
HAL Id: hal-00678410
https://hal.science/hal-00678410v2

Preprint submitted on 24 Mar 2014 (v2), last revised 15 Jan 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A synthetic axiomatization of Map Theory
Chantal Berline, Klaus Grue

To cite this version:

Chantal Berline, Klaus Grue. A synthetic axiomatization of Map Theory. 2012. �hal-00678410v2�

https://hal.science/hal-00678410v2
https://hal.archives-ouvertes.fr

A synthetic axiomatization of Map Theory✩

Chantal Berlinea, Klaus Grueb,1,∗

aCNRS, PPS, UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
bDIKU, Universitetsparken 1, DK-2100 Copenhagen East, Denmark

Abstract

This paper presents a substantially simplified axiomatization of Map Theory
and proves the consistency of this axiomatization in ZFC under the assumption
that there exists an inaccessible ordinal.

Map Theory axiomatizes lambda calculus plus Hilbert’s epsilon operator.
All theorems of ZFC set theory including the axiom of foundation are provable
in Map Theory, and if one omits Hilbert’s epsilon operator from Map Theory
then one is left with a computer programming language. Map Theory fulfills
Church’s original aim of lambda calculus.

Map Theory is suited for reasoning about classical mathematics as well as
computer programs. Furthermore, Map Theory is suited for eliminating the
barrier between classical mathematics and computer science rather than just
supporting the two fields side by side.

Map Theory axiomatizes a universe of “maps”, some of which are “well-
founded”. The class of wellfounded maps in Map Theory corresponds to the
universe of sets in ZFC. The first axiomatization MT0 of Map Theory had ax-
ioms which populated the class of wellfounded maps, much like the power set
axiom et al. populates the universe of ZFC. The new axiomatization MT of Map
Theory is “synthetic” in the sense that the class of wellfounded maps is defined
inside Map Theory rather than being introduced through axioms.

In the paper we define the notions of canonical and non-canonical κ- and
κσ-expansions and prove that if σ is the smallest strongly inaccessible ordinal
then canonical κσ-expansions are models of MT (which proves the consistency).
Furthermore, in the appendix, we prove that canonical ω-expansions are fully
abstract models of the computational part of Map Theory.

Keywords: lambda calculus, foundation of mathematics, map theory

✩This document is a collaborative effort.
∗Corresponding author
Email addresses: berline@pps.univ-paris-diderot.fr (Chantal Berline),

grue@diku.dk (Klaus Grue)
1Present address: Edlund A/S, Bjerreg̊ards Sidevej 4 , DK-2500 Valby, Denmark

Preprint submitted to Elsevier February 6, 2014

Contents

1 Introduction 4
1.1 Map Theory and its axiomatizations 5
1.2 The consistency of MT . 6
1.3 Relation of MT to other systems 6
1.4 Relation to the consistency proof for MT0 7
1.5 The structure of the paper . 7

2 Preview of MT 7
2.1 Map Theory is an equational theory 7
2.2 Relation to ZFC . 8
2.3 Recursion . 9
2.4 Russell’s paradox . 10
2.5 Programming . 10

3 Informal semantics 11
3.1 Introduction . 11
3.2 Syntax . 11
3.3 Expansions and models . 12
3.4 MTdef . 13
3.5 Basic computation . 13
3.6 Further computation . 14
3.7 Programs . 15
3.8 Equality . 16
3.9 Semantic extensionality . 16
3.10 Wellfoundedness . 17
3.11 Provable wellfoundedness . 17
3.12 Hilbert’s choice operator . 18
3.13 The need for inaccessibility . 18
3.14 Pure existence revisited . 19

4 Axioms and inference rules 19
4.1 Elementary axioms and inference rules 20
4.2 Monotonicity and Minimality . 20
4.3 Rule Ext . 22
4.4 Axioms on E . 24
4.5 Quantification axioms . 24
4.6 The definition of ψ . 26

5 Introduction to the consistency proof 28
5.1 Axioms and inference rules . 28
5.2 Domains, premodels, and expansions 29
5.3 The canonical expansions Mκ and Mκσ 29
5.4 Satisfaction of axioms and inference rules 29
5.5 Subjective difficulty of axioms and inference rules 30

2

5.6 Overview of the consistency proof 31

6 The κ-Scott semantics 31
6.1 Notation . 32
6.2 κ-Scott semantics . 32
6.3 κ-Scott domains . 33
6.4 κ-continuous functions . 33
6.5 κ-open sets . 34
6.6 κ-step functions . 34
6.7 Conclusion . 34

7 Premodels and expansions. 34
7.1 Reflexive κ-domains as models of pure λ-calculus 35
7.2 Tarski’s minimal fixed point operators 35
7.3 The domain equation Eqκ . 36
7.4 κ-Premodels . 36
7.5 κ-expansions . 37
7.6 Towards modelling of Mono, Min, and Ext 37
7.7 Quantifier axioms . 38
7.8 The definition of Φ . 39
7.9 κσ-Expansions . 39
7.10 Conclusion . 40

8 Building the canonical κ-premodel 40
8.1 Preorderd coherent spaces (pcs’s) 41
8.2 Pcs generators . 42
8.3 The web of the canonical κ-premodel 43
8.4 Some properties of the web . 43
8.5 The domain of the canonical κ-premodel 44
8.6 The canonical κ-premodel . 44
8.7 Tying up a loose end . 45
8.8 Conclusion . 45

9 Canonical premodels satisfy Mono, Min, and Ext 45
9.1 A characterization of the order of Mκ via application 45
9.2 Ext . 46
9.3 λ-definability of the order of Mκ 46
9.4 Mono and Min . 47
9.5 Definability of the fixed point operator 47

10 Concepts for proving the Definability Theorem 48
10.1 Necessity of assumptions . 48
10.2 Duals, boundaries, closure, and functions 49
10.3 Elementary observations . 50
10.4 On the definition of Φ . 51
10.5 Projections . 53

3

10.6 Self-extensionality . 55
10.7 Properties of Q and R . 55

11 Proof of the Upper Bound Theorem (UBT) 56
11.1 Restriction and step maps . 56
11.2 Limited size . 58
11.3 Proof of UBT . 59

12 Proof of the Lower Bound Theorem (LBT) 60
12.1 Characteristic maps . 60
12.2 Analysis of s applied to pairs . 61
12.3 Further properties of projections 62
12.4 Proof of LBT . 63

13 The consistency of MT 65
13.1 Acknowledgement . 65

A Computational properties of canonical pre-models 65
A.1 Introduction of Tc and auxiliary concepts 66
A.2 Parallel constructs . 67
A.3 Definition of Tp and Tc . 67
A.4 Semantic and syntactic existence 69
A.5 Computational adequacy . 69
A.6 Soundness . 72
A.7 Full abstraction . 72
A.8 Negative results . 73

B Strength of MT versus MT0 76

C On the necessity of minimality for proving UBT 77

D Summary of MT 78
D.1 Syntax . 78
D.2 Definitions . 78
D.3 Axioms and inference rules . 79

E Index 81

1. Introduction

Map Theory is an axiomatic theory which consists of a computer program-
ming language plus Hilbert’s epsilon operator. All theorems of ZFC set theory
including the axiom of foundation are provable in Map Theory, and if one omits
Hilbert’s epsilon operator from Map Theory then one is left with a computer
programming language (cf. Section 2.5).

Map Theory is suited for reasoning about classical mathematics as well as
computer programs. Furthermore, Map Theory is suited for eliminating the

4

barrier between classical mathematics and computer science rather than just
supporting the two fields side by side. A core benefit of Map Theory is that it
allows to mix recursive programs and quantifiers freely, as exemplified in Section
2.3 and Example 4.5.2.

1.1. Map Theory and its axiomatizations

The first axiomatization of Map Theory [9], which we call MT0 in this pa-
per, had complex axioms and a complex model. [4] provided a simpler model.
The present paper provides a simpler and more synthetic, while more powerful,
axiomatization which we call MT, and proves the consistency of the enhanced
system starting from the canonical models of MT0 built in [4].

Map Theory is an axiomatic system, but it does not rely on propositional
and first order predicate calculus. Rather, it is an equational theory which relies
on untyped lambda calculus. In particular, models of Map Theory are also
models of untyped lambda calculus. We refer to the elements of such models as
maps. As for λ-calculus, programming is made possible in Map Theory by the
adjunction of compatible reduction rules.

Map Theory generates quantifiers and first order calculus via a construct
(i.e. language construct) ε, whose semantics is that of Hilberts choice operator
acting over a universe Φ of “wellfounded maps”. The ε construct is axiomatized
through the “quantification axioms” (four equations).

Apart from ε, MT and MT0 have in common a few elementary constructs
and related axioms which take care of the computational part of Map Theory,
and simultaneously bear some other meanings [9]. Some “sugar” has also been
added to MT, but this is inessential.

Apart from ε and the elementary constructs, MT0 has only one construct
ϕ, which is in spirit the characteristic function of Φ. MT0 has the power to
embody ZFC because ϕ satisfies ten equations, each axiomatizing one specific
closure property of Φ, and it also has one inference rule for wellfoundedness.
Having ten axioms, even if some of them are not intuitive, was acceptable (after
all ZFC also has many existence axioms) but not satisfactory in that all the
closure properties are instances of a single, although non-axiomatizable, Generic
Closure Property (GCP, [4], also stated here in Section 7.8). GCP was one of the
founding intuitions behind Map Theory (cf. [9]), it was satisfied in our models
of MT0, and our desire was to reflect it at the level of syntax.

With the present MT not only do we solve this problem (whence “synthetic”)
but we also eliminate the construct ϕ, the ten axioms, and the inference rule,
replacing them by . . . nothing (whence “simpler”). Moreover, the new system is
stronger than MT0. That one construct, ten axioms, and a rule can be replaced
by nothing should be taken with three grains of salt as explained in the following.

The Definability Theorem (Theorem 10.1), which is the most difficult result
of the present paper, tells us that if we take Φ to be the smallest universe
satisfying GCP, then its characteristic function ϕ happens to be definable from
other MT constructs as a term ψ (defined in Section 4.6). The first grain of salt
is that when we eliminate ϕ, we replace it by ψ in the quantification axioms.

5

The second grain of salt is that for defining ψ we need to add a construct E

(“pure existence”) and its related axioms. However, and in contrast to ϕ, E is
very simple to describe, to axiomatize, and to model, so the cost of that is small.
The third grain of salt is that the definition of ψ also requires a minimal fixed
point operator. Fixed point operators come for free with untyped λ-calculus,
but forcing minimality at the level of syntax requires to axiomatize it w.r.t. some
pertinent and MT-definable order. This too can be done, and at a rather low
syntactic and semantic cost. In fact, besides finding the order, the cost is the
addition of three inference rules which express monotonicity (Mono), minimality
of fixed points (Min), and extensionality (Ext), c.f. Section 4.2 and 4.3.

Finding the right MT was of course already a challenge, but proving its
consistency was another one. Fortunately, the consistency of a system only has
to be proved once, while hopefully the system will be used many times, so having
a simpler system is a gain, even if its consistency proof is demanding.

To give an idea of the difficulty of finding an appropriate and consistent
MT, it is worth noticing that a first “synthetic” version of MT, called MTc,
was present in [10], that many proofs have been developed in it (which should
be easy to translate to MT), but that the consistency of MTc is still an open
problem. We will come back to MTc in Section 2.2.

1.2. The consistency of MT

We prove the consistency of MT in ZFC+SI where ZFC+SI is ZFC extended
with the assumption that there exists an inaccessible ordinal (where inaccessible
means strongly inaccessible, c.f. Section 6.1).

We prove the consistency by showing that some of the models of MT0 built in
[4] can be expanded to model MT also. More specifically, the “canonical” models
of MT0 can be used, provided they are constructed using the first inaccessible
cardinal σo.

The most difficult part of the consistency proof for MT is the Definability
Theorem (Theorem 10.1) which states that ϕ = ψ. The proof can be found in
Sections 10–12 and uses that σo is the smallest inaccessible.

Furthermore, MT has some new inference rules (Mono, Min, and Ext) whose
satisfaction requires canonicity. They are treated in Section 9.

Not all models of MT0 can be enriched to a model of MT; in fact MT has
necessarily much fewer models than MT0 c.f. Section 5.4.

1.3. Relation of MT to other systems

MT0 was the first system fulfilling Church’s original aim at the origin of the
creation of (untyped) λ-calculus [5, 6]. Church’s aim was to give a common
and untyped foundation to mathematics and computation, based on functions
(viewed as rules) and application, in place of sets and membership. As is well
known, Church’s general axiomatic system was soon proved inconsistent, but its
computational part (the now usual untyped λ-calculus) had an immense impact
on computer science. The various intuitions behind Map Theory, its very close
links to Church’s system, its advantages w.r.t. ZFC, including an integrated

6

programming language, and a much richer expressive power (classes, operators,
constructors, etc. also quite directly live in Map Theory), all this was developed
in [4, 9] and remains true for MT. The differences between MT and MT0 are
summarized in Sections 5.1–5.2 and are also discussed in Appendix B.

For a comparison of Map Theory with other foundational+computational
systems see [4, 9] and also Section 2.2 below. For a version of MT0 with anti-
foundation axioms a la Aczel [1], see [16, 17].

In the present paper we will hence concentrate on: giving enough of the
intuitions on Map Theory to motivate the reader, to deepen the understanding
of MT and in which sense MT is an improvement over MT0, and to support
the technical developments that we will have to implement in order to prove
the consistency of MT. Appendix A explores the computational properties of
the simplest (i.e. the canonical) models of the equational theory MT, w.r.t. the
computational rules which are behind it.

1.4. Relation to the consistency proof for MT0

The present paper reuses a substantial amount of material from the con-
sistency proof for MT0 in [4]. In the present paper we repeat definitions and
theorems from [4] that we need, but we do not repeat proofs. The intension
is to keep the size of the present paper down and at the same time make the
present paper readable without having [4] available. MT can be seen as obso-
leting MT0, but the present paper cannot be seen as obsoleting [4] since some
theorems needed in the present paper are proved in [4].

We compare MT and MT0 throughout the present paper. Among others,
that allows to reuse results from [4] where applicable and to explain which new
theorems are needed.

1.5. The structure of the paper

To ease navigation, the paper ends with an index (Appendix E). The table of
contents of course also supports navigation in addition to exposing the structure
of the paper.

Section 2 gives a preview of MT. Section 3 presents the semantics of MT in-
formally. Section 4 presents the axioms and inference rules. Section 5 describes
the consistency proof, the models in use, and compares MT to MT0.

Section 5 ends with an overview of the consistency proof (Sections 6–13).
Appendix A addresses the adequacy, soundness, and full abstraction of ca-

nonical models with respect to the programming language underlying MT. Ap-
pendix B compares the strength of MT and MT0. Appendix D summarizes the
axioms and rules of MT.

2. Preview of MT

2.1. Map Theory is an equational theory

MT is a Hilbert style axiomatic system which comprises syntactic definitions
of terms and wellformed formulas as well as axioms and inference rules.

7

MT has two terms T and F which denote truth and falsehood, respectively,
and MT formulas have form A = B where A and B are MT terms. We refer to
such formulas as equations. In MT one cannot (Theorem 2.2.1) prove T = F.

2.2. Relation to ZFC

Set membership of ZFC is definable as a term e of MT such that exy = T

iff the set represented by x belongs to the set represented by y (c.f. Example
4.5.1). We use the infix notation x∈̈y for exy. Also definable in MT are universal

quantification ∀̈, negation ¬̈, implication ⇒̈, the empty set ∅̈, and so on.
For suitable definitions of set membership and so on, each formula A of ZFC

becomes a term Ä of MT. The general idea is that if A holds in ZFC then
Ä = T holds in MT. As an example, ∀x:x ̸∈∅ is a formula of ZFC, ∀̈x. x¨̸∈∅̈ is the
corresponding term of MT, and ∀̈x. x¨̸∈∅̈ = T holds in MT. The term ∀̈x. x¨̸∈∅̈ is
shorthand for ∀̈(λx. ¬̈(x∈̈∅̈)).

We now make the statements above more precise. Let σo be the smallest
inaccessible. Let κ be a regular cardinal greater than σo. Let Mκσo be the
canonical κσo-expansion built inside ZFC+SI in Section 8. The present paper
proves the following main theorem:

Theorem 2.2.1 (Consistency Theorem). Mκσo satisfies MT.

Stated another way, the κσo-expansion Mκσo is a model of MT. Since T trivially
differs from F in all κσ-expansions, the statement trivially implies the consis-
tency of MT. We prove the Consistency Theorem in Sections 6–13 and conclude
the proof in Section 13 where we restate the theorem as Theorem 13.1.

Now let ¬SI be the assumption that there exist no inaccessible ordinals
and let Vσo be the usual model of ZFC+¬SI in ZFC+SI. For arbitrary, closed
formulas A of ZFC we have:

Theorem 2.2.2. Vσo satisfies A iff Mκσo satisfies Ä = T.

Theorem 2.2.2 follows easily from [4, Appendix A.4] and the fact that Mκσo

builds on top of the model built in [4]. As a technicality, MT and MT0 have
slightly different syntax, but for closed formulas A of ZFC, Ä only uses con-
structs which are common to MT and MT0, and Theorem 2.2.2 carries over
from MT0 to MT without changing the definition of Ä.

Conjecture 2.2.3. If A is provable in ZFC+¬SI then Ä = T is provable in
MT.

Conjecture 2.2.3 is supported by the following:

Theorem 2.2.4 ([9]). If A is provable in ZFC then Ä = T is provable in MT0.

Theorem 2.2.5 ([10]). If A is provable in ZFC then Ä = T is provable in
MTc where MTc is the version of Map Theory defined in [10].

8

MTc resembles MT, but all attempts to prove MTc consistent have failed. A
proof of (¬SI) = T in MTc should be easy. To prove Conjecture 2.2.3 one has
to prove (¬SI) = T in MT and to translate the proof of Theorem 2.2.5 to MT.
This remains to be done.

It is not really intended that (¬SI) = T should be provable in MT; it is
rather a side effect. The original MT0 was designed to be “as flexible as ZFC”,
and is in particular consistent with SI = T as well as (¬SI) = T. The MT0

system has a constant ϕ and a group WF of axioms and inference rules which
comprises the three wellfoundedness axioms, the seven construction axioms, and
the inference rule of transfinite induction of [9]. MT replaces the characteristic
function ϕ of Φ by ψ. That makes MT more rigid since ψ corresponds to the
minimal possible Φ. This should make (¬SI) = T provable since the minimal
Φ is analogous to the minimal Vσo in ZFC+SI. The proof of (¬SI) = T in MT
remains to be worked out.

2.3. Recursion

MT has a number of advantages over ZFC. One is that it allows to combine
unrestricted recursion with arbitrary set constructors. As an example, suppose
that x∪̈y, ¨∪x, {̇x}̇, and {̇A[x] | x∈̈B}̇ are the binary union, unary union, unit
set, and replacement set operators of ZFC, respectively, translated into MT.
One may define the successor ordinal succ(x) thus in MT:

succ(x) ≡ x ∪̈ {̇x}̇

And then one may define the set rank operator ρ(x) thus:

ρ(x) ≡
∪̈

{̇succ(ρ(y)) | y∈̈x}̇

In this paper, ≡ is used for definitions. In MT, definitions are allowed to be
recursive like the definition of ρ above where the defined concept ρ appears in the
right hand side of its own definition. Recursive definitions in MT are shorthand
for direct (i.e. non-recursive) definitions which involve the fixed point operator
(cf. Section 3.2).

ZFC includes no fixed point operator. ZFC permits definition by transfi-
nite induction, which resembles primitive recursion, but does not support unre-
stricted recursion like MT does.

Now let ∃̈x.A and εx.A be defined as in Section 4.5 and let x∈̈y and x∧̈y
be defined as in Example 4.5.1. Under reasonable conditions, εx.A chooses a
wellfounded x such that A is true. The definition of ρ in MT above does not
rely on ordinals or transfinite induction. Rather, in MT, one may define ρ as
above and then use it to define the class Ord of ordinals:

Ord(x) ≡ ∃̈y. x∈̈ρ(y)

As another example, in MT we may use Hilbert’s choice operator ε recursively
to define a well-ordering of any set. Let a be a map which represents the set

9

to be well-ordered (for the representation of sets by maps see Example 4.2.1).
Then define:

f(α) ≡ εx. x ∈̈ g(α)

g(α) ≡ a \̈ {̇f(γ) | γ∈̈α}̇

x ≺ y ≡ ∃̈α. x ∈̈ a\̈g(α) ∧̈ y ∈̈ g(α)

Above, ≺ is a well-ordering of the set represented by a. Note that succ, ρ, Ord,
≺, and so on can themselves be taken to be terms of MT since we could define
e.g. Ord ≡ λx. ∃̈y. x∈̈ρ(y).

2.4. Russell’s paradox

In naive set theory, define S ≡ {x|x ̸∈ x} and R ≡ S ∈ S. We have
x ∈ S ⇔ x ̸∈ x and R ⇔ S ∈ S ⇔ S ̸∈ S ⇔ ¬R which is Russell’s paradox.
The paradox states that negation has a fixed point, which is impossible in a
consistent, two-valued logic.

In ZFC, the paradox is avoided by banning S, but that is not an option in
MT which allows recursion. As an example, one may define Russell’s paradoxical
statement R thus in MT:

R ≡ ¬̈R

In MT, if R = T then R = ¬̈T = F and if R = F then R = ¬̈F = T so R equals
neither T nor F. Indeed, MT has a fixed point operator Y and an element ⊥
playing, among others, the role of the third logical value “undefinedness”; and
it is indeed provable in MT that R = Y¬̈ = ⊥.

2.5. Programming

Another advantage of MT over ZFC is that if one removes Hilbert’s ε from
the core syntax of MT then one is left with a Turing complete computer program-
ming language. This language is a type free lambda calculus with uhr-elements
and the programs are closed ε-free MT-terms.

The present paper is about MT as an equational axiomatic theory. That MT
can be used for programming should be seen here as motivation only. When
speaking of programming with MT it is understood that we have furthermore
included compatible reduction rules (cf. Section 3.5). We now elaborate on the
programming motivations.

Having a computer programming language as a syntactical subset of the
theory allows to reason about programs without having to model the programs
mathematically. That simplifies the field of program semantics considerably.
For a simple example of programming and reasoning in MT, see Example 4.2.1.
Map Theory also provides good support for reasoning about languages different
from its own.

Since MT contains a computer programming language, a programmer may
ask questions like:

• Is it possible to implement arbitrary algorithms efficiently in the language?

10

• Is it possible to download compiler, linker, and runtime system for the
language?

• Is it possible in the language e.g. to receive mouse clicks from a user, to
write bytes to a disk, and to display graphics on a screen?

The answers to these questions are yes (cf. http://lox.la/).
Sections 3.5–3.9 describe the computational aspects of MT. Appendix A

proves some results on computational adequacy, soundness, and full abstraction.
http://lox.la/ elaborates on MT as a programming language.

3. Informal semantics

3.1. Introduction

To introduce ZFC one will typically give some examples of finite sets first.
Actually, ZFC is nothing but the theory of finite sets extended by an infinite set
ω. Likewise, MT is nothing but the theory of computable functions extended
with Hilbert’s non-computable epsilon operator.

3.2. Syntax

The syntax of variables, terms, and wellformed formulas of MT reads:

⟨var⟩ ::= x | y | z | · · ·
⟨term⟩ ::= ⟨var⟩

| λ⟨var⟩. ⟨term⟩
| ⟨term⟩⟨term⟩
| T

| if[⟨term⟩, ⟨term⟩, ⟨term⟩]
| ⊥
| Y⟨term⟩
| ⟨term⟩∥⟨term⟩
| E⟨term⟩
| ε⟨term⟩

⟨wff⟩ ::= ⟨term⟩ = ⟨term⟩

Or, terser:

V ::= x | y | z | · · ·
T ::= V | λV . T | T T | T | if[T , T , T] | ⊥ | YT | T ∥T | ET | εT
W ::= T = T

Recall from Section 1 that we use construct as a shorthand for language con-
struct. The intuition behind the constructs above is as follows:

λx.A denotes lambda abstraction.

juxtaposition denotes functional application. As an example, fx denotes f
applied to x.

11

T denotes truth. Falsehood F is not included in the syntax; we define it by
F ≡ λx.T. Later, we also use T to denote the empty set, the empty tuple,
and the natural number 0.

if denotes selection; we have if[T, b, c] = b and if[λx.A, b, c] = c. Later, we also
use selection to define a pairing construct b::c ≡ λx. if[x , b , c].

⊥ denotes undefinedness or infinite looping.

Y denotes a fixed point operator; we have Yf = f(Yf) for all f .

∥ denotes parallel or; a ∥ b equals T if a or b or both equal T. Parallel or ∥
is neither needed for developing ZFC in MT nor convenient when pro-
gramming. Parallel or is merely included for the sake of a full abstraction
result. We use full abstraction to explain equality in Section 3.8.

E denotes pure existence; we have Ea = T iff ax = T for some x.

ε denotes Hilbert’s choice operator; under reasonable conditions, εa is a well-
founded x such that ax = T. Wellfoundedness is explained in Section
3.10

= denotes equality. Equality is described in Section 3.8.

We use λxy.A to denote λx. λy.A. Furthermore, application AB is left associa-
tive and has higher priority than λx.A so e.g. λxy. xyy means λx. λy. ((xy)y).
The term aλb. cd means a(λb. (cd)) since abstractions extend as far as possible
to the right but cannot extend to the left. Binary operators like x ∥ y have prior-
ity between application and abstraction so λx. xx ∥ xx means λx. ((xx) ∥ (xx)).
Occasionally, formally superfluous parentheses are added for the sake of read-
ability.

3.3. Expansions and models

In Section 5.2 we introduce the notions of κ- and κσ-expansions.
κ-expansions are mathematical structures defined for all regular ordinals

κ ≥ ω and they model all constructs of MT except ε. In contrast, κσ-expansions
are defined for all regular κ > σ where σ is inaccessible, and κσ-expansions
model all constructs of MT. Apart from that, κ- and κσ-expansions are identical.

All κ- and κσ-expansions satisfy some axioms and inference rules of MT and
some κσ-expansions satisfy all of MT. We refer to κσ-expansions which model
all of MT as κσ-models.

Let Mκ and Mκσ be the canonical κ- and κσ-expansion, respectively, as
introduced in Section 5.3. For each regular κ ≥ ω there are many κ-expansions
but Mκ is the only canonical one, and likewise for κσ-expansions.

As already stated in the Consistency Theorem, Mκσo models MT if σo is the
first inaccessible and κ > σo is regular.

12

3.4. MTdef

Let YCurry = λf. (λx. f(xx))(λx. f(xx)) and ⊥Curry = YCurryλx. x. In cano-
nical κ-expansions we will prove that

Yf = YCurryf
⊥ = ⊥Curry = (λx. xx)(λx. xx)

Thus, without loss of power and consistency, one might omit ⊥ and Y from the
syntax and use ⊥Curry and YCurry instead. Doing so, however, would reduce the
number of possible models of MT. Thus, we include ⊥ and Y in the syntax and
prove the two equations above as separate theorems which are only guaranteed
in canonical expansions. Inclusion of ⊥ and Y also simplifies the consistency
proof since modelling of Yf and proving Yf = YCurryf can be treated separately.
We use MTdef to denote the version of MT where we omit ⊥ and Y from the
syntax.

3.5. Basic computation

The constructs λx.A, AB, T, and if[A,B, C] together with adequate re-
duction rules (defined below) form a computer programming language. The
language is Turing complete in the sense that any recursive function can be
expressed in it.

In this section, A and B denote terms, a, b, c, and r denote closed terms, and
x, y, and z denote variables. ⟨A | x := B⟩ denotes substitution with renaming
of bound variables as needed.

