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In this article, we study the price monotonicity in the parameters of the Heston model for a contract with a convex pay-off function; in particular we consider European put options. We show that the price is increasing in the constant term in the drift of the variance process and decreasing in the coefficient of the linear term in the drift of variance process. We also show that the price is increasing in the correlation for small values of the stock and decreasing for the large values.

Introduction

The main attraction of the Black-Scholes model is the ability to express the price of European options in terms of a volatility parameter. Moreover, for convex payoffs, these formulas are strictly increasing with respect to the volatility parameter, which can cover the risk associated with this parameter through the purchase or sale of options. However, following the rejection of deterministic volatility assumption by empirical studies, practitioners are increasingly convinced that the best way to model the dynamics of an underlying is to consider a model where the process of instantaneous variance is stochastic.

In a general stochastic volatility model, the variance process does not depend solely on its current value. For example, under the Heston model, the variance process is given as the unique solution of the following stochastic differential equation dV t = (a -bV t )dt + σ V t dW t , V 0 = v.

(1.1)

The options prices depend on the initial value of the variance process v and the parameters a, b, σ and ρ. These parameters are often calibrated to market price of derivatives, so they tend to change their values regularly. It is then important to know the impact they have on option prices. The initial value of the variance process has a positive effect on prices of convex pay-off in a large class of stochastic volatility models. See for example, [START_REF] Bergman | General Properties of Option Prices[END_REF], [START_REF] Hobson | Volatility Misspecification, Option Pricing and Superreplication via Coupling[END_REF], Janson and Tysk (2002) and [START_REF] Kijima | Monotonicity and convexity of option prices revisited[END_REF]. When the volatility process is stochastic but bounded between two values m and M , El [START_REF] Karoui | Robustness of the Black and Scholes formula[END_REF] show that the price of an option is bounded between the Black-Scholes prices with volatilities m and M . In [START_REF] Romano | Contingent claims and market completeness in a stochastic volatility model[END_REF], Romano and Touzi show that the derivative of the value-function of an option with respect to the volatility under models such as Hull and White (1987) and [START_REF] Scott | Option pricing when the variance changes randomly : theory, estimation, and an application[END_REF] has a constant sign, and does not vanish before maturity. [START_REF] Henderson | Analytical Comparisons of Option prices in Stochastic Volatility Models[END_REF] shows that convex option prices are decreasing in the market price of volatility risk. However, to our knowledge, the dependence of the European option price on the correlation parameter is not known in any stochastic volatility model.

In this article, we study the price monotonicity of European put options with respect to the parameters v, a, b and ρ. We first show that the value function of put price is a classical solution of the Black-Scholes equation. Then using a Maximum principle we show that the price is increasing in the initial value of the variance process as well as in the constant term in the drift of the variance process and decreasing in the coefficient of the linear term in the drift of variance process. We also show that the price is increasing in the correlation for small values of the stock and decreasing for the large values.

This paper is organized as follows: In section 2 we recall some properties of the put price in the Heston model. In section 3 we study the monotonicity of the price with respect to the parameters of the drift of the variance process. The section 4 is devoted to the study of the monotonicity with respect to the correlation.

Preliminaries

Under a complete filtered probability space (Ω, F, (F t ) t≥0 , P) satisfying the usual conditions, we consider the Heston stochastic volatility model for a price process S t , defined by the following stochastic differential equations

dSt St = √ V t dW 1 t , dV t = (a -bV t ) dt + σ √ V t dW 2 , d W 1 , W 2 t = ρdt, (2.1) 
where a, b, σ > 0 and |ρ| < 1. Let (S, V ) be the solution of this equation with initial value (S 0 = s, V 0 = v). One can write S s as

S t = s exp t 0 V s dW 1 s - 1 2 t 0 V s ds (2.2)
The process (S t ) t≥0 is a local martingale; it is even a true martingale, by Mijatović and Urusov [START_REF] Mijatović | On the martingale property of certain local martingales[END_REF]. Thereby, using the Call-Put parity, all the results of this paper hold for Call options.

