, (H 1 ) λ ∈ L ∞ (D) and ∃λ 0 > 0 such that λ(x)ξ • ξ ≥ λ 0 |ξ| 2 a.e x ∈ D (H 2 ) K ∈ L ∞ (D) and f ∈ L 2 (D) Let Γ D = Γ ∪ Γ 4 , we define the space H 1 Γ D (Ω) = u ∈ H 1 (Ω) / u| Γ D = 0 where H 1 (Ω)
is the Sobolev space. From the surjectivity of the trace operator from H 1 (D) to H 1 2 (∂D), we have

∃ V ∈ H 1 (D) such that V = v on ]b, L x [×]0, L y [ T f on ]0, b[×]0, L y [, where v ∈ H 1 (]b, L x [×]0, L y [) such that v = T d on Γ 4 and v = T f on {b} × [0, L y ] .
Then a variational formulation of the state problem (SP ) is the following:

find u ∈ H 1 Γ D (Ω) Ω λ∇u • ∇ψ + Ω K ψ ∂u ∂x = Ω f ψ -Ω λ∇V • ∇ψ -Ω K ψ ∂V ∂x ∀ψ ∈ H 1 Γ D (Ω). (3) 
The following existence result is proved in [START_REF] Chakib | A shape optimization formulation of weld pool determination[END_REF].

Theorem 1. Under assumptions (H 1 ) and (H 2 ), the problem (1) is well posed and admits at least one solution in Θ ad .

Numerical approximation of the problem

In this section we give an approximation of (1); we shall discretize both the admissible family Θ ad and the state problem (SP). We start with the first one, for this we use the piecewise spline approximations of Γ(ϕ) locally realized by quadratic Bézier functions [START_REF] Haslinger | Introduction to Shape Optimization[END_REF].

3.1. Discretization of the shape optimal problem. Let us consider a uniform partition

(a i ) d i=0 of [a, b], such that a = a 0 < a 1 < ... < a d = b, a i = iµ + a, µ = (b -a)/d, i = 0, ..., d; and a i+1/2 be the midpoint of [a i , a i+1 ]. Further let A i = (a i , ϕ i ), ϕ i ∈ IR, i = 0, ..., d, be design nodes and A i+1/2 = 1 2 (A i +A i+1 ) be midpoint of the segment A i A i+1 , i = 0, ..., d-1. In addition let a -1 2 = a -µ 2 , a d+ 1 2 = b + µ 2 , A -1 2 = (a -1 2 , 1 2 (ϕ 0 + ϕ 1 )), A d+ 1 2 = (a d+ 1 2 , 1 2 (ϕ d-1 + ϕ d )). Remark 1. The triple {A i-1 2 , A i , A i+ 1 2
}, is termed the control points of the Bézier function.

For a partition (a i ) d i=0 we associate the set Q ad µ ⊂ U ad of continuous, piecewise linear functions over (a i ) d i=0 :

Q ad µ = {ϕ µ ∈ C([a, b]) | ϕ µ | [a i-1 ,a i ] ∈ P 1 ([a i-1 , a i ]) ∀i = 1, ..., d} ∩ U ad . (4) 
The family of admissible discretized design domains is now represented by

Θ µ ad = { Ω(s µ ) /s µ ∈ U µ ad , } (5) 
where

U µ ad = { s µ = s µ | [a,b] ∈ C 1 ([a -µ 2 , b + µ 2 ]) / s µ | [a i-1 2 ,a i+ 1 2 ] is a quadratic Bézier function determined by {A i-1 2 , A i , A i+ 1 2 },
where A i = (a i , ϕ µ (a i )), i = 0, ..., d, and

ϕ µ ∈ Q ad µ . } (6) 
Now, we start the approximation of the state problem (SP ). We use the finite element method with continuous piecewise linear polynomials over a triangulation of the computational domain (an appropriate approximation of Ω(s µ ) ∈ Θ ad ). We introduce another family of regular partition (b i ) q i=0 of [a, b], such that: a = b 0 < b 1 < ... < b q = b (not necessary equidistant), whose norm well be denoted by h. We suppose that h -→ 0 + if µ -→ 0 + . Let r h s µ be the piecewise linear Lagrange interpolate of s µ on (b i ) q i=0 :

r h s µ (b i ) = s µ (b i ) and r h s µ | [b i-1 ,b i ] ∈ P 1 ([b i-1 , b i ]) ∀i = 0, • • • , q;
Then the computational domain of Ω(s µ ) is represented by Ω(r h s µ ). The system of all Ω(r h s µ ), s µ ∈ U µ ad , will be denoted by Θ µh ad in what follows:

Θ µh ad = {Ω(r h s µ ) | s µ ∈ U µ ad }. (7) 
Since Ω(r h s µ ) is already polygonal, one can construct its triangulation T (h, s µ ) with the h > 0 and depending on s µ ∈ U µ ad . We shall suppose that for h > 0 fixed, triangulations T (h, s µ ) are topologically equivalent for all s µ ∈ U µ ad . The domain Ω(r h s µ ) with a given triangulation T (h, s µ ) will be denoted by Ω h (s µ ) and the approximate of Γ is noted by Γ h . Let

H h (Ω h (s µ )) = {v h ∈ C(Ω h ) | v h | T ∈ P 1 (T ), T ∈ T (h, s µ )} and H h Γ D (Ω h (s µ )) = {v h ∈ H h (Ω h (s µ )) | v h | Γ D,h
= 0} be the finite dimensional spaces associated respectively to H 1 (Ω) and H 1 Γ D (Ω). We note that the finite element method used here is the conforming one [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF]. Then for any s µ ∈ U µ ad , the approximation

u h := u h (s µ ) ∈ H h Γ D (Ω h (s µ )) of u ∈ H 1 Γ d (Ω
) is given by: u h = N i=1 u h ( bi )ψ i , where N is the number of the nodes of T (h, s µ ) lying in Ω h (s µ ), ( bi ) 1≤i≤N is a vertex of the triangulation and (ψ) N i=1 is a basis function of H h Γ D (Ω h (s µ )). Let ̥(r h (s µ )) = D \ Ω(r h (s µ )), we construct another family {T E(h, s µ )} of triangulations of ̥(r h (s µ )). The union of T (h, s µ ) and T E(h, s µ ) define a regular triangulation of D. Let V h be a piecewise lineair Lagrange interpolant of V in D.

The discrete state problem reads

           Find u h ∈ H h Γ D (Ω h (s µ )) such that ∀v h ∈ H h Γ D (Ω h (s µ )) Ω h (sµ) λ h ∇u h • ∇v h + Ω h (sµ) K h v h ∂u h ∂x = Ω h (sµ) f v h - Ω h (sµ) λ h ∇V h • ∇v h - Ω h (sµ) K h v h ∂V h ∂x , (8) 
where K h (resp λ h ) is an approximation of K (resp λ) such that K h (resp λ h ) is uniformly bounded, converges to K (resp λ), almost every where and satisfies the following equation:

∃λ 0 > 0 independent of h such that λ h (x)ξ • ξ > λ 0 |ξ| 2 a.e x ∈ D. (9) 
We approach the cost functional by the following discrete one:

J h (u h (s µ )) = J h (Ω h (s µ )) = 1 2 Γ h 0 |T h (s µ ) -T 0 | 2 d, σ (10) 
where

T h (s µ ) = u h (s µ ) + V h and u h (s µ ) ∈ H h Γ D (Ω h (s µ )
). We state our discrete optimal shape problem as follows inf

sµ∈U µ ad J h (u h (s µ )),
where u h (s µ ) is solution of [START_REF] Haslinger | Introduction to Shape Optimization[END_REF] on Ω h (s µ ), [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF] where N is the number of the nodes of T (h, s µ ) lying in Ω h (s µ ). In the following we prove the existence of a solution of (11).

3.2.

Existence of the discrete optimal domain. The basic step in the existence analysis of a solution of [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF] consists in showing that solutions of (8) depend continuously on shape variations for all h > 0. This is based on the following lemma.