From a theoretical point of view, and very remote from the implementation

in [11], one can define the programming language by the smallest relation
1
→

which satisfies:

Tb
1
→ T

(λx.A)b
1
→ ⟨A | x := b⟩

if[T, b, c]
1
→ b

if[λx.A, b, c]
1
→ c

a
1
→ r ⇒ ab

1
→ rb

a
1
→ r ⇒ if[a, b, c]

1
→ if[r, b, c]

As an example of a reduction, if[λx. x, λy. y, λz. z]T reduces to T:

if[λx. x, λy. y, λz. z]T
1
→ (λz. z)T

1
→ T

We have specified leftmost reduction order so that e.g. if[T,T, (λx. xx)(λx. xx)]
reduces to T without (λx. xx)(λx. xx) being reduced.

Suppose a
1
→ b. Under this assumption, a = b is provable in MT using only

elementary axioms and inference rules. Hence, a = b holds in all models of MT.
Also, a = b holds in all κ-expansions, even those which do not model all of MT

13

(cf. Theorem 7.5.1). That holds for the definition of a
1
→ b given above as well

as for the extensions given in the following.
We say that a term is a root normal term if it has form T or λx.A. Reduction

stops when a root normal term is reached. As an example,

(λxy. x)((λx. xx)(λx. xxx))

reduces to

λy. (λx. xx)(λx. xxx)

which cannot be reduced further. In particular, the term above does not reduce
to λy. (λx. xxx)(λx. xxx). We refer to terms of form T and λx.A as true and
function normal terms, respectively.

3.6. Further computation

One may extend the programming language by the constructs ⊥, YA, A ∥ B,
and EA. One cannot extend the programming language by εA because ε cannot
be seen as computable.

In this section, a, b, c, f , and r denote closed, epsilon free terms.
The constructs ⊥ and Y may be defined or may be included in the syntax.

If they are defined, they need no reduction rules. If they are included in the
syntax, their reduction rules read:

⊥
1
→ ⊥

Yf
1
→ f(Yf)

The construct a ∥ b can be computed as follows. Reduce a and b in parallel. If
one of them reduces to T, halt the other reduction and return T. If both reduce
to function normal terms, return λx.T.

The construct Ea can be computed as follows. Reduce ab for all closed terms
b in parallel. If ab reduces to T for some b, halt all reductions and return T.
Otherwise, proceed computing indefinitely.

The construct Ea is not very useful in computer programs since Ea either
loops indefinitely or returns T. The construct a ∥ b is slightly more useful
since it has two possible return values, T and λx.T, but it is still not a pop-
ular programming construct, and few programming languages support it. The
implementation in [11] supports neither Ea nor a ∥ b.

The construct Ea is needed for defining ψ (c.f. Section 4.6) and so is indirectly
needed for axiomatizing Hilbert’s choice operator ε. The construct a ∥ b is
included for the sake of full abstraction.

Reduction rules for a ∥ b read:

T ∥ b
1
→ T

(λx.A) ∥ b
1
→ if[b,T, λx.T]

a
1
→ r ⇒ (a ∥ b)

1
→ (b ∥ r)

14

Note the swapping of arguments in the third rule above. The swapping makes re-
duction alternate between reduction of a and b. As an example, (λx. xx)(λx. x) ∥

T
1
→ T ∥ (λx. x)(λx. x)

1
→ T.

Giving a reduction rule for Ea is more complicated. To reduce Ea we need
to reduce ab for all closed terms b in parallel. Now define

S ≡ C1 ≡ λxyz. xz(yz)
K ≡ C2 ≡ λxy. x

C3 ≡ T

C4 ≡ λxyz. if[x, y, z]
C5 ≡ ⊥
C6 ≡ λx.Yx
C7 ≡ λxy. (x ∥ y)
C8 ≡ λx.Ex

We refer to terms built up from the eight combinators above plus functional
application as combinator terms. Every closed, epsilon free term of MT is com-
putationally equivalent to a combinator term. Thus, we may compute Ea by
applying a to all combinator terms b:

Ea
1
→ aC1 ∥ · · · ∥ aC8 ∥ Ex.Ey. a(xy)

a
1
→ r ⇒ Ea

1
→ Er

Above, Ex.A denotes E(λx.A). To see how E works, first note that Ea by
definition reduces to

aC1 ∥ · · · ∥ aC8 ∥ Ex.Ey. a(xy)

Second, note that the last factor Ex.Ey. a(xy) in turn reduces to

(Ey. a(C1y)) ∥ · · · ∥ (Ey. a(C8y)) ∥ Eu.Ev.Ey. a((uv)y)

Third, note that the first factor Ey. a(C1y) in turn reduces to

a(C1C1) ∥ · · · ∥ a(C1C8) ∥ Eu.Ev. a(C1(uv))

The penultimate factor a(C1C8) shows that a, among other, is applied to the
combinator term C1C8. In general, reduction of Ea causes a to be applied to all
combinator terms in parallel.

We have now given reduction rules for reducing arbitrary closed, epsilon
free terms. We give no reduction rules for εa since, as mentioned, it is not
computable.

3.7. Programs
We refer to closed, ε-free MT terms as MT programs. Likewise, we refer to

closed, ε-free MTdef terms as MTdef programs and to closed, ε- and ϕ-free MT0

terms as MT0 programs.
The programs of each of the theories are exactly the closed terms which are

reducible by machine. Here we do not require reduction to terminate: a machine
is supposed to loop indefinitely when reducing e.g. ⊥, and ⊥ is counted among
the programs.

15

3.8. Equality
Wellformed formulas of MT have form A = B where A and B are terms. We

now present some intuition concerning equality.
Let Nt be the set of MT programs that reduce to T, let Nf be the set

of MT programs that reduce to function normal form, and let N⊥ be the set
of the remaining MT programs. We now define root equivalence a ∼ b and
observational equality a =obs b.

Definition 3.8.1. For MT programs a and b define:
Root equivalence a ∼ b iff (a ∈ Nt ⇔ b ∈ Nt) ∧ (a ∈ Nf ⇔ b ∈ Nf)
Obs. equality a =obs b iff ca ∼ cb for all MT programs c.

Intuitively, equality of MT is observational equality. Technically, matters
are a bit more complicated:

Recall that the canonical κ-expansion Mκ models all constructs of MT ex-
cept ε for all regular κ ≥ ω. Now let a =κ b denote Mκ |= a = b. We have:

Theorem 3.8.2 (Full Abstraction of Mω). a =obs b ⇔ a =ω b for all MT
programs a and b.

See Theorem A.7.2 for a proof and Appendix A for related positive and negative
results. Full abstraction may help understanding MT except ε.

We have a ∼ b ⇔ (a ∈ Nt ⇔ b ∈ Nt) ∧ (a ∈ N⊥ ⇔ b ∈ N⊥) since each of a
and b belongs to exactly one of Nt, Nf , and N⊥. Now for all a, b ∈ Mκ define

a ∼κ b⇔ (a =κ T ⇔ b =κ T) ∧ (a =κ ⊥ ⇔ b =κ ⊥)

Let a =κobs b denote ∀c∈Mκ: ca ∼κ cb. The closest one can get to full abstraction
in the general case is the following purely semantical observation:

Fact 3.8.3. a =κobs b⇔ a =κ b for all a, b ∈ Mκ, κ ≥ ω, κ regular.

The fact follows trivially from the definition of Mκ (cf. Section 8.7).

3.9. Semantic extensionality
Two MT programs a and b happen to be observationally equivalent iff

ay1 · · · yn ∼ by1 · · · yn

for all n ≥ 0 and all MT programs y1, . . . , yn. That follows directly from Theo-
rem 3.8.2 (=Theorem A.7.2), Theorem 9.1.2 (using κ = ω), and Theorem A.5.5,
and provides another intuitive description of equality. We also have:

Fact 3.9.1. Let a, b ∈ Mκ, κ ≥ ω regular. The following are equivalent:
ca ∼κ cb for all c ∈ Mκ

ay1 · · · yn ∼κ by1 · · · yn for all n ≥ 0 and all y1, . . . , yn ∈ Mκ.

Fact 3.9.1 follows from Fact 3.8.3 and Theorem 9.1.2. The ZFC equivalent of
Fact 3.9.1 reads:

a ∈ c⇔ b ∈ c for all sets c iff y ∈ a⇔ y ∈ b for all sets y

We refer to Fact 3.9.1 as semantic extensionality ; we express it axiomatically in
Section 4.3.

16

3.10. Wellfoundedness

We have now described all constructs of MT except ε. To describe ε we first
have to introduce the notion of wellfoundedness.

To explain wellfoundedness we resort, as in [4], to any κ-expansion M where
κ is regular and greater than at least one inaccessible ordinal. We refer to
elements of M as maps.

For each inaccessible σ < κ there is a set Φ of maps as defined in Definition
7.8.2. At the present stage there is no need to know what Φ is precisely except
that given κ there is one for each inaccessible σ < κ. We refer to elements of Φ
as wellfounded maps.

As before let Vσ be the usual (wellfounded) model of ZFC inside ZFC+SI
in which M itself is built. Although we will not use it in the present paper, we
recall from [4, Appendix A.4] that there exists a surjective function Z: Φ→Vσ
which allows to represent all sets of Vσ by elements of Φ (for a definition of Z
see Example 4.5.1).

The semantic definition of wellfoundedness given in Definition 7.8.2 is robust
in that it is pertinent for a large class of structures, it is close to the semantic
intuitions behind Map Theory, and it is independent of its diverse possible
axiomatisations. Therefore, it is the definition we retain in this paper, as we
did in [4] when treating MT0.

3.11. Provable wellfoundedness

Suppose now that σ is the first inaccessible. Then, by the Definability
Theorem (Theorem 10.1) we have Φ = {x∈M | ψx = T} where ψ is the term
defined in Section 4.6.

Starting from ψ could hence give us an alternative definition of wellfound-
edness, but only pertinent for MT. The interest of the second definition is that
it comes with the proof theoretic notion of being provably wellfounded in MT,
which we describe now.

By definition, a closed term a is provably well-founded in MT if ψa = T is
provable in MT. Likewise a is provably well-founded in MT0 if ϕa = T is provable
in MT0 where ϕ is a construct of MT0 intended to be the characteristic function
of Φ.

In Section 4.6 we give examples illustrating that usual data structures are
provably wellfounded in MT (they were also provably wellfounded in MT0, but
with very different proofs).

Provable wellfoundedness is the relevant tool for developing proofs inside
MT and for interpreting ZFC in MT. But for the purpose of this paper, which
is to prove the consistency of MT, wellfoundedness as defined in Definition 7.8.2
is the most relevant and enlightening.

Now let ψCurry be defined exactly like ψ except that all occurrences of Y and
⊥ are replaced by YCurry and ⊥Curry, respectively. A closed term a is provably
wellfounded in MTdef if ψCurrya = T is provable in MTdef . In canonical models
we have Y = YCurry and ⊥ = ⊥Curry. Thus, in canonical models, we have
ψ = ψCurry and Φ = {x∈M | ψCurryx = T}.

17

3.12. Hilbert’s choice operator

To explain ε we resort, like in Section 3.10, to a κ-expansion M where κ is
regular and greater than at least one inaccessible ordinal.

We say that a ∈ M is total, written Total(a), if ax ̸= ⊥ for all x ∈ Φ.
We use ε to denote the intended interpretation of Hilbert’s choice opera-

tor. More specifically, ε is a function of type M→M which has the following
properties for all a ∈ M:

ε(a) = ⊥ if ¬Total(a)
ε(a) ∈ Φ if Total(a)
a(ε(a)) = T if Total(a) ∧ ∃x∈Φ: ax = T

ε(a) = εb if Total(a) ∧ Total(b) ∧ ∀x∈Φ: (ax = T ⇔ bx = T)

In other words, ε is a Hilbert choice operator over Φ. The last property above
is Ackermann’s axiom.

The strictness requirement that εa = ⊥ if ¬Total(a) has two motivations.
First, MT includes an inference rule which implies that application is monotonic
for a certain order a ⪯ b so ε must be monotonic in the sense that a ⪯ b must
imply εa ⪯ εb. Strictness together with Ackermann’s axiom and the definition of
a ⪯ b given later is sufficient to ensure monotonicity of ε. Second, the strictness
requirement simplifies the quantification axioms stated later.

3.13. The need for inaccessibility

We repeatedly assume that σ is the first inaccessible and that κ is greater
than σ. That may give rise the questions: Why inaccessible? Why first? Why
greater?

Since we can interpret ZFC in Map Theory it should be no surprise that to
prove the consistency of Map Theory we need something strong enough to prove
the consistency of ZFC. In [9] there are some results which use relativization
and the assumption that ZFC is consistent instead of assuming the existence
of an inaccessible. But those results and their proofs are cumbersome and not
very general. That hints at why we assume the existence of an inaccessible.

Then the Definability Theorem (Theorem 10.1) proves Φ = {x∈M | ψx =
T} for the first inaccessible σ where ψ is the term defined in Section 4.6. That
term ψ is the simplest one we have found so far which allows to formulate a
version of Map Theory strong enough to develop ZFC in it. And that term ψ
happens to be the characteristic function of the Φ associated to the smallest in-
accessible. One could imagine the use of another ψ which was the characteristic
function of another Φ, but in the present paper we use the ψ of Section 4.6 and
that forces us to use the first inaccessible.

Finally, we assume that the regular cardinal κ satisfies κ > σ. The consis-
tency proof presented in the present paper is based on so-called κ-Scott seman-
tics and κ-continuity (where κ-Scott semantics and κ-continuity is usual Scott
semantics and continuity, respectively, for κ = ω). In the κ-Scott approach we
can model ε iff ε is κ-continuous, and that happens to require κ > σ.

18

We use the inaccessibility of σ in many places (e.g. for defining Φ, for mod-
elling ε, and for proving the Definability Theorem). We only use that σ is the
first inaccessible in the proof of Lemma 12.4.2 which constitutes part of the
proof of the Definability Theorem.

3.14. Pure existence revisited

Let κ ≥ ω be regular and let M be any κ-expansion. Pure existence E is
designed to satisfy inM that Ea = T if ax = T for some x and Ea = ⊥ otherwise
(cf. Section 4.4). So, Ea = T inM iff ax = T for some x ∈ M while the reduction
rule for Ea given in Section 3.6 gives that Ea = T iff ax = T for some program
x. We now compare these two notions of existential quantification. Define pure
and computational existence as follows:

Epure ≡ λa.Ea
Ecomp ≡ λa. [aC1 ∥ · · · ∥ aC8 ∥ Ecomp λu.Ecomp λv. a(uv)]

We have

Epure a = T iff ax = T for some map x
Ecomp a = T iff ax = T for some program x

The canonical ω-expansion Mω happens to be a simple and very pertinent
model for the computational and elementary part of MT even if Mω is not a
model of the full theory. We will see this later on, and we will prove in Appendix
A that, among other nice properties, Mω satisfies Epure = Ecomp (cf. Lemma
A.4.1). Now, this equation can be proved to be false in Mκ, κ > ω (cf. Theorem
A.8.1 and its proof), and more generally should be false in all the models of
MT built from premodels, for a similar reason (these models are in a sense “too
big”).

The E of MT is the pure one. Indeed, the computational intuition behind E

that we provided at the end of Section 3.6 is valid in Mω but does not hold in
full MT.

4. Axioms and inference rules

MT has six groups of rules (where rules means axioms and inference rules):

Elem Elementary rules common to MT and MT0 Section 4.1
Elem′ Further elementary rules Section 4.1
Mono/Min Monotonicity and Minimality Section 4.2
Ext Extensionality Section 4.3
Exist The axioms on E Section 4.4
Quant[ψ] Quantification axioms Section 4.5

19

4.1. Elementary axioms and inference rules

Let A, B, C, and D be (possibly open) terms and let x and y be variables.
Let 1 ≡ λxy. xy, i.e. let 1 be the term which Church happened to use for the
number 1. The two first sets of axioms and inference rules of MT read:

Trans A = B;A = C ⊢ B = C
Sub A = B; C = D ⊢ AC = BD
Gen A = B ⊢ λx.A = λx.B

A1 TB = T

A2 (β) (λx.A)B = ⟨A | x := B⟩ if B is free for x in A
A3 ⊥B = ⊥

Rename (α) λx. ⟨A | y := x⟩ = λy. ⟨A | x := y⟩
if x is free for y in A and vice versa

I1 if[T,B, C] = B
I2 if[λx.A,B, C] = C
I3 if[⊥,B, C] = ⊥

QND ⟨A | x := T⟩ = ⟨B | x := T⟩;
⟨A | x := 1x⟩ = ⟨B | x := 1x⟩;
⟨A | x := ⊥⟩ = ⟨B | x := ⊥⟩ ⊢
A = B

Elem

P1 T ∥ B = T

P2 A ∥ T = T

P3 λx.A ∥ λy.B = λz.T

Y YA = A(YA)

Elem′

Quartum Non Datur (QND) approximates that every map x satisfies x = T or
x = ⊥ or x = 1x, there is no fourth possibility.

Example 4.1.1. As an example of use of QND, define

F ≡ λx.T
≈x ≡ if[x,T,F]
x ∧ y ≡ if[x, if[y,T,F], if[y,F,F]]

Using the definitions above, QND allows to prove the following:

x ∧ y = y ∧ x
(x ∧ y) ∧ z = x ∧ (y ∧ z)

x ∧ x = ≈x

4.2. Monotonicity and Minimality

Monotonicity was part of the founding intuitions behind Map Theory [4],
even if it was not reflected in the first axiomatization MT0 of Map Theory.

20

Expressing this intuition at the level of syntax can of course only be done using
a syntactic order ⪯ which has the be defined first::

x ↓ y ≡ if[x, if[y,T,⊥], if[y,⊥, λz. (xz) ↓ (yz)]]
x ⪯ y ≡ x = x ↓ y

The recursive definition of x ↓ y is shorthand for:

x ↓ y ≡ (Yλfxy. if[x, if[y,T,⊥], if[y,⊥, λz. f(xz)(yz)]])xy

In canonical models, x ⪯ y coincides with the order of the model and x ↓ y is
the greatest lower bound of x and y. That ⪯ is an order is forced by Rule Ext

inntroduced in Section 4.3; this is explained in Example 4.3.2.
The rules of Monotonicity and Minimality read:

Mono B ⪯ C ⊢ AB ⪯ AC
Min AB ⪯ B ⊢ YA ⪯ B

Mono/Min

Mono and Min force the constant Y to behave, at the level of syntax, as a
fixed point operator which is minimal w.r.t. the syntactic order ⪯.

As illustrated by the following example, the principle of induction follows
from minimality.

Example 4.2.1. We now introduce a primitive representation of natural num-
bers. We first do so semantically. LetM be a model of MT. We refer to elements
of M as maps.

We say that a map x is wellfounded w.r.t. a set G of maps if, for all
y1, y2, . . . ∈ G there exists a natural number n such that xy1 · · · yn = T. We say
that a map x is a natural number map if it is wellfounded w.r.t. {T}. Thus, x
is a natural number map if

x

n
︷ ︸︸ ︷

TT · · ·T = T

for some natural number n. As examples, λxyz.T is a natural number map and
λxyz.⊥ is not. We say that a natural number map x represents the smallest n
which satisfies the equation above so λxyz.T represents ‘three’.

We now formalize natural numbers in MT in the sense that we give a number
of syntactic definitions which allow to reason formally about natural numbers
in MT. The definitions read:

0 ≡ T

K ≡ λxy. x
x′ ≡ Kx
ϖ ≡ λfx. if[x,T, f(xT)]
χω ≡ Yϖ

x
ω
= y ≡ if[x, if[y,T,F], if[y,F, xT

ω
= yT]]

E ≡ λx. x
ω
= x

21

As an example, 0′′ denotes one among many maps which represents ‘two’.
The semantics of χω in the model M is that χωx = T if x is a natural number
map and χωx = ⊥ otherwise. For that reason we refer to χω as the characteristic
map of the set of natural number maps (cf. Definition 4.6.1). For all natural

number maps x and y we have (x
ω
= y) = T iff x and y represent the same

number.
In MT, we can prove ϖE = λx. if[x,T, xT

ω
= xT]. Furthermore, we can prove

E = (λx. x
ω
= x) = λx. if[x, if[x,T,F], if[x,F, xT

ω
= xT]] = λx. if[x,T, xT

ω
= xT]

where the latter equality requires QND. Hence, we can proveϖE = E soϖE ⪯ E
(cf. Example 4.3.2). Hence, we can prove χω ⪯ E by Min.

Semantically, χω ⪯ E expresses that (x
ω
= x) = T for all natural number

maps: for each natural number map x we have χωx = T and χωx ⪯ Ex which
shows Ex = T.

Thus, the syntactic statement χω ⪯ E formalizes the semantic statement
that every natural number equals itself and the syntactic statement χω ⪯ E has
a formal proof in MT.

From a program correctness point of view we have now done the following:
We have defined an inductive data type (the natural numbers) and we have
represented it by its characteristic map χω. Then we have written a program
λxy. (x =ω y) which can compare two natural numbers for equality. And finally
we have proved χω ⪯ E which expresses that every natural number equals itself.

While this is a very simple example and even though we do not write out
detailed proofs, this still gives a first, small example of the fact that MT allows
programming and reasoning inside the same framework. For a continuation of
the present example which uses quantifiers see Example 4.5.2.

Note that λxy. x
ω
= y is a program; one can compile it and run it on argu-

ments x and y using the system described in [11].

In other logical frameworks than MT, given a recursive program like λxy. x
ω
=

y, proofs of theorems like (x
ω
= x) = T for all natural numbers x usually requires

some sort of Peano induction. In MT, induction is expressed by Min.

In the example above, we appliedMin to the characteristic function χω of natural
number maps to get something equivalent to Peano induction (cf. [10, Section
7.13]). One can do the same for arbitrary inductive data types and even for
Φ: applying Min to the characteristic map ψ defined in Section 4.6 yields an
induction scheme which resembles but is stronger than transfinite induction (cf.
[10, Section 9.13]).

4.3. Rule Ext

Recall ≈x ≡ if[x , T , F] from Example 4.1.1. For all terms A, B, and C
(possibly containing free variables and possibly containing epsilon), the inference
rule of extensionality reads:

Ext If x and y are not free in A and B then
≈(Ax) = ≈(Bx);Axy=AC;Bxy=BC ⊢ Ax = Bx

Ext

22

Note that if the premises of Ext hold, if c = λxy. C, and if y1, . . . are not free in
A and B, then we have e.g.

≈(Axy1y2) = ≈(A(cxy1)y2) = ≈(A(c(cxy1)y2)) =
≈(B(c(cxy1)y2)) = ≈(B(cxy1)y2) = ≈(Bxy1y2)

More generally, we have ≈(Axy1 · · · yn) = ≈(Axy1 · · · yn). Now, canonical κ-
expansions Mκ have a semantic extensionality property which says that if a, b ∈
Mκ and if

≈(ay1 · · · yn) = ≈(by1 · · · yn)

for all natural numbers n and all y1, . . . , yn ∈ Mκ then a = b (cf. Fact 3.9.1).
Rule Ext is a syntactical approximation of this property which works in those
cases where one can find a C for which one can prove the premises of Ext. It is
typically rather difficult to find a witness C but it is possible more often than
one should expect.

The relation between Ext and semantic extensionality as defined in Section
3.9 is: the premises of Ext entail ≈(Axy1 · · · yn) = ≈(Bxy1 · · · yn) which by
semantic extensionality entail Ax = Bx which is exactly the conclusion of Ext.

Extensionality in MT corresponds to extensionality in set theory, where the
latter says that if y ∈ a ⇔ y ∈ b then a = b. The set theory formula P ⇔ Q
corresponds to ≈P = ≈Q in MT, and y ∈ a corresponds to ay1 · · · yn.

Example 4.3.1. Let i ≡ λx. if[x , T , λy. i(xy)] and I ≡ λx. x. To prove
ix = Ix by Ext take C to be xy and prove ≈(ix) = ≈(Ix), ixy = i(xy), and
Ixy = I(xy). The two first statements above can be proved using QND and the
third is trivial.

Example 4.3.2. Ext allows to prove x ↓ x = x, x ↓ y = y ↓ x, and x ↓
(y ↓ z) = (x ↓ y) ↓ z. Those results are useful since they entail x ⪯ x,
x ⪯ y; y ⪯ x ⊢ x = y, and x ⪯ y; y ⪯ z ⊢ x ⪯ z. (For proofs, see [10]).

When developing ZFC in MT, Ext plays a marginal but essential role [10].
In Example 4.2.1, Min replaced usual Peano induction and Min was used in the
essential step in proving (x

ω
= x) = T, but Ext was also in play for proving

ϖE ⪯ E from ϖE = E . Likewise, when developing ZFC, the results listed in
Example 4.3.2 are used in many places. Among other, it is used for proving the
MT version of transfinite induction which in turn is used for proving most of the
proper axioms of ZFC. Concerning Ext, the development of ZFC only depends
on the results listed in Example 4.3.2 and does not make other use of Ext.

Example 4.3.3. Ext also allows to prove F2 = F3 where

F2 ≡ λx. λy. F2

F3 ≡ λx. λy. λz. F3

F2 and F3 both denote λx1. λx2. λx3. · · · and we have F2 =obs F3. Thus, F2 and
F3 provide an example of two pure lambda terms which are provably equal in

23

MT and observationally equal from the point of view of a computer, but not
beta equivalent in lambda calculus. We conjecture that F2 = F3 is not provable
in MT0 (there is no reason why it should be).

Proving F2 = F3 directly (i.e. without establishing a collection of convenience
lemmas first) is a tricky exercise. To get started, define F1 ≡ λx. F1, A ≡
λx. if[x , F1 , F1], B ≡ λx. if[x , F2 , λy. F2], and C ≡ if[x , F , T]. Then, using
QND, prove the premisses of Ext and conclude Ax = Bx. Then AT = BT gives
F1 = F2. Proceed by proving F1 = F3.

4.4. Axioms on E

Pure existence E is designed to satisfy Ex = T if xy = T for some y and
Ex = ⊥ if xy = T for no y in the model. Its axiomatization is a syntactical
approximation of this. Now define:

x ◦ y ≡ λz. x(yz)
x→ y ≡ if[x, y,⊥] = if[x,T,⊥]
χ ≡ λxz. if[xz,T,⊥]

We have (g◦h)z = g(hz) so (g◦h) is the functional composition of g and h. The
equation x→ y expresses “if x = T then y = T”. Finally, χg is the characteristic
map (cf. Definition 4.6.1) for which χgx = T iff gx = T and χgx = ⊥ otherwise.

The axioms on E read:

ET ET = T

EB E⊥ = ⊥
EX Ex = E(χx)
EC E(x ◦ y) → Ex

Exist

Axioms ET and EB are natural since Tx = T and ⊥x = ⊥ are axioms of MT.
The EX axiom says that Ex does not care about the value of xy if xy ̸= T. The
EC axiom says that if x(yz) = T for some z then xw = T for some w.