We consider an European put option on S with strike K and maturity t. Its current price is given, for (s, v) ∈ R * + × R + , by

P (t, s, v) = E [(K -S t ) + |S 0 = s; V 0 = v] . (2.3) 
If we replace the put pay-off by a function g ∈ C 2 (R) such that xg and x 2 g are bounded, then Ekström, Tysk 2010 (cf. [START_REF] Ekström | The Black Scholes equation in stochastic volatility models[END_REF] Theorem.2.3) show that the function

u(t, s, v) := E [g(S t )| S 0 = s, V 0 = v] (2.4)
is a classical solution of the pricing equation. In particular, it satisfies

u ∈ C R + 3 ∩ C 1,2,2 R * + 3 ∩ C 1,0,1 R * + × R * + × R + .
In addition, a probabilistic representation of the derivative of u with respect to v is given as

∂u ∂v (t, s, v) = E t 0 e -bτ ( Ŝs τ ) 2 ∂ 2 u ∂s 2 (t -τ, Ŝs τ , V v τ )dτ , (2.5) 
where ( Ŝs , V v ) is the unique solution starting from (s, v) to the stochastic differential equation

d Ŝs t Ŝs t = ρσdt + V v t dW 1 t , d V v t = a + σ 2 2 -b V v t dt + σ V v t dW 2 t . (2.6) 
Obviously, the European put pay-off does not satisfy the assumptions of this theorem. Nevertheless, Propositions 3.1 and 3.2 of [START_REF] Ekström | The Black Scholes equation in stochastic volatility models[END_REF] (which require only g to be continuous and bounded) ensure that

P ∈ C(R 3 + ) ∩ C 1,2,2 R * + 3 so that LP (t, s, v) = 0, ∀(t, s, v) ∈ R * + × R * + × R * + , P (0, s, v) = (K -s) + , ∀(s, v) ∈ R * + × R + , (2.7) 
where

Lϕ = - ∂ϕ ∂t + (a -bv) ∂ ∂v + 1 2 s 2 v ∂ 2 ∂s 2 + 1 2 σ 2 v ∂ 2 ∂v 2 + ρσsv ∂ 2 ∂v∂s ϕ.
(2.8)

Monotonicity with respect to the parameters v, a and b

In this section we study the monotonicity properties of the put price with respect to the parameters v, a and b. We first give an extension of the result of [START_REF] Ekström | The Black Scholes equation in stochastic volatility models[END_REF] to the European put pay-off.

Theorem 3.1. In addition to (2.7), we have

P ∈ C 1,0,1 (R + × R * + × R * + ).
Furthermore, the derivative of P with respect to v is given by

∂P ∂v (t, s, v) = E t 0 e -bτ h(t -τ, Ŝs τ , V v τ )dτ , (3.1) 
where ( Ŝs , V v ) is the solution starting from (s, v) to (2.6) and h is defined on

R * + 3 by h(τ, x, y) = E y   K (1 -ρ 2 ) τ 0 V u du N   -log(x/K) -ρ τ 0 √ V u dW 2 u + 1 2 τ 0 V u du (1 -ρ 2 ) τ 0 V u du     , (3.2)
where N is the cumulative distribution function of the standard normal law. Remark 3.1. Note that the function h(t, s, v) is simply s 2 ∂ ss P (t, s, v). As a direct consequence of this theorem, we have for any t, s > 0, the function v -→ P (t, s, v) is increasing.

Proof. Writing S t = s exp ρ t 0 V s dW 2 s + 1 -ρ 2 t 0 V s d Ŵ 2 s - 1 2 t 0 V s ds , (3.3) 
where the Brownian motion Ŵ 2 in independent from W 2 , we have

P (t, s, v) = K E [N (d 1 )] -s E e ρ t 0 √ VudW 2 u -ρ 2 2 t 0 Vudu N (d 2 ) , (3.4) 
where

d 1 = -log( s K ) -ρ t 0 √ V u dW 2 u + 1 2 t 0 V u du (1 -ρ 2 ) t 0 V u du (3.5)
and

d 2 = d 1 -(1 -ρ 2 ) t 0 V u du. (3.6)
We can write ∂ ss 2P (t, s, v), using this stochastic representation of P , as

∂ 2 P ∂s 2 = E v   K/s 2 (1 -ρ 2 ) t 0 V u du N   -log(s/K) -ρ t 0 √ V u dW 2 u + 1 2 t 0 V u du (1 -ρ 2 ) t 0 V u du     . (3.7) Set h(t, s, v) = s 2 ∂ 2 P ∂s 2 (t, s, v). (3.8)
The main purpose of the assumption (xg and x2g are bounded) is to give a stochastic representation of the second derivative of P with respect to s and to ensure that it is continuous and bounded. Here we see that we have a stochastic representation of ∂ ss P given by (3.7). Following the procedure of [START_REF] Ekström | The Black Scholes equation in stochastic volatility models[END_REF] (cf Proposition 4.1, 4.2), we only need to show that the function

(t, s, v) -→ H(t, s, v) := E t 0 e -bτ h(t -τ, Ŝs τ , V v τ )dτ (3.9) is continuous on R * + × R + × R *
+ and bounded by an integrable random variable. For this, we consider a sequence (t n , s n , v n ) -→ (t, s, v) and show that H(t n , s n , v n ) converges to H(t, s, v). As ( Ŝsn τ , V vn τ ) converges to ( Ŝs τ , V v τ ) in probability, we only need to find an upper bound of H(t, s, v) by an integrable random variable and conclude by applying the dominated convergence theorem.