Lemma 1. ∃ C > 0 , ∀ s µ ∈ U µ ad and ∀ h > 0 u h (s µ ) 1,Ω h (sµ) ≤ C. Proof.
The main difficulty of this work is to show that u h (s µ ) 1,Ω h (sµ) is uniformly bounded with respect to Ω h (s µ ). For this we use the two following inequalities (see [START_REF] Boulkhemair | On the uniform Poincaré inequality[END_REF][START_REF] Boulkhemair | Uniform trace theorem and application to shape optimization[END_REF][START_REF] Ladyzenskaja | Équations aux Dérivés Partiales de Type Elliptiques[END_REF]) -There exists

C 0 > 0 independent of Ω h (s µ ) such that ∀u h ∈ H 1 Γ D (Ω h (s µ )) C 0 u h (s µ ) 1,Ω h (sµ) ≤ Ω h (sµ) |∇u h (s µ )| 2 . (12) 
-There exists C > 0 independent of Ω h (s µ ) such that

u h (s µ ) L 4 (Ω h (sµ)) ≤ C|Ω h (s µ )| 1 4 u h (s µ ) H 1 (Ω h (sµ)) .
Then we define the set

A k = {(x, y) ∈ Ω h (s µ ), |u h (x)| > k}, the functions h k (u h ) = max(-k, min(u h (s µ ), k)) and ψ k (u h (s µ )) = u h (s µ ) -h k (u h (s µ )). First we show the following uniform estimation of ψ k (u h (s µ )): (C 0 -C|A k | 1 4 ) ψ k (u h (s µ )) 2 H 1 (Ω h (s µ )) ≤ | < ℓ, ψ k (u h (s µ )) > ((H 1 Γ D (Ω h (sµ))) ′ ,H 1 Γ D (Ω h (sµ))) |. To show that the constant (C 0 -C|A k | 1 4
) is positive. We start by showing the uniform control of Lebesgue measure of A k , using Tchebychev inequality and the uniform estimate of ln(1 + |u|), i.e. there exists C 2 > 0 independent of Ω h (s µ ) such that

|A k | = {(x, y) ∈ Ω h (s µ )/ ln(1 + |w|) 2 ≥ ≥ ln(1 + k) 2 } ≤ 1 ln(1 + k) 2 ln(1 + |w|) L 2 (Ω h (sµ)) ≤ C 2 ln(1 + k) 2 . ( 13 
)
Then there exists

k 0 ∈ N * , such that ∀k ≥ k 0 C|A k | 1 4 ≤ C 0 2 .
Taking k = k 0 , we show that there exists C 3 > 0 independent of Ω h (s µ ) such that

ψ k 0 (u h (s µ )) H 1 (Ω h (s µ )) ≤ C 3 .
Finally, using the fact that h k 0 (u h (s µ ))u h (s µ ) ≥ (h k 0 (u h (s µ ))) 2 , ∇h k 0 (u h (s µ )) = χ A k 0 ∇u h (s µ ) and inequality (12), we show the existence of C 4 > 0 independent of Ω h (s µ ) such that

h k 0 (u h (s µ )) H 1 (Ω h (sµ)) ≤ C 4 .
We can now prove the follwing theorem. Theorem 2. Under the assumptions (9), the problem (11) admits a solution on U µ ad , for all h > 0 and µ > 0.

Proof . for s µ ∈ U µ ad fixed and h > 0, we define the operator F t , ∀t ∈ [0, 1], by

F t : H h Γ D (Ω h (s µ )) → H h Γ D (Ω h (s µ )), ūh → u h ,
where u h is the unique solution of,

Ω h (sµ) λ h ∇u h • ∇v h = Ω h (sµ) f v h - -t Ω h (sµ) K h v h ∂ ūh ∂x - Ω h (s µ ) λ h ∇V h • ∇v h - Ω h (s µ ) K h v h ∂V h ∂x . (14) 

Conclusions

This paper is concerned with the approximation of the welding problem formulated as a PDE optimization problem where the shape of the interface serves as the control variable. To avoid the shape differential calculus needed in a gradient like method for solving a shape optimization problem, we used a numerical algorithm based on genetic algorithm procedure, Bézier curve parametrization of the free boundary and finite element discretization of the state problem. We proved the existence of the discrete optimal solution. Our computational example confirms the efficiency of the proposed approach. The convergence can be accelerated by the parallel computation procedure.