4.5. Quantification axioms

Define:

!x ≡ if[x,T,T]
¬̈x ≡ if[x,F,T]

∃̈p ≡ ≈(p(εp))

∃̈x.A ≡ ∃̈λx.A

∀̈x.A ≡ ¬̈∃̈x. ¬̈A
εx.A ≡ ελx.A

Note that ∀, ∃, and ¬ are part of the syntax of ZFC+SI whereas ∀̈, ∃̈, and ¬̈ are
terms of MT. The quantifier axioms depend on the term ψ defined in Section
4.6. Let M be as in Section 3.12. For all maps p ∈ M we have

∀̈x. px = T if ∀x∈Φ: px = T

∀̈x. px = ⊥ if ∃x∈Φ: px = ⊥

∀̈x. px = F otherwise

24

Hence, ∀̈ expresses universal quantification over Φ. Likewise, ∃̈ expresses exis-
tential quantification over Φ. The quantification axioms read:

Elim (∀̈x.A) ∧ ψB → (λx.A)B
Ackermann εx.A = εx. (ψx ∧ A)

StrictE ψ(εx.A) = ∀̈x. !(A)

StrictA !(∀̈x.A) = ∀̈x. !(A)

Quant[ψ]

Example 4.5.1. According to the Strong Induction Property (SIP, c.f. Section
7.8), elements of Φ are wellfounded w.r.t. Φ (see Example 4.2.1 for the definition
of wellfoundedness with respect to a set). This allows to use elements of Φ to
represent sets of ZFC. We define the set Z[x] represented by x ∈ Φ thus:

Z[T] ≡ ∅
Z[x] ≡ {Z[xz] | z ∈ Φ} if x ̸= T

For the usual model Vσ of ZFC in ZFC+SI and canonical κσ-expansions
Mκσ of MT we have Vσ = {Z[x] | x ∈ Φ} (cf. [4, Appendix A.4]) so all sets of
ZFC are representable by wellfounded maps x ∈ Φ. Now define:

x⇒̈y ≡ if[x, if[y,T,F], if[y,T,T]]
x∧̈y ≡ ¬̈(x⇒̈¬̈y)

x=̈y ≡ if[x, if[y,T,F], if[y,F, (∀̈u∃̈v. xu=̈yv)∧̈(∀̈v∃̈u. xu=̈yv)]]

x∈̈y ≡ if[y,F, ∃̈z. x=̈yz]

For all x, y ∈ Φ we have (x∈̈y) = T iff Z[x] ∈ Z[y] and (x=̈y) = T iff

Z[x] = Z[y]. The definition of =̈ resembles that of
ω
= in Example 4.2.1.

Using ∈̈, ¬̈, ⇒̈, and ∀̈ we may now express all wellformed formulas of ZFC
in MT. By Theorem 2.2.2 all closed theorems of ZFC are satisfied by the ca-
nonical model Mκσ of MT (actually, they are satisfied by all κσ-expansions,
σ inaccessible, κ > σ). As a conjecture (Conjecture 2.2.3), closed theorems of
ZFC+¬SI are provable in MT.

Example 4.5.2. As a continuation of Example 4.2.1, define

x+ y ≡ if[x, y, (xT) + y′]

Having a quantifier in MT allows to prove in MT e.g. that the term

∀̈x, y. x+ y
ω
= y + x

equals T. The proof involves a proof of ∀̈y. x+ y
ω
= y + x by induction in x (or,

more precisely, a proof of χω ⪯ λx. ∀̈y. x+y
ω
= y+x by Min). The proof requires

the ability to apply induction to a statement which contains both a quantifier
(∀̈) and recursive programs (+ and

ω
=) and thus requires the ability to mix

recursive programs and quantifiers. The ability to mix recursive programs and
quantifiers freely is a core benefit of MT.

25

4.6. The definition of ψ

We conclude the presentation of the axioms by defining ψ. Like in Section
3.12 let M be any κσ-expansion. We first define some auxiliary concepts.

Definition 4.6.1. for a ∈ M define:
(a) a is a characteristic map if a ∈ M\{T,⊥} and ax ∈ {T,⊥} for all x ∈ M.
(b) D[a] = {x ∈ M | ax = T}
(c) a is the characteristic map of S if a is a characteristic map and S = D[a].

In Example 4.2.1 we referred to χω as “the characteristic map of the set of
natural number maps”.

Definition 4.6.2.
(a) ⊔ ≡ λfy.Ex. fxy
(b) x : y ≡ if[x , y , ⊥]
(c) f/g ≡ if[f , T , λx. gx : (fx/g)]

The map ⊔ satisfies D[⊔f] = ∪x∈MD[fx], and x : y is y guarded by x in the
sense that if x = T then x : y = y and if x ̸= T then x : y = ⊥. We make x : y
right associative so that x : y : z means x : (y : z). Thus, x : y : z is z guarded
by both x and y. Since x : y is an infix operator we have that xu : yv means
(xu) : (yv).

One may think of f/g as a projection in the sense that (f/g)/g = f/g ⪯ f
holds in M (cf. Lemma 10.5.3). The f/g construct equals ⇓Gf of [4]. Since f/g
is an infix operator we have that fx/gy means (fx)/(gy).

We now go on to define ψ. To do so we need to define a number of auxiliary
terms. In M, the terms ψ, s, P , Q, and R will satisfy:

D[ψ] = ∪a∈MD[sa]
= D[P] ∪

(
∪c∈M D[Q(sc)]

)
∪
(
∪b,c∈M D[Rsψbc]

)

sa ∈ {P,Q(s(aF)), Rsψ(aT)(aF),⊥}

For all a, b, c ∈ M we will have that ψ, sa, P , Q(sc), and Rsψbc are char-
acteristic maps or ⊥. For all a ∈ M, D[sa] will be essentially σ-small in
the sense that there exists a set A ⊆ M of cardinality less than σ such that
D[sa] = {w ∈ M | ∃u∈A:u ⪯ w}. See Sections 10–12 for proofs.

Now, the definition of ψ and the auxiliary terms reads:

Definition 4.6.3.
(a) ψ ≡ ⊔s
(b) s ≡ YS
(c) S ≡ λf. S̄f(⊔f)
(d) S̄ ≡ λfθa. if[a , P , if[aT , Q(f(aF)) , Rfθ(aT)(aF)]]
(e) P ≡ λy. if[y , T , ⊥]
(f) Q ≡ λc. !c : λy. ∀̈z. c(y(z/c))
(g) R ≡ λfθbc. θc : R1fθbc : R0fθbc
(h) R1 ≡ λfθbc. ∀̈z. !(f(b(cz/θ)))

26

(i) R0 ≡ λfθbcy.Ez. (θz : f(b(cz/θ))y)

In this section we have y ∈ M except that y is a syntactic variable of MT
in the definition above. The same holds for a, b, c, f , z, and θ.

Note that s = YS = S(YS) = Ss = S̄s(⊔s) = S̄sψ. Hence, in (d-i) above
one may think of f and θ as s and ψ, respectively.

The definition of ψ replaces the WF group of MT0 (ten axioms and one
inference rule). The definition of ψ in MT corresponds to the following in ZFC:
the null set axiom, the pair set axiom, the power set axiom, the union set axiom,
the axiom of replacement, the axiom of infinity, the axiom of restriction, and
the axiom of foundation.

Now define b::c ≡ λz. if[z , b , c]. We have (b::c)T = b and (b::c)F = c. Thus,

sT = S̄sψT = P
s(T::c) = S̄sψ(T::c) = Q(sc)
s(b::c) = S̄sψ(b::c) = Rsψbc if b ̸∈ {T,⊥}.

Accordingly, we have

If Py then ψy
If Q(sc)y then ψy
If Rsψbcy then ψy (b ̸∈ {T,⊥})

Thus, P , Q, and R represent three ways to prove that y is wellfounded in the
sense of MT.

Example 4.6.4. From PT (i.e. from PT = T) we have ψT so T is wellfounded.
This may be seen as the base case. Actually, P just has two purposes: it forces
T to be wellfounded and it initiates the recursive population of the universe of
wellfounded maps.

From Q(sT)(λu.T) = ∀̈z. sT((λu.T)(z/sT)) = ∀̈z. sTT = ∀̈z.T = T we have
that λz.T is wellfounded.

Recall that we defined 0 = T, 1 = λu.T, 2 = λuv.T, and so on in Exam-
ple 4.2.1. We have now proved that 0 and 1 are wellfounded. Furthermore,
s(T::(T::T))2 = T proves that 2 is wellfounded. We may go on and prove that
3 is wellfounded and so on.

The ability of MT to model ZFC stems from several sources. First, the quan-
tification axioms reference ψ in a way which forces MT quantifiers to quantify
over the universe D[ψ] = {x∈M | ψx = T}. Second, as shown in Example 4.6.4,
recursive use of s = YS populates D[ψ], putting a lower bound on the size of
the universe. Third, the minimality of Y permits a kind of transfinite induction
over D[ψ], putting an upper bound on the size of the universe. Fourth, Ext plays
a marginal but essential role in that it forces ⪯ to be a partial order.

When modelling ZFC in MT, one may define ∈̈, ¬̈, ⇒̈, and ∀̈ as in Section
4.5. Then, to prove e.g. the power set axiom one may find an MT term P(x)
such that P(x) represents the power set of the set represented by x. Then one

27

may prove T = ∀̈x, y. (y∈̈P(x)⇔̈∀̈z. (z∈̈y⇒̈z∈x)) and T = ∀̈x. ψ(P(x)) from
which the power set axiom is easy to prove. Proving T = ∀̈x. ψ(P(x)) makes
use of the second point above by using the fact that ψ makes the universe big
enough to contain P(x). But it also uses the third point above because the
proof requires a kind of transfinite induction in x and thereby uses the fact that
the universe is so small that all sets have powersets.

Like in Section 3.11 let ψCurry be defined exactly like ψ except that all
occurrences of Y and ⊥ are replaced by YCurry and ⊥Curry, respectively. In
MTdef , ψCurry takes the place of ψ.

5. Introduction to the consistency proof

We now give some more information on expansions and models for Map
Theory.

5.1. Axioms and inference rules

The rules (i.e. axioms and inference rules) of MT and MT0 fall in the fol-
lowing groups:

Elem The elementary rules of MT except Y and P1–3 (Section 4.1).

Elem′ The rules Y and P1–3 (Section 4.1).

Mono The rule of monotonicity (Section 4.2)

Min The rule of minimality (Section 4.2)

Ext The rule of extensionality (Section 4.3)

Exist The axioms on E (Section 4.4)

Quant[a] The quantification axioms (Section 4.5) in which ψ is replaced by a.

WF The three wellfoundedness axioms, the seven construction axioms, and the
inference rule of transfinite induction of [9].

We have:

MT = Elem+ Elem′ +Mono+Min+ Ext+ Exist+ Quant[ψ]
MT0 = Elem+ Quant[ϕ] +WF

Modulo an inessential change of the definition of A → B, Quant[ϕ] already
appears in [4, Appendix C]. The four axioms of Quant[ϕ] are equivalent to the
original set of 5+1 axioms where the five ones were stated in [9] and the sixth
one, as pointed out by Thierry Vallée, was used but not stated in [9].

28

5.2. Domains, premodels, and expansions

We introduce here informally the notions of κσ-expansions (σ inaccessible,
κ > σ, κ regular) and κ-expansions (κ ≥ ω, κ regular), among which live the
canonical expansions. Certain canonical κσ-expansions will be proved to be the
models of MT we are looking for, while one main result of [4] can be rephrased:
all κσ-expansions satisfy MT0. The notion of κσ-expansions is built in the
following stages:

Underlying set M0

κ-Scott domain M1 = (M0,≤) Section 6.3
reflexive κ-domain M2 = (M1, A, λ) Section 7.1
κ-premodel M3 : An M2 which satisfies Definition 7.4.2
κ-expansion M4 = (M3,T,⊥, if,Y, ∥,E) Section 7.5
κσ-expansion M5 = (M4, ε, ϕ) Section 7.5

The notions of κ-Scott domains, reflexive κ-domains, κ-premodels, and κ-expansions
are defined for all regular κ ≥ ω. For each κ-premodel M3 there is exactly one
κ-expansion M4 = (M3,T,⊥, if,Y, ∥,E); we shall refer to that uniquely defined
M4 as the κ-expansion of M3.

The notion of a κσ-expansion is defined for all inaccessible σ and all regular
κ > σ. For each κ-premodel M3 and given σ < κ there is exactly one κσ-
expansion (modulo the choice of the choice function underlying ε); as before we
refer to it as the κσ-expansion of M3.

From now on, x ∈ M1 = (M0,≤) means x ∈ M0 and likewise for M2 to
M5. Furthermore, we drop the superscripts of M and let M denote any one of
M0 to M5 depending on context.

5.3. The canonical expansions Mκ and Mκσ

In Section 8 we construct a canonical κ-premodel for each regular cardinal
κ ≥ ω. For each regular κ ≥ ω there are many κ-premodels but only one
canonical one. We shall refer to the κ-expansion of the canonical κ-premodel
as the canonical κ-expansion Mκ and likewise for the canonical κσ-expansion
Mκσ (c.f. Definition 8.6.2).

5.4. Satisfaction of axioms and inference rules

A κσ-expansion interprets application A, abstraction λ, and the constructs
T, ⊥, if, Y, ∥, E, ε, and ϕ. The construct ϕ is not needed for modelling MT and
the constructs Y, ∥, and E are not needed for modelling MT0.

A κ-expansion does not define ε and ϕ and thus cannot satisfy MT or MT0.
In particular, κ-expansions cannot satisfy Quant[ψ], Quant[ϕ], and WF but can
satisfy the other groups of rules.

We shall use M |= S to denote that M satisfies the rule or group of rules
S. Now let κ be regular. We have:

Fact 5.4.1.

29

(a) M |= Elem + Elem′ + Exist if M is any κ-expansion where κ ≥ ω (c.f.
Theorem 7.5.1).

(b) M |= Quant[ϕ] + WF if M is any κσ-expansion where κ > σ and σ is
inaccessible (c.f. [4] or Theorem 7.9.2)

(c) Mκ |= Mono+Min+ Ext if κ ≥ ω (c.f. Section 7.6).
(d) Mκσo |= Quant[ψ] if κ > σo and σo is the first inaccessible (c.f. Theorem

7.9.2 and the Definability Theorem (Theorem 10.1)).

In particular, Mκσo |= MT if σo is the first inaccessible and κ > σo, c.f. the
Consistency Theorem (Theorem 2.2.1) which we restate and prove as Theorem
13.1. In contrast, Mκσ |= MT0 for any inaccessible σ and κ > σ.

The proof of (a) is easy, the proof of (b) is less easy (c.f. Section 9) and, as
already mentioned, the proof of (d) is by far the most difficult.

5.5. Subjective difficulty of axioms and inference rules

We now move on to consider the “difficulty” of the rules (i.e. axioms and
inference rules) of Map Theory. “Difficulty” is a multi-dimensional and subjec-
tive notion. When looking at the rules it is natural to ask oneself the following
questions:

• Naturality. Are the rules intuitive or “natural” in some sense, i.e. is there
a natural or simple or motivated intuition behind?

• Strength. Do we need κ > σ for an inaccessible σ or is κ ≥ ω enough ?

• Conceptual difficulty. Do we need to introduce original and/or high level
tools for modelling them?

• Technical difficulty. Do we need difficult computations?

The Elem and Elem′ rules are natural (if one is used to λ-calculus) and can
be modelled at no cost (i.e. in any κ-premodel, κ ≥ ω).

The Exist rules are at first glance purely technical, but in fact they are easy
from all the above points of view, the reason being that they are just four
instances of a single, simple intuition, which allows us to model them easily and
at “no cost”.

Of course, all the rules of MT are natural in some sense, since they were de-
signed from semantical and computational intuitions (cf. [9]), but this naturality
may be lost when approximating the ideas through formalization.

Mono and Min are semantically natural (syntactically a little less because
of the definition of ⪯), and can be modelled at no cost in terms of strength
(κ ≥ ω), but fixing a syntactic definition of the order induces a technical cost
which drastically reduces the class of possible models but fortunately works for
canonical ones (cf. Sections 7.6 and 9.3).

The Ext rule requires “familiarization” in the sense that it is unintelligible
in itself and requires some explanations like those given in Section 4.3. But the
intuition behind it is easy (if g and h behave the same when applied to arbitrary

30

lists of arguments, then they are equal). Satisfying Ext is both conceptually and
technically not so easy. Again, Ext reduces the class of possible models, but is
satisfied in canonical ones.

Concerning the Quant rules it is interesting to note that replacing ϕ of MT0

by ψ in MT induces no change in strength in the sense that an inaccessible is
used (and apparently needed) for modelling MT0 as well as MT, but that they
are conceptually a bit harder for MT (because they refer to the defined ψ which
replaces the WF rules) and technically much harder (cf. Sections 10–12).

The WF rules belong to MT0 and are treated in [4]. Some of them are
difficult to satisfy and very difficult to explain.

Elem Elem′ Mono Min Ext Exist Quant WF

Naturality Easy Easy Easy Easy f Easy q D
Strength κ≥ω κ≥ω κ≥ω κ≥ω κ≥ω κ≥ω κ>σ κ>σ
Conceptual Easy Easy c c c Easy D d
difficulty
Technical Easy Easy c c c Easy D d
difficulty

c Less easy. Requires canonicity and some less easy developments
d Difficult
D Very difficult
f Requires familiarization
q Easy in themselves but the definition of ψ is complicated

5.6. Overview of the consistency proof

Section 6 presents κ-Scott semantics. Section 7 defines the notions of expan-
sions and related structures and treats the satisfaction of Elem, Elem′, Exist, and
Quant[ϕ]. Section 7 also gives some initial results concerning the satisfaction of
Mono, Min, and Ext.

Section 8 recalls the construction of canonical models from [4] which allows
Section 9 to finish the treatment of Mono, Min, and Ext.

Sections 10–12 prove ψ = ϕ where Section 11 proves ψ ⪯M ϕ, Section 12
proves ϕ ⪯M ψ, and Section 10 presents material needed in both Section 11 and
12. Section 13 concludes by restating and proving the Consistency Theorem.

6. The κ-Scott semantics

As promissed in Section 5.6 we now introduce κ-Scott semantics. In par-
ticular, we define the notion of κ-Scott domains (c.f. Section 5.2) and related
concepts. The treatment is similar to that of [4] but is repeated here for the
sake of self-containedness (c.f. Section 5.6).

Models of Map Theory are, in particular, models of λ-calculus (i.e. pure
untyped λ-calculus) since Map Theory extends λ-calculus.

As is well-known, models of λ-calculus are exactly the reflexive objects of the
cartesian closed categories (ccc) with enough points (see e.g. [2]). The purpose

31

of this section is to describe the ccc we use for modelling Map Theory, while the
reflexive objects of the ccc will be introduced in Section 7.1.

Scott built the first non-syntactic model of λ-calculus within the ccc of com-
plete lattices (as objects) with continuous functions (as morphisms), and came
quickly to the more abundant ccc of Scott domains and continuous functions,
usually called Scott semantics for short.

Scott semantics itself is too weak for modelling powerful foundational exten-
sions of λ-calculus but, as explained in Section 6.2, it is very easy (as already
Scott was aware) to develop, for each regular cardinal κ, a κ-Scott semantics,
which has the required ability (for κ large enough). Usual Scott semantics (case
κ = ω) is sufficient for dealing with the computational aspects of Map Theory
(c.f. Appendix A).

Sections 6.1–6.5 recall the basics of κ-Scott semantics, κ ≥ ω, mentioning
why it is enough and convenient to consider only regular κ. Section 6.6 intro-
duces a new notion of κ-step functions, which happens to be a very convenient
tool (e.g. when modelling epsilon and in Section 11).

6.1. Notation

Let ω denote the set of finite ordinals (i.e. the set of natural numbers).
For all sets G let G<ω denote the set of tuples (i.e. finite sequences) of

elements of G. Let ⟨ ⟩ denote the empty tuple.
For all sets G let Gω denote the set of infinite sequences of elements of G.
Let f :G→H denote that f is a total function from G to H.
Given any partially ordered or preordered set (R,≤) and S ⊆ R, we let ↑S

and ↓S be respectively the upward and downward closure of S for ≤ in R.
We say that a set G is κ-small if G has cardinality strictly smaller than κ.

Let P(G) denote the power set of G and let P<κ(G) denote the set of κ-small
subsets of G.

As usual, the cofinality cf(α) of an ordinal α is the smallest ordinal β such
that there is a g:β→α for which α = ∪γ∈βg(γ). An ordinal α is a regular cardinal
if cf(α) = α ≥ ω. An ordinal σ is inaccessible (i.e. strongly inaccessible) if σ is
regular, σ > ω, and P(γ) is σ-small for all γ < σ.

Note that there are many regular cardinals since e.g. all infinite successor
cardinals are regular. In contrast, the existence of an inaccessible cardinal is
independent of ZFC.

A key consequence of regularity is that κ-small unions of κ-small sets are
κ-small for regular κ (and of course likewise for inaccessible σ).

6.2. κ-Scott semantics

The κ-Scott category is the Cartesian closed category whose objects are the
κ-Scott domains and morphisms the κ-continuous functions. The pertinent κ-
Scott notions merely depend on the cofinality of κ. Thus, as a convenience and
without loss of generality, we only consider regular κ. As κ grows (κ regular)
there are more and more κ-Scott domains and κ-continuous functions.

32

The theory of Scott domains (case κ = ω) is well known, and its κ-analogue
was developed in full details in [4]. For the reader familiar with Scott domain
theory, passing from Scott to κ-Scott is straightforward and just amounts (pro-
vided κ is regular) to changing everywhere “finite” by “κ-small”. We recall
some key definitions and results in the following.

κ-Scott semantics was first used around 1987-89 in [7, 8] and was used in-
dependently in [4], but Scott was aware of the notion from the beginning, and
κ-Scott semantics appeared in German lecture notes by Scott which are proba-
bly lost now.

From now on κ is regular.

6.3. κ-Scott domains

Let (D,≤) be a partially ordered set (p.o. for short). A subset S of D is
κ-directed if all its κ-small subsets have an upper bound in S. The p.o. (D,≤)
is a κ-Scott domain if it has a least (or bottom) element, if all κ-directed and
all upper-bounded subsets have sups (suprema), and finally if it is κ-algebraic
as defined below. As κ grows there are more and more κ-Scott domains. The
simplest example of a κ-Scott domain is that of the full powerset (P(D),⊆) of
some set D, which is a κ-Scott domain for all κ. The domain underlying the
canonical model Mκσ will not be a full power set, but will still be a set of sets,
ordered by inclusion.

An element u of D is compact (resp. prime) if, whenever u ≤ sup(S) for
some κ-directed (upper bounded) set S, then u ≤ v for some v ∈ S. The
p.o. D is κ-algebraic if for every u ∈ D the set of compact elements below u
is κ-directed, and has u as its sup. In κ-Scott domains, prime elements are
κ-compact. Another key property, which is a straightforward generalization of
the ω-case, is that (existing) sups of κ-small sets of κ-compact elements are
themselves κ-compact. A κ-Scott domain is prime-algebraic if each element of
D is the sup of the primes below it.

Definition 6.3.1. Dc is the set of compact elements of the κ-Scott domain D.

Both (P(D),⊆) and the domain Dκσ underlying Mκσ are prime algebraic κ-
Scott domains. The compact elements of (P(D),⊆) are the κ-small subsets of D
and its primes are the singletons. The compact elements of Dκσ are downward
closures of adequate κ-small subsets of D, while primes are downward closures
of singletons.

6.4. κ-continuous functions

A function between two κ-Scott domains is κ-continuous if it is monotone
and commutes with all sups of non-empty κ-directed sets.

Given κ-Scott domains D,D′ we use [D→κD
′] to denote the κ-Scott domain

whose carrier set is the set of κ-continuous functions from D to D′ ordered
pointwise. As κ grows there are more and more κ-continuous functions.

33

6.5. κ-open sets

G ⊆ D is κ-open if G = ↑K for some set K ⊆ Dc. Equivalently, G is κ-open
if G = ↑G and whenever G contains sup(S) for some directed set S then it
contains some element of S. This defines a topology, the κ-Scott topology, and
the κ-continuous functions, as defined above, are exactly the functions which
are continuous with respect to this topology. Finally, it is straightforward to
check but crucial to note that the intersection of a κ-small family of κ-open sets
is still κ-open.

The set G ⊆ D is essentially κ-small if V ⊆ G ⊆ ↑V for some κ-small V . It
follows that G is an essentially κ-small open set if and only if G = ↑V for some
κ-small V ⊆ Dc.

6.6. κ-step functions

We now introduce a notion of κ-step functions; such functions are partic-
ularly easy to prove to be κ-continuous and they are natural and convenient
tools for our purposes. In particular, the interpretation of ε recalled from [4] in
Section 7.4 is a κ-step function, and several families of κ-step functions will be
used in Sections 10–12.

Definition 6.6.1. For g:D→D the domain Dom[g] is defined by Dom[g] ≡
{x ∈ D | g(x) ̸= ⊥}.

Definition 6.6.2. g:D→D is a κ-step function if:
(a) Dom[g] is κ-open.
(b) x ⪯M y ⇒ g(x) = ⊥ ∨ g(x) = g(y).

Lemma 6.6.3. Every κ-step function is κ-continuous.

Proof of 6.6.3 Monotonicity is obvious. Now let S ⊆ D be κ-directed. We
shall prove g(sup(S)) = sup({g(x) | x ∈ S}). Because of Definition 6.6.2(b) this
is equivalent to proving sup(S) ∈ Dom[g] ⇔ ∃x∈S:x ∈ Dom[g] which is obvious
since Dom[g] is κ-open.

6.7. Conclusion

As promissed in Section 5.6 we have now introduced κ-Scott semantics, and
we have introduced the κ-Scott domains mentioned in Section 5.2 which con-
stitute the first step in constructing a model of MT. We have also proved a
small lemma, but it is the presentation of κ-Scott semantics which was the
main purpose of Section 6.

7. Premodels and expansions.

Having κ-Scott domains from Section 6 and following the plan laid out in
Section 5.6 we now proceed with defining the rest of the concepts listed in
Section 5.2 leading up to the definition of κσ-expansions which we eventually
use to model MT.

In this section κ ≥ ω is regular.

34

7.1. Reflexive κ-domains as models of pure λ-calculus

A Reflexive κ-domain (i.e. a reflexive object of the κ-Scott semantics)
is a triple (D, A, λ) where D is a κ-Scott domain and A:D→κ[D→κD] and
λ: [D→κD]→κD are two morphisms such that A ◦ λ is the identity. This gives
a model of untyped λ-calculus, i.e. of rules Trans, Sub, Gen, A2, and Rename
when we use A and λ to interpret the pure λ-terms, in the standard way (see
e.g. [2]).

Most of the time A(u)(v) will be abbreviated as uv which we make left-
associative so that uvw means (uv)w. Furthermore, uw̄ ≡ uw1 · · ·wn if w̄ =
w1 · · ·wn (n ≥ 0).

All n-ary κ-continuous functions, n ∈ ω, can be internalized in D: for any
such f there is an element v ∈ D such that f(u1, . . . , un) = vu1 · · ·un for all
u1, . . . , un ∈ D. In the case n = 1 we can take v = λ(f).

7.2. Tarski’s minimal fixed point operators

Let D be a κ-Scott domain and let f ∈ [D→κD]. If κ = ω then f has a fixed
point and even has a minimal such. That does not always hold for κ > ω. As
an example, (ω,≤) is a κ-Scott domain for all regular κ > ω but the successor
function has no fixed point.

We now turn to sufficient conditions for the existence of fixed points. For
all f ∈ [D→κD], x ∈ D, and ordinals α define

fα(x) = sup{f(fβ(x)) | β ∈ α}

whenever the sup exists. Furthermore, define

YTarski(f) ≡ fκ(⊥)

We say that v is a pre-fixed point of f if f(v) ⪯M v.

Lemma 7.2.1. If fκ(⊥) is defined then fα(⊥) is defined for all α, fα(⊥) =
fκ(⊥) for all α > κ, f has a fixed (and pre-fixed) point, it has a unique minimal
fixed (and pre-fixed) point, and YTarski(f) = fκ(⊥) is that minimal fixed point.

Proof of 7.2.1 Easy and classical.

