N

N
N

HAL

open science

A synthetic axiomatization of Map Theory
Chantal Berline, Klaus Grue

» To cite this version:

‘ Chantal Berline, Klaus Grue. A synthetic axiomatization of Map Theory. 2012. hal-00678410v1

HAL Id: hal-00678410
https://hal.science/hal-00678410v1

Preprint submitted on 12 Mar 2012 (v1), last revised 15 Jan 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00678410v1
https://hal.archives-ouvertes.fr

A synthetic axiomatization of Map Theory™

Chantal Berline?, Klaus Grue™!*

“CNRS, PPS, UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
YDIKU, Universitetsparken 1, DK-2100 Copenhagen East, Denmark

Abstract

This paper presents a subtantially simplified axiomatization of Map Theory and
proves the consistency of this axiomatization in ZFC under the assumption that
there exists an inaccessible ordinal.

Map Theory axiomatizes lambda calculus plus Hilbert’s epsilon operator.
All theorems of ZFC set theory including the axiom of foundation are provable
in Map Theory, and if one omits Hilbert’s epsilon operator from Map Theory
then one is left with a computer programming language. Map Theory fulfills
Church’s original aim of introducing lambda calculus.

Map Theory is suited for reasoning about classical mathematics as well as
computer programs. Furthermore, Map Theory is suited for eliminating the
barrier between classical mathematics and computer science rather than just
supporting the two fields side by side.

Map Theory axiomatizes a universe of “maps”, some of which are “well-
founded”. The class of wellfounded maps in Map Theory corresponds to the
universe of sets in ZFC. Previous versions of Map Theory had axioms which
populated the class of wellfounded maps, much like the power set axiom et.al.
populates the universe of ZFC. The new axiomatization of Map Theory is “syn-
thetic” in the sense that the class of wellfounded maps is defined inside Map
Theory rather than being introduced through axioms.

[43

Keywords: lambda calculus, foundation of mathematics, map theory

Contents

1 Introduction 4

2 Preview of MT 6
2.1 Relation to ZFC 6

*This document is a collaborative effort.
*Corresponding author
Email addresses: berline@pps.jussieu.fr (Chantal Berline), grue@diku.dk (Klaus
Grue)
! Present address: Rovsing A/S, Dyregaardsvej 2, DK-2740 Skovlunde, Denmark

Preprint submitted to Elsevier February 16, 2012

2.2 Recursion
2.3 Russell’'sparadox,
2.4 Programming
Informal semantics

3.1 Introduction
3.2 Syntax
3.3 Computation
3.4 Further constructs oL
3.5 Programs
3.6 Equality o
3.7 Extensionality o
3.8 Hilbert’s choice operator
3.9 Pure existence revisitedo Lo
Axioms and inference rules

4.1 Elementary axioms and inference rules
4.2 Monotonicity and Minimality
4.3 Extensionality L
44 AxiomsonE
4.5 Quantification axiomso
4.6 The definition of ¥ oL
Comparing MT and MT,

5.1 Axioms and rulesof MTqg
5.2 Axioms and rulesof MT oL
5.3 Proof theoretical strength
5.4 Models of MT versus models of MTqo
5.5 Levels of difficulty of the groups of axioms
5.6 Models of subsystems of MT
Approach

The k-Scott semantics

7.1 Notation
7.2 k-Scott semantics
7.3 k-Scott domains
7.4 k-continuous functions
7.5 Syntactic monotonicity L oL
7.6 K-opensets e
7.7 Reflexive objects and models of pure A-calculus
7.8 Tarski’s minimal fixed point operators

15
16
16
18
19
20
21

23
23
24
25
25
25
26

27

8 Premodels of Map Theory
8.1 The domain equation Fq,,
8.2 Premodels
8.3 Standard and canonical models of MTq
8.4 Towards modelling the quantification axioms
8.5 Towards modelling of Mono, Min, and Ext

9 Building the canonical k-premodel
9.1 Pes's . . .
9.2 Pcsgenerators
9.3 The web of the canonical k-premodel
9.4 Some properties of theweb
9.5 The domain of the canonical x-premodel
9.6 The canonical k-premodel
9.7 Tyingupalooseend

10 Canonical premodels satisfy Mono, Min, and Ext
10.1 A characterization of the order of M via application
10.2 Ext . . o oo
10.3 A-definability of the orderof M
10.4 Y and minimality oo

11 Concepts for proving UBT and LBT
11.1 Main theorem
11.2 Elementary observations
11.3 Duals, boundaries, closure, and functions
114 Cardinality
11.5 Hierarchies 0.
11.6 Self-extensionality
11.7 Restriction L o
11.8 Closure properties of O7(®)

12 Proof of the Upper Bound Theorem (UBT)
12.1 Flatorder
12.2 Limited size
12.3 Proof of UBT

13 Proof of the Lower Bound Theorem (LBT)
13.1 A countable collection of maps
13.2 Characteristic maps
13.3 Cardinality
13.4 Pairs e
13.5 Analysisof s L
13.6 Lower bounds o
13.7 Bethnumbers oo
13.8 Growth lemma

13.9 Proof of the lower bound theorem 61

A Computational properties of canonical pre-models 61
A.1 Introduction of 7, and auxiliary concepts 61
A.2 Parallel constructs 62
A3 Definitionof T,and 7. Lo 63
A.4 Semantic and syntactic existence L 64
A.5 Computational adequacy 65
A6 Soundness 67
A7 Full abstraction L 68
A8 Negativeresults 68

B Summary of MT 72
B.1 Syntax 72
B.2 Definitions. e 72
B.3 Axioms and inferencerules 73

C Index 74

1. Introduction

Map theory is an axiomatic theory which consists of a computer program-
ming language plus Hilbert’s epsilon operator. All theorems of ZFC set theory
including the axiom of foundation are provable in Map Theory, and if one omits
Hilbert’s epsilon operator from Map Theory then one is left with a computer
programming language, c.f. Section 2.4.

Map Theory is suited for reasoning about classical mathematics as well as
computer programs. Furthermore, Map Theory is suited for eliminating the
barrier between classical mathematics and computer science rather than just
supporting the two fields side by side.

The first version of Map Theory [8], which we will call MTy in this paper,
had complex axioms and a complex model. [3] provided a simpler model. The
present paper provides a simpler and more synthetic, while more powerful, ax-
iomatization that we will call MT, and proves the consistency of the enhanced
system starting from the minimal (or canonical) models of MTq built in [3].

Map Theory is an axiomatic system, but it does not rely on propositional
and first order predicate calculus. Rather, it is an equational theory which relies
on untyped lambda calculus. In particular, models of Map Theory are also
models of untyped lambda calculus. We shall refer to elements of such models
as maps. As for A-calculus, programming is made possible in Map Theory by
the adjunction of compatible reduction rules.

Map Theory generates quantifiers and first order calculus via a construct
€, whose semantics is that of Hilberts choice operator acting over a universe 1/3
of “wellfounded maps”. ¢ is axiomatized throught the “quantification axioms”
(four equations).

Apart from ¢, MT and MT, have in common a few elementary constructs
and related axioms which take care of the computational part of Map Theory,
and simultaneously bear some other meanings [8]. Some “sugar” has also been
added to MT, but this is inessential.

Apart from € and the elementary constructs, MTy has only one construct ¢,
which is in spirit the characteristic function of 1& MT{ has the power to embody
ZFC because ¢ satisfies ten equations, each axiomatizing one, specific closure
property of 1[), and it also has one inference rule for wellfoundedness. Having ten
axioms, even if most of them are very simple, was acceptable (after all ZFC also
has many existence axioms) but not satisfactory in that all the closure properties
are instances of a single, although non-axiomatizable, Generic Closure Property
(GCP, [3]). GCP was one of the founding intuitions behind Map Theory (c.f.
[8]), it was satisfied in our models of MTy, and our desire was to reflect it at
the level of syntax.

With the present MT not only do we solve this problem (whence “synthetic”)
but also eliminate the construct ¢, the ten axioms, and the inference rule, re-
placing them by ... nothing (whence “simpler”). Moreover, the new system
is stronger than MT,. That one construct, ten axioms, and a rule can be re-
placed by nothing should be taken with three grains of salt as explained in the
following.

The main trick is that we take ’(ZJ to be the smallest universe satisfying GCP,
and the characteristic function 1 of that universe happens to be defininable
from other MT constructs. The first grain of salt is that when we eliminate
¢, we replace it by ¥ in the quantification axioms. The second grain of salt
is that for defining ¢ we need to add a construct E (“pure existence”) and its
related axioms. However, and in contrast to ¢, E is very simple to describe, to
axiomatize, and to model, so the cost of that is small. The third grain of salt is
that the definition of ¢ also requires a minimal fixed point operator. Fixed point
operators come for free with untyped A-calculus, but forcing minimality at the
level of syntax requires to axiomatize it w.r.t. some pertinent and MT-definable
order. This too can be done, and at a rather low syntactic and semantic cost.

Finding the right MT was of course already a challenge, but proving its
consistency was another one. Fortunately, the consistency of a system only has
to be proved once, while hopefully the system will be used many times, so having
a simpler system is a gain, even if its consistency proof is demanding.

To give an idea of the difficulty of finding an appropriate and consistent
MT, it is worth to recall here that a first “synthetic” version of MT, called
MT,, conceived in the same spirit, was present in [9], that many proofs have
been developed in it (which should be easy to translate to MT), but that the
consistency of MT, is still an open problem. We will soon come back to MT,
below.

The consistency proof of MT starts from a (canonical) model of MTy, and
then occupies several sections. Not all models of MTy can be enriched to a
model of MT; in fact MT has necessarily much fewer models than MTj.

Section 2 gives a preview of MT. Section 3 presents the semantics of MT in-
formally. Section 4 presents the axioms and inference rules. Section 5 compares

MT to MTy and discusses the axioms. The remaining sections prove the con-
sistency. Appendix A addresses the adequacy, soundness, and full abstraction
of canonical pre-models with respect to the programming language underlying
MT. Appendix B summarizes the axioms and rules of MT. Appendix C contains
an index.

Relation to other systems

MT(was the first system fulfilling Church’s original aim at the origin of the
creation of (untyped) A-calculus. Church’s aim was to give a common and un-
typed foundation to mathematics and computation, based on functions (viewed
as rules) and application, in place of sets and membership. As is well known,
Church’s general axiomatic system was soon proved inconsistent, but its com-
putational part (the now usual untyped A-calculus) had an immense impact on
computer science. The various intuitions behind Map Theory, its very close
links to Church’s system, its advantages w.r.t. ZFC, including an integrated
programming language, and a much richer expressive power (classes, operators,
constructors, etc. also quite directly live in Map Theory), all this was developed
in [3, 8].

For a comparison of Map Theory with other foundational+computational
systems see [3, 8] and also Section 2.1 below. For a version of MT(with anti-
foundation axioms a la Aczel [1], see [15, 16].

In the present paper we will hence concentrate on: giving enough of the
intuitions on Map Theory to motivate the reader, to deepen the understanding
of in which sense MT is an improvement over M Ty, and to support the technical
developments that we will have to implement in order to prove the consistency of
MT. Finally, we will also explore the computational properties of the simplest
(“canonical”) models of the equational theory MT, w.r.t. the computational
rules which are behind it.

2. Preview of MT

2.1. Relation to ZFC

MT is a Hilbert style axiomatic system which comprises syntactic definitions
of terms and well-formed formulas as well as axioms and inference rules.

MT has two terms T and F which denote truth and falsehood, respectively,
and MT formulas have form A = B where A and B are MT terms. We shall
refer to such formulas as equations.

Set membership of ZFC is definable as a term E of MT such that Exy = T iff
the set represented by = belongs to the set represented by y. We shall use the
infix notation z€y for Exy. Also definable in MT are universal quantification v,
negation =, implication =, the empty set @), and so on.

In MT it is trivial to prove T = -5F and F = =T, and one cannot (Theorem
2.1.1) prove T = F. For suitable definitions of set membership and so on, each
formula A of ZFC becomes a term A of MT. The general idea is that if A
holds in ZFC then A = T should hold in MT (Theorem 2.1.2). As an example,

Va:xg) is a formula of ZFC, ancﬁ@ is the corresponding term of MT, and
(Va: 2¢0) = T holds in MT. The term Va: &0 is shorthand for V(Az. = (zE&0).

We now make the statements above more precise. Let ZFC+SI denote ZFC
extended with the assumption that there exists an inaccessible ordinal. Let o
be the smallest inaccessible. Let —SI be the assumption that there exist no
inaccessible ordinals. Let V, be the usual model of ZFC+=SI in ZFC+SI. Let
M be the canonical model of MT in ZFC+SI built in Section 9. The present
paper proves:

Theorem 2.1.1 (Main Theorem). M satisfies all the azioms and inference
rules of MT and does not satisfy T = F. This proves the consistency of MT.

For arbitrary, closed formulas A of ZFC we have:
Theorem 2.1.2. V, satisfies A iff M satisfies A=T.

Theorem 2.1.2 follows easily from [3, Appendix A.4] and the fact that M builds
on top of the model built in [3]. As a technicality, MT and MTy have slightly
different syntax, but for closed formulas A of ZFC, A only uses constructs
common to MT and MTy, and Theorem 2.1.2 carries over from MTy to MT
without changing the definition of A.

Conjecture 2.1.3. If A is provable in ZFEC+-SI then A = T is provable in
MT.

Conjecture 2.1.3 is supported by the following:
Theorem 2.1.4 ([8]). If A is provable in ZFC then A =T is provable in MT.

Theorem 2.1.5 ([9]). If A is provable in ZFC then A =T is provable in MT,
where MT, is the version of Map Theory defined in [9].

MT,. resembles MT, but all attempts at proving MT, consistent have failed. A
proof of (=SI) = T in MT. should be easy. To prove Conjecture 2.1.3 one has
to prove (=SI) = T in MT and to translate the proof of Theorem 2.1.5 to MT.
This remains to be done.

It is not really intended that MT should prove (—=SI) = T; it is rather a
side effect. The original MT, was designed as “as flexible as ZFC”, and is in
particular consistent with SI = T as well as (=SI) = T. The MT{ system has a
constant ¢ and a group of ¢-azxioms which comprises the three wellfoundedness
axioms, the seven construction axioms, and the inference rule of transfinite
induction of [8]. MT replaces the constant ¢ by a closed term ¢ and omits
the ¢-axioms. That makes MT more rigid than MTy and in particular makes
(—=SI) = T provable. The definition of 4 is somewhat analogous to the definition
of the minimal V,, in ZFC (o the first inaccessible).