To obtain the desired upper bound, we first note that for any x, y ∈ R and 0 ≤ τ ≤ t we have

h(x, y, t -τ ) ≤ E y   K √ 2π (1 -ρ 2 ) t-τ 0 V u du   =: M (t -τ, y). (3.10) 
We can easily see that for any 0 ≤ y 1 ≤ y 2 , we have

M (t -τ, y 1 ) ≥ M (t -τ, y 2 ). (3.11)
On the other hand, by the comparison theorem, we have

V v τ ≥ V v τ , a.s. (3.12)
It follows that

M (t -τ, V v τ ) ≤ M (t -τ, V v τ ), a.s. (3.13) 
Then,

E h( Ŝs τ , V v τ , t -τ ) ≤ E [M (t -τ, V v τ )] = E   E V v τ   K √ 2π (1 -ρ 2 ) t-τ 0 V u du     = E v   K √ 2π (1 -ρ 2 ) t τ V u du   . (3.14)
The last line follows from the Markov property of the process V . It follows that

E t 0 e -bτ h v ( Ŝs τ , V v τ , t -τ )dτ ≤ t 0 E v   K √ 2π (1 -ρ 2 ) τ 0 V u du   dτ . (3.15)
We have, by Dufresne [START_REF] Dufresne | The integrated square-root process[END_REF],

E v   1 τ 0 V u du   < +∞, ∀τ > 0. (3.16)
Moreover, for any v ≥ 0, we have

lim τ →0 τ 2 3 E v   1 τ 0 V u du   = 0. (3.17)
It follows that for any v ≥ 0,

t 0 E   1 τ 0 V v u du   dτ < +∞. (3.18)
The rest of the proof of the Theorem is identical to Proposition 3.1 of [START_REF] Ekström | The Black Scholes equation in stochastic volatility models[END_REF] by using this upper bound. Thus, the function

H is continuous on R + × R * + × R * + .
Monotonicity with respect to a and b

We now study the monotonicity properties of the put price with respect to the parameters a and b. Note that the paths of the variance process are increasing with respect to a and decreasing with respect to b. This means that increasing a generates higher volatility which will increase the Put price. To verify this claim, we will let the put price vary in terms of a and b : We write

P a,b (t, s, v) = E (K -S a,b t ) + S a,b 0 = s; V a,b 0 = v , (3.19) 
where (S a,b , V a,b ) is the unique solution starting with (s, v) of the stochastic differential equations

dS a,b t S a,b t = V a,b t dW 1 t , dV a,b t = (a -bV a,b t )dt + σ V a,b t dW 2 , d W 1 , W 2 t = ρdt. (3.20) 
The following maximum principle will be crucial for the proof of the main result of this section. The proof of this theorem can be found in the appendix. Theorem 3.2 (Maximum Principle). For t > 0, let

µ * t = sup {µ > 0 : ES µ t < ∞} . (3.21)
Let L be the operator defined by (2.8) and ϕ ∈ C 1,2,2 (R *

+ 3 ) ∩ C(R 3 + ) so that ∀t, M > 0, ∃λ < µ * t : sup τ ≤t, s≤M, v∈R |ϕ(t, s, v)| ≤ M λ . (3.22) Suppose ϕ satisfies Lϕ(t, s, v) ≤ 0 (resp < 0), ∀(t, s, v) ∈]0, +∞[×R * + × R * + , ϕ(0, s, v) ≥ 0, ∀(s, v) ∈ R * + × R * + .
(3.23)

Then ϕ ≥ 0 (resp ϕ > 0) on R * + 3 .
We establish the monotonicity of P with respect to a and b in the following result Proposition 3.1. Let a 2 > a 1 and b 1 < b 2 . We have

P a1,b (t, s, v) < P a2,b (t, s, v), ∀b ≥ 0, ∀(t, s, v) ∈ R * + 3 (3.24) and P a,b1 (t, s, v) > P a,b2 (t, s, v), ∀a ≥ σ 2 2 , ∀(t, s, v) ∈ R * + 3 . (3.25)
Proof. For any a, b ≥ 0, let