Lemma 7.2.2.
(a) If κ = ω then YTarski ∈ [D→κD]→κD is total.
(b) If f has a fixed point then (fα)α≤κ and YTarski(f) are defined.
(c) If there are A, λ making (D, A, λ) a reflexive κ-domain then YTarski is total

and κ-continuous.

Proof of 7.2.2

(a) Easy.
(b) Note that if f has a fixed point x then x is an upper bound for each

{f(fβ(⊥)) | β ∈ α} which thus has a sup because D is κ-Scott.

35

(c) Totality follows from (b) because YCurryλ(f) is a fixed point where YCurry =
λf. (λx. f(xx))(λx. f(xx)) exists in all models of λ-calculus and thus exists
in all reflexive κ-domains. Continuity can be proved by a rather standard
proof (which can be found e.g. in [16]).

Now suppose M = (D, A, λ) is a reflexive κ-domain and define YTarski ∈ M by

YTarski ≡ λ(YTarski ◦A)

where ◦ is composition.

Corollary 7.2.3.
(a) YTarskiu = u(YTarskiu) (Y)
(b) uv ⪯M v ⇒ YTarskiu ⪯M v (Min)

Proof of 7.2.3 First note that A ◦ λ is the identity since M is reflexive so
YTarskiu ≡ A(λ(YTarski ◦A))(u) = (YTarski ◦A)(u). Then (a) and (b) follow from
the fact that YTarski is the minimal fixed and pre-fixed operator.

Hence, YTarski would be a good candidate for interpreting Y, provided the syn-
tactic order x ⪯ y and the model order x ⪯M y coincide, as they do when M
is canonical (c.f. Theorem 7.6.3 which is proved as Corollary 9.3.2):

7.3. The domain equation Eqκ

Let ⊥′ and T′ be arbitrary, distinct constants which are not functions. Given
a κ-Scott domain D′ which does not contain T′ and ⊥′ we denote by D′⊕⊥′ {T′}
the κ-Scott domain obtained by adding to D′ the element T′ which we decide
to be incomparable to all the elements of D′, and the bottom element ⊥′ which
we decide to be below T′ and all the elements of D′.

Definition 7.3.1. Eqκ is the domain equation D ≃ [D→κD]⊕⊥′ {T′}.

Eqκ asserts that the two sides of ≃ are order isomorphic κ-Scott domains.
It is the most natural semantic counterpart of rule QND, and the heart of
the notion of a κ-premodel. Proving the existence of solutions of Eqκ within
Scott’s semantics is a well mastered technique, and passing from ω to κ is
straightforward. Eqκ admits moreover a canonical solution, which will be re-
built in Section 8.

7.4. κ-Premodels

Given a solutionD of Eqκ and an order isomorphism λ from [D→κD]⊕⊥′{T′}
to D, let T and ⊥ denote λ(T′) and λ(⊥′), respectively. Thus, ⊥ is the bottom
element of D while T only compares to ⊥. Given a morphism A such that
A◦λ is the identity, recall that Tu abbreviates A(T)(u) and likewise for ⊥u and
1u. The following theorem is easy to prove and the details can be found in [4,
Section 3.1]:

36

Theorem 7.4.1. Let D be a solution of Eqκ and let λ be an order isomorphism
from [D→κD]⊕⊥′ {T′} to D. There exists an A such that (D, A, λ) is a reflexive
κ-domain satisfying:

(a) For all u ∈ D we have Tu = T and ⊥u = ⊥.
(b) F ≡ {λ(f) | f ∈ [D→κD]} = {u∈D | u = 1u} = D \ {⊥,T}
(c) F and {T} are disjoint κ-open subsets of D.

Note that in (b) above, only the last equation uses the assumption that D
is a solution to Eqκ; the first equation is classic.

In fact F is the isomorphic image of [D→κD] under λ, and λx.⊥ ≡ λ(x 7→ ⊥)
is the bottom element of F .

The interpretation of any term of form λx.A is in F . For all u, v ∈ F we
have u ⪯M v iff ux ⪯M vx for all x in D.

Conversely, any object (D, A, λ) satisfying the above theorem can easily be
turned into a solution of Eqκ.

Definition 7.4.2. A κ-premodel M is a reflexive κ-domain (D, A, λ) for which
D satisfies Eqκ and which satisfies the three conditions of Theorem 7.4.1.

7.5. κ-expansions

Given a κ-premodelM = (D, A, λ) we define the κ-expansion (M,T,⊥, if,Y, ∥
,E) of M as follows:

As in Section 7.4 let T ≡ λ(T′) and ⊥ ≡ λ(⊥′).
Define If(u, v, w) = v if u = T, w if u ∈ F , and ⊥ if u = ⊥. Now If is clearly

κ-continuous. Let if be the unique element of M such that ifuvw = If(u, v, w)
for all u, v, w ∈ M.

Let Y be YTarski as defined in Section 7.2.
Define Paror(u, v) = T if u or v is T, λx.T if u, v ∈ F , and ⊥ otherwise.

Define Ex(u) = T if uv = T for some v ∈ M and ⊥ otherwise. Now Paror and
Ex are clearly κ-continuous. Let ∥ and E be the unique elements of M such that
∥uv = Paror(u, v) and Eu = Ex(u) for all u, v ∈ M.

Theorem 7.5.1. M |= Elem+Elem′+Exist if M is a κ-expansion where κ ≥ ω.

Proof. The κ-premodel underlying the κ-expansion M satisfies rules Trans,
Sub, Gen, A2, and Rename since it is a reflexive object of a Cartesian closed cat-
egory. The κ-premodel satisfies A1 and A3 and rule QND because κ-premodels
by definition satisfy the conditions of Theorem 7.4.1. Axioms I1, I2, and I3 fol-
low from the definition of if. Axiom Y follows from Corollary 7.2.3(a). Axioms
P1, P2, and P3 follow from the definition of ∥; and the four axioms on E follow
from the definition of E. ✷

7.6. Towards modelling of Mono, Min, and Ext

We are not yet in a position to prove the monotonicity and minimality axioms
Mono and Min, but we have the following:

37

Theorem 7.6.1. If κ ≥ ω and if M is a κ-expansion, then M satisfies the
Monotonicity and the Minimality axioms for the model order ⪯M (but possibly
not for the syntactic order ⪯).

Proof. Monotonicity is for free when M lives in Scott’s semantics and the
rest follows from Corollary 7.2.3. ✷

In Section 9, we prove Mono and Min in the canonical κ-expansion Mκ (κ ≥
ω) by proving that ⪯M and ⪯ coincide in such models. Thus, no inaccessible is
needed, but canonicity is crucial. Modelling of Mono, Min, and Ext in Section 9
proceeds thus:

Theorem 7.6.2 (Section 9.2). Mκ |= Ext if κ ≥ ω.

Theorem 7.6.3 (Section 9.3). Mκ satisfies that the model order ⪯M coin-
cides with the syntactic order ⪯ if κ ≥ ω.

Now recall that Y is interpreted by YTarski.

Corollary 7.6.4. Mκ |= Mono+Min if κ ≥ ω.

Theorem 7.6.5 (Section 9.5). Mκ satisfies YTarski = YCurry if κ ≥ ω.

Corollary 7.6.6. Mκ satisfies Yf = YCurryf and ⊥ = ⊥Curry if κ ≥ ω.

Corollary 7.6.7. Mκ satisfies Mono and Min of MTdef if κ ≥ ω.

7.7. Quantifier axioms

We now turn to the quantifier axioms. The Quant[ϕ] axioms of MT0 were
easy to model (the difficulty was carried by some of the ϕ-axioms). For MT, the
complexity of the term ψ, whose definition involves ε and Y, makes Quant[ψ]
very difficult to model. Our trick will be to use that Quant[ϕ] holds and to prove
(in Sections 10–12) that ψ and ϕ coincide in all κσ-expansions, provided σ is
the first inaccessible and provided ε and ϕ are defined as in Definition 7.9.1.

Recall D[w] ≡ {u∈M | wu = T} (cf. Definition 4.6.1) and define:

Definition 7.7.1. For all U ⊆ M and w ∈ M we let:
(a) wU ≡ {wu | u ∈ U}
(b) χU :M→M is defined by χU (x) = T if x ∈ U and χU (x) = ⊥ otherwise.

Remark 7.7.2.

(a) D[w] is a κ-open set for all w ∈ M
(b) χU is κ-continuous iff U is κ-open

Theorem 7.7.3 ([4]). Let M be a κ-expansion (κ ≥ ω), and let Φ ⊆ M be
such that Φ = ↑Ψ for some κ-small set Ψ such that T ∈ Ψ and ⊥ ̸∈ Ψ. Then
there is an ε ∈ M such that, when the syntactical ε is interpreted by this ε, M
satisfies Quant[χΦ].

38

Proof. We first recall the proof in [4, Section 4.1]: let ξ be a choice function
on Φ, i.e. a function ξ:P(Φ)→Φ such that ξ(V) ∈ V for all non-empty V ⊆ Φ.
Let e:M→Φ ∪ {⊥} be defined by: e(u) = ⊥ if ⊥ ∈ uΦ, e(u) = T if uΦ ⊆ F ,
and e(u) = ξ({x∈Φ | ux = T}) otherwise. Then e is a κ-step function: It is
indeed clear that u ⪯M v ⇒ e(u) = ⊥ ∨ e(u) = e(v). It remains to prove
that Dom[e] ≡ {x∈M | e(x) ̸= ⊥} is κ-open. Now, Dom[e] = {u∈M | Φ ⊆
Dom[u]} = {u∈M | Ψ ⊆ Dom[u]} = ∩x∈Ψ{u∈M | ux ̸= ⊥}. Thus, Dom[e] is
the intersection of a κ-small family of κ-open sets, and hence is κ-open. Thus,
e is a κ-step function and, hence, κ-continuous. Now ε ≡ λ(e) has the required
properties by [4, Theorem 4.3.1]. ✷

7.8. The definition of Φ

We suppose now that σ < κ is inaccessible. We define σ-small sets and
essentially σ-small sets as was done for κ (cf. Section 6.1 and 6.5), and we note
that a κ-open set O is essentially σ-small if and only if O = ↑K for some σ-small
set of compact elements of M.

Definition 7.8.1. [4] For any U, V,H ⊆ M where H is open define:

(a) O<σ(H) and O<κ(H) are the sets of all essentially σ- and κ-small open
subsets of H, respectively

(b) U→V ≡ {x∈M | xU ⊆ V }
(c) U◦ ≡ {x∈M | ∀u1, . . . , un, . . .∈U

ω∃n∈ω:xu1 · · ·un = T}
(d) Fσ(H) ≡ {T} ∪

∪
{G◦→G | G ∈ O<σ(H)}

In the present paper we define Φ thus:

Definition 7.8.2. Φ ⊆ M is the smallest set such that T ∈ Φ and G ∈
O<σ(Φ) ⇒ G◦→G ⊆ Φ. The elements of Φ are, by definition, the wellfounded
maps.

The Φ defined above equals the Φ defined in [4] (c.f. Lemma 10.4.2). Fur-
thermore, Φ satisfies Φ = Fσ(Φ) and is the smallest solution to this equa-
tion. Also, Φ satisfies the Generic Closure Property (GCP) of [4] which says
Φ = ∪{G◦→Φ | G ∈ O<σ(Φ)} (c.f. [4, Theorem 7.1.1]).

Another important property is Φ ⊆ Φ◦ which is called the Strong Induction
Property (SIP) in [4] and which is stated here as Lemma 10.4.3(f). Furthermore,
Φ ∈ O<κ(M) according to Lemma 10.4.6 or [4]. In fact it is proved in [4] that Φ
has essential cardinality exactly σ in the sense that Φ is not essentially σ-small
and, furthermore, Φ = ↑Ψ where Ψ ⊆ Mc is defined in [4] and where Ψ has
cardinality σ.

7.9. κσ-Expansions

Definition 7.9.1. Given a κ-expansion M we define the κσ-expansion (M, ε, ϕ)
of M as follows: ε is defined as in the proof of Theorem 7.7.3 and ϕ = λ(χΦ).

Theorem 7.9.2 ([4]). M |= Quant[ϕ] + WF if M is a κσ-expansion where
κ > σ and σ is inaccessible.

39

In particular, we have M |= MT0 proving the consistency of MT0. We now
return to models of MT.

To model the quantification axioms of MT it is enough to show that, if σ
is the first inaccessible cardinal, then ψ = ϕ. The proof of this result, called
the “Definability Theorem” (Theorem 10.1) occupies Section 10–12 and is, by
far, the most difficult proof in the present paper. The proof of the Definability
Theorem is split into two parts, called the Upper Bound Theorem (UBT) and
the Lower Bound Theorem (LBT).

UBT says ψ ⪯M ϕ. It puts an upper bound on ψ and is proved in Section 11.
The proof uses the existence of an inaccessible σ (actually, the mere definitions
of Φ and ϕ need it). The proof also uses that the construct Y (which is part of
the definition of ψ) is interpreted by YTarski.

LBT says ϕ ⪯M ψ. It puts a lower bound on ψ and is proved in Section 12.
The proof of LBT uses UBT and also uses the assumption that σ is the first
inaccessible ordinal (the proof of UBT does not use it).

We interpret ψ ⪯M ϕ as an upper bound of ψ rather than e.g. a lower bound
on ϕ since ϕ was given already in [4] whereas ψ is the quantity being investigated
in the present paper.

We can now outline how Quant[ψ] is going to be modelled:

Theorem 7.9.3. (Outline) If σo is the first inaccessible and κ > σo, then:

(a) Any κσo-expansion satisfies Quant[ψ].
(b) The canonical κσo-expansion Mκσo satisfies Quant[ψCurry].

Proof of 7.9.3 (Outline) Let M be a κσo-expansion. From Theorem 7.9.2 we
have M |= Quant[ϕ]. From the Definability Theorem (Theorem 10.1) we have
ϕ = ψ. Thus M |= Quant[ψ]. Then (b) follows from Corollary 7.6.6.

As already noticed in the introduction, MTdef is a priori more difficult to
model than MT. Fortunately, Mκσo models Quant[ψCurry] as noted above and,
more generally, models all of MTdef .

7.10. Conclusion

We have now defined the concepts listed in Section 5.2. We have also proved
some theorems like Theorem 7.5.1 which says that all κ-expansions satisfy the
Elem, Elem′, and Exist groups of axioms and inference rules (c.f. Section 5.1).
We have also recalled from [4] that κσ-expansions satisfy Quant[ϕ] (and in fact
all of MT0). In Section 8 we prove that there exist κ- and κσ-expansions. We
use all that in the proof of the Consistency Theorem in Section 13. However,
the main purpose of Section 7 was to define the notion of κσ-expansions.

8. Building the canonical κ-premodel

As promissed in Section 5.6 we now construct the canonical κ-premodel (c.f.
Section 5.3). The treatment is similar to that of [4, Section 8] but is repeated
here for the sake of self-containedness (c.f. Section 1.4).

40

Constructing the canonical κ-premodel has two purposes. First, the con-
struction proves that κ-premodels and, hence, κ- and κσ-expansions exist. Sec-
ond, some axioms and inference rules of MT and MTdef do not hold in all
κσ-expansions but do hold in canonical ones. Canonical models are needed for
satisfying Mono, Min, and Ext, and for the Definability Theorem and Quant[ψ]
for MTdef .

In the following, κ ≥ ω can be any regular cardinal and no inaccessible σ is
needed.

The canonical κ-premodel is a webbed model in the sense that it is built as
an (enriched) powerset of some lower level structure, called its web. Here the
web is a preordered coherent space (pcs) P = (P,≤,⌢⌣) where ≤ and ⌢⌣ are a
preorder and a reflexive, symmertric relation on P , respectively, and where we
refer to ⌢⌣ as a coherence relation. The terminology of “webbed model” was
introduced in [3] and preordered coherent spaces (pcs’s) are defined in Section
8.1.

The canonical κ-premodel ((M,⪯M), A, λ) and the web (P,≤,⌢⌣) from
which it is built satisfy that (Mp \ {⊥},⪯M) is isomorphic to (P,≤)/ ≡ where
Mp is the set of prime elements of the κ-premodel and a ≡ b iff a ≤ b ∧ b ≤ a.
Furthermore, a ⌢⌣ b iff the corresponding elements of Mp have an upper bound
in M.

The notion of pcs’s generalizes the notion of preordered sets as well as Gi-
rard’s definition of coherence spaces, both of which are well known to be relevant
for building mathematical models of λ-calculus.

8.1. Preorderd coherent spaces (pcs’s)

A pcs-structure (or structure for short) is a tuple D = ⟨DD,≤D,⌢⌣D
⟩ for

which ≤D and ⌢⌣D
are binary relations on DD.

A pcs is a structure D = ⟨D,≤,⌢⌣⟩ with the following properties:

Partial order ≤ is reflexive and transitive.
Coherence ⌢⌣ is reflexive and symmetric.
Compatibility x ≤ x′ ∧ y ≤ y′ ∧ x′ ⌢⌣ y′ ⇒ x ⌢⌣ y.

The compatibility requirement above may be motivated thus: if x and y
have an upper bound (i.e. ∃z∈D:x ≤ z ∧ y ≤ z) then they are coherent (i.e.
x ⌢⌣ y). The opposite is not true: even if x ⌢⌣ y then x and y need not have
an upper bound. However, x ⌢⌣ y denotes that x and y are intended to have an
upper bound. Recall that pcs’s are used for constructing κ-Scott domains. The
coherence relation x ⌢⌣ y is used to record at an early stage of a construction that
x and y are going to have an upper bound at a later stage of the construction.

If x ≤ x′ and y ≤ y′ and if z is an upper bound of x′ and y′ then z is also an
upper bound of x and y. Compatibility expresses the reasonable requirement
that if x ≤ x′ and y ≤ y′ and if x′ and y′ are intended to have an upper bound
then x and y are also intended to have an upper bound.

41

From now on, D = ⟨D,≤,⌢⌣⟩ and D′ = ⟨D′,≤′,⌢⌣
′⟩ denote structures. We

say that D is a substructure of D′, written D ⊑ D′, if the following hold:

D ⊆ D′

∀x, y∈D: x ≤ y ⇔ x ≤′ y
∀x, y∈D: x ⌢⌣ y ⇔ x ⌢⌣

′ y

A set S of structures is a chain if ∀D,D′∈S:D ⊑ D′ ∨ D′ ⊑ D. Now for all
structures D, all u, v ⊆ D, and p ∈ D define

u ≤∗
D
v ⇔ ∀x∈u∃y∈v:x ≤D y

u ⌢⌣
∗
D
v ⇔ ∀x∈u∀y∈v:x ⌢⌣D

y
CohDu ⇔ u ⌢⌣

∗
D
u

↓Du = {y ∈ D | ∃x∈u: y ≤ x}
↓Dp = ↓D{p}
I(D) = {↓Du | u ⊆ D ∧ CohDu}

Intuitively, CohDu states that the set u is coherent, i.e. it is intended to have
an upper bound. We have that u is coherent iff ↓Du is coherent.

It is easy to check that I(D) denotes the set of coherent, initial segments of
D.

Fact 8.1.1. For all pcs’s D, (I(D),⊆) is a prime algebraic κ-Scott domain
whose sets of prime and compact elements are {↓Dp | p ∈ D} and {↓Du | u ∈
P<κ(D) ∧ CohDu}, respectively.

The goal of Sections 8.2–8.3 is to define a pcs P such that (I(P),⊆) satisfies
Eqκ.

8.2. Pcs generators

Fact 8.2.1. Let U(t) ≡ ⟨{t}, {t} × sett, {t} × {t}⟩. Now U(t) is a pcs for all
objects t (of ZFC).

Fact 8.2.2. Let Df ≡ ⟨D ∪ {f},≤′′,⌢⌣
′′⟩ where x ≤′′ y ⇔ x = f ∨ x ≤ y and

x ⌢⌣
′′ y ⇔ x = f ∨ y = f ∨ x ⌢⌣ y. If D is a pcs and f ̸∈ D then Df is a pcs.

Fact 8.2.3. For all chains S of pcs’s let ∪S ≡ ⟨∪D∈SDD,∪D∈S ≤D,∪D∈S ⌢⌣D

⟩. If S is a chain of pcs’s then ∪S is a pcs.

Fact 8.2.4. Let D⊕D′ ≡ ⟨D∪D′,≤∪≤′,⌢⌣∪⌢⌣
′⟩. If D and D′ are pcs’s and

D and D′ are disjoint, then D⊕D′ is a pcs.

Fact 8.2.5. Let D→D′ ≡ ⟨D × D′,≤E ,⌢⌣E⟩ where (x, x′) ≤′′ (y, y′) ⇔ y ≤
x ∧ x′ ≤ y′, and (x, x′) ⌢⌣

′′ (y, y′) ⇔ x ̸⌢⌣ y ∨ x′ ⌢⌣
′ y′. If D and D′ are pcs’s

then D→D′ is a pcs.

Fact 8.2.6. Let Pcoh
<κ (D) ≡ ⟨E,≤∗

D
,⌢⌣

∗
D
⟩ where E ≡ {a∈P<κ(D) | CohDa}. If

D is a pcs and κ is a cardinal, then Pcoh
<κ (D) is a pcs.

42

8.3. The web of the canonical κ-premodel

Recall that κ is a regular cardinal. Let t and f be distinct non-pairs (e.g.
t = ∅ and f = {∅}). For all structures D, define

H(D) = (Pcoh
<κ (D)→D)f ⊕U(t)

Furthermore let Eq ′κ be the equation

H(D) = D

Fact 8.3.1. If a pcs D satisfies Eq ′κ then (I(D),⊆) satisfies Eqκ.

Now define

P0 = ⟨∅, ∅, ∅⟩
Pβ+1 = H(Pβ)
Pδ = ∪{Pβ | β ∈ δ}
P = Pκ

It is easy to prove by transfinite induction that Pβ = ⟨Pβ ,≤β ,⌢⌣β⟩ is a pcs,
that {Pβ | β ∈ δ} is a chain of pcs’s, and that the pcs P is the ⊑-minimal (and
in fact unique) solution of Eq ′κ.

We define the rank rk(p) of p ∈ P as the smallest ordinal α for which p ∈ Pα.
Recall that P0 = ∅ and note that P1 = {t, f}.

8.4. Some properties of the web

From now on ↓ means ↓P. Define C ≡ Pcoh
<κ (P). For all p ∈ P and c̄ =

⟨c1, . . . , cn⟩ ∈ C<ω let ℓ(c̄) denote n (i.e. the length of c̄) and define

⟨c̄, p⟩ ≡ ⟨c1, ⟨c2, ⟨· · · ⟨cn, p⟩ · · ·⟩⟩⟩

In particular, ⟨c̄, p⟩ = p if ℓ(c̄) = 0. Using that there are no decreasing infinite
sequences of ordinals we easily get:

Lemma 8.4.1 ([4]). For each p ∈ P there is a unique decomposition of p as
p = ⟨c̄, t⟩ or p = ⟨c̄, f⟩ where c̄ ∈ C<ω.

For p = ⟨c̄, q⟩ where q ∈ {t, f} we define ℓ(p) = ℓ(c̄) + 1 and refer to q ∈ {t, f}
as the head of p.

Remark 8.4.2.
⟨c, p⟩ ≤ r ∈ P implies r = ⟨e, q⟩ for some e, q.
⟨c, p⟩ ≤ ⟨e, q⟩ iff e ⊆ ↓c and p ≤ q.

43

8.5. The domain of the canonical κ-premodel

The κ-Scott domain M of the canonical κ-premodel is defined by

M ≡ (I(P),⊆)

We have:

Fact 8.5.1.
Mp = {↓p | p ∈ P} is the set of prime maps of M.
Mc = {↓a | a ∈ C} is the set of compact maps of M.
In M, sups are unions and infs are intersections.

The definition of Mc above is compatible with the one in Section 6.3.

8.6. The canonical κ-premodel

Recall that T′ and⊥′ are arbitrary, distinct constants which are not functions
so T′,⊥′ ̸∈ [M→κM]. Now define λ, T, ⊥, and A by

λ(T′) ≡ T ≡ {t}
λ(h) ≡ {f} ∪ {⟨a, p⟩ ∈ C×P | p ∈ h(↓a)} for all h∈[M→κM]
λ(⊥′) ≡ ⊥ ≡ ∅
A(T)(v) = T for all v∈M
A(u)(v) = {p∈P | ∃a⊆v: ⟨a, p⟩ ∈ u} for all u∈F , v∈M
A(⊥)(v) = ⊥ for all v∈M

We have:

Fact 8.6.1.
(a) λ :

(

[M→κM]⊕⊥′ {T′}
)

→ M is an order isomorphism.

(b) M is a solution to the domain equation Eqκ.
(c) (M, A, λ) is a κ-premodel.

Definition 8.6.2. The canonical κ-premodel is the triple (M, A, λ) with λ and
A defined as above. Recall that the canonical κ- and κσ-expansions Mκ and
Mκσ are the κ- and κσ-expansions of the canonical κ-premodel, respectively
(cf. Section 5.2).

Note that we have T = {t}, ⊥ = ∅, and F = M\ {T,⊥} with F defined as for
Theorem 7.4.1. We have:

Fact 8.6.3.
(a) u ∈ F iff u ∈ M and f ∈ u.
(b) {f} is the minimal element of F and models λx.⊥.
(c) ⊥,T, {f} ∈ Mc.

44

8.7. Tying up a loose end

Now recall the definitions of a ∼κ b, a =κobs b, and a =κ b from Section
3.8. Note that if ∀c∈Mκ: ca ∼κ cb then, in particular, (↓⟨{p}, t⟩)a = T ⇔
(↓⟨{p}, t⟩)b = T so p ∈ a ⇔ p ∈ b. Thus, a =κobs b ⇒ a =κ b which is the
non-trivial direction of Fact 3.8.3.

8.8. Conclusion

We have now constructed the canonical κ-premodel and the canonical κ-
expansion Mκ and the canonical κσ-expansion Mκσ. Thus, as promissed in
Section 5.6, we have finished the definition of the concepts introduced in Section
5.2–5.3 and are thus prepared to move on to the meat of the consistency proof
in Section 9–13

9. Canonical premodels satisfy Mono, Min, and Ext

In this section we only suppose κ ≥ ω, and prove that Mκ, the canonical
κ-expansion, satisfies Mono, Min, and Ext, that its model order ⊆ coincides with
the syntactical order ⪯, and that we could eliminate the constant Y in favor of
Curry’s paradoxical combinator. It is essential that Mκ is canonical since we
constantly use Lemma 8.4.1.

From now on we use the same notation for terms and for their interpretations
in Mκ. Monotonicity of application w.r.t. ⊆ will be used constantly, most often
without mention.

9.1. A characterization of the order of Mκ via application

The following applicative characterization of the model order ⊆ of Mκ is
the key for proving later on that the model order coincides with the syntactical
order ⪯ and that Mκ satisfies Ext.

Definition 9.1.1. Let F = λx.T and r = λu. if[u,T,F].

Thus in Mκ we have that ru = T = {t} if u = T, ru = ⊥ = ∅ if u = ⊥, and
ru = F if u ∈ F .

Theorem 9.1.2. For all u, v ∈ Mκ the following are equivalent:
(i) u ⊆ v
(ii) For all w̄ ∈ M<ω

κ we have r(uw̄) ⊆ r(vw̄)

Proof. (i) ⇒ (ii) because application is monotone.
(ii) ⇒ (i). The proof is by contradiction. Choose a p in P of minimal length

for which there exist u, v satisfying (ii) such that p ∈ u and p ̸∈ v.
From r(u) ⊆ r(v) we have t ∈ u ⇒ t ∈ v and f ∈ u ⇒ f ∈ v so p ̸= t and

p ̸= f . Thus, p has form ⟨c, q⟩.
From p = ⟨c, q⟩ ∈ u we have r(u) = r(v) = F so u, v ∈ F . Hence, using the

definition of A (cf. Section 8.6) we have q ∈ u(↓c) ⇔ ∃c′ ⊆ ↓c: ⟨c′, q⟩ ∈ u ⇔
⟨c, q⟩ ∈ u⇔ p ∈ u. Likewise, q ∈ v(↓c) ⇔ p ∈ v.