2.2. Recursion

MT has a number of advantages over ZFC. One is that it allows to combine
unrestricted recursion with arbitrary set constructors. As an example, suppose
zUy, Uz, {2}, and {A | xEB} are the binary union, unary union, unit set,
and replacement set operators of ZFC, respectively, translated to MT. One may
define the ordinal successor x’ thus in MT:

o =20 {z}

And then one may define the set rank operator p(x) thus:

px) = U{p(y)’ | y&x}

In this paper, = is used for definitions. In MT, definitions are allowed to be
recursive like the definition of p above where the defined concept p appears in the
right hand side of its own definition. Recursive definitions in MT are shorthand
for direct (i.e. non-recursive) definitions which involve the fixed point operator
(c.f. Section 3.2).

ZFC only permits direct definitions and includes no fixed point operator.
ZFC permits definition by transfinite induction, which resembles primitive re-
cursion, but does not support unrestricted recursion like MT does.

The definition of p in MT above does not rely on ordinals or transfinite
induction. Rather, in MT, one may define p as above and then use it to define
the class Ord of ordinals:

Ord(z) = Jy: 2€p(y)

As another example, in MT we may use Hilbert’s choice operator e recursively
to well-order any set A:

fla) = exaégla)
g0) = AN {f() | véal
r<y = da:x € A\gla)AyéEgla)

Above, A is a wellfounded map of MT and < well-orders the set represented by
A. ex: B chooses if possible a wellfounded = such that B is true, c.f. Section 4.5.

2.8. Russell’s paradoz

In naive set theory, define S = {z|z ¢ z} and R = S € S. We have
reSergrand R Se S S¢S < —R which is Russell’s paradox.
The paradox states that negation has a fixed point, which is impossible in a
consistent, two-valued logic.

In ZFC, the paradox is avoided by banning S, but that is not an option in
MT which allows recursion. As an example, one may define Russell’s paradoxical
statement R thus in MT:

R =R

In MT,if R=T then R =T =F and if R = F then R = “F = T so R equals
neither T nor F. Indeed, MT has a fixed point operator Y and an element _L
playing, among others, the role of the third logical value “undefinedness”; and
it is indeed provable in MT that R = Y= = L.

2.4. Programming

Another advantage of MT over ZFC is that if one removes Hilbert’s £ from
the core syntax of MT then one is left with a Turing complete computer program-
ming language. This language is a type free lambda calculus with uhr-elements
and the programs are closed e-free MT-terms.

The present paper is about MT as an equational axiomatic theory. That MT
can be used for programming should be seen here as motivation only. When
speaking of programming with MT it is understood that we have furthermore
included compatible reduction rules (c.f. Section 3.3). We now elaborate on the
programming motivations.

Having a computer programming language as a syntactical subset of the
theory allows to reason about programs without having to model the programs
mathematically. That simplifies the field of program semantics considerably.
For a simple example of programming and reasoning in MT, see Example 4.2.1.
Map Theory also provides good support for reasoning about languages different
from its own.

Since MT contains a computer programming language, a programmer may
ask questions like:

e Isis possible to implement arbitrary algorithms efficiently in the language?

e [s it possible to download compiler, linker, and runtime system for the
language?

e [s it possible in the language e.g. to receive mouse clicks from a user, to
write bytes to a disk, and to display graphics on a screen?

The answers to these questions are yes, c.f. http://lox.1la/.

Sections 3.3-3.7 describe the computational aspects of MT. Appendix A
proves some results on computational adequacy, soundness, and full abstraction.
http://lox.la/ elaborates on MT as a programming language.

3. Informal semantics

3.1. Introduction

To introduce ZFC one will typically give some examples of finite sets first.
Actually, ZFC is nothing but the theory of finite sets extended by an infinite set
w. Likewise, MT is nothing but the theory of computable functions extended
with Hilbert’s non-computable epsilon operator.

8.2. Syntax

The syntax of variables, terms, and well-formed formulas of MT reads:

V = xlylz]|--
T o= VIXVTI|TT T[T, T, T LIYT|TIT|ET |eT
W = T=T

Az.A denotes lambda abstraction and fx denotes functional application. T
denotes truth. Falsehood F is not included in the syntax; we define it by F =
Az.T. if denotes selection; we have if[T,b,c] = b and if(A\x.A,b,c] = ¢. L
denotes undefinedness or infinite looping. Y denotes a fixed point operator; we
have Yf = f(Yf) for all f. || denotes parallel or; a || b equals T if a or b or both
equal T. E denotes pure existence; we have Ep = T iff pxr = T for some x. We
say that x is wellfounded if ¥x = T where we define ¢ in Section 4.6. £ denotes
Hilbert’s choice operator; under reasonable conditions, ep is a wellfounded =
such that px = T.

In Section 8 we introduce the notions of standard quasimodels of MT and
the more restricted notion of canonical models, where the latter are unique up
to the choice of a regular cardinal x. Canonical models satisfy all axioms and
inference rules of MT. Standard quasimodels satisfy some (possibly all) of the
axioms and inference rules.

Now let Youry = Af.(Az.f(zz))(Az.f(zz)) and Loy = YcuryAz.z. In
canonical models of MT we will prove that

Yf = YCurryf
L = lcumy = (Az.zz)(Az.zx)

Thus, without loss of power and consistency, one might omit 1 and Y from the
syntax and use Ycurry and Lcurry instead. Doing so, however, would reduce the
number of possible models of MT. Thus, we include | and Y in the syntax and
prove the two equations above as separate theorems which are only guaranteed
in canonical models. Inclusion of 1 and Y also simplifies the consistency proof
since modelling of Y f and proving Y f = Ycumy f can be treated separately. We
shall use MT4c¢ to denote the version of MT where we omit 1 and Y from the
syntax.

Parallel or || is neither needed for developing ZFC in MT nor convenient when
programming. Parallel or is merely included for the sake of a full abstraction
result. We use full abstraction for explaining equality in Section 3.6.

3.8. Computation

The constructs Az.A, ab, T, and if[a, b, ¢] together with adequate reduction
rules (defined below) form a computer programming language. The language is
Turing complete in the sense that any recursive function can be expressed in it.

In the following, A, B, and C denote terms, a, b, ¢, and r denote closed
terms, and z, y, and z denote variables. (A | z := B) denotes substitution with
renaming of bound variables as needed.

10

From a theoretical point of view, and very remote from the implementation

in [10], one can define the programming language by the smallest relation EN
which satisfies:

B 50T

(Az.A)B L (A|z:=B)

if[T, B,C] 4 B

ifAz.A,B,C] & C

ALR = AB-LHRB

ALR = if[4,B,C] > if[R,B,C]

As an example of a reduction, if[Ax.z, Ay.y, Az.z] T reduces to T:
if[Az.xz, \y.y, \z.z] T N (Az.2)T R

We have specified leftmost reduction order so that e.g. if[T, T, (Az.zx)(Az.zz))
reduces to T without (Az.zz)(Az.zz) being reduced.

Suppose a L b. Under this assumption, a = b is provable in MT using only
elementary axioms and inference rules. Hence, a = b holds in all models of MT.
Also, a = b holds in all standard quasimodels, even those which do not model
all of MT (c.f. Section 5.4). That holds for the definition of a 2 b given above
as well as for the extensions given in the following.

We use Azy.A to denote Az.\y.A. Furthermore, application AB is left asso-
ciative and has higher priority than Az.A so Azy.ABC means Az.\y.((AB)C).

We shall say that a term is a root normal term if it has form T or Az.A.
Reduction stops when a root normal term is reached. As an example,

(Azy.2)((Az.zz)(Ax.zz))
reduces to
Ay.(Az.zx)(Ax.zx)

which is not reduced further. We shall refer to terms of form T and A\z.A as
true and function normal terms, respectively.

3.4. Further constructs

One may extend the programming language by the constructs L, Ya, a | b,
and Ea. One cannot extend the language by ca because € cannot be seen as
computable.

In the following, a, b, ¢, f, and r denote closed, epsilon free terms.

The constructs 1 and Y may be defined or may be included in the syntax.
If they are defined, they need no reduction rules. If they are included in the
syntax, their reduction rules read:
L5 1
YIS S

11

The construct a || b can be computed thus: Reduce a and b in parallel. If one
of them reduces to T, halt the other reduction and return T. If both reduce to
function normal terms, return Ax.T.

The construct Ea can be computed thus: Reduce ab for all closed terms b
in parallel. If ab reduces to T for some b, halt all reductions and return T.
Otherwise, proceed computing indefinitely.

The construct Ea is not very useful in computer programs since Ea either
loops indefinitely or returns T. The construct a || b is slightly more useful
since it has two possible return values, T and Az.T, but it is still not a pop-
ular programming construct, and few programming languages support it. The
implementation in [10] supports neither Ea nor a || b.

The construct Ea is needed for defining v and so is indirectly needed for
axiomatizing Hilbert’s choice operator . The construct a || b is included for the
sake of full abstraction.

Reduction rules for a || b read:

T b LT
Az A) | b S if[b, T, Az.T]
a7 = (a|lb) >0

A reduction rule for Ea is more complicated. To reduce Ea we need to reduce
ab for all closed terms b in parallel. Now define

S = G = lzyzaz(yz)
K = G = l\yx
C3 = T
Cs = Iayziflz,y, 2]
C5 = L
Ce = Mo.Yz
Cr = Azy(z|y)
Cs = Mv.Ex

We shall refer to terms built up from the eight combinators above plus func-
tional application as combinator terms. Every closed, epsilon free term of MT
is computationally equivalent to a combinator term. Thus, we may compute Ea
by applying a to all combinator terms b:

Ea 5 aG Il -] aCs || Ez.Ey.a(xy)
ar = Ea>Er

Above, Ex.A denotes E(Az.A). To see how E works, first note that Ea by
definition reduces to

aCy || -+ || aCs || Ex.Ey.a(zy)
Second note that the last factor Ez.Ey.a(xy) in turn reduces to

Ey.a(C1y) || - - || Ey.a(Csy) || Eu.Ev.Ey.a((uv)y)

12

Third note that the first factor Ey.a(Cyy) in turn reduces to
a(C1Cqy) || -+ || a(C1Cg) || Eu.Ev.a(Cq(uv))

The penultimate factor a(C;Cs) shows that a, among other, is applied to the
combinator term C;Cg. In general, reduction of Ea causes a to be applied to all
combinator terms in parallel.

We have now given reduction rules for reducing arbitrary closed, epsilon free
terms. We shall give no reduction rules for ea since, as mentioned, it is not
computable.

3.5. Programs

We shall refer to closed, e-free MT terms as MT programs. Likewise, we
shall refer to closed, e-free MT gt terms as MTqes programs and to closed, e-
and ¢-free MT terms as M Ty programs.

The programs of each of the theories are exactly the closed terms which are
reducible by machine. Here we do not require reduction to terminate: a machine
is supposed to loop indefinitely when reducing e.g. 1, and L is counted among
the programs.

3.6. Equality

Wellformed formulas of MT have form a = b where a and b are terms. We
now present some of the intuition behind equality.

Let N; be the set of MT programs that reduce to T, let Ny be the set of
MT programs that reduce to function normal form, and let A/, be the set of the
remaining MT programs. For MT programs a and b we define root equivalence
a ~ b thus:

a~bs (aeNobeN)N(aeNsesbeN)AN(aeN L ©beN))

In the definition above, each conjunct follows from the other two, so one could
omit one of the conjuncts. We say that the MT programs a and b are observa-
tionally equal, written a =qps b, if ca ~ ¢b for all MT programs c.

Intuitively, equality of MT is observational equality. Technically, matters
are a bit more complicated:

Let M, be the MT canonical k-model as defined in Sections 7-9. Modelling
€ requires o < k for an inaccessible o, but modelling the other constructs just
requires k > w. Now let a =, b denote M,; = a = b. We have:

Theorem 3.6.1 (Full Abstraction of M). a =os b & a =, b for MT
programs a and b.

See Appendix A for a proof and for related positive and negative results. Full
abstraction may help understanding MT minus Hilbert’s epsilon operator.
Now for a,b € M,, define

a~e b (a=TESb=T)A(a=x, LS b=, 1)

Let a =0, b denote VceM,;: ca ~,; cb. The closest one can get to full abstraction
in the general case reads:

13

Fact 3.6.2. a = b& a=,b fora,be M,, k> w, k regular.

The fact follows trivially from the definition of M, c.f. Section 9.7.

3.7. Eztensionality

Two MT programs a and b happen to be observationally equivalent iff

ayl...yanyl...yn

for all n > 0 and all MT programs ¥, . ..,y,. That follows from Theorem 10.1.2
and Appendix A and provides another intuitive description of equality. We also
have:

Fact 3.7.1. Let a,b € M,. We have ca ~, cb for all c € M, iff ayr - Yn ~x
by -+ yn for alln >0 and all y1,...,y, € M.

Fact 3.7.1 follows from Theorem 10.1.2. The ZFC equivalent of Fact 3.7.1 reads:
accebecforallsetsciff yca< yebfor all sets y

We shall refer to Fact 3.7.1 as semantic extensionality; we express it axiomati-
cally in Section 4.3.

3.8. Hilbert’s choice operator

To explain &, we shall resort to a standard model M as presented in Section
8.3 (in particular, we may use the canonical model M, k regular, K > o, o
inaccessible). We shall refer to elements of M as maps.

For all closed MT terms A let A denote the element of M denoted by A.
Let ¢ = {xecM | o = T} where we define 9 in Section 4.6. We shall refer to

elements of 1& as wellfounded maps.

As before, let V, be the usual model of ZFC inside ZFC+SI. The set ¢ is
a big set in the sense that there exists a surjective function Z: 1[) — V, which
allows to represent all sets of V,, by wellfounded maps.

We shall say that p € M is total, written Total(p), if Voe): pr # L.

We shall use £ to denote the intended interpretation of Hilbert’s choice op-
erator ep. ¢ is a function of type e: M — M. For all p € M, ¢ has the following
properties:

e(p) = L if = Total(p)

e(p) e ¢ if Total(p)

ple(p)) = T if Total(p) A Jzep:pr =T

e(p) = gq if Total(p) A Total(q) AVaed: (pr =T < gz = T)

In other words, ¢ is a Hilbert choice operator over 1& The last property above
is Ackermann’s axiom.