L a,b ϕ = -rϕ - ∂ϕ ∂t + rs ∂. ∂s + (a -bv) ∂. ∂v + 1 2 s 2 v ∂ 2 . ∂s 2 + 1 2 σ 2 v ∂ 2 . ∂v 2 + ρσsv ∂ 2 . ∂v∂s ϕ (3.26)
We can easily check that

L a2,b (P a2,b -P a1,b )(t, s, v) = -(a 2 -a 1 ) ∂P a 1 ,b ∂v , ∀(t, s, v) ∈ R * + 3 , (P a2,b -P a1,b )(0, s, v) = 0, ∀(s, v) ∈ R * + 2 . (3.27)
and

L a,b2 (P a,b1 -P a,b2 )(t, s, v) = -(b 2 -b 1 )v ∂P a,b 1 ∂v , ∀(t, s, v) ∈ R * + 3 , (P a,b1 -P a,b2 )(0, s, v) = 0, ∀(s, v) ∈ R * + 2 .
(3.28)

We have, by Theorem 3.1, the function ∂ v P a1,b and ∂ v P a,b1 are positive. Then, by Theorem 3.2, that (P a2,b -P a1,b ) > 0 and (P a,b1 -P a,b2 ) > 0.

Monotonicity with respect to the correlation

This section focuses on the monotonicity properties of the price of the European put with respect to the correlation. Note that the method we used in the previous section to establish the monotonicity with respect to v, a and b can not be applied here. Indeed, the idea of this method was to differentiate (2.7) with respect to the parameter considered and obtain a differential system as (Lu < 0 on C and u ≥ 0 on ∂C), which gives the sign of u by applying the maximum principle; while if we differentiate (2.7) with respect to ρ, we obtain the system

L ∂P ∂ρ (t, s, v) = -σsv ∂P ∂s∂v (t, s, v), ∀(t, s, v) ∈]0, T ] × R * + × R * + , ∂P ∂ρ (0, s, v) = 0, ∀(s, v) ∈ R * + × R * + . (4.1)
As the sign of ∂ sv P is not necessarily constant, this does not allow us to deduce the sign of the derivative of P with respect to ρ using the maximum principle. To analyze the impact of ρ in the price P , we will study the sign of the derivative of P with respect to ρ. This derivative can be obtained by differentiating (3.4) with respect to ρ :

∂P ∂ρ = E   log( K s ) -∞ e x N   x -ρ t 0 √ V u dW 2 u + 1 2 I t (1 -ρ 2 ) t 0 I u du   ρx - t 0 √ V u dW 2 u + ρ 2 I t (1 -ρ 2 ) 3 I t dx   , (4.2 
) where I t := t 0 V u du. The sign ∂P ∂ρ is not obvious, however the following figure shows that there is a change of monotonicity depending on the value of the strike price. We see that ∂P ∂ρ is positive for s < K = 1 and negative for for s > 1. In order to determine if this change of monotonicity is unique, we will study in details the sign of the derivative of P with respect to ρ for s very large and very small. For this we define the quantities

s ρ 0 (t, v) = inf s > 0 : ∂P ∂ρ (t, s, v) ≤ 0 (4.3)
and Having s ρ 0 > 0 (resp s ρ ∞ < +∞) means that ∂P ∂ρ is positive (resp negative) for s small (resp s large). We next present the main result of this section. 

s ρ ∞ (t, v) = sup s > 0 : Ṗρ (t, s, v) ≥ 0 . (4.4)
0 < s ρ 0 (t, v) ≤ s ρ ∞ (t, v) < +∞ (4.5)
Proof. We use the results obtained in [START_REF] Ould Aly | From the moment explosions to the asymptotic behavior of the cumulative distribution[END_REF], where it is shown that for R sufficiently large, we have ln P -

1 2 I t + t 0 V u dW 1 u > R ∼ -µ + R (4.6) 
and ln P -

1 2 I t + t 0 V u dW 1 u < -R ∼ -µ -R, (4.7) 
with

µ + = inf {p > 0, T * (p) = t} (> 1), µ -= inf {p > 0, T * (-p) = t} and T * (p) = sup t > 0, E Q exp p 2 -p 2 t 0 V u du < +∞ , (4.8) 
where under Q the process V satisfies the stochastic differential equation

dV t = (a -(b -ρσp)V t ) dt + σ V t dW Q t . (4.9) 
We can easily see that, for k sufficiently large, we have ln