45

From ℓ(q) < ℓ(p) and the minimality of ℓ(p) we have q ∈ u′ ⇒ q ∈ v′ for all
u′, v′ satisfying (ii). Thus, p ∈ u ⇔ q ∈ u(↓c) ⇒ q ∈ v(↓c) ⇔ p ∈ v yielding a
contradiction. ✷

Corollary 9.1.3. For all u, v ∈ Mκ we have
(i) u ⊆ v iff r(u) ⊆ r(v) and ∀w: (uw ⊆ vw)
(ii) u = v iff r(u) = r(v) and ∀w: (uw = vw)

Proof. (i) is an immediate consequence of the theorem, from which (ii) follows.
In fact both are also direct consequences of the fact that Mκ was a premodel
(Mκ is not required to be canonical for the corollary). ✷

9.2. Ext

Theorem 9.2.1. Mκ |= Ext

Proof. Let A and B be two MT-terms that do not contain x and y free and
suppose there is an MT-term C[x, y] such that (for all assignments of values
to free variables) Mκ |= ∀w∀v: (Awv = AC[w/x, v/y] ∧ Bwv = BC[w/x, v/y]).
The task is to prove that Mκ |= ∀w: (Aw = Bw) under the hypothesis that
Mκ |= ∀w: (r(Aw) = r(Bw)). Now, the hypothesis on A and B obviously imply
that, given w ∈ Mκ, the elements Aw and Bw satisfy point (ii) of Theorem
9.1.2; by (i) we hence have Aw ⊆ Bw. Similarly, Bw ⊆ Aw so Aw = Bw. ✷

9.3. λ-definability of the order of Mκ

Theorem 9.3.1. Mκ |= u ↓ v = u ∩ v for all u, v ∈ Mκ.

Proof. The proof is by contradiction. Choose a p in P of minimal length for
which there exist u, v such that ¬(p ∈ u ↓ v ⇔ p ∈ u ∩ v).

Since t ∈ u ↓ v ⇔ u = v = T ⇔ t ∈ u ∩ v we have p ̸= t. Likewise, since
f ∈ u ↓ v ⇔ u, v ∈ F ⇔ f ∈ u ∩ v we have p ̸= f . Thus, p has form ⟨c, q⟩.

If p = ⟨c, q⟩ ∈ u ↓ v then u, v ∈ F . If p = ⟨c, q⟩ ∈ u ∩ v then also u, v ∈ F .
Thus, in any case, u, v ∈ F . Hence, using the definition of A (cf. Section 8.6)
we have q ∈ u(↓c) ⇔ ∃c′ ⊆ ↓c: ⟨c′, q⟩ ∈ u ⇔ ⟨c, q⟩ ∈ u ⇔ p ∈ u. Likewise,
q ∈ v(↓c) ⇔ p ∈ v and q ∈ (u ↓ v)(↓c) ⇔ p ∈ u ↓ v.

From ℓ(q) < ℓ(p) and the minimality of ℓ(p) we have q ∈ u′ ↓ v′ ⇔ q ∈ u′∩v′

for all u′, v′. Thus, p ∈ u ↓ v ⇔ q ∈ (u ↓ v)(↓c) ⇔ q ∈ u(↓c) ↓ v(↓c) ⇔ q ∈
u(↓c) ∩ v(↓c) ⇔ q ∈ u(↓c) ∧ q ∈ v(↓c) ⇔ p ∈ u ∧ p ∈ v ⇔ p ∈ u ∩ v yielding a
contradiction. ✷

Corollary 9.3.2. (Mκ |= u ⪯ v) ⇔ u ⊆ v for all u, v ∈ Mκ.

Corollary 9.3.3. In Mκ the binary κ-continuous function inf is definable by
a λ-term (using if, ⊥, and T), and hence the model order ⊆ is equationally
definable.

46

Remark 9.3.4. It is interesting to compare this last result (which only applies
to canonical premodels of MT) to the following one, which deserves to be known:
the order of a reflexive Scott domain is always definable by a first order formula
using only application (and which is the same for all these domains). This
result, proved by Plotkin in 1972, and only published twenty years later in [15],
was rediscovered independently by Kerth [12], who proved that it also holds in
Berry’s and Girard’s stable semantics, and Ehrhard’s strongly stable semantics
[13] (with different formulas).

9.4. Mono and Min

Theorem 9.4.1. Mκ |= Mono+Min.

Proof of 9.4.1 Follows from Corollary 9.3.2 and from the fact that application
is monotonic w.r.t. the model order, and that Y = YTarski acts as a minimal
fixed point w.r.t. the model order.

9.5. Definability of the fixed point operator

Now we show that Mκ interprets Curry’s fixed point combinator as YTarski.
A first proof was worked out by Thierry Vallée (private communication, 2002),
the present one is slightly more direct.

Definition 9.5.1. For all u ∈ Mκ and ordinals α let uα ≡ ↓(u ∩Pα) ∈ Mκ.

Lemma 9.5.2. For all u, v ∈ Mκ we have:
(i) u0 = ∅ and uκ = u.
(ii) uδv = ∪β<δ(uβv) for all limit ordinals δ.
(iii) uβ+1v = uβ+1vβ for all ordinals β ≥ 0.

In particular, u1v = u1v0.
Proof. (i) Obvious.

(ii) Obvious for u ∈ {T,⊥}. Now assume c ∈ F . We have ∪β<δ(uβv) ⊆ uδv
by monotonicity. Now assume q ∈ uδv. Choose c ⊆ v such that ⟨c, q⟩ ∈ uδ ≡
↓(u ∩ Pδ). Choose p = ⟨e, q′⟩ ∈ u ∩ Pδ such that ⟨c, q⟩ ≤ p. Choose β < δ
such that p ∈ Pβ . We have q ≤ q′ and e ⊆ ↓c (cf. Remark 8.4.2). Now
q ≤ q′ ∈ (↓p)(↓e) ⊆ uβv so q ∈ uβv.

(iii) Obvious for u ∈ {T,⊥}. Now assume c ∈ F . We have uβ+1vβ ⊆ uβ+1v
by monotonicity. Now assume q ∈ uβ+1v. Choose c ⊆ v such that ⟨c, q⟩ ∈
uβ+1 ≡ ↓(u ∩ Pβ+1). Choose p = ⟨e, q′⟩ ∈ u ∩ Pβ+1 such that ⟨c, q⟩ ≤ p. We
have q ≤ q′ and e ⊆ ↓c (cf. Remark 8.4.2). Furthermore, p ∈ Pβ+1 implies
e ⊆ Pβ . Now q ≤ q′ ∈ (↓p)(↓e) ⊆ uβ+1vβ so q ∈ uβ+1vβ . ✷

Theorem 9.5.3. Mκ |= YCurry = Y.

Proof. Recall that Mκ interprets Y as YTarski. Since YTarski acts as the least
fixed point operator on Mκ it is enough to prove that, for all u ∈ Mκ, we have
ww ⊆ YTarskiu, where w ≡ λx. u(xx). We prove wαw ⊆ YTarskiu by induction
on α ≤ κ. The case α = 0 is clear and the limit case comes by Lemma 9.5.2(ii).

47

If α = β + 1 we have wβ+1w = wβ+1wβ ⊆ wwβ = u(wβwβ) ⊆ u(wβw) ⊆
u(YTarskiu) = YTarskiu, the first equality coming from Lemma 9.5.2(iii) and the
last inclusion by induction hypothesis. ✷

Remark 9.5.4. Most usual models of untyped λ-calculus are stratified, in the
sense (very roughly speaking) that it is possible to find a way of decomposing them
in such a way that each u is the sup of an increasing sequence uα, α ∈ κ (usually
κ = ω) satisfying all the properties listed in Lemma 9.5.2 except u1v = u1v0.
This last equation is really the key point here. The equation u1v = u1v0 holds
e.g. for Scott’s first model D∞ and fails for Park’s variant of D∞ which does
not satisfy Min.

10. Concepts for proving the Definability Theorem

Recall the definition of Φ (Definition 7.8.2), of ϕ as the characteristic map of
Φ, of ψ (Definition 4.6.3), and of D[g] (Definition 4.6.1). In particular, Φ = D[ϕ].

The aim of Section 10–12 is to prove:

Theorem 10.1 (Definability Theorem). If σ < κ is the smallest inaccessi-
ble ordinal then any κσ-expansion satisfies ψ = ϕ.

Section 11 proves UBT (ψ ⪯M ϕ, Theorem 11.3.1) for any inaccessible σ us-
ing Y = YTarski. Section 12 proves LBT (ϕ ⪯M ψ, Theorem 12.4.3) for the
first inaccessible σ. The proof of LBT uses UBT (in Lemma 12.4.1) and the
minimality of σ (in Lemma 12.4.2).

Section 10 provides preliminary material and results which will be used in
Section 11 and 12. Sections 10.2–10.6 present and reorganize concepts and
results which were either explicit or implicit in [4] (including its appendices).
Section 10.7 applies 10.5–10.6 to the “components” Q and R of ψ and is hence
new material.

The notation is essentially that of [4] except that the notation g/h introduced
here replaces ⇓Hg where H = D[h], and G• replaces G◦δ.

In the following, σ < κ is inaccessible and κ is still understood to be regular.
We work in a κσ-expansion M. We refer to elements of M as maps. Unless
otherwise noted, variables range over M.

10.1. Necessity of assumptions

The proof of UBT uses the minimality of Y and the proof of LBT uses the
minimality of σ, the minimality of Y, and UBT. The last two dependencies may
be seen as a convenience whereas the two other dependencies are essential. We
elaborate on this in the following.

Recall that UBT says ψ ⪯M ϕ where ψ ≡ ⊔s and s ≡ YS. The proof of
UBT uses that s is the minimal fixed point of S. To see that this is needed, it
is enough to show that S has a non-minimal fixed point for which UBT fails:

Lemma 10.1.1. Let σ < κ be inaccessible and let M be any κσ-expansion.
There exists an s′ ∈ M such that Ss′ = s′ and D[ψ′] = M where ψ′ = ⊔s′.

48

For the proof see Appendix C where Lemma 10.1.1 is restated as Lemma C.1.
For monotonicity reasons, if LBT is true for M when interpreting Y by the

minimal fixed point operator, then it is obviously also true for any other fixed
point operator of M. In other words, the satisfaction of LBT does not require
Y = YTarski and we can conjecture that there exists a proof of LBT not using
it; since the proof of UBT needs minimality (c.f. Lemma C.1), getting rid of
minimality for LBT would also mean getting rid of UBT.

Finally, LBT does indeed depend on σ being the first inaccessible: According
to LBT we have D[ψ] = Φ when σ is minimal, and since different choices of σ
give rise to different Φ we cannot have D[ψ] = Φ for non-minimal σ.

10.2. Duals, boundaries, closure, and functions

We now state some definitions, many of which are repetitions of earlier def-
initions.

Definition 10.2.1. Let G,H ⊆ M and g, h ∈ M.
(a) G◦ ≡ {g∈M | ∀x0, x1, . . .∈G∃n∈ω: gx0 · · ·xn = T} for G ̸= ∅
(b) ∅◦ ≡ M\ {⊥} = ↑{T, λx.⊥}
(c) G• ≡ {h∈G◦ | ∀g∈G◦: (g ⪯M h⇒ g = h)}
(d) ↑G ≡ {h∈M | ∃g∈G: g ⪯M h}
(e) G→H ≡ {h∈M | ∀x∈G:hx ∈ H}
(f) G+ ≡ G◦→G.

We refer to G◦ as the dual of G. The set G• is the set of minimal elements of
G◦.

Definition (a) above repeats Definition 7.8.1(c). Definition (b) makes explicit
how to understand ∅◦. Definition (d) makes a definition in Section 6.1 explicit.
Definition (e) repeats Definition 7.8.1(b).

Fact 10.2.2.
(a) G ⊆ H ⇒ H◦ ⊆ G◦

(b) G′ ⊆ G ∧H ⊆ H ′ ⇒ G→H ⊆ G′→H ′

(c) G ̸= ∅ ⇒ G◦ = G→G◦

(d) G ⊆ H ⊆ H◦◦ ⇒ G+ ≡ G◦→G ⊆ H◦→H◦◦ = H◦◦

Note that G◦ is anti-monotonic in G and that G→H is monotonic in H but
anti-monotonic in G. That allows to combine G◦ and G→H into monotonic
operators G◦◦ and G+ ≡ G◦→G:

Fact 10.2.3.
(a) G ⊆ H ⇒ G◦◦ ⊆ H◦◦

(b) G ⊆ H ⇒ G+ ⊆ H+

For all G ⊆ M recall from Sections 6.1, 6.5, and 7.8 that G is essentially σ-
small if there exists a σ-small V such that V ⊆ G ⊆ ↑V . If G is open then G is
essentially σ-small iff G = ↑V for some σ-small V .

49

Let O(G) denote the set of open subsets of G. Recall from Definition 7.8.1(a)
that O<σ(G) denotes the set of essentially σ-small open subsets of G. We define
O<κ(G) likewise. We use O(G), O<σ(G), and O<κ(G) only for G open (and
mostly for G = Φ and G = M). From Remark 7.7.2 we have:

Fact 10.2.4.
(a) If g ∈ M then D[g] ∈ O(M).
(b) If G ∈ O(M) then G = D[g] for some g ∈ M.
(c) O(M) = {D[g] | g ∈ M}.

We use D[g] only for g ∈ M. Thus, whenever we assume G = D[g] we implicitly
assume g ∈ M.

As usual, two maps x, y ∈ M are said to be incompatible if they have no
upper bound in M w.r.t. ⪯M.

Theorem 10.2.5.
(a) If G ∈ O(M) then G• is a set of incompatible elements, G◦ = ↑(G•), and

if G ̸= ∅ then G• is infinite.
(b) If G ∈ O<κ(M) then G◦ ∈ O(M) and G• ∈ Mc.
(c) If G ∈ O<σ(M) then G◦ ∈ O<σ(M) and G• ∈ P<σ(Mc).

Proof of 10.2.5 For G ̸= ∅ this is [4, Theorem 6.1.11] adapted to the notation
of the present paper. For G = ∅ the theorem follows trivially from the definition
of ∅◦ (Definition 10.2.1(b)).

Lemma 10.2.6 (Closure properties of O<σ(M) and O<σ(Φ)).
(a) If G ∈ O<σ(M) then G◦ ∈ O<σ(M).
(b) O<σ(Φ) and O<σ(M) are closed under σ-small unions.
(c) If G ∈ O<σ(Φ) then G

+ ∈ O<σ(Φ).
(d) If G ∈ O<σ(Φ) then G

◦◦ ∈ O<σ(Φ).

Proof of 10.2.6

(a) Is part of Theorem 10.2.5.
(b) Follows from the regularity of σ, i.e. the fact that a σ-small union of

σ-small sets is σ-small.
(c) Follows directly from the definition of Φ (Definition 7.8.2) (and implicitly

uses that σ is inaccessible).
(d) Will be re-stated and proved as Lemma 10.4.4; we do not yet have the ma-

terial to prove it, but include it here for completeness. Note that O<σ(Φ)
is closed under ◦◦ but not under ◦.

10.3. Elementary observations

We now list some facts which we shall use without reference in the rest of
the paper. Some of the facts have been used before.

Fact 10.3.1.
(a) ↑{⊥} = M

50

(b) ↑{T} = {T}
(c) ↑F = F

Fact 10.3.2.
(a) (Ex.A) = T ⇔ ∃x∈M: (A = T)
(b) (∀̈x.A) = T ⇔ ∀x∈Φ: (A = T)
(c) ϕx = T ⇔ x ∈ Φ

Fact 10.3.3.
(a) (x : y) ̸= ⊥ ⇔ x = T ∧ y ̸= ⊥
(b) (x : y) ̸= ⊥ ⇒ x : y = y
(c) (x : y) : z = x : (y : z)
(d) (x : y : z) ̸= ⊥ ⇔ x = T ∧ y = T ∧ z ̸= ⊥
(e) (x : y : z) ̸= ⊥ ⇒ x : y : z = z

Fact 10.3.4.
(a) !x = T ⇔ x ̸= ⊥

Fact 10.3.5.
(a) f ⪯M g ⇒ D[f] ⊆ D[g]
(b) D[⊔f] = ∪x∈MD[fx]

10.4. On the definition of Φ

There are many ways to build Φ. The definition chosen in the present paper
was stated as Definition 7.8.2. The one chosen in [4] was to build a set Ψ of
maps as the union of an increasing sequence (Ψα)α∈σ of σ-small sets and then
take Φ = ↑Ψ. However, as shown in [4] and below, Φ could as well be inductively
defined as the limits of certain increasing sequences (Φα)α∈σ and (Hα)α∈σ of
essentially σ-small open sets. Using these two sequences will be pertinent for
proving UBT and LBT.

Note that [4, Theorem 7.1.1] states that there exists a Φ with certain prop-
erties which is enough for the development in [4]. Then the proof of [4, Theorem
7.1.1] constructs a concrete Φ which is the one we refer to here as “the Φ defined
in [4]”.

We now define (Φα)α∈σ and (Hα)α∈σ and then move straight to Lemma
10.4.2 which is important because it allows to use all theorems about Φ in [4]
in the present paper.

Definition 10.4.1. For all α ≤ σ define Φα and Hα thus:
(a) Φ0 ≡ {T}
(b) Φα+1 ≡ Φ+

α

(c) Φδ ≡ ∪β∈δΦβ for limit ordinals δ.
(d) H0 ≡ {T}
(e) Hα+1 ≡ H◦◦

α

(f) Hδ ≡ ∪β∈δHβ for limit ordinals δ.

Lemma 10.4.2.

51

(a) Φ = Φσ.
(b) The Φ defined in the present paper equals the Φ defined in [4].

Proof of 10.4.2

(a) By transfinite induction using Fact 10.2.3 and Lemma 10.2.6 we have
Φα ⊆ Φβ for all α ≤ β ≤ σ and Φα ∈ O<σ(Φ) for all α < σ (for reference,
these two easy results are stated again below as Lemma 10.4.3(a) and
10.4.5, respectively). Thus Φα ⊆ Φ by transfinite induction using the
definition of Φ (Definition 7.8.2). In particular Φσ ⊆ Φ. Now assume
G ∈ O<σ(Φσ). Then G ⊆ Φα for some α ∈ σ since σ is regular so
G+ ⊆ Φα+1 ⊆ Φσ. Thus, G ∈ O<σ(Φσ) ⇒ G+ ⊆ Φσ so Φ ⊆ Φσ by the
minimality of Φ (c.f. Definition 7.8.2).

(b) Let Φ′ denote the Φ defined in the proof of [4, Theorem 7.1.1] and let Φ′
α

denote the Φα defined in the proof of [4, Lemma A.1.1]. We now prove
Φ′ = Φ′

σ = Φσ = Φ.
Proof of Φ′ = Φ′

σ. As stated without proof in the proof of [4, Lemma
A.1.1] we have Φ′ = Φ′

σ; it is an easy consequence of [4, Lemma 7.1.2].
Proof of Φ′

σ = Φσ. By the definition of Φ′
0 we have Φ′

0 = {T} = Φ0.
Furthermore, according to the proof of [4, Lemma A.1.1] we have Φ′

α =
∪β∈α(Φ

′◦
α→Φ′

α) if 0 < α < σ, so Φ′
α = Φα for all α ≤ σ by transfinite

induction. In particular, Φ′
σ = Φσ.

Finally, Φσ = Φ by (a) which finishes the proof.

Lemma 10.4.3.
(a) α ∈ β ⇒ Φα ⊆ Φβ
(b) α ∈ β ⇒ Hα ⊆ Hβ

(c) Φα ⊆ Hα

(d) Φ = Φσ = Hσ

(e) ∀G∈O<σ(Φ)∃α∈σ:G ⊆ Φα ⊆ Hα

(f) Φ ⊆ Φ◦

(g) Φα ⊆ Hα ⊆ Φ ⊆ Φ◦ ⊆ H◦
α ⊆ Φ◦

α

Proof of 10.4.3
(a,b) By transfinite induction using Fact 10.2.3.
(c) We have Hα ⊆ Hα+1 = Hα

◦◦ by (b) and Definition 10.4.1(e). Hence,
Φα ⊆ Hα by transfinite induction using Fact 10.2.2(d).

(d) For Φ = Φσ see Lemma 10.4.2(a). For Hσ ⊆ Φ see [4, Theorem A.2.2] and
its proof. Finally, Φσ ⊆ Hσ is given by (c).

(e) Let V be σ-small and such that G = ↑V . For each g ∈ V let ρ(g) be the
smallest ordinal for which g ∈ Φρ(g). Take α = ∪g∈V ρ(g).

(f) [4, Theorem 7.1.1].
(g) Follows trivially from (a-d,f) and Fact 10.2.2(a).

Lemma 10.4.4. G◦◦ ∈ O<σ(Φ) for all G ∈ O<σ(Φ).

Proof of 10.4.4 This is the announced re-statement of Lemma 10.2.6(d). We
haveG◦◦ ∈ O<σ(M) by Lemma 10.2.6(a). There remains to prove thatG◦◦ ⊆ Φ.

52

Using Lemma 10.4.3(e) take α such that G ⊆ Hα. Then G
◦◦ ⊆ H◦◦

α ≡ Hα+1 by
Fact 10.2.3(a). Thus G◦◦ ⊆ Φ by Lemma 10.4.3(g).

Lemma 10.4.5. Φα ∈ O<σ(Φ) and Hα ∈ O<σ(Φ) for all α ∈ σ.

Proof of 10.4.5 By transfinite induction using Lemma 10.2.6 and 10.4.4.

Lemma 10.4.6. Φ ∈ O<κ(M).

Proof of 10.4.6 From Lemma 10.4.5, σ < κ, and the regularity of κ we have
Φ = Φσ ∈ O<κ(M).

10.5. Projections

Definition 10.5.1. Let G,H ⊆ M and g, h ∈ M.
(a) g/h ≡ if[g , T , λx. hx : (gx/h)]
(b) G/h ≡ {g/h | g ∈ G}.
(c) gH ≡ {gh | h ∈ H}.

Definition (a) repeats Definition 4.6.2(d).
Recall that since / is an infix operator we have that ab/cd means (ab)/(cd).

Likewise, gH/k means (gH)/k which equals {(gh)/k | h ∈ H}.
As mentioned in Section 4.6, the g/h construct is a kind of “transitive restric-

tion” of the function g to the domain H = D[h]. But what makes the construct
interesting here is that it is a projection in the sense that (g/h)/h = g/h ⪯M g
(cf. Lemma 10.5.3). More specifically, g 7→ g/h is a projection from H◦ onto
H•:

Lemma 10.5.2. If H = D[h] then H• = H◦/h.

Proof of 10.5.2 Like was the case for Theorem 10.2.5, this is part of [4,
Theorem 6.1.11] adapted to the notation of the present paper. For H = ∅ the
lemma follows trivially from the definition of ∅◦ (Definition 10.2.1(b)).

Lemma 10.5.3. Let H = D[h]. We have:
(a) g/h ⪯M g.
(b) g/h = T iff g = T.
(c) g/h = g′/h if g ∈ H◦ and g ⪯M g′.
(d) g/h ∈ K ⇔ g ∈ ↑K if K ⊆ H•.
(e) g/h = (g/h′)/h if D[h] ⊆ D[h′].

Proof of 10.5.3

(a) In Example 4.3.1 we defined i such that ig = if[g , T , λx. i(gx)]. From
that we proved ig = g using Ext. Now define ı̈ ≡ λhg. if[g , T , λx. ı̈h(gx)].
Repeating the argument in Example 4.3.1 on ı̈h in place of i we get ı̈hg = g.
We have a : b ⪯M b when a is T, ⊥, or a function, so a : b ⪯M b

by QND. Using a : b ⪯M b, ı̈hg = g, and that recursive definitions are
shorthand for definitions that use Y we have

g/h ≡ (Yλfhg. if[g , T , λx. hx : fh(gx)])hg
⪯M (Yλfhg. if[g , T , λx. fh(gx)])hg ≡ ı̈hg = g

53

Above, we have taken the liberty to consider h the first and g the second
parameter of g/h. That is immaterial, but avoids some technicalities here.

(b) By the definition of g/h.
(c) From g ∈ H◦ and g ⪯M g′ we have g′ ∈ H◦. Then by Theorem 10.2.5(a)

and Lemma 10.5.2 we have g/h ∈ H•, g′/h ∈ H•, and g/h and g′/h are
either equal or incompatible. But g/h ⪯M g′/h by monotonicity, so g/h
and g′/h are equal.

(d) First we note that ↑K ⊆ H◦ (Theorem 10.2.5) and that ⇒ follows from
(a). Suppose now that g ∈ ↑K and take g′ ∈ K such that g′ ⪯M g. By
(c) we have g/h = g′/h. Furthermore, g′ ∈ H• implies g′/h = g′ ∈ K.
Hence, g/h ∈ K.

(e) If D[h] ⊆ D[h′] then hy : z = hy : (h′y : z). The claim then follows from
the definition of g/h.

We use G ≤c H to denote that G has the same or smaller cardinality than H.

Lemma 10.5.4. D[g]/h ≤c D[g′]/h′ if D[g] ⊆ D[g′] and D[h] ⊆ D[h′]

Proof of 10.5.4 We prove that the function k(x) = x/h is surjective from a
subset of D[g′]/h′ onto D[g]/h. Suppose y ∈ D[g]/h. Let x ∈ D[g] satisfy y =
x/h. Now z ≡ x/h′ ∈ D[g]/h′ ⊆ D[g′]/h′ satisfies k(z) = (x/h′)/h = x/h = y
by Lemma 10.5.3(e).

Lemma 10.5.5. Let G = D[g] ⊆ Φ.
(a) Φ/g ⊆ G•

(b) aΦ/ϕ ∈ P<σ(Φ
•) if a ∈ Φ.

(c) Φ/g ∈ P<σ(Mc) if G ∈ O<σ(Φ).

Proof of 10.5.5

(a) G ⊆ Φ gives Φ ⊆ Φ◦ ⊆ G◦ by Lemma 10.4.3(f) and Fact 10.2.2(a). We
conclude using Lemma 10.5.2.

(b) Choose α < σ such that a ∈ Φα+1 = Φ◦
α→Φα. Since Φ ⊆ Φ◦

α (cf. Lemma
10.4.3) we have aΦ ⊆ Φα ⊆ Φ. Thus, aΦ/ϕ ⊆ Φ/ϕ ⊆ Φ• by (a). From
Lemma 10.4.5 we have Φα ∈ O<σ(Φ). Take K ∈ P<σ(Φ) such that Φα =
↑K. We have aΦ/ϕ ⊆ Φα/ϕ = K/ϕ which is σ-small.

(c) By (a) and Theorem 10.2.5(c).

Lemma 10.5.6. Let g ∈ M. Assume G ≡ D[g] ∈ O<κ(M). Let k:G•→M.
Then there exists an h ∈ F such that hx = k(x/g) for x ∈ G◦ and hx = ⊥
otherwise. Note that hx = h(x/g) for all x ∈ M.

Proof of 10.5.6 Let k′:M→M satisfy k′(x) = k(x/g) for x ∈ G◦ and k′(x) =
⊥ otherwise. Then k′ is a κ-step function. Suppose indeed x ⪯M y and k′(x) ̸=
⊥; then x ∈ G◦, hence x/g = y/g by Lemma 10.5.3. Hence, k′ is κ-continuous
(Lemma 6.6.3) and h = λ(k′) satisfies the first conclusion of the lemma.