The strictness requirement that ep = L if = Total(p) has two motivations.
First, MT includes an inference rule which implies that application is monotonic

14

for a certain order p < ¢ so € must be monotonic in the sense that p < ¢ must
imply ep = €q. Strictness together with Ackermann’s axiom and the definition of
p = q given later is sufficient to ensure monotonicity of €. Second, the strictness
requirement simplifies the quantification axioms stated later.

When comparing with [3] note that the present v is analogous to the ¢ of
[3] and the present ¢ is analogous to the ® of [3]. The ¥ of [3] is unrelated to

1 and .

3.9. Pure existence revisited

Let M and M, be as above. Pure existence E is designed to satisfy in M
that Ep = T if px = T for some x and Ep = L otherwise (c.f. Section 4.4). So
Ep =T in M iff px = T for some x € M while the reduction rule for Ep given in
Section 3.4 gives that Ep = T iff px = T for some program . We now compare
these two notions of existential quantification. Define

Esemantic = /\p- Ep

Esyntactic = Ap [pcl H T H pc8 H Esyntactic)\U Esyntactic)\’UP(U’U)]
We have

Esemantic?y = T if pz =T for some map x

Esyntacticpy = T iff pz =T for some program x

M., happens to be a simple and very pertinent model for modelling the
computational and elementary part of MT even if M, is not a model of the full
theory. We will see this later on, and we will prove in Appendix A that, among
other nice properties, M., satisfies Esemantic = Esyntactic (c.f. Lemma A.4.1).
Now, this equation can be proved to be false in M, k > w (c.f. Theorem A.8.1
and its proof), and more generally should be false in all the models of MT built
from standard premodels, for a similar reason (these models are in a sense “too
big”).

The E of MT is the semantic one. The computational intuition behind E
that we provided at the end of Section 3.4 is valid in M., but does not hold in
full MT.

4. Axioms and inference rules

MT has five groups of axioms and inference rules:

Elementary axioms and inference rules
Monotonicity and minimality
Extensionality

Axioms on E

G W

Quantification axioms

15

4.1. Elementary axioms and inference rules

Let A, B, and C be (possibly open) terms and let « and y be variables. Let

A = B denote that A and B are identical except for naming of bound variables.
Let 1 = Azy.zy. The first set of axioms and inference rules of MT reads:

Trans A=B:A=CkHB=C
Sub B=Ck+AB = AC
Gen A=BFXx. A= \z.B

Al TB=T
A2 (B) (A A)B=C ifC2(A|z:=8)

A3 1B=1

11 if[T,B,C] = B

12 if(\e.A, B,C] = C

13 if[L,B,C] = L

QND AT = BT; A(1C) = B(1C); AL = BL - AC = BC
P1 TIB=T

P2 A T=T
P3 Az A || Ay.B=A2T

Y YA = A(YA)

Quartum Non Datur (QND) approximates that every map x satisfies x = T or
x = L or x = 1z, there is no fourth possibility.

Example 4.1.1. As an example of use of QND, define

F = \o.T
~x = if[z, T,F]

Using the definitions above, QND allows to prove the following:

TNy = yAzx
(xAY)ANz = A (yAz2)
TN = Rz

4.2. Monotonicity and Minimality

Define:
rly = iflx,ifly, T, L],ifly, L, Az.(z2) | (y2)]]
ry = xz=1xly

The recursive definition of x | y is shorthand for:

vy = (YA foy.if(z,ifly, T, L], if[y, L, Az. f(z2)(y2)]]) vy

16

In canonical models, x < y coincides with the order of the model and x | y is
the greatest lower bound of z and y.
The rules of Monotonicity and Minimality read:

Mono B=<CHAB <X AC
Min AB=<BFYA<B

Example 4.2.1. We now introduce a primitive representation of natural num-
bers. We first do so semantically. Let M be a model of MT. We shall refer to
elements of M as maps.

We shall say that a map x is wellfounded w.r.t. a set G of maps if, for all
Y1,Y2,... € G there exists a natural number n such that zy;---y, = T. We
shall say that a map x is a natural number map if it is wellfounded w.r.t. {T}.
Thus, = is a natural number map if

n

—
eTT--T=T

for some natural number n. As examples, Azyz.T is a natural number map
and Azryz.Ll is not. We shall say that a natural number map = represents the
smallest n which satisfies the equation above so Axyz.T represents ‘three’.

We now formalize natural numbers in MT in the sense that we give a number
of syntactic definitions which allow to reason formally about natural numbers
in MT. The definitions read:

T
A\ry. x

Kz

M. if[z, T, f(2T)]

Yw

if [z, if[y, T, F],if[y, F, 2T = yT]]
\e.x = ¢

8 x o

e

™R E g
<
|

As an example, 0" denotes one among many maps which represents ‘two’.
The semantics of w in the model M is that wz = T if x is a natural number map
and wx = L otherwise. For that reason we shall refer to w as the characteristic
map of the set of natural number maps (c.f. Definition 4.6.1). For natural
number maps and y we have (z = y) = T iff z and y represent the same
number.

In MT, we can prove wf = Az.if[z, T, 2T < 2T]. Furthermore, we can prove
E = (x.x £ 2) = Ia.if[x,if[z, T,F|,if[x, F, 2T £ 2T]] = Aa.if[z, T,2T £ 2T]
where the latter equality requires QND. Hence, we can prove wé = € so wé < &
(c.f. Example 4.3.2). Hence, we can prove w < & by Min.

Semantically, w = £ expresses that (z = z) = T for all natural number
maps: For each natural number map = we have wr = T and wx < £x which
shows Ex =T.

17

Thus, the syntactic statement w < & formalizes the semantic statement that
every natural number equals itself and the syntactic statement w < & has a
formal proof in MT.

From a program correctness point of view we have now defined a program
x £ y inside MT and then proved w =< & which expresses that (xZ22)=T
for all natural number maps . While this is a very simple example and even
though space does not even permit to write out proofs in details, this still gives
a first, small example of the fact that MT allows programming and reasoning
inside the same framework. For a continuation of the present example which
uses quantifiers see Example 4.5.2.

Note that the definition of 2 = y only uses the four constructs Az. A, ab, T,
and if[a, b, ¢], so one can compile the program z £ y and run it on arguments
x and y using the system described in [10].

In other logical frameworks than MT, given a recursive program like z < v,
proofs of theorems like (z = z) = T for all natural numbers 2 usually requires
some sort of Peano induction. In MT, induction is expressed by Min. Above,
we applied Min to the characteristic function w of natural number maps to get
something equivalent to Peano induction (c.f. [9, Section 7.13]). Applying Min
to the characteristic map v defined in Section 4.6 yields an induction scheme
which resembles but is stronger than transfinite induction (c.f. [9, Section 9.13]).

4.3. Extensionality

Recall =z = if[x, T, F] from Example 4.1.1. For all (possibly open) terms
A, B, and C (possibly containing epsilon), the inference rule of extensionality
reads:

Ext For variables x, y not free in A and B we have
~(Azx) = =(Bz); Azy=AC; Bxy=BC - Az = Bz

Note that if the premises of Ext hold and if ¢ = Azy.C then we have e.g.

~(Azy1y2) = ~(A(czyr)y2) = ~(A(c(czyr)y2)) =
~(B(c(cxyr)y2)) = ~(B(cxyr)y2) = =(Bxy1y2)

More generally, we have ~(Azy; - - - yn) = =~(Azy; - - - y»). Now, canonical mod-
els M have the semantic extensionality property that if a,b € M and if

~(ayr - Yn) = =(by1 - yn)

for all natural numbers n and all y1,...,y, € M then a = b. Rule Ext is a
syntactical approximation of that fact which works in those cases where one
can find a C for which one can prove the premises of Ext. It is typically rather
difficult to find a witness C but it is possible more often than one should expect.

The relation between Ext and semantic extensionality is: The premises of Ext
entail ~(Azy - - yn) = ~(Bzy; - - - y») which by semantic extensionality entail
Az = Bz which is exactly the conclusion of Ext.

18

Extensionality in MT corresponds to extensionality in set theory, where the
latter says that if y € a & y € b then a = b. Here, P < Q of set theory
corresponds to ~P = ~Q in MT and y € a of set theory corresponds to ay; - - - yn,
in MT.

Example 4.3.1. Let i = Az.if[z, T, A\y.i(zy)] and I = Az.z. To prove
iz = Iz by Ext take C to be zy and prove ~(ix) = ~(Ix), izy = i(xy), and
Izy = I(xy). The two first statements above can be proved using QND and the
third is trivial.

Example 4.3.2. Ext allows to prove x | * =z, z |l y =y | x, and = |
(yd z) = (z | y)] 2. Those results are useful since they entail z < =z,
xy;y3zbtz=y, and z < y;y <zt x < z. (For proofs, see [9]).

When developing ZFC in MT, Ext plays a marginal but essential role [9].
In Example 4.2.1, Min replaced usual Peano induction and Min was used in the
essential step in proving (z = x) = T, but Ext was also in play for proving
wé = & from w€ = £. Likewise, when developing ZFC, the results listed in
Example 4.3.2 are used in many places. Among other, it is used for proving the
MT version of transfinite induction which in turn is used for proving most of the
proper axioms of ZFC. Concerning Ext, the development of ZFC only depends
on the results listed in Example 4.3.2 and does not make other use of Ext.

Example 4.3.3. Ext also allows to prove F5 = F3 where

Iy
F3

AT Ay Az F3

F5 and F3 both denote Axi.\xzo.Ax3. - and we have Fy =, F3. Thus, F5 and
F3 provide an example of two pure lambda terms which are provably equal in
MT and observationally equal from the point of view of a computer, but not
beta equivalent in lambda calculus.

4.4. Axioms on E

Pure existence E is designed to satisfy Ex = T if xy = T for some y and
Ex = L ifzy = T for no y in standard models. Its axiomatization is a syntactical
approximation of this. Now define:

roy = Az.z(yz)
% = Ar.Az.iflzz, T, 1]
r—y = iflx,y,F]=iflz, T,F|

The axioms on E read:

ET ET=T

EB EL=1

EX Exz =E(xz)
EC E(zoy)— Ex

19

Axioms ET and EB are natural since Te = T and 1oz = L are axioms of MT.
EX says that Ex does not care about the value of xy if xy # T. EC says that if
x(yz) = T for some z then zw = T for some w.

4.5. Quantification axioms

Define:
lz = if[z, T,T]
=X = if[z,F,T]
I = =(plp)
dr: A = Iz A
Ve A = Sdx:5A
ET: A = §)\I.A
Vp = Va:ipr

Note that V, 3, and — are part of the syntax of ZFC+SI whereas Vv, 3, and = are
terms of MT. The quantifier axioms depend on a term v which will be defined
in Section 4.6. Recall 1& = {z € M | v = T}. In canonical models, for maps
p, we have

Vp = T if Vx@ﬁ:px =T
Vp = L1 if dJeey:ipr=_1
Vp = F otherwise

Hence, V expresses universal quantification over 1. Likewise, 3 expresses exis-
tential quantification over . The quantification axioms read:

Elim (prx) AN Yy — py
Ackermann ex:px = ex: (Y A px)
StrictE Y(ex: pr) = Va: (px)
StrictA |(Va: p) = Va: |(px)

Above, p, x, and y are variables of MT.

Example 4.5.1. As we shall see, elements of 1) are wellfounded w.r.t.
(see Example 4.2.1 for the definition of wellfoundedness with respect to a set).
This allows to use elements of 1 to represent sets of ZFC. We define the set
represented by x € 1 thus:

ZIT] = 0)

Z[x] {Zxz] |z €} fax#T

For the usual model V, of ZFC in ZFC+SI and canonical models M of MT

we have V, = {Z[z] | © € ¥} (cf. [3, Appendix A.4]) so all sets of ZFC are
representable by wellfounded maps z € ¥. Now define:

x=y = if[x,ifly, T,F],if[y, T, T]]
xSy = if[x,ifly, T, F],ifly, F, T]]
&y = if[y,F,3z =y
rZy = Vi (2€x&2Ey)

20

For z,y € ¢ we have (¢&y) = T iff Z[z] € Z[y] and (z=y) = T iff Z[z] =
Z[y]. An equivalent definition of = reads:

x=y = if[z,if[y, T,F],if[y, F, (VuEIv TU=Yv) A (VvEu xu=yv)]]

The latter formulation of = resembles that of = in Example 4.2.1.

Using €, &, =, and v we may now express all wellformed formulas of ZFC
in MT. All closed theorems of ZFC are satisfied by the standard model M of
MT (Theorem 2.1.2). As a conjecture (Conjecture 2.1.3), closed theorems of
ZFC+-8I are provable in MT.

Example 4.5.2. As a continuation of Example 4.2.1, define
vty = iffz,y, (@T) +]

Having a quantifier in MT allows to prove in MT e.g. that the term
9x,y:x+y§y+x

equals T. The proof involves a proof of Vy:z 4+ y = y + 2 by induction in z
(or, more precisely, a proof of w =< \eVy:z +y 2 y+x by Min). The proof
requires the ability to apply induction to a statement which contains both a
quantifier (V) and recursive programs (+ and =) and thus requires the ability
to mix recursive programs and quantifiers as is possible in MT.

4.6. The definition of ¥

We conclude the presentation of axioms by defining 1. Like in Section 3.8
let M be any standard model of MT. We first define some auxiliary concepts.

Definition 4.6.1.
(a) a € M is a characteristic map if a € F and ax € {T, L} for all x € M.
(b) Dom[a] = {x € M | ax =T}
(¢) a € M is a characteristic map of S C M if a is a characteristic map and
S = Dom|a].

In Example 4.2.1 we referred to w as “the characteristic map of the set of natural
number maps”.

Definition 4.6.2.
(a) U= Afy.Ex. foy
(b) z!ly=if[z,y, L]
(¢c) D= Az.if[z, T, T]
(d) f/g=iflf, T, z.gz! (fz /g)]

The intuitions behind Definition 4.6.2 are as follows. U satisfies Dom[Ua] =
UzemDom[az]. x !y is y guarded by z in the sense that if z =T then ! y =y
and if z # T then z ! y = L. Dz is true if « is “defined”, i.e. if x # L.

21

f/ g is a kind of “transitive restriction” of the function f to the domain
G = Dom|g] in the following sense: Suppose z1,...,2, € G and fx;-- -2, € F
then

ifyed

fxl TRy
(f [gwrwpy ~ { 1 otherwise

where root equality u ~ v was defined in Section 3.6. One may also think of
f/ g as a projection in the sense that (f /¢g) / g = f / g 2m f. The intuitions
given above hold in all standard models M, c.f. Section 11.7 and Fact 13.3.2(b).
f/ g equals | f of [3].