P (t, e k , v) ∼ -µ -k, ln P (t, e -k , v) -1 -e -k ∼ -µ + k (4.10) and lim k→+∞ ∂ ρ P (t, e k , v) kP (t, e k , v) = - ∂µ - ∂ρ , lim k→+∞ ∂ ρ P (t, e -k , v) k(P (t, e -k , v) -1 -e -k ) = - ∂µ + ∂ρ . (4.11)
By the comparison theorem, the process V is increasing with respect to ρ under Q (see also [START_REF] Ould Aly | Parameter sensitivity of CIR process[END_REF]) for p > 0 and decreasing for p < 0. This means that for p > 1, T * (p) (as a function of ρ) is decreasing and for any p > 0, ρ -→ T * (-p ) is increasing. On the other hand, p -→ T * (p) is decreasing near µ + and p -→ T * (-p) is increasing near µ -. It follows that µ + is decreasing with respect to ρ and µ -is increasing with respect to ρ. This means that, for k sufficiently large, we have

∂ ρ P (t, e -k , v) > 0 (4.12)
and

∂ ρ P (t, e k , v) < 0. (4.13)
Thus (4.5).

So far we confirmed that 0 < s ρ 0 ≤ s ρ ∞ < +∞, which means that the Put price is increasing in the correlation for small values of the stock price and decreasing for large values. The question is whether s ρ 0 = s ρ ∞ , which means that there is only one point s ρ (t, v) so that the derivative of P with respect to ρ is positive for s ≤ s ρ and negative for s > s ρ . All numerical experiments seem to confirm this intuition. In the next sections, we will show that s ρ 0 = s ρ ∞ for short and long maturities.

Small-Time Asymptotic Behavior

We study here the monotonicity with respect to the correlation for short maturities.

The main result of this section is the following Proposition Consequently,

lim t→0 s ρ 0 (t, v) = lim t→0 s ρ ∞ (t, v) = 1. (4.15)
Proof. Let (S, V ) be the unique solution of (2.6) starting with (s, v). By Forde and Jacquier (cf [START_REF] Forde | Small-time asymptotic for implied volatility under the Heston model[END_REF]), we have

lim t→∞ t log E(K -S t ) + = -Λ * (log( K s )), for s > K (4.16)
and

lim t→∞ t log E(S t -K) + = -Λ * (log( K s )), for s < K, (4.17)
where Λ * is the Fenchel-Legendre transform of the function Λ defined by

Λ(p) = vp σ( √ 1-ρ 2 cot( 1 2 σp √ 1-ρ 2 )-ρ) , for p ∈]p -, p + [, Λ(p) = ∞, for p ∈ R\]p -, p + [, (4.18) 
with p -and p + are given by

p -= arctan √ 1-ρ 2 ρ 1 2 σ 1 -ρ 2 1 ρ<0 - π σ 1 ρ=0 + -π + arctan √ 1-ρ 2 ρ 1 2 σ 1 -ρ 2 1 ρ>0 , (4.19 
)

p + = π + arctan √ 1-ρ 2 ρ 1 2 σ 1 -ρ 2 1 ρ<0 + π σ 1 ρ=0 + arctan √ 1-ρ 2 ρ 1 2 σ 1 -ρ 2 1 ρ>0 . (4.20)
The function Λ * is given by

Λ * (x) = xp * (x) -Λ(p * (x)), (4.21) 
where p * (x) is the unique solution of

x = Λ (p * (x)) (4.22)
and Λ is given by

Λ (p) = v σ( 1 -ρ 2 cot( 1 2 σp 1 -ρ 2 ) -ρ) + σvp(1 -ρ 2 ) csc 2 ( 1 2 σp 1 -ρ 2 ) 2σ( 1 -ρ 2 cot( 1 2 σp 1 -ρ 2 ) -ρ) 2
.

(4.23) Let Σ t (x) be the Black-Scholes implied volatility, defined as the unique solution of

P (t, K e -x , v) = P BS (t, K e -x , K; Σ t (x)), (4.24) 
where

P BS (t, s, k, Σ) = KN ( -log(s/k) + tΣ/2 √ tΣ ) -sN ( -log(s/k) -tΣ/2 √ tΣ ). (4.25) 
By Theorem 2.4 of [START_REF] Forde | Small-time asymptotic for implied volatility under the Heston model[END_REF], we have

lim t→0 Σ t (x) = |x| 2Λ * (x) . (4.26) 
Writing P (t, s, v) in terms of the Black-Schole implied volatility as in (4.24) and noting that the dependence of the right term of (4.24) with respect to ρ is only through Σ and using the fact that the Black-Scholes put price is is increasing with respect to the implied volatility, we see that p(t, s, v) and Σ t (log(K/s))) have the same monotonicity with respect to the correlation. Therefore

sign Ṗρ (t, s, v) = sign ∂Σ t (log( K s ))) ∂ρ . (4.27) 
The implied volatility is differentiable with respect to the correlation. Moreover, using Lemma 4.1 below, we have

lim t→0 ∂Σ t (x) ∂ρ = -|x| 2Λ * (x) 2Λ * (x) ∂Λ * (x) ∂ρ . (4.28) 
Let's consider the derivative of Λ * (x) with respect to ρ, for x ∈ R. This derivative is given by