Now if x ∈ G◦ then h(x/g) = hx since h(x/g) ≡ k((x/g)/g) and (x/g)/g =
x/g; finally if x ̸= G◦ then h(x/g) = h(x) = ⊥.

54

10.6. Self-extensionality

We now recall the definition of self-extensionality plus some auxiliary con-
cepts from [4, Appendix A.2]. First recall r = λu. if[u,T, λx.T] from Definition
9.1.1. Then recall the definition of x =G y from [4]:

Definition 10.6.1. x =G y iff ∀z̄∈G<ω : r(xz̄) = r(yz̄)

Note that x = y iff x =M y according to Theorem 9.1.2. Now the definition of
self-extensionality reads:

Definition 10.6.2. G ⊆ M is self-extensional if
(a) ∅ ≠ G ∈ O<σ(Φ)
(b) G ⊆ G◦◦

(c) x =G y ⇒ x ↓ y ∈ G for all x, y ∈ G

The name “self-extensionality” is borrowed from [4] and refers to the property
x =G y ⇒ x =Φ y which happens to follow from (c) above and [4, Lemma
A.2.1]. We shall neither use (c) nor x =G y ⇒ x =Φ y explicitly in the present
paper.

Note that G◦◦ = G◦→G◦◦ for all G (cf. Fact 10.2.2(c)).

Lemma 10.6.3. If G = D[g] is self-extensional then G◦◦ is self-extensional and
G• ⊆ G◦◦/g.

Proof of 10.6.3 This is [4, Lemma A.2.4 and A.2.5].

Lemma 10.6.4. If G = D[g] is self-extensional then Φ/g = G•

Proof of 10.6.4 We have Φ/g ⊆ G• by Lemma 10.5.5(a). From Lemma 10.6.3
we have G◦◦ ⊆ Φ and G• ⊆ G◦◦/g ⊆ Φ/g.

Lemma 10.6.5. Hα is self-extensional for all α ∈ σ.

Proof of 10.6.5 By Lemma 10.4.5 and Lemma 10.4.3(b) we have that Hα

satisfies Definition 10.6.2 (a) and (b), respectively. By transfinite induction in
α using [4, Theorem A.2.1] Hα also satisfies Definition 10.6.2(c).

Lemma 10.6.6. For all G ∈ O<σ(Φ) there is a self-extensional H such that
G ⊆ H.

Proof of 10.6.6 By Lemma 10.4.3(e) and Lemma 10.6.5

10.7. Properties of Q and R

The definition of ψ (Definition 4.6.3) includes definitions of the auxiliary
maps P , Q, and R. The lemma below states the properties of P , Q, and R that
we use for proving UBT and LBT.

Lemma 10.7.1. Let g, a, b, c, θ ∈ M.

55

(a) D[Qg] = Φ/g→D[g] if Qg ̸= ⊥
(b) D[Qg] ⊇ D[g]+ if D[g] ⊆ Φ and Qg ̸= ⊥
(c) D[Qg] = D[g]+ if D[g] is self-extensional.
(d) D[Raθbc] = ∪z∈D[θ]D[a(b(cz/θ))] if Raθbc ̸= ⊥

Lemma 10.7.1(c) is used in Section 11 which proves UBT. Lemma 10.7.1(b) is
used in Section 12 which proves LBT.

Note that the definition of Q gives Qg ̸= ⊥ ⇔ g ̸= ⊥.
Proof of 10.7.1

(a) Qg ̸= ⊥ gives !g = T. We have
y ∈ D[Qg]

⇔ Qgy = T Definition of D

⇔ ∀̈z. g(y(z/g)) = T !g = T and the definition of Q

⇔ ∀z∈Φ: g(y(z/g)) = T Properties of ∀̈
⇔ ∀z∈Φ: y(z/g) ∈ D[g] Definition of D
⇔ y ∈ Φ/g→D[g] Definition of Φ/g and →

(b) Follows from (a) and Lemma 10.5.5(a)
(c) From D[g] self-extensional we have D[g] ̸= ∅ so g ̸= ⊥ and Qg ̸= ⊥. Now

(c) follows from (a) and Lemma 10.6.4.
(d) Raθbc ̸= ⊥ and the definition of R gives θc = T and R1aθbc = T. Now:

y ∈ D[Raθbc]
⇔ Raθbcy = T Definition of D
⇔ R0aθbcy = T θc = T, R1aθbc = T,

and definition of R.
⇔ Ez. (θz : a(b(cz/θ))y) = T Definition of R0

⇔ ∃z∈M: θz : a(b(cz/θ))y = T Properties of E
⇔ ∃z∈M: θz = T ∧ a(b(cz/θ))y = T Properties of guards
⇔ ∃z∈M: z ∈ D[θ] ∧ a(b(cz/θ))y = T Definition of D[θ]
⇔ ∃z∈D[θ]: a(b(cz/θ))y = T Trivial
⇔ ∃z∈D[θ]: y ∈ D[a(b(cz/θ))] Definition of D
⇔ y ∈ ∪z∈D[θ]D[a(b(cz/θ)))] Trivial

11. Proof of the Upper Bound Theorem (UBT)

Recall that UBT states that ψ ⪯M ϕ (c.f. Theorem 11.3.1). In this section
we need that σ is inaccessible (but not necessarily minimal), that M is any
κσ-expansion where κ > σ is regular, and that Y acts as YTarski. We will use
repeatedly without mention that application is monotonic w.r.t. ⪯M.

11.1. Restriction and step maps
We shall say that g ∈ M is a step map if x 7→ gx ∈ M→M is a κ-step

function in the sense of Definition 6.6.2. For convenience we drop κ in “step
map” and “step chain” below. For g, h ∈ M we shall say that g is a restriction
of h if ∀a∈M: ga = ⊥ ∨ ga = ha. If h is a step map and g is a restriction of h
then obviously g is also a step map. Now define

g ✂ h⇔ ∀a, b∈M: (a ⪯M b ∧ ga ̸= ⊥ ⇒ ga = hb)

56

Fact 11.1.1.
(a) If h is a step map then g ✂ h iff g is a restriction of h.
(b) g ✂ g iff g is a step map.
(c) g ✂ h ∧ h✂ k ⇒ g ✂ k.

For ordinals α ≤ κ we say that (gβ)β∈α is a step chain if gγ✂gβ for all γ ≤ β < α.
In particular, gβ ✂ gβ implies that the elements of a step chain are step maps.

Lemma 11.1.2. Suppose (gβ)β∈α is a step chain and has a supremum g w.r.t.
⪯M. We have:
(a) gβ ✂ g for all β ∈ α.
(b) If gβ ✂ h for all β ∈ α then g ✂ h.

Proof of 11.1.2
(a) Assume a ⪯M b and gβa ̸= ⊥. We shall prove gβa = gb. Now gβa = gβb

since gβ is a step map. Furthermore, for all γ ∈ α, gγb = ⊥ ∨ gγb = gβb
since (gβ)β∈α is a step chain so gb = gβb.

(b) Assume a ⪯M b and ga ̸= ⊥. We shall prove ga = hb. Choose β ∈ α
such that gβa ̸= ⊥. Now gγa = ⊥ ∨ gγa = gβa for all γ ∈ α so gβa = ga.
Furthermore, gβb = gβa since gβ is a step map so gβb = hb since gβ ✂ h.

Lemma 11.1.3. g ✂ h ∧ θ ⪯M ϕ⇒ S̄gθ ✂ S̄hθ.

Proof of 11.1.3 Assume a ⪯M b and S̄gθa ̸= ⊥. We shall prove S̄gθa = S̄hθb.
From S̄gaθ ̸= ⊥ and the definition of S̄ we have a ̸= ⊥. If a = T then S̄kθa = Pa
for all k so S̄gθa = Pa = S̄hθa. Now assume a ∈ F .

From S̄gθa ̸= ⊥ and a ∈ F we have aT ̸= ⊥. We proceed by two cases:
aT = T and aT ∈ F .

Case 1. Assume aT = T. Now S̄kθa = Q(k(aF)) for all k. From Q(g(aF)) =
S̄gθa ̸= ⊥ we have aF ̸= ⊥. Thus, from g ✂ h we have g(aF) = h(bF) so
S̄gθa = Q(g(aF)) = Q(h(bF)) = S̄hθb.

Case 2. Assume aT ∈ F . Now S̄kθa = Rkθ(aT)(aF) for all k. From
Rgθ(aT)(aF) = S̄gθa ̸= ⊥ we have θ(aF) = T and R1gθ(aT)(aF) = T. From
the latter we have g(aT(aFz/θ)) ̸= ⊥ for all a ∈ Φ and thus in particular
for all a ∈ D[θ] (since θ ⪯M ϕ). Thus, from g ✂ h we have g(aT(aFz/θ)) =
h(bT(bFz/θ)) from which S̄gθa = S̄hθb follows by the definitions of S̄, R, R1,
and R0.

Definition 11.1.4. For all ordinals α ≤ κ and for all θ ∈ M define θ̄α thus:
(a) θ̄0 = ⊥
(b) θ̄α+1 = S̄θ̄αθ
(c) θ̄δ = supα∈δ θ̄α for limit ordinals δ

By transfinite induction we have that θ̄α ⪯M Yλf. S̄fθ and that all the sups
exist (since (θ̄α)α∈δ is bounded).

Lemma 11.1.5. If θ ⪯M ϕ then (θ̄α)α∈κ is a step chain.

57

Proof of 11.1.5 From Lemma 11.1.3 we have θ̄γ✂ θ̄γ′ ⇒ θ̄γ+1✂ θ̄γ′+1. We now
prove that (θα)α≤β+1 is a step chain by induction on β ∈ κ. The zero case follows
from ⊥ = θ0✂θ1. The successor case follows from θ̄β✂ θ̄β+1 ⇒ θ̄β+1✂ θ̄β+2. For
limit ordinals δ suppose (θα)α≤β+1 is a step chain for all β ∈ δ. Then (θ̄α)α<δ
is a step chain. Then θ̄α ✂ θ̄δ by Lemma 11.1.2(a). Then θ̄α ✂ θ̄α+1 ✂ θ̄δ+1 so
θ̄δ ✂ θ̄δ+1 by Lemma 11.1.2(b) so (θα)α≤δ+1 is a step chain.

11.2. Limited size

Lemma 11.2.1. D[Qg] ∈ O<σ(Φ) if D[g] ∈ O<σ(Φ)

Proof of 11.2.1 Let h = λy. if[gy , T , ⊥]. Now D[h] = D[g] and D[Qh] =
D[Qg]. Furthermore, h is a characteristic map. Using Lemma 10.6.6, choose
K ∈ O<σ(Φ) such that K is self-extensional and contains D[h] as a subset.
Let k be the characteristic map of K. Since h and k are characteristic maps
and D[h] ⊆ D[k] we have h ⪯M k so Qh ⪯M Qk by monotonicity. Hence,
D[Qh] ⊆ D[Qk] = D[k]+ ∈ O<σ(Φ) by Lemma 10.2.6(c) and 10.7.1(c). Thus,
D[Qg] = D[Qh] ⊆ Φ. Furthermore, D[Qg] is open (c.f. Fact 10.2.4(a)) so it
remains to prove that D[Qg] is essentially σ-small. This is trivial for g = ⊥ so
assume g ̸= ⊥. Now Qg ̸= ⊥.

Let G ≡ D[g]. By Lemma 10.7.1(a) we have D[Qg] = Φ/g→D[g]. By
hypothesis we have G ∈ O<σ(Φ), and by Lemma 10.5.5 we have Φ/g ⊆ G• and
Φ/g ∈ P<σ(Mc). Choose a σ-small V ⊆ Φ such that G = ↑V .

Let h′ ∈ Φ/g→V . Now h′ ̸= ⊥. If h′ ∈ F and using Lemma 10.5.6 let h′′ ∈ F
be such that h′′x = h′(x/g) for x ∈ ↑(Φ/g) and h′′x = ⊥ otherwise. If h′ = T

let h′′ = T. Using Lemma 10.5.3(a,d) we have h′′ ⪯M h′ and h′′ ∈ Φ/g→V .
Now let W ≡ {h′′ | h′ ∈ Φ/g→V }. We have Φ/g→G = ↑W and W is σ-small
which finishes the proof.

Lemma 11.2.2. Assume f, a, b, c, v, θ ∈ M, θ ⪯M ϕ, and ∀x∈M:D[fx] ∈
O<σ(Φ). We have:
(a) D[P] = {T} ∈ O<σ(Φ)
(b) D[Q(fv)] ∈ O<σ(Φ)
(c) D[Rfθbc] ∈ O<σ(Φ)
(d) S̄fθa ∈ {⊥, P,Q(f(aF)), Rfθ(aT)(aF)}
(e) D[S̄fθa] ∈ O<σ(Φ)

Proof of 11.2.2

(a) Trivial.
(b) Follows from Lemma 11.2.1.
(c) If Rfθbc = ⊥ then D[Rfθbc] = ∅ ∈ O<σ(Φ). Now assume Rfθbc ̸=

⊥. From the definition of R we have θc = T so c ∈ Φ since θ ⪯M

ϕ. Hence, cΦ/ϕ ⊆ Φ• is σ-small by Lemma 10.5.5(b). Thus b(cΦ/ϕ)
and K ≡ b(cD[θ]/ϕ) are σ-small too. Hence, using Lemma 10.7.1(d),
Lemma 10.2.6, and the hypothesis D[fx] ∈ O<σ(Φ) we have D[Rfθbc] =
∪z∈D[θ]D[f(b(cz/ϕ))] = ∪x∈KD[fx] ∈ O<σ(Φ).

58

(d) S̄fθay
= if[a , P , if[aT , Q(f(aF)) , Rfθ(aT)(aF)]]y Definition of S̄
∈ {⊥, P,Q(f(aF)), Rfθ(aT)(aF)} Properties of if

(e) Follows from (a-d).

In the following lemma, (θ̄β)β<κ is the step chain produced from θ ∈ M by
Definition 11.1.4.

Lemma 11.2.3. If θ ⪯M ϕ and β ≤ κ then ∀x∈M:D[θ̄βx] ∈ O<σ(Φ).

Proof of 11.2.3 By induction in β. For β = 0 we have D[θ̄βx] = ∅ ∈ O<σ(Φ).
The successor case follows from Lemma 11.2.2(e). The limit case follows from
Lemma 11.1.5.

11.3. Proof of UBT

In this section we prove UBT (i.e. ψ ⪯M ϕ), and a refined form of it which
sheds some light on the intuition behind the definitions of ψ and s.

For UBT we need the minimality of Y w.r.t. ⪯M, i.e. that Y is YTarski.

Theorem 11.3.1 (Upper Bound Theorem/UBT). ψ ⪯M ϕ holds in all
κσ-expansions where σ < κ is any inaccessible ordinal.

Proof of 11.3.1 Recall that s ≡ YS and that ψ ≡ ⊔s where ⊔ ≡ λfy.Ex. fxy.
By the definition of ⊔ we have D[⊔g] = ∪x∈MD[gx] for all g ∈ M. From
Lemma 11.2.3 and for all α ∈ σ and x ∈ M we have D[ϕ̄αx] ⊆ Φ so D[⊔ϕ̄α] =
∪x∈MD[ϕ̄αx] ⊆ Φ = D[ϕ]. Since both ⊔ϕ̄α and ϕ are characteristic maps we
have ⊔ϕ̄α ⪯M ϕ.

Now define sα for α ≤ κ by:

s0 = ⊥
sα+1 = Ssα
sδ = supα∈δ sα for limit ordinals δ

By transfinite induction we have that sα ⪯M YS, that the sequence is in-
creasing, and that all the sups are defined (since (sα)α∈δ is bounded by YS).
Furthermore, s ≡ YS = sκ since Y is YTarski (c.f. Section 7.2).

We have sα ⪯M ϕ̄α by transfinite induction: The zero and limit cases are
trivial. We now assume sα ⪯M ϕ̄α and prove sα+1 ⪯M ϕ̄α+1. From sα ⪯M ϕ̄α
and monotonicity we have ⊔sα ⪯M ⊔ϕ̄α so ⊔sα ⪯M ϕ. Hence, sα+1 ≡ Ssα ≡
S̄sα(⊔sα) ⪯M S̄ϕ̄αϕ ≡ ϕ̄α+1.

Now ψ ≡ ⊔s = ⊔sκ ⪯M ⊔ϕ̄κ ⪯M ϕ.

Theorem 11.3.2 below is a strengthening of UBT which we do not need but
which captures some of the intuition behind the definitions of s and ψ.

Theorem 11.3.2 (Strong UBT). For all a ∈ M we have D[sa] ∈ O<σ(Φ).

59

Proof of 11.3.2 We have ψ ⪯M ϕ by UBT so D[ψ̄κa] ∈ O<σ(Φ) by Lemma
11.2.3.

Define sα like in the proof of UBT. We have ⊔sα ⪯M ⊔s ≡ ψ. We now
prove sα ⪯M ψ̄α by transfinite induction in α. If sα ⪯M ψ̄α then sα+1 ≡
Ssα ≡ S̄sα(⊔sα) ⪯M S̄ψ̄αψ ≡ ψ̄α+1. The zero and limit cases are trivial.

Now D[sa] = D[sκa] ⊆ D[ψ̄κa] ∈ O<σ(Φ).

12. Proof of the Lower Bound Theorem (LBT)

Recall that LBT states that ϕ ⪯M ψ (c.f. Theorem 12.4.3). As already
mentioned, the proof of LBT uses UBT (in Lemma 12.2.3 and 12.4.1), the
minimality of Y (in Lemma 12.1.2(b)), and that σ is the first inaccessible (in
Lemma 12.4.2). The depency on UBT and the minimality of Y should be seen
as a convenience whereas the dependency on σ being the first inaccessible is
essential, c.f. Section 10.1.

In the following, M can be any κσ-expansion (κ > σ). We only require σ to
be minimal when needed (in Lemma 12.4.2 and LBT itself).

12.1. Characteristic maps

Recall that we refer to elements of χ ≡ (M→{T,⊥}) ∩ F as characteristic
maps. For all G ⊆ M we have D[g] = G for at most one g ∈ χ. We refer to
that g, if any, as the characteristic map of G. As examples, ϕ and ψ are the
characteristic maps of Φ and D[ψ], respectively. Define χ⊥ ≡ χ ∪ {⊥}. Note
that if g ∈ χ⊥ then D[g] = dom[g] ≡ {x∈M | gx ̸= ⊥}. Also recall the following
facts:

Fact 12.1.1. Let g, h ∈ M. We have:
(a) g ∈ χ⇔ g ⪯M λx.T ∧ g ̸= ⊥
(b) g ∈ χ⊥ ⇔ g ⪯M λx.T
(c) If g ∈ χ⊥ and h ∈ χ then g ⪯M h⇔ D[g] ⊆ D[h]

Lemma 12.1.2.
(a) sa = S̄sψa
(b) sa ⪯M λx.T
(c) sa ⪯M ψ
(d) sa ⪯M sb⇔ D[sa] ⊆ D[sb] provided sa ̸= λx.⊥

Proof of 12.1.2

(a) By the definitions of S and ψ.
(b) Let T1 ≡ λx.T and T2 ≡ λy.T1. It is enough to prove

∀a∈M:ST2a ⪯M T1 (1)
since if (1) holds then ST2 = λa. ST2a ⪯M λa.T1 ≡ T2 so YS ⪯M T2

(since Y = YTarski). Hence, sa = YSa ⪯M T2a = T1.
It remains to prove (1). By Lemma 11.2.2 we have

ST2a ∈ {⊥, P,QT1, RT2(⊔T2)(aT)(aF)}

60

Since clearly P ⪯M T1 it only remains to check that the two last terms
are smaller than T1. From QT1 =!T1 : λy. ∀̈z.T1(y(z/v)) = λy. ∀̈z.T =
λy.T = T1 we have QT1 ⪯M T1. From Ez.A ⪯M T for all terms A we
have RT2(⊔T2)bc = · · · : λy.Ez. · · · ⪯M T1.

(c) From ψ = ⊔s we have D[ψ] = ⊔a∈MD[sa] so D[sa] ⊆ D[ψ] which proves
sa ⪯M ψ by Fact 12.1.1(c).

(d) If sb ̸= ⊥ then the lemma follows from (b) and Fact 12.1.1(c). The lemma
is trivially true if sb = ⊥. Actually, sa ⪯M sb ⇔ D[sa] ⊆ D[sb] only fails
for (sa = λx.⊥) ∧ (sb = ⊥).

12.2. Analysis of s applied to pairs

We analyse here the shape of D[sa] when a = T or a is a pair as defined
below. UBT is used in the proof of Lemma 12.2.3(c) below.

Lemma 12.2.1.
(a) sT = P
(b) D[sT] = {T}

Proof of 12.2.1

(a) sT = S̄sψT = P by Lemma 12.1.2(a) and the definition of S̄
(b) Follows from (a) and the definition of P .

Define x::y ≡ λz. if[z , x , y].

Fact 12.2.2.
(a) (x::y) ∈ F
(b) (x::y)T = x
(c) (x::y)F = y

Lemma 12.2.3.
(a) s(T::a) = Q(sa)
(b) Q(sa) ̸= ⊥ if sa ̸= ⊥
(c) D[s(T::a)] ⊇ D[sa]+ if sa ̸= ⊥ (Uses UBT)

Proof of 12.2.3

(a) s(T::a)
= S̄sψ(T::a) Lemma 12.1.2(a)
= Q(s((T::a)F)) Definition of S̄
= Q(sa) Fact 12.2.2(c)

(b) From sa ̸= ⊥ we have !(sa) = T so
Q(sa)

= !(sa) : λy. · · · Definition of Q
= T : λy. · · · From the assumption
= λy. · · · Definition of guards
̸= ⊥ Trivial

61

(c) We have D[sa] ⊆ Φ by UBT (Theorem 11.3.1) and Q(sa) ̸= ⊥ by (b).
Hence,

D[s(T::a)]
= Q(sa) (a)
⊇ D[sa]+ Lemma 10.7.1(b)

Lemma 12.2.4. Assume b ∈ F , ψc = T, and ∀z∈Φ: s(b(cz/ψ)) ̸= ⊥
(a) R1sψ(b::c) = T

(b) s(b::c) = λy.Ez. (ψz : s(b(cz/ψ))y)
(c) s(b::c) ̸= ⊥
(d) D[s(b::c)] = ∪z∈D[ψ]D[s(b(cz/ψ))]

Proof of 12.2.4

(a) R1sψ(b::c)

= ∀̈z. !(s((b::c)T((b::c)Fz/ψ))) Definition of R1

= ∀̈z. !(s(b(cz/ψ))) Fact 12.2.2
= T Third assumption

(b) s(b::c)
= S̄sψ(b::c) Lemma 12.1.2(a)
= Rsψ(b::c) Definition of S̄
= ψc : R1sψ(b::c) : R0sψ(b::c) Definition of R and Fact 12.2.2
= R0sψ(b::c) ψc = T and (a)
= λy.Ez. (ψz : s(b(cz/ψ))y) Definition of R0 and Fact 12.2.2

(c) Follows from (b)
(d) y ∈ D[s(b::c)]

⇔ s(b::c)y = T Definition of D
⇔ Ez. (ψz : s(b(cz/ψ))y) = T (b)
⇔ ∃z∈M: (ψz : s(b(cz/ψ))y) = T Properties of E
⇔ ∃z∈M:ψz = T ∧ s(b(cz/ψ))y = T Properties of guards
⇔ ∃z∈M: z ∈ D[ψ] ∧ y ∈ D[s(b(cz/ψ))] Definition of D
⇔ y ∈ ∪z∈D[ψ]D[s(b(cz/ψ))] Trivial

12.3. Further properties of projections

Recall that since / is an infix operator we have that ab/cd means (ab)/(cd).
Likewise, gH/k means (gH)/k which equals {(gh)/k | h ∈ H}.

Lemma 12.3.1. If G = D[g] ∈ O<κ(M) and ∅ ̸= G ⊆ H ⊆ G◦ then ∃h∈G+:
G/g = hH/g.

Proof of 12.3.1 If h ∈ G+ ≡ G◦→G then hG◦ ⊆ G. From G ⊆ H ⊆ G◦ we
have hG/g ⊆ hH/g ⊆ hG◦/g ⊆ G/g. It remains to find an h ∈ G+ such that,
furthermore, G/g ⊆ hG/g.

Let k:G•→G satisfy k(x)/g = x for all x ∈ G/g ⊆ G◦/g = G•. For x ̸∈ G/g
we merely require k(x) ∈ G which is tenable since G ̸= ∅.

Using Lemma 10.5.6 let h ∈ F satisfy hx = k(x/g) for x ∈ G◦. Obviously,
h ∈ G+.

62

Assume x ∈ G/g. Let y ∈ G satisfy y/g = x. By the definition of h and k
we have x = k(x)/g = k(y/g)/g = hy/g ∈ hG/g; whence G/g ⊆ hG/g.

Lemma 12.3.2. If G = D[g] ∈ O<κ(M), G ⊆ G◦, and 2 ≤c G/g then
P(G/g) ≤c G

+/g.

Proof of 12.3.2 Let a, b ∈ G satisfy a/g ̸= b/g.
From Lemma 10.5.2 we have G/g ⊆ G•. For all U ⊆ G/g define kU :G

•→M,
hU ∈ M, and iU ∈ M as follows using Lemma 10.5.6: kU (x) = a for x ∈ U and
kU (x) = b otherwise; hU ∈ F satisfies hUx = kU (x/g) for x ∈ G◦; iU = hU/g.

We have hUx ∈ {a, b} ⊆ G for x ∈ G◦ so hU ∈ G+ and iU ∈ G+/g. Thus,
for all U ∈ P(G/g) we have iU ∈ G+/g. To prove P(G/g) ≤c G

+/g it is enough
to prove that U 7→ iU is injective.

Now assume U, V ⊆ G/g and U ̸= V . Without loss of generality assume
U \ V ̸= ∅ and take x ∈ G such that x/g ∈ U \ V . Thus hUx = a and hV x = b.

Using the definition of / we have iUx = (hU/g)x = gx : (hUx/g) = T :
(a/g) = a/g. Likewise, iV x = b/g so iU ̸= iV which ends the proof.

Let ϕα be the characteristic map for Φα. We have Φα = D[ϕα].

Lemma 12.3.3. P(Φα/ϕα) ≤c Φα+1/ϕα+1 for all α ∈ σ.

Proof of 12.3.3 Φ0/ϕ0 is finite and Φ1/ϕ1 is infinite so the lemma holds for
α = 0. For α > 0 we have T,F ∈ Φα so 2 ≤c Φα/ϕα. Hence, P(Φα/ϕα) ≤c
Φ+
α/ϕα = Φα+1/ϕα by Lemma 12.3.2. Furthermore, Φα+1/ϕα ≤c Φα+1/ϕα+1

by Lemma 10.5.4 and Lemma 10.4.3(a).

Lemma 12.3.4. α ≤c Φα/ϕα for all α ∈ σ.

Proof of 12.3.4 By transfinite induction using Lemma 12.3.3 for the successor
case and Lemma 10.5.4 for the limit case..

12.4. Proof of LBT

We use UBT twice in the proof of the following lemma.

Lemma 12.4.1. Let α be a limit ordinal. For all γ ∈ α assume that bγ ∈ M
satisfies Φγ ⊆ D[sbγ]. Suppose a ∈ M satisfies cf(α) ≤c D[sa]/sa. Then there
exists a bα ∈ M such that Φα ⊆ D[sbα]

Proof of 12.4.1 The core idea is to take bα ≡ c::d with c and d chosen as
below, and to apply Lemma 12.2.4(d) to D[s(c::d)].