In Section 3.8 we defined ¢ = {zeM | ¢z = T}. We now go on to define .
To do so we need to define a number of auxiliary terms. In M, the terms 1, s,
S, S, P,Q, R, Ry, and Ry will have the following properties:

Yy E Q/AJ iff Yy=T by definition of 7,[3

Yy € O iff say=T for some a

Yy € ¢ iff Ssay =T for some a

Yy € 1/; iff Ssyay=T for some a
ye if Py=T

yev if Qsa)yy=T for some a

Yy E 123 if Rsybey =T for some b, ¢

yey if Ye=T and Rispbc =T and Ryspbcy =T for some b, ¢

For all a, b, and ¢, we will have that v, sa, Ssa, Ssia, P, Q(sa), Rsybc, and
Rysipbe are characteristic maps. For all a, Dom[sa] will be essentially o-small
in the sense that there exists a set A C 1/3 of cardinality less than ¢ such that
Dom[sa] = {w € ¢ | Ju€A:u < w}. The function Q mentioned above will
have the property that if Dom[v] is essentially o-small and if Quy = T then y
is wellfounded. See Sections 11-13 for proofs.

The definition of 9 and the auxiliary terms reads:

Definition 4.6.3.

)
) S=AfSF(US)

) S =Afa.if[a, P, if[aT, Q(f(aF)), Rf0(aT)(aF)]]
) P=Xy.ifly, T, L]

) Q= Mv.Dv! A\y.Vz.u(y(z / v))

) R=A\fobc.0c! Ry fobc! Ry fobc

g Ry = A\f0bc.Vz.D(f(b(cz / 0)))

The definition of ¢ replaces the ¢-axioms of M Ty (ten axioms and one infer-
ence rule). The definition of ¢ in MT corresponds to the following in ZFC: the
null set axiom, the pair set axiom, the power set axiom, the union set axiom,
the axiom of replacement, the axiom of infinity, and the axiom of restriction.

22

Note that s = YS = S(YS) = Ss = Ss(Us) = Ssy. Hence, in (d-i) above
one may think of f and 6 as s and v, respectively.

We have ¢y = Usy = Ea.say. So, in M, y is wellfounded iff say = T for
some a.

Example 4.6.4. We now prove that T is wellfounded by proving sTT = T.
To do so we first prove say = Ssyay as follows: say = (YS)ay = S(YS)ay =
Ssay = Ss(Ls)ay = Sspay. Then we note that sTT = SsyyTT = PT =T.

We now prove that Au.T is wellfounded by proving that s(T::T)(Au.T) = T:
Define b::c = Az.if[z, b, ¢]. We have (b::¢)T = b and (b::c)F = ¢. Hence, if
D(sc) = T then s(Tuc)y = Ssyp(Tue)y = Q(sc)y = Vz.sc(y(z | sc)). Hence,
s(TeT) (M. T) =Vz. sT(Au.T)(2 / sT)) =sTT =T.

Recall that we defined 0 = T, 1 = Au.T, 2 = Auw. T, and so on in Exam-
ple 4.2.1. We have now proved that 0 and 1 are wellfounded. Furthermore,
s(T=:(T::T))2 = T proves that 2 is wellfounded. We may go on and prove that
3 is wellfounded and so on into the transfinite. For the complete development,
see the proof of Theorem 11.1.3 in Section 13.

The ability of MT to model ZFC stems from several sources. First, the quan-
tification axioms reference v in a way which forces MT quantifiers to quantify
over the universe ¢y = {zeM | & = T}. Second, as shown in Example 4.6.4,
recursive use of s = Y.S populates 1&, putting a lower bound on the size of the
universe. Third, the minimality of Y permits a kind of transfinite induction
over 1&, putting an upper bound on the size of the universe. Fourth, Ext plays
a marginal but essential role in that it forces < to be a partial order.

When modelling ZFC in MT, one may define &, =, =, and V as in Section
4.5. Then, to prove e.g. the power set axiom one may find an MT term P(z) such
that P(z) represents the power set of the set represented by x. Then one may
prove VY, y: (yeP(2)&Vz: (2€y=>z€x)) and Va: ¢(P(x)) from which the power
set axiom is easy to prove. Proving Va: ¢ (P(x)) makes use of the second point
above by using that ¢ makes the universe big enough to contain P(z). But it
also uses the third point above because the proof requires a kind of transfinite
induction in z and thereby uses that the universe is so small that all sets have
powersets.

5. Comparing MT and MT,

We now deepen the comparison between M'T and M T which was only hinted
at in the introduction.

5.1. Axioms and rules of MT

MT(consisted of only three groups of axioms, using constructors T, L, if,
e, and ¢ (the innocuous || could have been added as well):

e Elementary axioms and rules (same as for MT).

23

e Quantification axioms.

e The ¢-axioms

The ¢-axioms comprise the three wellfoundedness axioms, the seven con-
struction axioms, and the inference rule of transfinite induction of [8]. The role
of the ¢-axioms was to force ¢ to behave as the characteristic function of the
universe ¢ of wellfounded sets. Most of the ¢-axioms were easy (e.g. ¢T =T),
two were highly non-obvious, and the rule was just expressing wellfoundation.
But in fact all were (independent) instances of a single recursive set-theoretical
equation ® = F,(®) on ® which involves an inaccessible cardinal o and will be
recalled in Definition 8.3.2. This recursive equation was the formalization in M
of the main intuition behind map theory, which was, as for Church ([4, 5]) to
have a universe whose primitives were the notions of “functions and application”
instead of “sets and membership”.

5.2. Axioms and rules of MT

The next intended step was hence to succeed to reflect the equation on ¢ at
the axiomatic level. This resulted in the present MT, where ¢ is now replaced
by the MT-term), whose definition requires the supplementary constructs Y
and E. E is easy to axiomatize and to model, so the real technical cost is the
addition of the extra rules Ext, Mono, and Min, and the (hard) proof that
truly represents ®. Mono and Min force the constant Y to behave, at the level
of the syntax, as a fixed point operator which is minimal w.r.t. the syntactic
order <.

MT consists of five groups of axioms and rules, and uses constructors T, L,
if, I, Y, E, and e:

e Elementary axioms and rules plus Y is a fixed point operator.
e Axioms on E.

e Axioms of Monotonicity (Mono) and Minimality (Min).

e The inference rule of Extensionality (Ext).

e Quantification axioms

The quantification axioms are the same? as for MT except that the ¢ of MTy
is replaced by v in MT; but the proof that these axioms can be satisfied is much
harder and very different, c.f. Section 8.4.

2This variant, containing 4 axioms, already appears in [3, Appendix C], and is equivalent
to the original set of 541 axioms where the five ones were stated in [8] and the sixth one, as
pointed out by Thierry Vallée, was used but not stated in [8]

24

5.8. Proof theoretical strength

MT, can prove neither SI = T nor (=SI) = T since it can be consistently
extended by either one. In contrast, (—=SI) = T is conjectured to be provable in
MT (Conjecture 2.1.3). Furthermore, MT can prove more pure lambda terms
equivalent (e.g. Fy = F3, c.f. Example 4.3.3, which we conjecture is not provable
in MTy). MT is very likely stronger than MTy:

Conjecture 5.3.1. If A = B is provable in MTqy and if A’ and B’ arise from
A and B, respectively, by replacing all occurrences of ¢ by 1, then A = B’ is
provable in MT.

If (=SI) = T is provable in MT then Conjecture 2.1.3 follows from Conjecture
5.3.1 and Theorem 2.1.4. Conjecture 5.3.1 is true if the ¢-axioms of MT, are
provable in MT. Less support exists for Conjecture 5.3.1 than for Conjecture
2.1.3.

5.4. Models of MT versus models of MT

Now let kK > w be a regular cardinal. Modelling ¢ requires an inaccessible
0 < K, while modelling the other constructs only requires K > w. Sections 7-9
recall the notions of k-Scott semantics and k-continuity and introduce a number
of concepts which have the following names and forms:

Underlying set MO

k-Scott domain M= (M, <)
k-premodel M? = (M AN
Canonical x-premodel A particular k-premodel

MT) standard k-o-quasimodel M3 = (M?,T,if, e, ¢)

MT, canonical k-o-quasimodel same as above where M? is canonical
MT standard k-o-quasimodel M3 = (M2 T,if,e, L,Y,|,E)

MT canonical k-o-quasimodel same as above where M? is canonical

We use M to denote any one of MY M! M2 M3, and M3, depending on
context. For MTy (MT) k-o-quasimodels we drop “quasi” when the quasimodel
satisfiles MTy (MT), and we drop o when o is understood.

As stated in Theorem 8.3.5, when o is inaccessible, all MT standard k-o-
quasimodels satisfy MTy. The main result of the present paper is that when
o is the first inaccessible, all MT canonical k-o-quasimodels satisfy MT. Thus,
satisfying MT is harder than satisfying MTy: One both needs canonicity and
needs that o is the first inaccessible.

5.5. Levels of difficulty of the groups of axioms

We now move on to consider the “difficulty” of the group of elementary
axioms, the group of E-axioms, and so on. “Difficulty” is a multi-dimensional
notion. When looking at groups of axioms it is natural to ask oneself the
following questions:

25

e Naturality. Are the axioms intuitive or “natural” in some sense, i.e. is
there a natural or simple or motivated intuition behind?

e Strength, here in the following sense: where is the existence of an inac-
cessible cardinal o required? Which axioms can we model at not cost?
meaning here that x = w would be enough, and/or that they can be
modeled in all premodels?

e Conceptual hardness. Do we need to introduce original and/or high level
tools for modeling them?

e Technical hardness. Do we need difficult computations?

The Elementary Axioms are natural (if one is used to A-calculus) and can
be modelled at not cost (i.e. in any k-premodel, k > w); the four E-axioms are
at first look purely technical, in fact they are easy from all the above points
of view, the reason being that they are just four instances of a single, simple
intuition, which allows us to model them easily and at “no cost”.

Of course, all the axioms of MT are natural in some sense, since they were
designed from semantical and computational intuitions (c.f. [8]), but this natu-
rality can be lost when approximating the ideas through formalization.

Mono and Min are semantically natural (syntactically a little less because
of the definition of <), and can be modelled at no cost in terms of strength
(k > w), but fixing a syntactic definition of the order induces a technical cost
which drastically reduces the class of possible models, c.f. Section 7.5.

Concerning the quantifier axioms, it is interesting to note that replacing ¢ of
MTj by ¥ in MT induces no change in strength in the sense that an inaccessible
is used (and apparently needed) for modelling MTy as well as MT, but that they
are conceptually somewhat harder for MT (because they refer to the defined v
which incorporates the ¢-axioms) and technically much harder (c.f. Sections
11-13).

We pursue and summarize the comparison between MT and MTj in the
following section.

5.6. Models of subsystems of MT

Recall from Section 3.2 that MTg4es is the version of MT where Y and L
are omitted and are replaced by Ycurry and Lcurry, respectively. This concerns
mainly A3, 13, QND, Mono, Min, Elim, Ackermann, and StrictE where Y or L
appear explicitly or implicitly.

We now introduce two subsystems of MT for which we keep the same syntax
and which hence have the same terms. First, MT~ is MT from which the
quantifier axioms are removed. Second, MT™ " is MT™ from which Ext, Mono,
and Min are removed. We have:

e Modeling MT™ ™ can be done from any x-premodel, x > w.

e Modeling MT™ can be done from any canonical k-premodel, kK > w

26

e Modeling MT and MTg4es can be done from any canonical k-premodel,
Kk > o, using the first inaccessible o.

e Modelling MTjy can be done from any k-premodel, Kk > o, using any
inaccessible o.

6. Approach

The aim of the rest of this paper is to show that some of the models of MT
in [3] (the canonical ones) can be adjusted into models of MT.

Models have to be adjusted because MTy and MT have different syntax.
Among others, MT does not have the E of MT and MT does not have the ¢
of MTy. To go from a model of MTj to a model of MT one must first delete
the interpretation of ¢ and then add interpretations of L, Y, ||, and E. One
then has to check that all axioms and inference rules of MT are satisfied under
adequate hypotheses on the model of MT(one started from. The most difficult
part will be to show that the quantifier axioms can be satisfied when replacing
the construct ¢ of MT(by the defined term ¢ of MT.

We delay as far as possible the specialization to canonical models. Working
like this first increases our conceptual understanding, but will moreover facilitate
for the future the design of consistent variations of Map Theory that users might
wish to introduce.

We work in ZFC+SI where SI asserts the existence of an inaccessible ordinal.

K-premodels

For all regular cardinals k > w, [3] defines the notion of k-premodels of
map theory. The notion of a k-premodel reflects the basic intuitions which
were behind map theory. In particular, all the constructors of MT and MTy,
namely L, T, if, ||, Y, E, &, and ¢ have natural interpretations as functions in
all premodels, as we will see.

The definition of a x-premodel (c.f. Section 8.2) involves Scott’s semantics,
which is the most classical mathematical way for modeling type-free A-calculus.
Looking for a model as powerful as a model of ZFC, we will have to use general-
izations (weakenings) of Scott’s semantics, called here x-Scott semantics (where
Scott semantics is the case k = w). Until specified otherwise, x is any regular
cardinal such that x > w. k-Scott semantics will be treated in more detail in
Section 7.

A k-premodel has a domain which is a partially ordered set plus some struc-
ture which indicates how to interpret lambda abstraction, functional application,
T, L, and arbitrary x-continuous constructs. A k-premodel is a reflexive object
in k-Scott semantics, which furthermore satisfies a simple domain equation Egq,,
(c.f. Section 8.1). As explained in [3, Section 3], the role of Fq, is to force
standard models to satisfy the elementary axioms and rules of MTy (or MT).

27

Canonical k-premodels

For all regular cardinals k > w, [3, Section 8] constructs a canonical k-
premodel of Map Theory. This was done in [3] in order to prove the existence
of k-premodels, which was the first step of the consistency proof of MTy. The
next step in [3] was to prove that all k-premodels, kK > o, o inaccessible, could
be enriched to MTy models.

For each regular x > w there are many k-premodels but only one canonical
one. The canonical x-premodel is the minimal solution to Fg,. It is computa-
tionally adequate for the computational part of MTy in the sense described in
Section A.5.

In the present paper, canonical k-premodels play an even more crucial role
than in [3], since it is only the canonical x-premodels, k > o, o the first inac-
cessible, that we prove can be enriched to MT models.