∂Λ * (x) ∂ρ = ∂p * (x) ∂ρ (x -Λ (p * (x))) - ∂Λ ∂ρ (p * (x)) = - ∂Λ ∂ρ (p * (x)) (as Λ (p * (x)) = x) = -vp * (x) 2ρ √ 1-ρ 2 cot(θ * (x)) -(1 -ρ 2 )θ * (x) csc 2 (θ * (x)) + 1 2σ( 1 -ρ 2 cot(θ * (x)) -ρ) 2 , (4.29) 
where

θ * (x) := 1 2 σp * (x) 1 -ρ 2 . (4.30)
Using Lemma 4.2 below, which ensures that, for any x ∈ R,

2ρ 1 -ρ 2 cot(θ * (x)) -(1 -ρ 2 )θ * (x) csc 2 (θ * (x)) + 1 > 0, (4.31) 
we have sign ∂Λ * (x) ∂ρ = sign (-vp * (x)). (4.32)

On the other hand, as p * (x) has the same sign as x, we deduce that for t sufficiently small, we have

sign Ṗρ = sign ∂Σ t (x)) ∂ρ = sign ∂Λ * (x) ∂ρ = sign (log( K s )).
Lemma 4.1. For any x = 0, we have

lim t→0 ∂Σ t (x) ∂ρ = -|x| 2Λ * (x) 2Λ * (x) ∂Λ * (x) ∂ρ . (4.33) Lemma 4.2. For any ρ ∈ [-1, 1] and x ∈ R, we have 2ρ 1 -ρ 2 cot(θ * (x)) -(1 -ρ 2 )θ * (x) csc 2 (θ * (x)) + 1 > 0. (4.34)

Large-Time Asymptotic Behavior

It is known that for long maturities the implied volatility curve in a stochastic volatility model flattens, so it does not depend on the strike. Under Heston model, Forde et al [START_REF] Forde | Asymptotic formulae for implied volatility under the Heston model[END_REF] showed that (under the assumption b -ρσ > 0) the implied volatility can be written as

Σ 2 t (x) = 8V * (0) + a 1 (x)/t + o(t), (4.35) 
where V * and a 1 are given below. The main result of this section is the following result Proposition 4.2. For any ρ ∈] -1, 1[ such that b -ρσ > 0 and for any v > 0, we have

lim t→+∞ s ρ 0 (t, v) = lim t→+∞ s ρ ∞ (t, v) = +∞. (4.36)
Proof. We will use the notations of [START_REF] Forde | Asymptotic formulae for implied volatility under the Heston model[END_REF]. Under the assumption b -ρσ > 0, we have, for any p ∈]p -, p + [,

V (p) = lim t→∞ t -1 log E [exp (p(X t -x 0 ))] = a σ 2 (b -ρσp -d(-ip)) , (4.37) 
where

d(-ip) = (b -ρσp) 2 + σ 2 (p -p 2 ) (4.38)
and

p ± := -2bρ + σ ± σ 2 + 4b 2 -4bσρ . (4.39) 
Let's consider the function p * : R -→]p -, p + [ defined by

p * (x) := σ -2bρ + (aρ + xσ) σ 2 +4b 2 -4bρσ x 2 σ 2 +2xaρσ+a 2 1/2 2σ(1 -ρ 2 )
, for x ∈ R. (4.40)

For t sufficiently large and x ∈ R, we have (cf. [START_REF] Forde | Asymptotic formulae for implied volatility under the Heston model[END_REF])

1 S 0 E(S t -S 0 e -x ) + = 1 + A(0) √ 2πt exp (-(1 -p * (0))x -V * (0)t) (1 + O(1/t)), (4.41)
where V * is the Fenchel-Legendre transform of V defined by

V * (x) := sup {px -V (p), p ∈]p -, p + [ } (4.42)
and A is the function defined in a neighborhood of 0 by

A(x) = -1 V (p * (x)) U (p * (x)) p * (x)(1 -p * (x)) , (4.43) 
where We have

U (p) := 2d(-ip) b -ρσp + d(-ip) 2a σ 2 exp v a V (p) . ( 4 
∂V * (0) ∂ρ = - ∂V ∂ρ (p * (0)) + (x -V (p * (0))) ∂p * (0) ∂ρ = - ∂V ∂ρ (p * (0)) = - a σ 2 -σp * (0) + σp * (0)(b -ρσp * (0)) (b -ρσp * (0)) 2 + σ 2 (p * (0) -p * (0) 2 ) = -a 2ρ p * (0)(1 -2p * (0)) (b -ρσp * (0)) 2 + σ 2 (p * (0) -p * (0) 2 ) 1 ρ =0 . ( 4 