Let g ≡ sa, G ≡ D[g], and H = D[ψ].
From sxy = T ⇒ ψy = T we have D[sx] ⊆ D[ψ]. Thus, by UBT we have

D[sx] ⊆ D[ψ] ⊆ Φ ⊆ Φ◦ ⊆ D[sx]◦ for all x ∈ M.
From the hypotheses we have D[sa] ̸= ∅ and D[sbγ] ̸= ∅ so sa ̸= ⊥ and

sbγ ̸= ⊥ for all γ ∈ α.
Step 1: definition of d and properties. From D[sa] ⊆ D[ψ] ⊆ D[sa]◦ we

have G ⊆ H ⊆ G◦. Using Lemma 12.3.1 choose d ∈ G+ such that G/g =

63

dH/g. Using Lemma 12.2.3 (and hence once more UBT) we have d ∈ G+ ⊆
D[s(T::a)] ⊆ H.

Step 2: definition of c and B, and properties. Let k′ ∈ G/g→α be cofinal
in α, and let k ∈ G•→M be defined by k(x) = bk′(x) if x ∈ G/g and k(x) = ⊥
otherwise. Using Lemma 10.5.6 let c ∈ F satisfy cx = k(x/g) for x ∈ G◦,
cx ̸= ⊥ otherwise, and cx = c(x/g) for all x ∈ M. Using Lemma 10.5.3(e) we
have c(x/g) = c(x/ψ/g) = c(x/ψ). Finally, let B ≡ c(G/g) = range[k]. We
have B ≡ c(G/g) = c(dH/g) = c(dH/ψ).

Step 3. computation of D[s(c::d)]. We have c ∈ F , ψd = T, and s(c(dz/ψ)) =
s(k(dz/ψ/g)) = sbk′(dz/g) ̸= ⊥ for all z ∈ Φ, so by Lemma 12.2.4 we have
D[s(c::d)] = ∪z∈HD[s(c(dz/ψ))] = ∪u∈BD[su].

Step 4. computation of Φα. We now prove Φα = ∪γ∈αΦγ = ∪x∈G/gΦk′(x) ⊆
∪x∈G/gD[sbk′(x)] = ∪u∈BD[su]: the second equality uses that α is a limit ordinal,
k′ is cofinal in α, and the sequence Φα is increasing; the inclusion uses the
hypothesis and range[k′] ⊆ α. Taking bα = c::d we have Φα ⊆ ∪u∈BD[su] =
D[s(c::d)] = D[sbα] as required.

The following lemma is the one where we use that σ is not only inaccessible
but is furthermore the smallest inaccessible.

Lemma 12.4.2. Suppose σ < κ is the smallest inaccessible ordinal. Let α ∈ σ.
For all γ ∈ α assume that bγ ∈ M satisfies Φγ ⊆ D[sbγ]. Then there exists a
bα ∈ M such that Φα ⊆ D[sbα].

Proof of 12.4.2 If α = 0 take bα = T. Then Φα = {T} = D[sbα]. If α = β+1
take bα = T::bβ . Then Φα = Φ+

β ⊆ D[sbβ]
+ ⊆ D[sbα]. Now assume that α is a

limit ordinal.
Thanks to Lemma 12.4.1 we just have to find an a ∈ M such that cf(α) ≤c

D[sa]/sa. Since α ∈ σ and since σ is the smallest inaccessible ordinal we have
that α is not inaccessible so cf(α) < α ∨ ∃β∈α:α ≤c P(β). We proceed by
considering two cases: cf(α) < α and cf(α) = α.

Case 1. Assume cf(α) < α. Let β ≡ cf(α) and a = bβ . From the hypothesis
we have Φβ ⊆ D[sbβ] so Φβ/ϕβ ≤c D[sbβ]/sbβ by Lemma 10.5.4. Furthermore,
β ≤c Φβ/ϕβ by Lemma 12.3.4. Thus, cf(α) ≡ β ≤c Φβ/ϕβ ≤c D[sbβ]/sbβ =
D[sa]/sa.

Case 2. Assume cf(α) = α. Choose β ∈ α such that α ≤c P(β) and let
a = bβ+1. Since α is a limit ordinal we have β+1 < α. Thus, by the hypothesis,
Φβ+1 ⊆ D[sbβ+1]. So cf(α) = α ≤c P(β) ≤c P(Φβ/ϕβ) ≤c Φβ+1/ϕβ+1 ≤c
D[sbβ+1]/sbβ+1 = D[sa]/sa by Lemma 10.5.4, 12.3.4, and 12.3.3.

Theorem 12.4.3 (Lower Bound Theorem/LBT). ϕ ⪯M ψ holds in all
κσ-expansions provided σ < κ is the first inaccessible ordinal.

Proof of 12.4.3 From Lemma 12.4.2 we have Φα ⊆ D[sbα] ⊆ D[ψ] for all α ∈ σ
so Φ = ∪α∈σΦα ⊆ D[ψ]. Thus ϕ ⪯M ψ since ϕ and ψ are the characteristic
maps of Φ and D[ψ], respectively.

64

13. The consistency of MT

We can now prove the main result of the paper:

Theorem 13.1 (Consistency of MT). If σ is the first inaccessible and κ >
σ then Mκσ |= MT and Mκσ ̸|= T=F.

Proof of 13.1 From Theorem 7.5.1 we have Mκσ |= Elem+Elem′+Exist. From
Section 7.6 we have Mκσ |= Mono + Min + Ext. From Theorem 7.9.2 and the
Definability Theorem we have Mκσ |= Quant[ψ]. Thus, Mκσ |= MT. Finally,
from Theorem 7.4.1 and Definition 7.4.2 we have Mκσ ̸|= T=F.

Theorem 13.2 (Consistency of MTdef). If σ is the first inaccessible and κ >
σ then Mκσ |= MTdef .

Proof of 13.2 Follows from Theorem 13.1 and YCurry = Y (Theorem 9.5.3).

13.1. Acknowledgement

The authors would like to thank the referees for their unusually careful
reviews which have enhanced the paper at all levels from the readability of
individual formulations to the general presentation and structure of the paper.

A. Computational properties of canonical pre-models

We now proceed to compare the observational, computational behavior of
programs (i.e. closed, ε-free MT terms) with their semantics as defined by the
canonical models Mκ.

Modelling ε requires κ > σ for an inaccessible σ, but modelling the other
constructs just requires κ ≥ ω. Now assume κ ≥ ω.

Sections A.1 and A.2 introduce and define auxiliary constructs and terms
needed for Section A.3. Section A.3 proves that all the compact (and prime)
elements of Mω, as well as kinds of “analogues” in Mκ, κ > σ, are defin-
able using A, λ, T, if, and parallel or (Corollary A.3.2). Section A.4 proves
Mω |= Epure = Ecomp (as defined in Section 3.14). Section A.5 proves that Mω

is computationally adequate for E-free MT and MTdef programs, and leaves
open whether this is true for κ > ω. Section A.6 states soundness results and
questions. Section A.7 proves that Mω is fully abstract for MT and MTdef .
Section A.8 proves that this is false for Mκ, κ > ω.

Similar definability, adequacy, and full abstraction results (case κ = ω) were
proved for diverse typed λ-calculi, starting from the paradigmatic paper of
Plotkin on PCF [14]. The proofs, already non-trivial in the typed case, are
here (untyped case) technically much more difficult.

For all MT, MTdef , and MT0 programs d let d denote the interpretation of
d in Mκ.

65

A.1. Introduction of Tc and auxiliary concepts

Let Cω = Pcoh
<ω (Pω). Recall from Section 8.5 that if p ∈ Pω ⊆ P then

↓p ∈ Mκ is a prime map and if c ∈ Cω ⊆ C then ↓c ∈ Mκ is a compact map.
For p ∈ Pω and c ∈ Cω we now proceed to define MTdef programs Tp, Tc, χp,
and χc which satisfy:

Tp = ↓p

Tc = ↓c

χpx =

{
T if ↓p ⪯M x
⊥ otherwise

χcx =

{
T if ↓c ⪯M x
⊥ otherwise

To define the terms above, we also define a number of auxiliary concepts. For
n ∈ ω and for n-tuples c̄ = ⟨c1, . . . , cn⟩ and ē = ⟨e1, . . . , en⟩ in Cn

ω we define

c̄ ⌢⌣ ē⇔ c1 ⌢⌣ e1 ∧ · · · ∧ cn ⌢⌣ en

and

↓c̄ = ⟨↓c1, . . . , ↓cn⟩

For x̄ = ⟨x1, . . . , xn⟩ and ⟨ȳ = y1, . . . , yn⟩ in (Mκ)
n we define

x̄ ⪯M ȳ ⇔ x1 ⪯M y1 ∧ · · · ∧ xn ⪯M yn

For sets of n-tuples u, v ∈ P<ω(C
n
ω) we define

u ⌢⌣ v ⇔ ∃c̄∈u∃ē∈v: c̄ ⌢⌣ ē

For x̄ = ⟨x1, . . . , xn⟩ let λx̄. a and ax̄ denote λx1 · · ·xn. a and ax1 · · ·xn, respec-
tively.

For p, q ∈ Pω, c, e ∈ Cω, c̄, ē ∈ Cn
ω, and u, v ∈ P<ω(C

n
ω) for which p ̸⌢⌣ q,

c ̸⌢⌣ e, c̄ ̸⌢⌣ ē, and u ̸⌢⌣ v we are going to define MTdef programs δpq, δce, δc̄ē,
and δuv which satisfy:

δpqx = T if ↓p ⪯M x

δpqx = F if ↓q ⪯M x

δcex = T if ↓c ⪯M x
δcex = F if ↓e ⪯M x
δc̄ēx̄ = T if ↓c̄ ⪯M x̄
δc̄ēx̄ = F if ↓ē ⪯M x̄
δuvx̄ = T if ∃c̄∈u: ↓c̄ ⪯M x̄
δuvx̄ = F if ∃ē∈v: ↓ē ⪯M x̄

Finally, for all c̄ ∈ Cn
ω, and u ∈ P<ω(C

n
ω) we are going to define MTdef programs

χc̄, and χu which satisfy:

χc̄x̄ =

{
T if ↓c̄ ⪯M x̄
⊥ otherwise

χux̄ =

{
T if ∃c̄ ∈ u: ↓c̄ ⪯M x̄
⊥ otherwise

66

A.2. Parallel constructs

As a supplement to parallel or define parallel and:

x & y = ¬̈(¬̈x ∥ ¬̈y)

For finite sets I = {i1, . . . , in} and MTdef programs ai, i ∈ I define the MTdef

programs
∑

i∈I ai and
∏

i∈I ai by

∑

i∈I ai = F ∥ ai1 ∥ · · · ∥ ain∏

i∈I ai = T & ai1 & · · · & ain

where the order i1, . . . , in of elements of I is chosen in some arbitrary, fixed way.

A.3. Definition of Tp and Tc

For all p, q ∈ Pω, c, e ∈ Cω, n ∈ ω, c̄, ē ∈ Cn
ω, and u, v ∈ P<ω(C

n
ω) we define

the following MTdef programs by induction in the set rank of p, q, c, e, c̄, ē, u, v:

Tt = T

Tf = λx.⊥Curry

χt = λx. if[x , T , ⊥Curry]
χf = λx. if[x , ⊥Curry , T]
δtp = λx. if[x , T , F] if p ̸= t
δpt = λx. if[x , F , T] if p ̸= t
T⟨c,p⟩ = λx. if[χcx , Tp , ⊥Curry]
χ⟨c,p⟩ = λx. χp(xTc)
χc = λx. if[

∏

p∈c χpx , T , ⊥Curry]

χc̄ = λx̄. χc1x1 & · · · & χcnxn
χu = λx̄.

∑

c̄∈u χc̄x1 · · ·xn
δc,e = λx.

∏

p∈c

∑

q∈e δpqx if c ̸⌢⌣ e

δu,v = λx̄.
∑

c̄∈u

∏

ē∈v δc̄ēx̄ if u ̸⌢⌣ v

Above, the definitions of δ⟨c,p⟩⟨e,q⟩, δc̄ē, and Tc are missing. For ⟨c, p⟩ ̸⌢⌣ ⟨e, q⟩
define

δ⟨c,p⟩⟨e,q⟩ = λx. δpq(xTc∪e)

In the definition above note that ⟨c, p⟩ ̸⌢⌣ ⟨e, q⟩ implies c ⌢⌣ e and p ̸⌢⌣ q. From
c ⌢⌣ e we have c ∪ e ∈ C and the set rank of c ∪ e is the larger of the set ranks
of c and e. Thus, the set rank of c ∪ e is smaller than one of the set ranks of
⟨c, p⟩ and ⟨e, q⟩ which makes it legal to use Tc∪e in the recursive definition.

For ⟨c1, · · · , cn⟩ ̸⌢⌣ ⟨e1, . . . , en⟩ define

δc̄ē = λx̄. δcieixi

where i ∈ {1, . . . , n} is the smallest index for which ci ̸⌢⌣ ei.

67

To define Tc, recall the definition of ⟨c̄, p⟩ from Section 8.4 and define

def(n, c) = {c̄ ∈ Cn
ω | ∃p∈P: ⟨c̄, p⟩ ∈ c}

true(n, c) = {c̄ ∈ Cn
ω | ⟨c̄, t⟩ ∈ c}

false(n, c) = def(n, c) \ true(n, c)

Now let ℓ be the smallest natural number for which def(ℓ, c) is empty and then
define the monstrous MTdef program Tc thus:

Tc = if[δtrue(0,c)false(0,c) , χtrue(0,c) , χfalse(0,c) : λx1.
if[δtrue(1,c)false(1,c)x1 , χtrue(1,c)x1 , χfalse(1,c)x1 : λx2.
if[δtrue(2,c)false(2,c)x1x2 , χtrue(2,c)x1x2 , χfalse(2,c)x1x2 : λx3.
...
if[δtrue(ℓ,c)false(ℓ,c)x1 · · ·xℓ , χtrue(ℓ,c)x1···xℓ

, ⊥Curry] · · ·]]]

In the definition above, δtrue(ℓ,c)false(ℓ,c)x1 · · ·xℓ = δ∅∅x1 · · ·xℓ = F.

Theorem A.3.1. Let p, q ∈ Pω, c, e ∈ Cω, c̄, ē ∈ Cn
ω, and u, v ∈ P<ω(C

n
ω)

satisfy p ̸⌢⌣ q, c ̸⌢⌣ e, c̄ ̸⌢⌣ ē, and u ̸⌢⌣ v, respectively. Under these conditions,
Tp, Tc, χp, χc, χc̄, χu, δpq, δce, δc̄ē, and δuv have the properties stated in Section
A.1.

Proof. By induction in α we have that the theorem holds for all p, q, c, e, c̄,
ē, u, and v of set rank less than α. ✷

Corollary A.3.2. For all p ∈ Pω and c ∈ Cω the MTdef programs Tp and Tc
satisfy Tp = ↓p and Tc = ↓c.

Let C1, . . . ,C8 be the combinators defined in Section 3.6 where C1 and C2 are the
usual S and K combinators, respectively. We refer to terms built up from these
combinators and functional application as MT combinator programs. We refer
to the C5- and C6-free MT combinator terms as MTdef combinator programs,
where C5 and C6 are the combinators corresponding to ⊥ and Yf , respectively.

For all c ∈ Cω let T ′
c denote the result of applying abstraction elimination

using S and K to Tc. Thus, the MTdef combinator program T ′
c satisfies T ′

c = Tc,
so we have:

Corollary A.3.3. For all p ∈ Pω and c ∈ Cω the MTdef combinator programs
T ′
p and T ′

c satisfy T ′
p = ↓p and T ′

c = ↓c.

Of course Corollary A.3.2 and Corollary A.3.3 also hold for MT. They do not
hold for MT0 because parallel or is missing in MT0.

68

A.4. Semantic and syntactic existence

As promised in Section 3.14:

Lemma A.4.1. Mω |= Epure = Ecomp

Proof of A.4.1 Both Epure and Ecomp are characteristic functions. They
satisfy

Epure p = T iff px = T for some map x
Ecomp p = T iff px = T for some program x

Thus we need to prove

px = T for some map x iff px = T for some program x

The direction ⇐ is trivial. To see ⇒ note that if px = T for some map x then
py = T for some y ∈ Cω so pTy = T.

Corollary A.4.2. Mω |= Ea = Epure a = Ecomp a.

A.5. Computational adequacy

Recall the notions of Nt, Nf , and N⊥ from Section 3.8.

Definition A.5.1. M is computationally adequate for a set T of MT0, MTdef ,
or MT programs if

a ∈ Nt ⇔ M |= a = T

a ∈ Nf ⇔ M |= a = λx. ax
a ∈ N⊥ ⇔ M |= a = ⊥

for all a in T , where Nt, Nf , and N⊥ are defined using the reduction rules of
MT0, MTdef , and MT, respectively.

As we shall see in a moment, Mκ is computationally adequate for MT0

programs, for E-free MTdef programs, and for E-free MT programs.
Any term a satisfies one of a ∈ Nt, a ∈ Nf , and a ∈ N⊥, and one of

M |= a = T, M |= a = λx. ax, and M |= a = ⊥ (cf. Section 7.4). So each of
the three statements of Definition A.5.1 follows from the two other ones.

Each statement has a trivial direction:

a ∈ Nt ⇒ M |= a = T

a ∈ Nf ⇒ M |= a = λx. ax
a ∈ N⊥ ⇐ M |= a = ⊥

Furthermore, if

a ∈ N⊥ ⇒ M |= a = ⊥

69

then

a ∈ Nt ⇐ M |= a = T

a ∈ Nf ⇐ M |= a = λx. ax

follows trivially. The notion of computational adequacy of a model, as well as the
notion of full abstraction, were introduced by Plotkin in [14] (for a paradigmatic
simply typed lambda calculus called PCF). The definition of computational
adequacy given above is equivalent to the one in [14] which merely requires
a ∈ N⊥ ⇔ M |= a = ⊥. However, MT is an untyped lambda-calculus which,
for the problems treated in this appendix, considerably increases the technicality
of the proofs.

Theorem B.0.2 of [4] states:

Theorem A.5.2. Mκ is computationally adequate for MT0 programs.

Likewise, we have:

Theorem A.5.3. Mκ is computationally adequate for E-free MTdef programs.

The proof of Theorem A.5.3 is the same as the proof of Theorem B.0.2 in [4]
with the following two modifications. First, one has to include parallel or the
relevant places. Second, the proof of Lemma B.0.4 of [4], which is by structural
induction, has one more case, namely one for parallel or.

Finally, we have:

Theorem A.5.4. Mκ is computationally adequate for E-free MT programs.

Proof of A.5.4 The theorem follows trivially from

(Mκ |= a ̸= ⊥) ⇒ a ∈ Nt ∪Nf

which we prove in the following. For all terms g let Ỹg be the term

(λx. g(xx))(λx. g(xx))

where x is chosen such that x is not free in g. Here, Ỹ is a term function, i.e. a
function from terms to terms, and Ỹg denotes application of the term function
Ỹ to the term g. In contrast, Yg denotes the term Y applied to the term g using
the application operation of MT.

Since Mκ is canonical we have Mκ |= ⊥ = ⊥Curry and Mκ |= Yg = Ỹg.
For all terms b of MT we define the ⊥Y-less transform [b] of b to be the term

which results when replacing all occurrences of ⊥ and Yg in b by ⊥Curry and

Ỹg, respectively. In Mκ we have [⊥] = ⊥Curry = ⊥ and [Yg] = Ỹ[g] = Y[g].
This allows to prove Mκ |= [a] = a for all terms a by structural induction.

70

For each E-free MT program b, [b] is an E-free MTdef program. Define b
1
→ c

as in Section 3.5 and 3.6. We have:

⊥
1
→ ⊥ in MT

Yg
1
→ g(Yg) in MT

⊥Curry
1
→ ⊥Curry in MTdef

Ỹg
1
→ g(Ỹg) in MTdef

[⊥]
1
→ [⊥] in MTdef

[Yg]
1
→ [g(Yg)] in MTdef

In general, if b
1
→ c in MT then [b]

1
→ [c] in MTdef by structural induction in b

and c.
Let a be an MT program and assume Mκ |= a ̸= ⊥. Now Mκ |= [a] ̸= ⊥.

Recall that for each a, a
1
→ b holds for at most one b (up to renaming of

bound variables). Let a1, a2, . . . be the unique longest finite or infinite sequence

such that a
1
→ a1

1
→ a2

1
→ · · · in MT. By Theorem A.5.3, the sequence [a]

1
→

[a1]
1
→ [a2]

1
→ · · · is finite and ends with a term in root normal form (i.e. is

T or an abstraction). Hence, a
1
→ a1

1
→ a2

1
→ · · · has the same property, so

a ∈ Nt ∪Nf which was to be shown.

For programs that may contain E we have:

Theorem A.5.5. Mω is computationally adequate for MTdef programs and for
MT programs.

Proof of A.5.5 The proof is similar to that of Theorem A.5.4. Define a
3
→

d⇔ ∃b, c: a
1
→ b

1
→ c

1
→ d and let a

∗
→ b be the transitive closure of a

1
→ b.

Recall the definition of Ecomp from Section 3.14. The definition is recursive
and thus implicitly uses Y. Now define

Ẽ ≡ Ỹλga. aC1 ∥ · · · ∥ aC7 ∥ a(λx. gx) ∥ g(λx. g(λy. a(xy)))

We have Ecomp = Ẽ and

Ẽa
3
→ aC1 ∥ · · · ∥ aC7 ∥ a(λx. Ẽx) ∥ Ẽ(λx. Ẽ(λy. a(xy)))

For all terms b of MT we define the E-less transform [b] to be the term which
results when replacing all occurrences of Ea by Ẽa. InMω we have [Ea] = Ẽ[a] =
Ecomp [a] = E[a]. This allows to prove Mω |= [a] = a by structural induction.

If b
1
→ c in MT then [b]

1
→ [c] or [b]

3
→ [c] in MT and, in any case, [b]

∗
→ [c].

The theorem follows from Mω |= a ̸= ⊥ ⇒ a ∈ Nt ∪ Nf which we now

prove. Assume Mω |= a ̸= ⊥. Let a
1
→ a1

1
→ a2

1
→ · · · be the unique reduction

sequence for a. Now [a]
∗
→ [a1]

∗
→ [a2]

∗
→ · · · is finite by Theorem A.5.4, so

a ∈ Nt ∪Nf .

The case κ > ω is open:

71

Open Question A.5.6. Is Mκ computationally adequate for MTdef programs
and for MT programs for κ > ω ?

A.6. Soundness

Recall from Section 3.8 that a =κ b is shorthand for Mκ |= a = b.

Theorem A.6.1 (Soundness of Mκ and Mω).

(a) a =κ b⇒ a =obs b for all E-free MT programs a and b.
(b) a =ω b⇒ a =obs b for all MT programs a and b.
(c) a =κ b⇒ a =obs b for all E-free MTdef programs a and b.
(d) a =ω b⇒ a =obs b for all MTdef programs a and b.
(e) a =κ b⇒ a =obs b for all MT0 programs a and b.

Note that observational equality a =obs b of MT, MTdef , and MT0 is true if
ca ∼ cb for all MT, MTdef , and MT0 programs c, respectively, so the notions of
observational equality are slightly different. Also note that MT0 does not have
E in its syntax, so all MT0 programs are born E-free.
Proof of A.6.1 Soundness follows trivially from computational adequacy. We
only prove (a). Assume a =κ b. Assume c is an MT program. We have ca =κ cb
so ca =κ T ⇔ cb =κ T and, by Theorem A.5.4, ca ∈ Nt ⇔ cb ∈ Nt. Likewise,
ca ∈ Nf ⇔ cb ∈ Nf and ca ∈ N⊥ ⇔ cb ∈ N⊥. Thus, ca ∼ cb for all MT
programs c which, by definition of =obs, gives a =obs b.

Above, we use computational adequacy to prove soundness, and Open Question
A.5.6 may be restated thus:

Open Question A.6.2.

(a) Does a =κ b⇒ a =obs b for all MT programs a and b and for κ > ω ?
(b) Does a =κ b⇒ a =obs b for all MTdef programs a and b and for κ > ω ?

A.7. Full abstraction

Definition A.7.1. A model M is fully abstract for MT/MTdef/MT0 if a =obs

b⇔ M |= a = b for all MT/MTdef/MT0 programs a and b.

We now state and prove that Mω is fully abstract for MT:

Theorem A.7.2 (Full Abstraction of Mω).
a =obs b⇔ a =ω b for all MT programs a and b.

Proof. (⇐) follows from Theorem A.6.1. (⇒) Assume a =obs b. Assume
p ∈ Pω. From a =obs b we have T⟨{p},t⟩a ∈ Nt ⇔ T⟨{p},t⟩b ∈ Nt. Hence, by
Theorem A.5.4, T⟨{p},t⟩a =ω T ⇔ T⟨{p},t⟩b =ω T. Thus, by Corollary A.3.2,
(↓⟨{p}, t⟩)a = T ⇔ (↓⟨{p}, t⟩)b = T so p ∈ a ⇔ p ∈ b for all p ∈ Pω. Hence,
a = b and a =ω b. ✷

Theorem A.7.2 also holds for MTdef , i.e. Mω is also fully abstract for MTdef .

72

MT0 lacks parallel or and Theorem A.7.2 does not hold for MT0, i.e. Mω is
not fully abstract for MT0. As a counterexample, take

a = λx. if[xT⊥∧̈x⊥T∧̈¬̈xFF , T , ⊥]
b = λx.⊥

The map a above is a parallel or tester, i.e. ax = T if xuv is the parallel or of u
and v. We have a =obs b in MT0.

A.8. Negative results

We now prove that Mκ is not fully abstract for MT for κ > ω, κ regular:

Theorem A.8.1. If κ > ω, κ regular, then there exist MT programs a and b
for which a =obs b and a ̸=κ b.

Proof. Take a = Epure = λx.Ex. Take b = Ecomp so that b = λx. (xC1 ∥ · · · ∥
xC8 ∥ bλu. bλv. x(uv)) (cf. Section 3.6 and 3.14).

We first prove a =obs b. According to Theorem A.7.2 it is enough to prove
a =ω b. Furthermore, a and b are both characteristic maps, so it is enough to
prove ap =ω T ⇔ bp =ω T for all p ∈ Mω. Now ap =ω T iff px =ω T for some
x ∈ Mω and bp =ω T iff px =ω T for some MT program x. If px =ω T for some
x ∈ Mω then pc =ω T for some compact c ∈ Mω so pTc =ω T proving bp =ω T.
Hence, ap =ω T ⇒ bp =ω T. If bp =ω T then px =ω T for some MT program
x so px =ω T for some x ∈ Mω proving ap =ω T. Hence, bp =ω T ⇒ ap =ω T

which ends the proof of a =ω b.
We then prove a ̸=κ b. Let t0 ≡ t and tn+1 ≡ ⟨∅, tn⟩ for every n ∈ N.

We have ti ⌢⌣ tj ⇔ i = j. Now let g ∈ N→N be non-computable. Let
Q ≡ {⟨{ti}, tg(i)⟩ | i ∈ N}, q = ↓Q, and p = ↓⟨Q, t⟩. We have p, q ∈ Mκ and
pq =κ T so ap =κ T. Furthermore, we cannot have px =κ T for any program x
since g is non-computable, so bp ̸=κ T proving a ̸=κ b. ✷

Theorem A.8.1 is not too surprising since E quantifies over Mκ whereas the
computable approximation b in the proof essentially quantifies over {↓p | p ∈
Pω}. We may however strengthen the theorem above as follows:

Theorem A.8.2. If κ > ω, κ regular, then there exist E-free MT programs a
and b for which a =obs b and a ̸=κ b.