Canonical k-premodels admit an elementary and direct construction which
we will recall in the sequel. By “elementary” we mean in particular that the
construction uses no category theory which is crucial for being able to work in
practice with the model.?

MTq standard k-models

Given an inaccessible ordinal o and a regular cardinal x > o, [3, Sections 4
and 7] defines a method for enriching any k-premodel to a model of MTy. The
method adds interpretations of T, if, €, and ¢ to the k-premodel in such a way
that all the axioms and inference rules of MT are satisfied. We shall refer to
models constructed this way as M Ty standard models.

The function interpreting if is k-continuous for all regular k > w. The
function interpreting ¢ is only k-continuous if x > o for some inaccessible ordinal
.

MT standard k-quasimodels

Later, we adjust MT(standard models by deleting the interpretation of ¢
and adding interpretations of L, Y, ||, and E by k-continuous functions (x >
w) in an obvious way. We shall refer to the result of that as MT standard
quasimodels. Such MT standard quasimodels need not satisfy all axioms and
inference rules of MT but they do satisfy some of them.

The MT canonical k-model M,

Given an inaccessible ordinal ¢ and a regular cardinal x > o, one may
enrich the canonical k-premodel into an MT standard quasimodel. If ¢ is the
first inaccessible ordinal then the quasimodel can be proved to satisfy all axioms
and inference rules of MT. Hence, we shall refer to the model constructed this
way as the MT canonical xk-model M.

3A classical but far less feasible alternative would have been to build the canonical model
as an inverse limit of an ordinal sequence, similar to what Scott did with his first model Do
in the case Kk = w.

28

Summary

To summarize, the notions of k-premodels and canonical k-premodels are
the same for MT and MTy. The notions of models of MT and MT, differ
slightly due to differences in syntax. Furthermore, for canonical models of MT
we assume that o is the first inaccessible.

7. The k-Scott semantics

7.1. Notation

Let w denote the set of finite ordinals (i.e. the set of natural numbers).

For all sets G let G<¥ denote the set of tuples (i.e. finite sequences) of
elements of G. Let () denote the empty tuple.

For all sets G let G* denote the set of infinite sequences of elements of G.

Let f: G — H denote that f is a total function from G to H.

Given any partially ordered or preordered set (R, <) and S C R, we let 1S
and J.S be respectively the upward and downward closure of S for < in R.

We shall say that a set G is k-small if G has cardinality smaller than k. Let
P(G) denote the power set of G and let P*(G) denote the set of k-small subsets
of G.

7.2. k-Scott semantics

The k-Scott category is the Cartesian closed category whose objects are the
k-Scott domains and morphisms the k-continuous functions. As k grows there
are more and more x-Scott domains and k-continuous functions.

The theory of Scott domains (case k = w) is well known, and its x-analogue
was developed in full details in [3]. For the reader familiar with Scott domain
theory, passing from Scott to k-Scott is straightforward and just amounts to
changing everywhere “finite” by “k-small”. The regularity of is essential. We
recall some key definitions and results in the following.

k-Scott semantics was first used around 1987-89 in [6, 7] and was used in-
dependently in [3], but Scott was aware of the notion from the beginning, and
k-Scott semantics appeared in German lecture notes by Scott which are proba-
bly lost now.

7.3. k-Scott domains

Let (D, <) be a partially ordered set (p.o. for short). A subset S of D is
k-directed if all its k-small subsets have an upper bound in S. The p.o. (D, <)
is a K-Scott domain if it has a least (or bottom) element, is such that all x-
directed and all upper-bounded subsets have sups (suprema), and finally if it
is k-algebraic as defined below. As k grows there are more and more k-Scott
domains. The simplest example of k-Scott domains is that of the full powerset
(P(D),C) of some set D, which is a x-Scott domain for all K. The domain
underlying the canonical model M of MTy will not be a full power set, but will
still be a set of sets, ordered by inclusion.

29

An element u of D is compact (resp. prime) if, whenever u < sup(S) for
some k-directed (upper bounded) set S, then u < v for some v € S. D is k-
algebraic if for every u € D the set of compact elements below u is k-directed,
and has u as its sup. A k-Scott domain is prime-algebraic if each element of D
is the sup of the primes below it.

Definition 7.3.1. K(D) is the set of compact elements of the k-Scott domain
D.

(P(D),C) and M are prime algebraic k-Scott domains. The compact ele-
ments of (P(D), C) are the k-small subsets of D and its primes are the singletons.
In the case of M, compact elements are downward closures of adequate x-small
subsets of D, while primes are downward closures of singletons.

7.4. k-continuous functions

A function between two k-Scott domains is k-continuous if it is monotone
and commutes with all sups of non-empty x-directed sets.

Given k-Scott domains D, D’ we use [D —, D’] to denote the x-Scott domain
whose carrier set is the set of x-continuous functions from D to D’ ordered
pointwise. As x grows there are more and more k-continuous functions.

7.5. Syntactic monotonicity

Monotonicity, which was part of the founding intuitions behind map theory
(c.f. [8]) comes for free in models living in Scott’s semantics, but of course only
relative to the order x < y of the underlying domain.

In MT, monotonicity is explicitly required in the axiomatisation (by Mono),
but necessarily for a syntactic order. We shall prove (Theorem 8.5.2) that the
syntactic order x =< y coincides with the model order x <, y in canonical
r-quasimodels and we shall conclude (Corollary 8.5.3) that the canonical -
quasimodel satisfies Mono.

The Mono rule was not part of MTj.

7.6. k-open sets

G C D is k-open if G = 1K for some set K C K(D). Equivalently, G is
k-open if G = 1G and whenever G contains sup(.S) for some directed set S then
it contains some element of S. This defines a topology, the x-Scott topology, and
the k-continuous functions, as defined above, are exactly the functions which
are continuous with respect to this topology. Finally, it is easy to check, and
crucial to note, that the intersection of a k-small family of x-open sets is still
K-open.

G C D is essentially k-small if V C G C 1V for some k-small V. It follows
that G is an essentially k-small open set if and only if G = 1K for some k-small
K C K(D).

30

7.7. Reflexive objects and models of pure A-calculus

By definition a reflezive object of the k-category is a triple (M, A, \) where
M is a k-Scott domain and A: M — [M —, M| and \: [M —, M] = M are
two morphisms such that A o A is the identity. This gives a model of untyped
A-calculus, i.e. of rules Trans, Sub, Gen, and A2, when we use A and X\ to
interpret the pure A-terms, in the standard way (c.f. Section 9.6).

Most of the time A(u)(v) will be abbreviated as uv, and wv; - - - v, will mean
(- ((w)v1) - - -)vy,). Furthermore, uw = wwy - - - wy, if W =wy - w, (n >0).

All n-ary k-continuous functions, n € w, can be internalized in M: for any
such f there is an element v € M such that f(u1,...,u,) = vuy ---u, for all
UL, ..., U, € M. In the case n = 1 we can take v = A(f).

7.8. Tarski’s minimal fixed point operators

Let D be a k-Scott domain and let f € [D —, D]. If K = w then f has a fixed
point and even has a minimal such. That does not always hold for k > w. As
an example, (w, <) is a k-Scott domain for all regular x > w but the successor
function has no fixed point.

We now turn to sufficient conditions for the existence of fixed points. For
all f € [D —, D], x € D, and ordinals « define

fo(x) = sup{f(f*(x)) | B € a}

whenever the sup exists. Furthermore, define
yTarski(f) = fR(L)
We shall say that v is a pre-fixed point of f if f(v) < v.

Lemma 7.8.1. If f*(L) is defined then f*(L) is defined for all o, f*(L) =
fo(L) for alla > k, f has a fixed (and pre-fized) point, it has a unique minimal
fized (and pre-fixed) point, and Vrarski(f) = f*(L) is that minimal fized point.

Proof of 7.8.1 Easy and classical.

Lemma 7.8.2.
(a) If K = w then Yrarsii € [D —« D] — D is total.
(b) If f has a fixed point then YVraski(f) is defined.
(c) If there are A, A making (D, A, \) a reflexive object then Yra«k; is total
and k-continuous.

Proof of 7.8.2
(a) Easy.
(b) Note that if f has a fixed point = then z is an upper bound for each
{f(fP(L1)) | B € a} which thus has a sup because D is x-Scott.
(c) Totality follows from (b) because YcurryA(f) is a fixed point where Ycurry
is definable when A and A exist. Continuity can be proved by a rather
standard proof (which can be found e.g. in [15]).

31

Now suppose M = (D, A, \) is a reflexive object and define Yrarski € M by
YTarski =)\(yTarski o A)
where o is composition.

Corollary 7.8.3.
(a) YTarskiu = U(YTarskiu) (Y)
(b) uv Ipm U= Y Tarski MU (Mm)

Proof of 7.8.3 First note that A o A\ is the identity since M is reflexive so
Y Tarskith = AA(VTarski © 4)) (1) = (Vrarski © A) (w). Then (a) and (b) follow from
the fact that Yr.eki is the minimal fixed and pre-fixed operator.

Y Tarski would hence be a good candidate for interpreting Y, provided the syn-
tactic order z < y and the model order x <, y coincide, as they do when M
is canonical.

8. Premodels of Map Theory

8.1. The domain equation Eq,

Given a k-Scott domain D’ we denote by D’ @,/ {T'} the k-Scott domain
obtained by adding to D" an element T’ which we decide to be incomparable to
all the elements of D’, and a bottom element L’ which we decide to be below
T’ and all the elements of D’.

Definition 8.1.1. Egq,, is the domain equation D ~ [D —, D] @,/ {T'}.

Eq,; asserts that the two sides of ~ are order isomorphic x-Scott domains. It is
the most natural semantic counterpart of rule QND, and the heart of the notion
of a premodel. Proving the existence of solutions of Fq, within Scott’s semantics
is a well mastered technique, and passing from w to x is straightforward. Eq,,
admits moreover a minimal solution, which will be re-built in Section 9.

8.2. Premodels

In this subsection « is any regular cardinal, and we do not need any o.

Given a solution M of Eq,, and an order isomorphism A from [M —, M|®
{T'} to M, let T and L denote A(T’) and A(L’), respectively. Thus, L is the
bottom element of M while T only compares to L. The following theorem is
easy to prove and the details can be found in [3, Section 3.1]:

Theorem 8.2.1. Let M be a solution of Eq,, and let X be an order isomorphism
from [M —, M| @1 {T'} to M. There exists a reflexive object (M, A, X) such
that

(a) for all u € M we have A(T)(u) =T and A(L)(u) = L.

() F={A/f) | f € M= M|} ={ueM|u=1u} = M\{L, T}

(c) F and {T} are disjoint k-open subsets of M.

32

Note that in (b) above, only the last equation uses that M is a solution to
Eq,.. The first equation is classic.

In fact F is the isomorphic image of [M —, M] under A, and Az.L = A\(z
1) is the bottom element of F.

Conversely, any object (M, A, \) satisfying the above theorem can easily be
turned into a solution of Eg,..

Definition 8.2.2. A k-premodel M? is a triple (M1, A, \) satisfying the above
requirements.

Definition 8.2.3. The canonical k-premodel is the premodel associated to the
minimal solution to Eg,..

Definition 8.2.3 will become more concrete in Section 9.6.

Theorem 8.2.4. Given any k-premodel M (k > w), there are elements if, ||,
and E in M such that M satisfies the elementary axioms and rules of MT and
the azioms on E when the syntactic constructs L, T ,if, ||, and E are interpreted
by L, T,if, ||, and E, respectively.

Proof. M satisfies rules Trans, Sub, Gen, and A2 since it is a reflexive object
of a Cartesian closed category, M satisfies Al and A3 and rule QND by Theorem
8.2.1. We now turn to the axioms concerning if, ||, and E. The argument is the
same for the three constructors, and the case of if was already treated in [3].

The function If defined by If (u,v,w) =vif u =T, wif u € F, and L if
u = L is clearly k-continuous. Hence, there is some element if € M such that
ifuvw = If (u,v,w) for all u,v,w € M. Then it is easy to see that M satisfies
Axioms I1, 12, and I3.

The function Paror defined by Paror(u,v) = T ifuor vis T, \e.T if u,v € F,
and L otherwise is clearly x-continuous. Hence, there is some element || € M
such that |juv = Paror(u,v) for all u,v € M. Then it is easy to see that M
satisfies Axioms P1, P2, and P3.

The function Exist defined by Exist(u) = T if uv = T for some v € M and
L otherwise is clearly k-continuous. Hence, there is some element E € M such
that Eu = Exist(u) for all u € M. Then it is easy to see that M satisfies the
four axioms on E. O

We now turn to Y and to the monotonicity and minimality axioms Mono
and Min.

Theorem 8.2.5. Given any k-premodel M (k > w), when the syntactic con-
struct Y is interpreted by Yrawski, M satisfies the Monotonicity and the Mini-
mality axioms for the model order < (but possibly not for the syntactic order
=)

Proof. Monotonicity is for free when M lives in Scott’s semantics and the
rest follows from Corollary 7.8.3. O

We now turn to the quantifier axioms. These axioms were easy to model
in MTy (the difficulty was carried by some of the ¢-axioms), but in MT they

33

become very difficult to model since the constant ¢ of MT is replaced here by a

complex term 1, whose definition involves € and Y. Our trick will be to use that

they hold for the characteristic function ¢ of ®, and to prove later on (Sections

12 and 13) that, provided o is the first inaccessible cardinal, ¢ and ¢ coincide

in all premodels when Y is interpreted as in the proof above (i.e. by Yrarski)-
Recall Dom[w] = {ueM | wu = T} from Definition 4.6.1 and define:

Definition 8.2.6. For U C M and w € M we let:
(a) wU = {wu | ueU}
(b) xu: M — M is defined by xu(x) =T if v € U and xy(z) = L otherwise.

Remark 8.2.7.

(a) Dom[w] is a k-open set for all w € M
(b) xu is k-continuous iff U is k-open

Theorem 8.2.8 ([3]). Let M be a k-premodel (k > w), and let & C M be
such that ® = TU for some k-small set U such that T € U and L ¢ U. Then
there is an € € M such that, when the syntactical € is interpreted by this e, M
satisfies the quantifier azioms, but for ¢ = A(xe) instead of the MT-term 1.

Proof. Sketch of proof (details in [3, Section 4.1]): Let £ be a choice function
on @, i.e. a function &: P(®) — @ such that (V) € V for all non-empty V' C ®.
Let e: M — ®U{_L} be defined by: e(u) = Lif L € u®, e(u) =T if u® C F, and
e(u) = &{z€® | ux = T} otherwise. Then e is k-continuous (it is already clear
that u < v implies e(u) = L or e(u) = e(v)) and can hence be internalized by
an element € € M which has the required properties. O

8.3. Standard and canonical models of MTq

We suppose now that there is some inaccessible o such that o < k. And
we recall the method which allows us to enrich any x-premodel into a model of
MTy, under this hypothesis.