.49)

The first two lines follow from the fact that V (p * (0)) = 0. For ρ = 0, we have As ϕ(0) = 1 2 , we deduce that for any ρ = 0, (ϕ(ρ) -1/2) has the same sign as ρ. This means that ϕ(ρ) -1/2 ρ > 0. (4.52) Therefore, we have 

∂V * (0) ∂ρ ρ=0 = -a 2σ -1 + b b 2 + σ 2 /4 ( > 0). ( 4 
∂V * (0) ∂ρ > 0, ∀ρ ∈ [-1, 1]. ( 4 
∈] -1, 1[ -→ ϕ(ρ) := σ -2bρ + ρ σ 2 + 4b 2 -4bρσ 2σ(1 -ρ 2 ) (4.55)
is increasing.

, (B.7) where P(K ≥ S t ) can be written as

P(K ≥ S t ) = ∂P ∂K = N -log(s/K) + t 2 Σ 2 t √ tΣ t +KN -log(s/K) + t 2 Σ 2 t √ tΣ t √ t ∂Σ t ∂K .
(B.8) On the other hand, for any y > 0, we have

N (-y) ≤ 1 y exp -y 2 /2 √ 2π . (B.9)
It follows that for any s > K and t sufficiently small, we have

N -log(s/K) + t 2 Σ 2 t √ tΣ t ≤ √ tΣ t log(s/K) -t 2 Σ 2 t N -log(s/K) + t 2 Σ 2 t √ tΣ t . (B.10)
Then, for s > K, there exists a constant M > 0 such that, for t sufficiently small, we have

P(K ≥ S t ) ≤ M √ t N -log(s/K) + t 2 Σ 2 t √ tΣ t . (B.11) It follows that Ṗρ (t, s, v) √ tN -log(s/K)+ t 2 Σ 2 t √ tΣt ≤ M 2 [E|Y t | p ] 1/p × √ tN -log(s/K) + t 2 Σ 2 t √ tΣ t -1 p , (B.12)
By [START_REF] Ould Aly | From the moment explosions to the asymptotic behavior of the cumulative distribution[END_REF] and the fact that where It follows that, using (B.12) and (B.16), the claim (B.4) is verified. We proceed similarly for s < K, by using the call price instead of the put price.

t 0 V u dW 1 u = (V t -v -at + bI t ) /σ, ( 
ψ(t) = b σ 2 + 2λ i 2 (p)σ 2 -b 2 σ 2 tan (g(t, p)) , ϕ(t) = b σ 2 t + 2 σ 2 (log cos g(0, p) -log cos g(t, p)) (B.25) and g(t, p) = 2λ i 2 (p)σ 2 -b 2 2 t + arctan( λ i 1 (p)σ 2 -b 2λ i 2 (p)σ 2 -b 2 ), ( 
We will show that ϕ (ρ) > 0, for any ρ ∈] -1, 1[. We first note that ϕ (ρ) has the same sign as 

h(ρ) = 2ρ 1 + ρ 2 σ -2b + σ 2 + 4b 2 -4bρσ - 1 -ρ 2 1 + ρ 2

Fig. 1 .

 1 Fig. 1. Ṗρ for s ∈ [0.4, 2.5] (K = 1, v 0 = 0.1, b = 3, σ = 0.2 and t = 0.5).

Theorem 4 . 1 .

 41 For any t, v > 0 and ρ ∈] -1, 1[, we have

Proposition 4 . 1 .

 41 For any ρ ∈] -1, 1[ and any v ∈ R + * , we have lim t→0 sign ∂P ∂ρ (t, e -x , v) = sign (x). (4.14)

  .50) Lemma 4.3 below ensures that the function ϕ defined in (4.55) is increasing. Note that, for any ρ ∈ [-1, 1], we have ϕ(ρ) = p * (0). (4.51)