It can be stressed that the presented method admits a straightforward generalization to three dimensions. Our future work in this class of problems will involve extensions of the present method to a time-dependent problem. 
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 1 Figure 1. The solid part of the welded workpiece with interface Γ.
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 2 Figure 2. The cost functional decreasing. And the iterative convergence process for the unknown boundary.
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The a priori estimate u h 1,Ω h (s µ ) < C, with C > 0, allows as to build an open ball B, such that there is no fixed point of F t on the boundary of B. Thus deg[I -F t , B, 0] is defined and independent of t, where 'deg' is the topological degree [START_REF] Deimling | Nonlinear Functional Analysis[END_REF] and I the identity mapping in H h Γ D (Ω h (s µ )). Since F 0 is trivial, we conclude that 1 = deg[I -F 0 , B, 0] = deg[I -F 1 , B, 0]. Therefore, F 1 admits a fixed point in the interior of B which is solution of [START_REF] Haslinger | Introduction to Shape Optimization[END_REF]. For the uniqueness of the discrete solution, since the second member of ( 8) is linear, we show that equation [START_REF] Haslinger | Introduction to Shape Optimization[END_REF] with second member zero, has no solution other than zero. This means that the problem is well posed. It remains to show that that solutions of (8) depend continuously on shape variations for all h > 0.

Let (s j µ ) j ⊂ U µ ad , we can extract a subsequence denoted again (s j µ ) j such that

From Chenais's uniform extension result [START_REF] Chenais | On the Existence of a Solution in a Domain Identification Problem[END_REF], there exist ũh (s j µ ) a uniform extension of

Thus there exists a subsequence ũh (s j µ ) and an element ũh 8). It's easy to see that u h | Γ 4 = 0 and using the compactness of the trace operator from

Then we can construct a sequence (

, ∀j ≥ j 0 , where π h ψ n is the piecewise linear interpolation of ψ n on T (h, s j µ ). For all j ≥ j 0 , we have

(16)

Passing to the limit first with n → ∞, then with j → ∞ in (16), we obtain that u h is solution to the (8).

Numerical algorithms.

To solve the welding problem, we developed a numerical algorithm based on a genetic algorithm procedure [START_REF] Michalewicz | Genetic Algorithms + Data Structures = Evolution Programs[END_REF] for solving our discrete optimal shape problem [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF]. Genetic algorithms (GA), primarily developed by Holland [START_REF] Holland | Adaptation in Natural and Artificial Systems University of[END_REF], have been successfully applied to various optimizations problems. It is essentially a searching method based on the Darwinian principles of biological evolution. In GA a new generation of individuals is produced using the simulated genetic operations crossover and mutation. The probability of survival of generated individuals depends of their fitness: the best ones survive with the high probability, the worst die rapidly. This procedure can be summarized in the following algorithm see [START_REF] Michalewicz | Genetic Algorithms + Data Structures = Evolution Programs[END_REF].

(1) Iteration k = 0, Generate randomly an admissible population.

(2) Solve ( 8) for each individual of population.

(3) Evaluate the fitness (10) for each individual of population.

(4) If the termination criteria is hold J h ≤ ε, then stop. Else set k = k + 1 and go to step 5. (5) Roulette wheel selection (6) Applied to the selected individuals, the barycenter crossover procedure. [START_REF] Holland | Adaptation in Natural and Artificial Systems University of[END_REF] Select randomly some individual, and applied to them the mutation. (8) Go to step 2.

Numerical results

In the following, we solve the welding problem considering the workpiece D as the square L x = 1, L y = 1.

4.1.

Validation of the method against a design model. Consider our model example [START_REF] Boulkhemair | On the uniform Poincaré inequality[END_REF] with the following physical data (corresponding to the aluminium variante),

The exact boundary is taken as the Bézier curve defined by the following control point : We solve the direct problem (SP ) using finite element, the obtained solution on Γ 0 is then specified as the desired temperature T 0 . Fig. 2 illustrates the iterative convergence process as the initial guess for the free boundary moves towards the exact boundary Γ, for various numbers of iterations performed. From this figure, it can be seen that the numerically retrieved boundary is a very good approximation of the exact one.