We define o-small sets and essentially o-small sets as was done for £ (c.f.
Section 7.1 and 7.6), and we note that a k-open set O is essentially o-small if
and only if O = TK for some o-small set of compact elements of M.

Definition 8.3.1. [3] For any U,V, H C M where H is open we let:
(a) O7(U) be the set of all essentially o-small open subsets of U
(b)) U—V={zxeM|zUCV}

(c) U° ={xeM |Yuy,... up,...€UYIn€w:xuy -+ uy, =T}
(d) Fo(H) ={T}UU{G® = G| G € O7(H)}

Definition 8.3.2. ® C M is the smallest solution of the equation ® = F,(P).
Definition 8.3.2 is equivalent to the definition used in [3] and several other

definitions as studied in [3]. The property ® = F,(®) is called the Generic
Closure Property (GCP) in [3].

34

Theorem 8.3.3 ([3]). ® is an essentially x-small open subset of M.

Definition 8.3.4. An MTy standard k-o-quasimodel is a tuple (M, T,if &, @)
where M is a k-premodel, T, if, and € are defined as in the previous section,
and ¢ = A(xa).

Theorem 8.3.5 ([3]). If o is inaccessible and k > o then any MTy standard
k-o-quasimodel satisfies MTy.

Thus, we can drop “quasi” for ¢ inaccessible, k > o. For each k, MT(has many
k-models but of course only one canonical k-model: the one corresponding to
the minimal solution to Fg,. We now proceed to MT models.

8.4. Towards modelling the quantification azioms

Now define i) = Dom[¢)]. To model the quantification axioms of MT it
remains to show that, if o is the first inaccessible cardinal, then 1) = &. This is
by far the most difficult proof of the paper, and it is split into two parts, called
the Upper Bound Theorem (UBT) and the Lower Bound Theorem (LBT).

UBT says 1,b C ¢. It puts an upper bound on w and is proved in Section 12.
The proof uses the existence of an inaccessible o (actually, the mere definition
of ® needs it). The proof also uses that the construct Y (which is part of the
definition of v) is 1nterpreted by Y Tarski-

LBT says ® C 1/) It puts a lower bound on 1/1 and is proved in Section 13.
The proof of LBT uses UBT and also uses the assumption that o is the first
inaccessible ordinal (the proof of UBT does not use it). UBT and LBT together
entail the following:

Theorem 8.4.1. If o is the first inaccessible and k > o, then:

(a) Any MT standard k-o-quasimodel M salisfies the quantifier axioms of
MT.

(b) If M is furthermore canonical then it satisfies the quantifier axzioms of
MT get -

As already noticed in the introduction, MT 4t is a priori more difficult to
model than MT. Fortunately, canonical models M are suited for it. Indeed, (b)
above follows from (a) plus the results stated in Section 8.5.

Remark 8.4.2. We avoid using ¥ for Dom[y)] because U has another meaning

8.5. Towards modelling of Mono, Min, and Ext

Modelling Mono, Min, and Ext can be done in ZFC (no inaccessible is
needed), but canonicity is crucial here.

Theorem 8.5.1. For all k > w the canonical k-quasimodel M satisfies Ext.

35

Proof. Section 10.2 O

Now recall that we define the syntactic order < and the syntactic infimum
J in a roundabout way in that we define | first and then define < as the order
induced by J. Theorem 8.5.2 is equally roundabout:

Theorem 8.5.2. For all kK > w the canonical k-quasimodel M satisfies that
infimum in the model coincides with the syntactic infimum | and, as a corollary,
the model order < q coincides with the syntactic order <.

Proof. Section 10.3 O

Now recall that Y is interpreted by Yarski-

Corollary 8.5.3. M satisfies Mono and Min of MT.

Theorem 8.5.4. For all k > w, the canonical k-quasimodel M satisfies

Y Tarski = YCurry

Proof. Section 10.4 O
Corollary 8.5.5. M satisfies Yf = Ycouny f and L = Lcumy-

Corollary 8.5.6. M satisfies Mono and Min of MT ges.

9. Building the canonical k-premodel

The aim is here to recall the elementary construction we gave in [3, Section
8] of the canonical premodel, i.e. of the minimal solution of the domain equation
Eq,, (which proves in passing the existence of such a solution). This premodel
is a webbed model in the sense that it is built as an (enriched) powerset of some
lower level structure, called its web, which here can be taken to be a reflezive
pcs. The terminology of “webbed model” was introduced in [2] and pes’s are
defined below.

9.1. Pcs’s

A pre-pcs is a tuple D = (Dp, <p, Cp) for which <p and T, are binary
relations on Dp.
A pcs is a pre-pes D = (D, <,) with the following properties:
Partial order < is reflexive and transitive.
Coherence O is reflexive and symmetric.
Compatibility z<a2'Ay<y A Ty =2y
From now on, D = (D, <,) and D' = (D', <, ') denote pre-pcs’s.
D is a sub-pcs of D', written D C D', if the following hold:

D - D’
Ve,yeD: z<y & z<'y
Ve,yeD: z oy & vy

36

A set S of pre-pcs’s is a chain if VD, D’€S: D C D’ VD’ E D. For all pre-pcs’s
D, all u,v C D, and p € D define

u<Hhv & Veeudycviz<py
ulhHv & VreuVyeviz Cp vy
Cohpu & ulpu

Ipu = {yeD|Ircuy <z}
Ipp = Ipfp}

Z(D) = {lpu|uCDACohpu}

Above Z(D) denotes the set of coherent, initial segments of D.

Fact 9.1.1. For all pcs’s D, (Z(D),C) is a prime algebraic x-Scott domain
whose sets of prime and compact elements are {lpp | p € D} and {{pu | u €
Pr(D) A Cohpu}, respectively.

The goal of Section 9.2-9.3 is to define a pcs P such that (Z(P), C) satisfies
Eg

K*

9.2. Pcs generators

Let DW D' denote disjoint union (i.e. DUD’ when DN D’ =) and undefined
otherwise). Let D, D’ be pre-pcs’s and let S be a set of such structures. We
now define the pre-pcs’s U(t), Dy, US, D@D’, D—D’, and R5, (D):

coh

R Dpr r<py TRy
U(t) {t} true true
D, Dw{f} z=fV <y x=fVy=fVvaly
us UpesDp dDeS: z<py dDeS: zCpy
DoD’ DwD’ <y Vax<'y oy Vzl'y
DD’ DxD’ y1§x1 A\ IQS/yQ x1¢y1 V £82<__>ly2

2on(D) {a€P®(D) | Cohpa} r=*y T*y

As an example of reading the table, the fourth line says that D & D’ is the
unique pre-pcs R for which

Dg = DuUD'
r<py < x,y€ DrA(z<yVz<'y)
tlpy & x,y€ DpA(zlyVal'y)

In the line defining D—D’, we define D x D' = {{z1,22) | x1 € D Axy € D'}.
For all z € D x D’ we define x; and x5 to be the first and second component,
respectively, of the tuple x.

Under reasonable conditions, the above pre-pcs’s are pcs’s:

Fact 9.2.1. U(¢) is a pcs for all objects t (of ZFC).

Fact 9.2.2. IfD is a pcs and f ¢ D then Dy is a pcs.

37

Fact 9.2.3. If S is a chain of pcs’s then US is a pcs.

Fact 9.2.4. If D and D’ are pcs’s and D and D' are disjoint, then D & D’ is
a pcs.

Fact 9.2.5. If D and D’ are pcs’s then D — D’ is a pcs.

Fact 9.2.6. If D is a pcs and k is a cardinal, then R, (D) is a pcs.

9.8. The web of the canonical k-premodel
Now let k be a regular cardinal greater than o and, for all pre-pcs’s D, define
H(D) = (Rew(D) — D)y & U()
Furthermore let Eq.. be the equation

HP)=P
Fact 9.3.1. If a pcs P satisfies Eq., then (Z(P),C) satisfies Eq,,.

Now define
P, = (0,0,0)
Psi1 = H(Pp)
Ps = U{Pg|Bed}
P = P,

It is easy to prove by transfinite induction that Pg is a pcs, that {Pg | 8 € §} is
a chain of pes’s, and that the pcs P is the minimal solution of Eql,. Note that

Pl = {ta f}
We define the rank rk(p) of p € P as the smallest ordinal « for which p € P,,.
Recall that Py = 0 and Py = {¢, f} (as sets).

9.4. Some properties of the web
From now on | means |p. Define C = R (P). For p € P and a =

coh

(a1,...,an) € C<¥ let ¢(a) denote n (i.e. the length of @) and define

(a,p) = {ay,...{an,p)...)

In particular, {(a,p) = p if ¢(a) = 0. Using that there are no decreasing infinite
sequences of ordinals we easily get:

Lemma 9.4.1 ([3]). For each p € P there is a unique decomposition of p as
p=(a,t) or p={(a,f) wherea € C<¥.

For p = (a,t) (p = (a, f)) we define ¢(p) = £(a) + 1 and refer to ¢t (f) as the
head of p.

Remark 9.4.2.
(a,p) < r € P implies r = (b,q) for some b, q.

(a,p) < (b,q) iff b C la and p < q.

38

9.5. The domain of the canonical k-premodel

The k-Scott domain M of the canonical k-premodel is defined by
M= (Z(P),C)
We have:

Fact 9.5.1.
M, ={lp|p € P} is the set of prime maps of M.

M. ={la]|a e C} is the set of compact maps of M.
In M, sups are unions and infs are intersections.

M, was called (M) in Section 7.3.

9.6. The canonical k-premodel

Let T’ and L’ be arbitrary objects such that T' # |’ and T/, 1’ & [M —,
M]. Then define A, T, L, and A by

A(T) =T = {t}
A(h) = {flu{{a,p) e CxP|peh(la)} forhe[M—,M]|
(L) = 1 =0
AMw) = T forve M
A(w)(v) = {peP|JaCuv:{a,p) € u} forue F,ve M
A(L)(v) = L for ve M

We have

Fact 9.6.1

(a) \: M =, M@, {T'} = M is an order isomorphism.
(b) M is the minimal solution to Fq,,.
(¢) (M, A, N) is a reflexive object.

Definition 9.6.2. The canonical k-premodel is the triple (M, A, \) with X\ and
A defined as above. M, is the associated MT canonical k-quasimodel (c.f.
Section 5.4).

Note that we have T = {t}, L =0, and F = M\ {T, L} with F defined as for
Theorem 8.2.1. We have:

Fact 9.6.3.
(a) ue Fiff ue M and f € u.
(b) L, T,{f} € M. and {f} models Az.L.

9.7. Tying up a loose end

Now recall the definitions of a ~, b, a =5 b, and a =, b from Section
3.6. Note that if Yee My:ca ~y cb then, in particular, (J{{p},t))a = T <
{p},t)b=Tsop € a<peb Thus, a =5, b= a=, b which is the

(e}
non-trivial direction of Fact 3.6.2.

39

10. Canonical premodels satisfy Mono, Min, and Ext

In Section 10 we only suppose k > w, and that M is the canonical k-premodel
described above; in particular its domain is the minimal solution of Eg,..

We prove that M satisfies Mono, Min, and Ext, that the model order C
coincides with the syntactic order <, and that we can eliminate the constant Y
in favor of Curry’s paradoxical combinator.

Monotonicity of application w.r.t. C will be used constantly, most often
without mention.

10.1. A characterization of the order of M wvia application

The following applicative characterization of the model order C of M is the
key for proving later on that the model order coincides with the syntactical
order = and that M satisfies Ext.

Definition 10.1.1. Let r = Au. if[u, T, Az.L].

Thus in M we have that ru = Tifu =T, ru =0 if w = 0, and ru = {f} if
ue F.

Theorem 10.1.2. For all u,v € M the following are equivalent:
(i) uCw
(it) For all w € M<* we have r(uw) C r(vw)

Proof. (i) = (ii) because application is monotone.

(i) = (i). Let U = M\ {0, T,{f}}. The only non-trivial case is when
u € U. Let V be the set of triples (u, v, p) such that v € U, u and v satisfy (ii),
and p € u\ v. Note that v € F and p # ¢, f. Suppose V # (), choose a triple
(u,v,p) € V such that ¢(p) is minimal. Since ¢(p) > 2 let (¢, ¢) € C x P be such
that p = (¢, q), which implies ¢(q) < 4(p) and ¢ € ({p)w C ww, where w = Jc.
Since the pair (uw, vw) satisfies (ii), by the minimality hypothesis we have that
q € vw. Now, by definition of application in M, and since v # T, there is a
¢ C le = w such that (¢/,¢) € v and p = {(¢,q) < (¢/,¢') € v, thus p € v. A
contradiction which proves V =0, i.e. (ii) = (i). O

Corollary 10.1.3. For all u,v € M we have
(i) uwCov 4ff r(u) Crv) and Vw: (uw C vw)
(ii) w=v iff r(u) =r) andVw:(uw = vw)

Proof. (i) is an immediate consequence of the theorem, from which (ii) follows.

In fact both are also direct consequences of the fact that M was a premodel
(M is not required to be canonical for the corollary). O

40

10.2. Ext
Theorem 10.2.1. M |= Ext

Proof. Let A and B be two MT-terms that do not contain x and y free and
suppose there is an MT-term C[z,y] such that (for all assignments of values
to free variables) M | VwVv: (Awv = AC[w/z,v/y] A Bwv = BClw/x,v/y]).
The task is to prove that M |= Vw: (Aw = Bw) under the hypothesis that
M E Vw: (r(Aw) = r(Bw)). Now, the hypothesis on A and B obviously imply
that, given w € M, the elements Aw and Bw satisfy point (ii) of Theorem
10.1.2; by (i) we hence have Aw C Bw. Similarly, Bw C Aw so Aw = Bw. O

10.3. A-definability of the order of M
Theorem 10.3.1. M |=VuYv: (u L v=uNuw).

Proof. If one of u,v is equal to L or T or {f} then it is easy to check that
the equality holds. Let V be the set of triples (u,v,p) such that p falsifies
ulv=unNv (le pisin one of u | v and v N v, but not both). Suppose
V # 0 and choose (u,v,p) € V such that ¢(p) is minimal. Thanks to the
preceding remarks, u, v are different from T, L, and {f}, so p #t, p # f, and
uldv=2Az.(uz | vz). Let (¢,q) € C x P be such that p = (¢, q), and w = Jec.
Then ¢ € ({p)w.