2bρσ σ 2 2 α 2 + β 2

 2222 + 4b 2 -4bρσ .(D.5)On the other hand, h(ρ) can be written ash(ρ) = α + α 2 + β 2 + γ -γ/2 σ -2b, β = 1 -ρ 2 1 + ρ 2 σ et γ = 1 -ρ 2 1 + ρ 2 4bρσ. (D.7)It follows that h(ρ) has the same sign as the quantityλ ((α, β, γ) ∈ Γ) = α α 2 + β 2 + γ + α 2 + β 2 + γ/2,(D.8)where Γ = (α, β, γ) :α 2 + β 2 + γ ≥ 0 . (D.9)Note that if α ≥ 0 and γ ≤ 0, then h(ρ) ≥ 0. To study the sign in the general case, we consider the derivative of λ with respect to γ. It is given by∂ γ λ(α, β, γ) = α + α 2 + β 2 + γ 2 .(D.10)We discuss four casesCase α ≥ 0 and γ ≥ 0: On Γ ∩ {α ≥ 0, γ ≥ 0}, we haveλ(α, β, γ ∈ Γ) = α α 2 + β 2 + γ + α 2 + β 2 + γ/2 ≥ 0. (D.11)Case α ≥ 0 and γ ≤ 0: On Γ ∩ {α ≥ 0, γ ≤ 0}, we haveλ(α, β, γ ∈ Γ) = α α 2 + β 2 + γ + α 2 + β 2 + γ -γ/2 ≥ 0. (D.12)Case α ≤ 0 and γ ≤ 0: In this case, the minimum of λ on Γ ∩ {α ≤ 0, γ ≤ 0} is reached at γ = -β 2 and this minimum is equal to β 2 /2 ≥ 0. Case α ≤ 0 and γ ≥ 0: In this case, for any β, the function γ -→ λ(α, β, γ) is increasing on [0, +∞[. In particular, we haveλ(α, β, γ) ≥ λ(α, β, 0) = α α 2 + β 2 + α 2 + β 2 ≥ 0. (D.13) In all cases, we have λ(α, β, γ) > 0, ∀(α, β, γ) ∈ Γ. (D.14) Thus, ϕ(ρ) > 0, ∀ρ ∈ [-1, 1].
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Appendix

Appendix A. Proof of Theorem 3.2 Suppose ∃(t, s, v) ∈ R * + 3 so that ϕ(t, s, v) < 0. Consider (S s , V v ) the unique solution of the stochastic differential equations

Let's define the F-stopping times

We have P(τ < t) = 1. Applying the Itô formula to the process (ϕ(t-u, S s u , V v u )) u≤t between 0 and τ ∧ τn , we have

As S and V are in ]0, n], we have

we have

Now using Doob's martingale inequality, we have

Similarly, applying Doob's martingale inequality to the martingale e bt (V t -a b ) and taking into account the fact that

we obtain [START_REF] Hull | The Pricing of Options on Assets with Stochastic Volatilities[END_REF] This means that

Hence the contradiction (ϕ(t, s, v) is supposed to be negative). Thus ϕ ≥ 0. Now assume Lϕ < 0. Let's take (t, s, v) with t > 0. Applying the Itô formula to the process (ϕ(t -u, S s u , V v u )) u≤t between 0 and t ∧ τn , we have

We get, by the same way as before,

Appendix B. Proof of Lemma 4.1:

The put price P is given, in terms of the Black-Scholes implied volatility, by

Differentiating this expression on both sides with respect to ρ, we can write Ṗρ as

On the other hand, by (4.26), we know that

. We claim that t -→ ∂Σt ∂ρ is bounded near 0. This is equivalent to say that Ṗρ (t, s, v)

we can write Ṗρ as

Applying the Hölder inequality, with p > 1, we have

where

Set x = log(s/K). For t small,

We choose p so that

For this particular p, we have

1/p(t) is bounded for t close to 0. For this, we use the usual inequality

|y| ≤ e y + e -y , ∀y ∈ R. (B.17)

We get

where

and

Both Y 1 and Y 2 can be written as

In particular, we have

Appendix C. Proof of Lemma 4.2:

and η(x) = ϕ(θ * (x)), where ϕ is defined by

So we only need to show that ϕ is positive on [θ, θ]. We can easily see that ϕ is C 1 on θ, θ \{0}, its derivative is given by

A simple study of the sign of the function

shows that it reaches its maximum on θ, θ at 0 and this maximum is equal to (-ρ 2 ) < 0. We deduce that ρϕ (θ) ≤ 0, ∀θ ∈ θ, θ .

(C.6)

We only have two possible situations:

Case ρ > 0 : In this case, we have

On the other hand, the function ϕ is decreasing on θ, θ . In particular, we have, for any θ ∈ θ, θ ,

We do the following change of variables

We obtain and is ≈ 0.78. Case ρ < 0 : In this case, we have

The function ϕ is increasing on θ, θ . In particular, we have, for any θ ∈ θ, θ ,

We do the following change of variables