The proof of Theorem A.8.2 spans the rest of this section.
Let I ′ = ↓{⟨{p}, p⟩ | p ∈ Pω}, i.e. let I

′ be the smallest element of Mκ for
which I ′(↓p) = ↓p for all p ∈ Pω. Now I ′ is compact but I ′ ̸∈ Cω. As we shall
see in a moment, there exists an MT-term b which denotes I ′.

To prove the lemma, we take a = λx. x and we take b to be a term which
denotes I ′. Now a =obs b is true and a =κ b is false.

The rest of the proof is about the definition of b which is long and technical.
Sections A.1–A.3 define Tp in ZFC. We now reflect that definition in MT.

73

Recall (x::y)T = x and (x::y)F = y. Let (x1, . . . , xn) be shorthand for
x1:: · · · ::xn::T. We refer to (x1, . . . , xn) as a list and use lists to represent finite
sets. We now port the constructs of Section A.2 from ZFC to MT:

∑

x∈y A ≡
∑′

y(λx.A)
∑′

ya ≡ if[y , F , a(yT) ∥
∑′

(yF)a]
∏

x∈y A ≡
∏′

y(λx.A)
∏′

ya ≡ if[y , T , a(yT) &
∏′

(yF)a]

Above,
∑

(
∏
) expresses existential (universal) quantification. We also need a

strict version of universal quantification:
∧

x∈y A ≡
∧′
y(λx.A)

∧′
ya ≡ if[y , T , a(yT)∧̈

∧′
(yF)a]

We now proceed to port the definitions of Pω and Cω from ZFC to MT. We
represent the elements Pω thus:

t ≡ T

f ≡ T::T
⟨c, p⟩ ≡ T::c::p

Recall that x::y is right associative so that T::c::p is shorthand for T::(c::p). We
have ⟨c, p⟩FT = c and ⟨c, p⟩FF = p.

Elements of Cω are finite sets of elements of Pω, so we represent them
by lists. As an example, (⟨(t), t⟩, ⟨(f), f⟩) represents the element of Cω whose
downward closure is the interpretation of λx. if[x , T , λy.⊥].

A list like (t, f) does not represent an element of Cω since t and f are
incoherent. We now define the coherence relations ⌢⌣0 and ⌢⌣1 on Pω and Cω,
respectively:

p ⌢⌣0 q ≡ if[p , if[q , T , F] , if[q , F ,
if[pF , T , if[qF , T ,
pFT⌢⌣1 qFT⇒̈pFF⌢⌣0 qFF]]]]

c ⌢⌣1 e ≡
∧

p∈c

∧

q∈e p ⌢⌣0 q

The definitions above allow to define characteristic maps χPω
, χCω

, and χC
<ω
ω

which test for membership of Pω, Cω, and C<ω
ω , respectively:

χPω
p ≡ if[pF , T , χCω

(pFT)∧̈χPω
(pFF)]

χCω
c ≡ c ⌢⌣1 c ∧̈

∧

p∈c χPω
p

χC
<ω
ω
c̄ ≡ if[c̄ , T , χCω

(c̄T) ∧̈ χC
<ω
ω

(c̄F)]

We now port the definitions in Section A.3 from ZFC to MT. The definitions of
Tt, Tf , and T⟨c,p⟩ in Section A.3 define Tp for all p ∈ Pω. Below, T0p is the MT
translation of the ZFC construct Tp:

T0p ≡ if[p , T ,
if[pF , λx.⊥Curry ,
λx. if[χ1(pFT)x , T0(pFF) , ⊥Curry]]]

74

The definitions of χp, χc, χc̄, and χu of Section A.3 translate into the following:

χ0px ≡ if[p , if[x , T , ⊥Curry] ,
if[pF , if[x , ⊥Curry , T] ,
χ0(pFF)(xT1(pFT))]]

χ1cx ≡
∧

p∈c χ0px

χ2c̄x̄ ≡ if[c̄ , T , c̄T(x̄T) & χ2(c̄F)(x̄F)]
χ3ux̄ ≡

∑

c̄∈u χ2c̄x̄

The union of two sets represented by lists is a classic:

c ∪ e ≡ if[c , e , cT::(cF ∪ e)]

The discriminator constructs δpq, δce, δc̄ē, and δuv of Section A.3 translate into
the following:

δ0pqx ≡ if[p , if[x , T , F] ,
if[pF , if[x , F , T] ,
δ0(pFF)(qFF)(x(T1(pFT ∪ qFT)))]]

δ1cex ≡
∏

p∈c

∑

q∈e δ0pqx

δ2c̄ēx̄ ≡ if[c̄T⌢⌣1 ēT , δ2(c̄F)(ēF)(x̄F) , δ1(c̄T)(ēT)(x̄T)]
δ3uvx̄ ≡

∑

c̄∈u

∏

ē∈v δ2c̄ēx̄

The empty set and the singleton set is straightforward:

∅ ≡ T

{x} ≡ x::T

The ZFC construct def(n, c) of Section A.3 translates into the MT construct
defx̄c below where we represent the natural number n in the ZFC construct by
a list x̄ of length n in the MT construct.

defx̄c ≡ if[c , ∅ , def ′x̄(cT)T ∪ defx̄(cF)]
def ′x̄cc̄ ≡ if[x̄ , {c̄} , if[pF , ∅ , def ′(x̄F)(pFF)(pFT::c̄)]]

def(n, c) is a set of tuples and defx̄c is a list of lists. If (p1, . . . , pn) is an element
of def(n, c) then (pn, . . . , p1) is an element of defx̄c. Note the list reversal.

Note that the parameter c̄ of def ′ accumulates a list in reverse order. Use of
such accumulating parameters is a standard trick in functional programming.

We now proceed:

truex̄c ≡ if[c , ∅ , true′x̄(cT)T ∪ truex̄(cF)]
true′x̄cc̄ ≡ if[x̄ , if[p , {c̄} , ∅] , if[pF , ∅ , true′(x̄F)(pFF)(pFT::c̄)]]
falsex̄c ≡ if[c , ∅ , false′x̄(cT)T ∪ falsex̄(cF)]
false′x̄cc̄ ≡ if[x̄ , if[p , ∅ , {c̄}] , if[pF , ∅ , false′(x̄F)(pFF)(pFT::c̄)]]

75

We now define T1c which corresponds to Tc in Section A.3. We do so using an
accumulating parameter x̄ which accumulates (xn, . . . , x1) where x1, . . . , xn are
the bound variables in the definition of Tc in Section A.3. The definition reads:

T1c ≡ T ′
1 cT

T ′
1 cx̄ ≡ if[χ3(defx̄c)x̄ , ⊥Curry ,

if[δ3(truex̄c)(falsex̄c)x̄ , χ3(truex̄c)x̄ ,
χ3(falsex̄c)x̄ : λx. T ′

1 c(x::x̄)]]

This completes the port of Sections A.1–A.3 from ZFC to MT. We now define
constructs with the following properties:

applyx(yn, . . . , y1) = xy1 · · · yn
(cn, . . . , c1) 7→ p = ⟨c1, · · · ⟨cn, p⟩ · · ·⟩

Note the list reversal. The definitions read:

applyxȳ ≡ if[ȳ , x , applyx(ȳF)(ȳT)]
c̄ 7→ p ≡ if[c̄ , p , c̄F 7→ (T::c̄T::p)]

Finally, we may define a term b which denotes I ′ where I ′ is the smallest element
of Mκ for which I ′(↓p) = ↓p for all p ∈ Pω. The definition uses an accumulating
parameter ȳ:

bx ≡ b′xT
b′xȳ ≡ if[applyxȳ , Ec̄. χC

<ω
ω
c̄∧̈χ0(c̄ 7→ t)x∧̈χ2c̄ȳ ,

Ec̄. χC
<ω
ω
c̄∧̈χ0(c̄ 7→ f)x∧̈χ2c̄ȳ : λy. b′x(y::ȳ)]

As an example, if bxy1 · · · yn−1 ̸∈ {T,⊥} and xy1 · · ·xn = T then

bxy1 · · · yn = b′xTy1 · · · yn
= b′x(yn, . . . , y1)
= Ec̄. χC

<ω
ω
c̄∧̈χ0(c̄ 7→ t)x∧̈χ2c̄(yn, . . . , y1)

Thus, in the situation above, bxy1 · · · yn returns T iff there exists a c̄ ∈ C<ω
ω

such that ↓(c̄ 7→ t) ⪯M x and ↓c̄ ⪯M (y1, . . . , yn).

B. Strength of MT versus MT0

MT is very likely stronger than MT0. Indeed, MT0 can prove neither SI = T

nor (¬SI) = T since it can be consistently extended by either one. In contrast,
(¬SI) = T is conjectured to be provable in MT (Conjecture 2.2.3). Furthermore,
MT can prove more pure lambda terms equivalent such as F2 = F3 (cf. Example
4.3.3) which we conjecture is not provable in MT0. Furthermore, we conjecture
the following:

Conjecture B.1. If A = B is provable in MT0 and if A′ and B′ arise from
A and B, respectively, by replacing all occurrences of ϕ by ψ, then A′ = B′ is
provable in MT.

76

If (¬SI) = T is provable in MT then Conjecture 2.2.3 follows from Conjecture
B.1 and Theorem 2.2.4. Conjecture B.1 is true if the ϕ-axioms of MT0 are
provable in MT with ψ replacingt ϕ. Less support exists for Conjecture B.1
than for Conjecture 2.2.3.

C. On the necessity of minimality for proving UBT

We now restate Lemma 10.1.1 which states that the proof of UBT needs
that s is the minimal fixed point of S.

Lemma C.1. Let σ < κ be inaccessible and let M be any κσ-expansion. There
exists an s′ ∈ M such that Ss′ = s′ and D[ψ′] = M where ψ′ = ⊔s′.

Proof of C.1 To prove the lemma it is enough to find s′, u ∈ M such that
Ss′ = s′ and s′u = λx.T, since then D[ψ′] = ∪a∈MD[s′a] ⊇ D[s′u] = M.

For any C ⊆ M let sup(C) denote the least upper bound of C (when such
a one exists). The idea is to take u ≡ sup(B) for B ≡ {λx1x2 · · ·xn.⊥ | n ∈
ω} ≡ {Kn⊥ | n ∈ ω} where K ≡ λxy. x, K0 ≡ ⊥, and Kn+1 ≡ KKn. And to
define s′ from u. Note that B has a sup because B is bounded (e.g. by any fixed
point of K). We prove below that u is κ-compact and that we can produce an
adequate s′ from it. The proof has six steps, preceeded by two more general
lemmas.

Since M is a κσ-expansion, it is in particular a κ-Scott domain and a κ-
premodel. This in particular means that application is monotonic w.r.t. the
κ-Scott order ⪯M and that if g, h ∈ F ≡ M \ {T,⊥} and gx ⪯M hx for all
x ∈ M then g ⪯M h.

Lemma 1. Let G ⊆ M. If h = sup(G) ∈ F then h⊥ ≡ sup(G⊥), where
G⊥ ≡ {g⊥ | g ∈ G}.

Note that the hypothesis on h implies that G contains a non-⊥ element and
does not contain T. The proof of the lemma is trivial if application commutes
with all sups (which is for example true if M is canonical); the proof for the
general case is a little tricky and will be given at the end.

Lemma 2. If p ∈ M is prime then Kp = λx. p is prime too.
Proof. Suppose λx. p ⪯M sup(G) for some G ⊆ M. We have p =

(λx. p)⊥ ⪯M sup(G)⊥ = sup(G⊥) by monotonicity plus Lemma 1. Since p
is prime we have p ⪯M g⊥ for some g ∈ G. Note that g = ⊥ could occur only
if p = ⊥, in which case g could be replaced by any other element of G, so we
can always take g ∈ F . Now p ⪯M gx for all x ∈ M, whence λx. p ⪯M λx. gx
from which we have λx. p ⪯M g since g = λx. gx because g ∈ F .

Step 1. Recall B ≡ {λx1x2 · · ·xn.⊥ | n ∈ ω} ≡ {Kn⊥ | n ∈ ω}. We prove
that u ≡ sup(B) is κ-compact and that u ⪯M ux for all x ∈ M: By Lemma 2,
B is a countable set of primes, and hence a κ-small set of κ-compact elements
(since κ > ω). Hence its sup is κ-compact too. Now, Kn+1 ⪯M u implies
Kn = Kn+1x ⪯M ux, so ux is an upper bound of B. Hence, u ⪯M ux since u
is the least one.

77

Step 2. Define s̃ by s̃x = λy.T if x ⪰M u and s̃x = ⊥ otherwise. Such an s̃
exists because the corresponding function is κ-continuous (since u is κ-compact).

Step 3. Now θ ≡ ⊔s̃ = λy.T. Proof: ⊔s̃ ≡ λy.Ex. s̃xy where Ex. s̃xy = T

because s̃xy = T for x = u.
Step 4. Ss̃u = λy.T. Proof: We have that λy.T is maximal (because

M is a premodel) so it is enough to prove Ss̃u ⪰M λy.T. We have Ss̃u ≡
S̄s̃(⊔s̃)u ≡ S̄s̃θu. Using the definition of S̄ and ux ⪰M u we have S̄s̃θu ⪰M

Rs̃θuu. From θ = λy.T we have θu = T. From the definition of R1 we have
R1s̃θuu ≡ ∀̈z. !(u(· · ·)) ⪰M ∀̈z. !u = ∀̈z.T = T. From the defintion of R0 we
have R0s̃θuu = λy.Ez. (θu: s̃(u(· · ·))y) ⪰M λy.Ez. s̃uy = λy.Ez.T = λy.T.
Thus, Rs̃θuu ≡ θu : R1s̃θuu : R0s̃θuu ⪰M T : T : λy. u = λy.T. In conclusion,
Ss̃u = S̄s̃θu ⪰M Rs̃θuu ⪰M λy.T as required.

Step 5. s̃ ⪯M Ss̃. Proof: We have s̃x = λy.T = Ss̃u ⪯M Ss̃x for u ⪯M x.
Furthermore s̃x = ⊥ ⪯M Ss̃x if u ̸⪯M x, so s̃x ⪯M Ss̃x for all x. Hence,
s̃ ⪯M Ss̃ as required.

Step 6. Define s′ ≡ fκ(s̃), where f is the κ-continuous function coded by
S, so that f(x) = Sx for all x. From s̃ ⪯M Ss̃ we have f0(s̃) ⪯M f1(s̃) and,
like in Lemma 7.2.1, fα(s̃) ⪯M λay.T is defined and increasing for all α and
s′ ≡ fκ(s̃) is a fixed point of S (though not minimal). From s̃ ⪯M s′ we have
s′u = λx.T as required.

It only remains to prove Lemma 1:
Proof of Lemma 1. The proof only uses that M is a κ-premodel. From

h ∈ F we have that G contains a non-⊥ element and does not contain T. Since
G is bounded, G⊥ is also bounded. Hence, a ≡ sup(G⊥) exists. Moreover,
a ⪯M h⊥, since h⊥ is an upper bounde of G⊥ (by monotonicity). Now let
h′ ∈ F satisfy h′⊥ = a and h′x = hx otehrwise (the existence of h′ follows from
the fact that the corresponding function is easily seen to be κ-continuous). Now
g ⪯M h′ ⪯M h because gx ⪯M h′x ⪯M hx for all x, and h, h′ ∈ F and g = ⊥
or g ∈ F . Hence, h′ = h (by minimality of h) and h⊥ = a as required.

D. Summary of MT

D.1. Syntax

V ::= x | y | z | · · ·
T ::= V | λV . T | T T | T | if[T , T , T] | ⊥ | Y | T ∥T | ET | εT
W ::= T = T

D.2. Definitions

In the following, A,B, C, . . . denote (possibly open) terms and a, b, . . . z, θ
denote variables.

Elementary definitions

⊥ ≡ (λx. xx)(λx. xx) (Only in MTdef)
Y ≡ λf. (λx. f(xx))(λx. f(xx)) (Only in MTdef)

λxy.A ≡ λx. λy.A

78

F ≡ λx.T
1 ≡ λxy. xy

x ↓ y ≡ if[x, if[y,T,⊥], if[y,⊥, λz. (xz) ↓ (yz)]]
x ⪯ y ≡ x = x ↓ y

≈x ≡ if[x , T , F]
x ◦ y ≡ λz. x(yz)

χ ≡ λx. λz. if[xz,T,⊥]
x→ y ≡ if[x, y,⊥] = if[x,T,⊥]

!x ≡ if[x,T,T]
¬̈x ≡ if[x,F,T]

Quantification

∃̈p ≡ ≈(p(εp))
∃̈x.A ≡ ∃̈λx.A
∀̈x.A ≡ ¬̈∃̈x. ¬̈A
εx.A ≡ ελx.A

∀̈p ≡ ∀̈x. px
Ex.A ≡ Eλx.A

The definition of ψ

ψ ≡ ⊔s
s ≡ YS
S ≡ λf. S̄f(⊔f)
S̄ ≡ λfθa. if[a , P , if[aT , Q(f(aF)) , Rfθ(aT)(aF)]]
P ≡ λy. if[y , T , ⊥]
Q ≡ λv. !v : λy. ∀̈z. v(y(z/v))
R ≡ λfθbc. θc : R1fθbc : R0fθbc
R1 ≡ λfθbc. ∀̈z. !(f(b(cz/θ)))
R0 ≡ λfθbcy.Ez. (θz : f(b(cz/θ))y)
⊔ ≡ λfy.Ex. fxy

x : y ≡ if[x , y , ⊥]
f/g ≡ if[f , T , λx. gx : (fx/g)]

D.3. Axioms and inference rules

Elementary axioms and inference rules

Trans A = B;A = C ⊢ B = C
Sub A = B; C = D ⊢ AC = BD
Gen A = B ⊢ λx.A = λx.B

A1 TB = T

A2 (β) (λx.A)B = ⟨A | x := B⟩ if B is free for x in A
A3 ⊥B = ⊥

Rename (α) λx. ⟨A | y := x⟩ = λy. ⟨A | x := y⟩
if x is free for y in A and vice versa

I1 if[T,B, C] = B

79

I2 if[λx.A,B, C] = C
I3 if[⊥,B, C] = ⊥

QND ⟨A | x := T⟩ = ⟨B | x := T⟩;
⟨A | x := 1x⟩ = ⟨B | x := 1x⟩;
⟨A | x := ⊥⟩ = ⟨B | x := ⊥⟩ ⊢
A = B

P1 T ∥ B = T

P2 A ∥ T = T

P3 λx.A ∥ λy.B = λz.T

Y YA = A(YA) (Not needed in MTdef)

Monotonicity and minimality

Mono B ⪯ C ⊢ AB ⪯ AC
Min AB ⪯ B ⊢ YA ⪯ B

Extensionality

Ext if x and y are not free in A and B then
≈(Ax) = ≈(Bx);Axy=AC;Bxy=BC ⊢ Ax = Bx

Axioms on E

ET ET = T

EB E⊥ = ⊥
EX Ex = E(χx)
EC E(x ◦ y) → Ex

Quantification axioms

Elim (∀̈x. px) ∧ ψy → py
Ackermann εx. px = εx. (ψx ∧ px)

StrictE ψ(εx. px) = ∀̈x. !(px)
StrictA !(∀̈x. px) = ∀̈x. !(px)

80

E. Index

Greek letters, 80

ε, 11, 18
εx.A, 24
λ(h), 35, 37, 44
λx.A, 11
Φ, 5, 39, 48
ϕα, 63
χ, 24
χU , 38
χω, 21
ψ, 26
ψCurry, 17, 28
ω, 32

Arrows, 80

[D→κD
′], 33

a
1
→ b, 13

f :G→H (ZFC function type), 32
G→H (set of maps), 39, 49
x→ y (implication), 24
↓x, 32, 42, 43
x ↓ y, 21
↑x, 32, 49

Equal signs/Equivalences, 80

⟨A | x := B⟩, 13
a =obs b, 16
a =κ b, 16
a ∼ b, 16
x
ω
= y, 21

A = B, 11

Order relations, 80

G ≤c H, 54
≤D, 41
✂, 56
x ⪯ y, 21

Double dot constructs, 80

∃̈p, 24
∃̈x.A, 24
∀̈p, 24
∀̈x.A, 24
¬̈x, 24
x∧̈y, 25
x=̈y, 25
x⇒̈y, 25
x∈̈y, 25

Superscript set constructs, 80

G+, 49
G•, 49
G◦, 39, 49
Gω, 32
G<ω, 32

Other nulary constructs, 80

0, 21
⊥, 11, 36, 44
⊥′, 36
⊥Curry, 13
⟨ ⟩, 32
1, 20
⊔, 26

Other unary constructs, 80

!x, 24
x′, 21
≈x, 20, 22

Other binary constructs, 80

x::y, 27
gH (application of a map to a set of

maps), 53
gh (application of a map to a map), 11

81

x ◦ y, 24
x ⌢⌣D

y, 41
x |= y, 29
x ∧ y, 20
x : y, 26
A ∥ B, 11
G/h, 53
f/g, 26

A, 35, 37, 44
abstract, fully, 72
Ackermann’s axiom, 18
adequate, computationally, 69

bottom, 33

C, 43
c: G ≤c H, 54
c: Dc, 33
canonical expansion, 8, 12, 29
canonical premodel, 29, 44
cardinal, regular, 32
cf(α), 32
chain, step, 57
characteristic map, 22, 26, 60
cofinality, 32
coherent space, preordered, 41
compact, 33
computationally adequate, 69
construct, 11
construct, language, 11

κ-continuous, 33
Curry: ⊥Curry, 13
Curry: ψCurry, 17, 28

D[a], 26, 38
Dom[a], 34

κ-domain, reflexive, 29, 35

E, 11
Ex.A, 15
Epure , 19
Ecomp , 19
Elem, 28
Eqκ, 36
Eq ′κ, 43
essentially κ-small, 34

essentially σ-small, 26, 39, 49
Exist, 28

κσ-expansion, 12, 29, 39
κ-expansion, 12, 29, 37
expansion, canonical, 8, 12, 29
Ext, 22, 28
Extensionality, 22
extensionality, semantic, 16

F, 20
F , 37, 44
Fσ, 39
fixed point, pre-, 35
fully abstract, 72
function κ-step, 34
function normal term, 14

guard, 26

head, 43

I, 42
if, 11
inaccessible (i.e. strongly inaccessible),

32
incompatible, 50
Induction Property, Strong, 25, 39

ℓ, 43
language construct, 11
LBT, 40
Lower Bound Theorem, 40

Mc, 44
Mκ, 12, 29, 44
Mκσ, 8, 12, 29, 44
Mp, 44
map

characteristic, 22, 26, 60
step, 56
wellfounded, 5, 17, 39

Min, 21, 28
minimality, 20
model, 12

canonical pre-, 29, 44
MT, 30, 39
MT0, 30, 39

82

pre-, 29, 37, 44
Mono, 21, 28
monotonicity, 20
MT, 5
MT model, see model, MT
MT0 model, see model, MT0

MT program, 15
MT0, 5
MTdef , 13

N⊥, 16
Nf , 16
Nt, 16
normal term, function, 14
normal term, root, 14
normal term, true, 14

O(G), 50
O<κ(G), 50
O<σ(G), 39, 50
obs: a =obs b, 16
observationally equal, 16

κ-open, 34, 50

P , 26
P, 32
P<κ, 32
p.o., 33
partially ordered set, 33
pcs, 41
pcs-structure, 41
pre-fixed point, 35
premodel, see model, pre-, 29
premodel, canonical, 29
preordered coherent space, 41
prime, 33
program, MT, 15
Property, Strong Induction, 25, 39

Q, 26
QND, 20
Quant[ψ], 25
Quant[a], 28

R, 26
r, 45
R0, 26

R1, 26
rank, 43
reflexive κ-domain, 35
reflexive κ-domain, 29
regular cardinal, 32
restriction, 56
rk(p), 43
root equivalence, 16
root normal term, 14
rules (axioms and inference rules), 19

S, 26
S̄, 26
s, 26

κ-Scott domain, 29, 33
κ-Scott semantics, 32
semantic extensionality, 16
SI, 6
SIP, 25, 39

κ-small, 32
σ-small, 39
σ-small, essentially, 26, 39, 49
space, preordered coherent, 41
step chain, 57

κ-step function, 34
step map, 56
Strong Induction Property, 25, 39
structure, 41

T, 11, 36, 44
T′, 36
Tarski’s fixed point operator, 35
true normal term, 14

⊔, 26
UBT, 40
Upper Bound Theorem, 40

WF, 28
wellfounded map, 5, 17, 39
wellfounded w.r.t. a set G of maps, 21

Y, 11
YCurry, 13

Z[x], 25
ZFC, 4
ZFC+SI, 6

83

[1] P. Aczel. Non-Well-Founded Sets, volume 14 of Lecture Notes. CSLI, 333
Ravenswood Avenue, Menlo Park, CA 94025, USA, 1988.

[2] H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, vol-
ume 103 of Studies in Logic and The Foundation of Mathematics. North-
Holland, 1984.

[3] C. Berline. From computation to foundations via functions and application :
the lambda-calculus and its webbed models. Theoretical Computer Science,
249:81–161, 2000.

[4] C. Berline and K. Grue. A κ-denotational semantics for Map Theory in
ZFC+SI. Theoretical Computer Science, 179(1–2):137–202, June 1997.

[5] A. Church. A set of postulates for the foundations of logic I. Ann. Math.,
1933.

[6] A. Church. A set of postulates for the foundations of logic II. Ann. Math.,
1934.

[7] R.C. Flagg. κ-continuous lattices and comprehension principles for Frege
structures. Annals of Pure and Applied Logic, 36:1–16, 1987.

[8] R.C. Flagg and J. Myhill. A type-free system extending ZFC. Annals of
Pure and Applied Logic, 43:79–97, 1989.

[9] K. Grue. Map theory. Theoretical Computer Science, 102(1):1–133, July
1992.

[10] K. Grue. Map theory with classical maps. Technical Report 02/21, DIKU,
Universitetsparken 1, DK-2100 Copenhagen, Denmark, 2002.
http://www.diku.dk/~grue/papers/classical/classical.html.

[11] K. Grue. Logiweb. In Fairouz Kamareddine, editor, Mathematical Knowl-
edge Management Symposium 2003, volume 93 of Electronic Notes in The-
oretical Computer Science, pages 70–101. Elsevier, 2004.

[12] Rainer Kerth. Définissabilité dans les domaines réflexifs. Comptes rendus
de l’Acadmie des sciences. Série 1, Mathématique, 318(7):685–688, 1994.

[13] Rainer Kerth. Isomorphisme et équivalence équationelle entre modéles du
lambda-calcul. Ph.D thesis, Université Paris 7, 1995.

[14] G. Plotkin. LCF considered as a programming language. Theoretical Com-
puter Science, 5(3):223–255, December 1977.

[15] G. Plotkin. Set-theoretical and other elementary models of the lambda-
calculus (in a collection of contributions in honour of Corrado Bohm on
the occasion of his 70th birthday). Theoretical Computer Science, 121(1-
2):159–192, 1993.

84

[16] Thierry Vallée. ”Map theory” et antifondation. Electr. Notes Theor. Com-
put. Sci., 79:1–260, 2003. (Ph.D. Thesis, Université Paris 7, 2001).

[17] Thierry Vallée. Map theory: From well-foundation to antifoundation. In
Proceedings of the 6th Workshop on domains (WD6), volume 73 of Electron.
Notes Theor. Comput. Sci., pages 217–245, Amsterdam, The Netherlands,
The Netherlands, October 2004. Elsevier Science Publishers B. V.

85