Suppose p € v | v. Then ¢ € (v | v)w = (uw) | (vw). By the minimality
hypothesis ¢ € (uw) N (vw), and, since u # T and v # T there are ¢ C w and
¢” C w such that (¢, ¢) € wand (¢, q) € v. Since w = Jcwe have p < (¢, ¢) € u
and p < (¢”,q) € v, hence p € unNw.

Suppose now that p € uNwv. Then ¢ € (uNv)w C (uw) N (vw). By the
minimality hypothesis ¢ € (vw) | (vw) = (u | v)w. Hence there is a ¢ C w
such that (¢, q) € (u] v). Since w = Jc we have p < (¢/,q) € u | v.

We have reached a contradiction, hence V =§. O

Corollary 10.3.2. M |=VuVv: (u 2 v < u Cv).

Corollary 10.3.3. In M the binary k-continuous function inf is definable by
a A-term (using if, L, and T), and hence the model order C is equationally
definable.

Remark 10.3.4. It is interesting to compare this last result (which only applies
to canonical premodels of MT) to the following one, which deserves to be known:
the order of a reflexive Scott domain is always definable by a first order formula
using only application (and which is the same for all these domains). This
result, proved by Plotkin in 1972, and only published twenty years later in [14],
was rediscovered independently by Kerth [11], who proved that it also holds in
Berry’s and Girard’s stable semantics, and Ehrhard’s strongly stable semantics
[12] (with different formulas).

41

10.4. Y and minimality

We now show that M interprets Curry’s fixed point combinator as Yrarski-
A first proof was worked out by Thierry Vallée (private communication, 2002),
the present one is slightly more direct.

Definition 10.4.1. For all w € M and ordinals o let up, = L(uNP,) € M.

Lemma 10.4.2. For all u,v € M we have:
(i) up=0 and u, = u.
(1) usv = Ug<s(ugv) for all limit ordinals 6.
(111) ugi1v = ug1vg for all ordinals 3.

Proof. (ii) Ug<s(ugv) C usv by monotonicity. Now assume p € usv. Choose
a C v such that (a,p) € us = L(uNPs). Choose ¢ € uNP;s such that (a,p) < q.
Choose 8 < 6 such that ¢ € Pg. Choose a/,p’ such that ¢ = (a/,p’). We have
p < p and o’ C la, cf. Remark 9.4.2. Now p < p’ € (lg)({a’) C ugv so
p € upv.

(ili) wg+1vs C ugt1v by monotonicity. Now assume p € ugiiv. Choose
a C v such that (a,p) € ugy1 = {(u N Ppgy1). Choose ¢ € v N Ppgyq such
that (a,p) < q. Choose d/,p" such that ¢ = (a/,p’). We have p < p’ and
a’ C la, cf. Remark 9.4.2. Furthermore, ¢ € Pgyq implies o/ C Pg. Now
p<p € {g)la) Cugtivs so p € ugrivg. O

Theorem 10.4.3. M = Ycury = YTarski-

Proof. Since Yrask acts as the least fixed point operator on M it is enough
to prove that, for all u € M, we have ww C Yraskitt, where w = Az.u(zx). We
prove waw € Yraekit by induction on o < k. The case a = 0 is clear and the
limit case is by Lemma 10.4.2(ii). If « = 8+ 1 we have wgt1w = wgriwg C
wwg = u(wpwg) C u(wsw) C w(Yrarskitt) = YTarskit, the first equality coming
from Lemma 10.4.2(iii) and the last inclusion by induction hypothesis. O

Remark 10.4.4. Most usual models are stratified, in the sense (very roughly
speaking) that it is possible to find a way of decomposing them in such a way that
each u is the inf of an increasing sequence uy, o € Kk (usually kK = w) satisfying
all the properties listed in Lemma 10.4.2 except uyv = uyvg. This last equation
1s really the key point here as for, say, Scott’s first model Doy, for which it holds;
it is false for Park’s variant of Do, which does not satisfy Min.

11. Concepts for proving UBT and LBT

11.1. Main theorem

In the following, o denotes the smallest inaccessible ordinal (in [3], o denotes
an arbitrary, inaccessible ordinal). Let x be a regular cardinal greater than o.
We work in a standard x-model M. We refer to elements of M as maps. Unless
otherwise noted, variables range over M.

42

Define ® and ¢ as in [3]. ¢ satisfies

b = T whenze®
1 L otherwise

Recall Definition 4.6.1 and 4.6.3 and define ¢) = Dom[i)]. The elements of ®
and ¢ are the wellfounded maps of MTy and MT, respectively. We now prove
that the two notions of wellfoundedness coincide:

Theorem 11.1.1 (Main Theorem).) = ® (or, equivalently, ¢ = ¢)
To do so, we prove that ® is both an upper and a lower bound of 1[):
Theorem 11.1.2 (Upper Bound Theorem/UBT).) CP.
Theorem 11.1.3 (Lower Bound Theorem/LBT). & C ¢.

We prove UBT and LBT in Sections 12 and 13, respectively. Section 11
analyzes 1 and .

The proof of LBT uses UBT (e.g. Fact 13.6.2(c) and Lemma 13.8.3(e)).

The proof of LBT uses that o is the smallest inaccessible ordinal (in Lemma
13.7.3).

11.2. Elementary observations
Fact 11.2.1.
(a) L=2my
b) z 2pmyAe=T=y=T
(¢) zIpmyhezeF=>yeF

Fact 11.2.2.
(a) (Er.A) =T J2zeM:(A=T)

(b) (Vz. A) =T & Vzed: (A=T)

(c) pr=Tezecd
Fact 11.2.3

(a) (zly)#Lerc=TAry#1L

(b) (zly)#L=aly=y

() (xly)lz=a!(y!2)

A (z'ylz)#Llerc=TAy=TAz#L
(e) (xlylz)#AL=axlylz=2
Fact 11.2.4.

(a) De=Tec#L

Fact 11.2.5.
(a) Dom[Uf] = UgepmDom|[fz]

43

11.8. Duals, boundaries, closure, and functions

Definition 11.3.1. Let G,H C M
(a) GOZ{geM | Voo, 21, ... EGInEw: grog - 2y =T} for G #£ 0
(b) 0° =M\ {L}
(c) G° ={geG | VfeG:(f 2mg= f=29)}
(d) G* ={h€M|E|g6Gg<Mh}
() G— H={feM|VzeG: fr € H}

[§]

We shall refer to G°, G°, and G as the dual, boundary, and upward closure,
respectively, of G. Definition (e) above repeats Definition 8.3.1(b). Definition
(a) above repeats Definition 8.3.1(c). Definition (b) above makes explicit how
to understand (°.

Fact 11.3.2.

(a) GCH= H°CG"°

(b) GC H= G°°C H°°

(¢) @ CGANHCH =G—-HCG —- H

(d GCH=G°—+GCH°—~H

(e) G£P=G° =G —G°

(f)y GCHCH=G°—GCH®— H°° =H°°

Lemma 11.3.3. G°°T = G° for all open G.

Proof of 11.3.3 Trivial for G = (. Follows from [3, Theorem 6.1.11] for G # 0.

11.4. Cardinality

We shall use G <. H to denote that G has smaller cardinality than H and
define G =, H and G <. H likewise. For G C M recall from Sections 7.1,
7.6, and 8.3 that G is essentially o-small if there exists a og-small V such that
V C G C VT, Recall from Definition 8.3.1(a) that O?(G) denotes the set of
essentially o-small open subsets of G. We only use this notation for open G.

Lemma 11.4.1.
(a) If G € O7(M) then G° € O7(M).
(b) If G € O9(®) then G° — G € O7(®).

Proof of 11.4.1
(a) [3, Theorem 6.1.11].
(b) This follows directly from the definition of ® (Definition 8.3.2).

11.5. Hierarchies
Definition 11.5.1.

(a) o ={T}

(b) ®p = P,° — P,

(c) ®s = UgesPp for limit ordinals 4.
(d) Ho ={T}

44

(e) Hor = Hoo°
(f) Hs = UgesHp for limit ordinals 4.

Lemma 11.5.2.
(a) a €=, C Dy

b=, =H,
v

Proof of 11.5.2

(a) By transfinite induction using Fact 11.3.2(d).

(b) By transfinite induction using Fact 11.3.2(b).

(¢) We have Hy C Hor = Ho°° by Lemma 11.5.2(b) and Definition 11.5.1(e).
Hence, ®, C H, by transfinite induction using Fact 11.3.2(f).

(d) For & = &, see the proof of [3, Lemma A.1.1]. For H, C & see [3,
Theorem A.2.1] and its proof. ®, C H, is given by (c).

(e) For each g € G let p(g) be the smallest ordinal for which g € ®,,. Take
a=Ugegp(9).

(f) [3, Theorem 7.1.1].

(g) Follows trivially from (a-d,f) and Fact 11.3.2(a).

11.6. Self-extensionality

We now recall the definition of self-extensionality plus some auxiliary con-
cepts from [3, Appendix A.2]. First recall r = Au. if[u, T, Az.L] from Definition
10.1.1. Then recall the definition of z =¢ y from [3]:

Definition 11.6.1. x =¢ y iff VZEG<¥ : r(2Z) = r(y2)

Note that x = y iff =4 y according to Theorem 10.1.2. Now the definition of
self-extensionality reads:

Definition 11.6.2. G C M is self-extensional if
(a) 0 #G e O7(D)
(b) G C G°°
(¢c) z=gy=>axlyeGforallz,y e G

The name “self-extensionality” refers to the property x =¢ y = © =4 y which
follows from property (c) above.
Note that G°° = G° — G°° for all G [3, Fact 6.2.1].

Lemma 11.6.3.
(a) Hq is self-extensional for all a € .
(b) For all G € O7(®) there exists a self-extensional H such that G C H.
(¢) Ho € O7(D) for all a € 0.

45

(d) YGEO? (®): G°° € O (D).

Proof of 11.6.3
(a) By transfinite induction in « using [3, Corollary 6.1.6 and Theorem A.2.1].
(b) Follows from (a) and Lemma 11.5.2(e).
(c¢) Follows from (a) and the definition of self-extensionality.
(d) Choose a € o such that G C H,,. We have G C H, = G°° C H,°° =
Ho € ®. Furthermore, G°° is open and essentially o-small according to
Lemma 11.4.1(a).

11.7. Restriction

Recall that f / g = if[f, T, Ax.gz ! (fx / g)] (Definition 4.6.2(d)). If
G = Dom|g] then f / g equals | f of [3].

Two maps z,y € M are said to be incompatible if they have no upper bound
in M w.r.t. <x;. We have:

Lemma 11.7.1. Let G = Dom][g] # 0.
(a) G ={f/g| f€G}

(b) G°Y is a set of pairwise incompatible elements.
Proof of 11.7.1 [3, Theorem 6.1.11].

Lemma 11.7.2. Let G = Dom[g] and f € G°.
(@ f/g=2mf
b)) f2mf =f/9=1/g

Proof of 11.7.2
(a) By lemma [3, Lemma 6.1.9].
(b) Assume f < f'. Now f / g <m [’/ g by monotonicity. Furthermore,
f' € G° because G° is upward closed. Thus, f / g = f' / g by Lemma
11.7.1.

Lemma 11.7.3. Let G = Dom|g] C ®.
(a) {f/glfe®}c G
() {f /gl fed =G if G is self-extensional.
(c) {az) ¢ |z € ®} € P7(®°%) if a € .

Proof of 11.7.3

(a) G C & gives & C ®° C G° by Lemma 11.5.2(f) and Fact 11.3.2(a). We
conclude using Lemma 11.7.1.

(b) We now prove the reverse inclusion of (a). Let x € G°? and take y = figx
where {17, is defined in [3, Section A.2]. According to [3, Lemma A.2.4]
we have y € G°° and z <5 y. Lemma 11.6.3(d) and y € G°° gives
y € ®. From Lemma 11.7.2 we have y/g =am y. From (a) we have
y/g € G°°. According to Lemma 11.7.1, G°? is a set of incompatible
maps. Hence, z € G°%, y/g € G°°, x <np y, and y/g <am y gives

r=ylge{f/gl|feo}

46

(c¢) Choose @ < o such that a € &, = % — P,. Since & C P2 (c.t.

Lemma 11.5.2) we have a® C &, C ®. Let A ={az / ¢ | z € D} =
{z / ¢ | 2 € a®}. By (a) we have A C ®°°. From Lemma 11.6.3(a)
we have H, € O7(®). Choose K <. o such that H, = K. We have
AC{z/olzed}C{z/dplezecH)={a/¢|lzecK}<.0G

Lemmas 11.7.3 (a) and (b) are central; they are used thus:
11.7.3(b) = 11.8.1(c,d) = 12.2.1(be) = 12.3.5 = 12.3.6 = UBT.
11.7.3(a) = 11.8.1(b) = 13.5.2(c) = 13.6.3 = 13.8.4 = LBT.

11.8. Closure properties of O7(P)

For 6 € M let § denote Dom|[d]. This is consistent with) = Dom][y].
We use below the definitions of P,), and R given in Definition 4.6.3 and
® = Dom][¢]. We have:

Lemma 11.8.1.
(a) Qv # L = Dom[Qu] = K — Dom[v] where K = {z /v | z € ®}.
(b) Dom[v] € O7(®) A Qu # L = Dom[Qv] O Dom[v]° — Dom][v].
(c¢) Dom[v] € O%(®) A Qu # L = Dom[Qv] = Dom[v]° — Dom|[v]

if Dom[v] is self-extensional.

(d) Dom[v] € O (®) = Dom[Qu] € O ().

{E

(e) Rfbc # L = Dom[Rf6bc] = U__;Dom|f(b(cz / 6))]
) Dom[P] = {T}

Proof of 11.8.1
(a) Qu # L and the definition of @ gives Dv = T. We have

y € Dom[Qu]
S Quy=T Definition of Dom
e Vzo(ylz /o) =T Dv =T and the definition of @

S Vzed:v(y(z /v)=T Properties of V
& Vzed:y(z / v) € Dom[v] Definition of Dom
<y € K — Dom[v] Definition of K and —

(b) Follows from (a) and Lemma 11.7.3(a)
(c) Follows from (a) and Lemma 11.7.3(b).
(d) Using Lemma 11.6.3(b), choose H € O7(®) such that H is open, self-

extensional, and contains Dom[v] as a subset. Let w be the characteris-
tic map of H. Now v <Xy w so Qv =5y Qw by monotonicity. Hence,
Dom[Qv] € Dom[Qw] = Dom[w]® — Dom[w] € O7(®) by 11.8.1(c) and
11.4.1(b). Thus, Dom[Qu] C ®. It remains to prove Dom[Qu] € O7(M).

If v = L then Dom[Qv] = § € O“(M). Now assume v # L. Let
G = Dom[v]. Assume G € O7(®). Choose a o-small H C M, such that
G = 1H and let K be as in (a). Now K and K — H are o-small and
Dom[Qv] = K — tH =1(K — H) € O7(M).

(e) RfObc # L and the definition of R gives c = T and Ry f0bc = T. Now:

47

y € Dom[R f6bc]
< Rfbbey =T
< Rofbbey =T

< Ez. (02! f(b(cz / 9))%)) =T

Definition of Dom
Oc=T, Rifobc=T,
and definition of R.
Definition of Ry

& JzeM:0z! f(blez [0)y=T Properties of E
< JzeM:0z=TA f(b(cz / 0))y=T Properties of guards
S dzeMize 0N fblez/0)y=T Definition of 6

& 32€0: f(b(cz))y =T Trivial
& 3z€b:y € Dom|[f(b(cz / 0))] Definition of Dom
&y €U, gDom[f(b(cz / 0)))] Trivial

(f) Trivial: * € Dom[P] & Px =T < iflz, T, L] =Tz =T.

12. Proof of the Upper Bound Theorem (UBT)

Recall that UBT states that 1/3 C &. In this section we only need that o is
inaccessible, that M is an MT standard k-quasimodel where k > ¢ is regular,
that Y acts as Yrarski, the least fixed point operator of M w.r.t. the model order
=M, and that application is monotonic w.r.t. <.

12.1. Flat order
For u,v € M define the “flat order” u <, v thus:

Definition 12.1.1. v <, v&u=1LVu=v

We have u < v = u <pq 0.

Lemma 12.1.2. Assume

(1) a=mb

(2) Ve, deM: (¢ Ipm d = fe <y gd)
(3) 0= pm ¢

We have

(4) Sfoa <, Sqbb

Proof of 12.1.2 The lemma is trivial if Sffa = L. Now assume
(5) Sfoa # L
From (5) and the definition of S we have that (6), (7), or (8) holds:
(6) a=T
(7) a€FANaT=T
(8) a€FANaT eF
We proceed by a proof by cases
Case 1. Assume (6). From (1) and (6) we have b = T. By the definition of
S we then have Sffa = P = Sg0b which proves Sffa <, Sgbb.
Case 2. Assume (7). We have
(9) be FAVT=T
(10) Sfba = Q(f(aF))

by 1,7 -
by 7, def. of S

48

(11) Sgbb = Q(g(bF)) by 9, def. of S
(12) QU(aF) # L by 5. 10
(13) f(aF)# L by 12, def. of @
(14) f(aF) <1 g(bF) by 1, 2
(15) f(aF) = g(bF) by 13, 14
(16) Sfba = Sgb by 10, 11, 15
(17) Sffa <, Sgbb by 16

Case 3. Assume (8). We have
(18) beFAbTeF by 1, 8
(19) Sffa = 0(aF)! Ry f0(aT)(aF) ! Rof0(aT)(aF) by 8, def. of S
(20) Sgfb = O(bF) | R1gO(bT)(bF) | Rygf(bT)(bF) by 18, def. of S
(21) 0(aF) =T by 5, 19
(22) O(aF) = 6(bF) by 1, 21
(23) Ry fO(aT)(aF) =T by 5, 19
(24) Vz.D(f(aT(aFz /6))=T by 23, def. of Ry
(25) Vzed: f(aT(aFz/0)) # L by 24
(26) Vzel: f(aT(aFz / 0)) # L by 3, 25
(27) Vze€b: f(aT(aFz / 0)) = g(bT(bFz / 0)) by 1, 2, 26
(28) Ry1f0(aT)(aF) = R1g0(bT)(bF) by 27, def. of Ry
(29) RofO(aT)(aF) = Rogf(bT)(bF) by 27, def. of Ry
(30) Sffa = Sgbb by 19, 20, 22, 28, 29
(31) Sffa <, Sgbb by 30

12.2. Limited size

Lemma 12.2.1. Assume f,a,b,¢,v,0 € M, 0 <\ ¢, and YVxeM: Dom|[fz] €
O (®). We have:

(a) Dom[P] € 07()

(b) Dom[Q(fv)] € O7(®)

(c) Dom[Rfbc] € O (®)

((dg Sf0a € {L,P,Q(f(aF)), Rf0(aT)(aF)}

e) Dom[Sffa] € O°(®)

Proof of 12.2.1

(a) Follows from 11.8.1(f)

(b) Follows from 11.8.1(d).

(c) If Rf6bc = L then Dom[Rf0bc] =) € O°(®). Now assume RfObc # 1.
From the definition of R we have fc = T so ¢ € ®. Hence, {cz / ¢ | z €
®} C 9°9 is g-small by Lemma 11.7.3(c). Thus, {b(cz / ¢) | z € ®} is
o-small so {b(cz / ¢) | z € 0} is also o-small. Hence, U, cgDom|[f(b(cz /
®))] € O7(®). Combined with 11.8.1(e) this gives Dom[R f0bc] € O (D).

(d) Sfay

= if[a, P, if[aT, Q(f(aF)), Rf0(aT)(aF)]]y Definition of S
€ {L,P,Q(f(aF)),Rf0(aT)(aF)} Properties of if
(e) Follows from 12.2.1(a-d).

49

12.8. Proof of UBT
For UBT we need the minimality of Y w.r.t. <, i.e. that Y is interpreted
as YTarski-

Definition 12.3.1. Define s, € M by:
(a) so =1
(b) Sar = Ssa(Usq)
(c) ss =sup,es Sq for limit ordinals §

Note that Lls, denotes the map L applied to the map s,. Above, « is a free
variable in Us, but a bound variable in sup,cs Sa-

Fact 12.3.2.
(a) a < B = sqa 2 sp
(b) supyes Sa exists
(c) s=YS =s,
(d) ¥ = Usk

We now define 6, for all ordinals o and all § € M. We shall use 0, for 0 = ¢
and 6 = 1. In the case § = ¢ we are going to have so Jm ¢ and Ud, S ¢
so that ¢ = Us, = U, = ¢ which is the essence of UBT.

Definition 12.3.3. For ordinals « and for § € M define 0., thus:
(a) 0= L1
(b) 0o = 56,0

(¢) 05 = sup,es 0o for limit ordinals &

Fact 12.3.4. B
(a) a<B= 0, =Mm0p
(b) sup,es 0o exists.

Lemma 12.3.5. For 6 < ¢ and for all ordinals 3 we have
(a) Yue M:Doml[fgu] € O7(®) B
(b) VyepYu,veM: (u <p v = 0,u <, O3v)

Proof of 12.3.5 We now prove (a) and (b) together using complete induction.
The proof has six parts: We prove (a) and (b) for § = 0, we prove (b) and (a)
for 8 = 4 assuming (a) and (b) for 8 < § for limit ordinals J, and we prove (a)
and (b) for § = o assuming (a) and (b) for § < . The proof of (b) for 8 = o
in turn uses induction in ~.

Recall that Dom[u] is open for all u € M, c.f. Remark 8.2.7.

Proof of (a) for 8 = 0: Dom[fzu] = Dom[L] =0 € O ().

Proof of (b) for f = 0: Trivial.

Proof of (b) for § = §: Assume v € §, u,v € M, and u < v. The proof is
trivial for 6,u = L. Now assume 0,u # L. (b) for B < § gives O,u < Ozv if
v < B<ds00,u=0zvify<B < Thus, ,u=05vs0 0,u<, Osv.

~ —

50

Proof of (a) for B = &: Assume u € M. If fgu = L for all B < § then
05 = L so Dom[fsu] =) € O°(®). If ,u # L for some v < § then 0,u = zu
for v < B < § as above so O u = su. (a) for B < § gives ,u € O7(P) so
9_5u S OU(@).

Proof of (a) for B = o': From (a) for f = a we have YucM: Dom[f,u] €
O°(®). Thus, Dom|[f,u] = Dom[S0,0u] € O (®) by 12.2.1(e).

Proof of (b) for 8 = o': The proof is by induction in v, but we only use the
inductive hypothesis on v in the limit case. In the successor case we use the
inductive hypothesis on 5.

For v = 0 we have 9_,yu =1 <, O,v.

If v € 8 = ' is a successor ordinal then let ¥ be the predecessor of v. Now
¥ =€ =a"s07 € a. From (b) applied to ¥ and « we have Ve, deEM: (¢ <
d= é:yc <\ éad). Thus, by 12.1.2 we have évu = 5\%91; <, 560,00 =0,v.

Now let € be a limit ordinal and assume
(c) Vu, vEM: (u =g v = 0u <1 Orv)
for all v € . Assume u,v € M and u < v. If é,yu = 1 for all v € € then
Ou=_1 <, Opv. If @,u # | for some 7 € € then f.u = éﬂ,u <1 Byv by (c).

Lemma 12.3.6. For ordinals a and a € M we have
(a) u¢a j./\/L ¢
(b) Sa M ¢a
() ¥ =m0

(d) Domlsa] € O°(P)

Proof of 12.3.6

(a) From Lemma 12.3.5(a) we have Dom[p,u] € O7(®). Hence, ¢ uv =
T = v € ®. Using the properties of E we get (Eu.gquv) =T = v € ®
and (Eu.¢ouv) € {1, T}. Hence, Lp, = ¢ using the definition of U
(Definition 4.6.2(a)).

(b) The proof is by transfinite induction in «. The cases where « is zero
or a limit ordinal are trivial. We now assume s, =< ¢o and prove
Sar ZM G- From Lemma 12.3.6(a) we have Lip, =< ¢. From s, =y
¢o and monotonicity we have Us, =a¢ U¢,. Hence, Us, =<4 ¢ and
Sa/ = gsa(l—lsa) j./\/l nga(é = éa’-

(¢) ¥ = Usy =m Uy =am ¢ by Fact 12.3.2(d), Lemma 12.3.6(b), and
12.3.6(a).

(d) We have ¥ <5 ¢ by (c) so Dom[ih.a] € O7(®) by Lemma 12.3.5(a).

Thus, Dom[sa] € O7(®) since s = 1, by Fact 12.3.4(c).
The Upper Bound Theorem (Theorem 11.1.2) follows trivially from Lemma
12.3.6(c) above. Lemma 12.3.6(d) is a strengthening of UBT which we shall
need for proving LBT.
13. Proof of the Lower Bound Theorem (LBT)
Having proved UBT, we proceed by proving LBT, thus completing the proof
of the Main Theorem. As already mentioned, the proof of LBT uses UBT (e.g.

ol

Fact 13.6.2(c) and Lemma 13.8.3(e)) and that o is the smallest inaccessible
(only used in Lemma 13.7.3).

13.1. A countable collection of maps
Definition 13.1.1.

(a) To=T

(b) Tpy1=Ax. T,

(¢) N={To,T1,To,...}

13.2. Characteristic maps

Recall that we refer to elements of x = (M — {T, L}) NF as characteristic
maps. For G C M we have Dom[g] = G for at most one g € x. We shall refer
to that g, if any, as the characteristic map of G. Define x; = x U{L}. Also
recall the following facts:

Fact 13.2.1.
(a) For g,h € x we have g <aq h < Dom[g] C Dom][h]
(b) ¢ is the characteristic map of ®
(c) v is the characteristic map of)
(d) hext Ng=mh=gexs

Lemma 13.2.2.

(a) sa = Ssya
(b) sa€x1
(c) sa 2m ¢
(d) If Dom[sa] # 0 then sa <4 sb < Dom[sa] C Dom|[sb].
Proof of 13.2.2
(a) sa
=YSa Definition of s
= S(YS)a Property of Y
= Ssa Definition of s

= Ss(Us)a Definition of S
= Ssiva Definition of v
(b) From if[y, T, L] Xp T we have P = Ay.if[y, T, L] Sp Ay. T =T;.
From QT = DTy ! \y. V2. Ti(y(z / v)) = Ay. T = T we have QT1 < T1.
From Ez.--- <a T we have RT2(UT2)a = A\y.Ez.--- < Ay. T.
From STy(UTy)a = if[a, P, iflaT, Q(T2(aF)), RTo(UT2)a]] we have
STQ(I_ITQ)Q € {J_, P, QTl, RTQ(HTQ)Q} and S’TQ(UTQ)CL =M T;.
Hence, STy = Aa. ST (UUT2)a < Aa. Ty = Ty so0, by the minimality of Y
we have s = YS < Ty and sa <y Toa = T1. sa < T1 combined with
T1 € x gives sa € x1.
(c¢) From ¢ = Us we have Dom[¢)] = UzepmDom[sa] so Dom[sa] € Dom[¢)]
which proves sa < Y.

92

(d) If sa # L and sb # L then the lemma follows from 13.2.1(a) and 13.2.2(b).
The lemma is trivially true if sa = L. Actually, sa < sb < Dom[sa] C
Dom|[sb] only fails for (sa = Ax.L) A (sb = 1), which is prevented by
Dom|sa] # 0.

13.3. Cardinality
Definition 13.3.1. For all g,h € M define f // g ={z / g | * € Dom|[f]}.

Fact 13.3.2. Assume Dom|[g] C Dom[h]
(a) gylz=gy! (hy!z)
(b) f/g=(/h)/yg

Recall from Section 11.4 that G <. H if G has smaller cardinality than H.

Lemma 13.3.3.
(a) Dom[h] C Dom[h'] =g // h<.g // I
(b) Domlg] € Doml¢'] ADom[h] C Dom[h'] =g // h<.¢g" J/ I

Proof of 13.3.3
(a) Define k(z) = x / h. We prove the lemma by proving that k is a surjective
function from g // b’ to g // h: Supposey € g // h = {x / h | z € Dom]g]}.
Select € Dom[g] such that y = « / h. Define z = x / h’. We have
ze€{x /W |x€Domlg]}=¢g/h and k(z)=(x /W) /h=2/h=y.
(b) Dom[g] C Dom[g'] trivially gives g // h <. ¢’ // h which combined with
13.3.3(a) gives g // h <. ¢ // I.

13.4. Pairs
Define z::y = Az.if[z, =, y].

Fact 13.4.1.
(a) (z:y) € F
(b) (xz=y)T=2
(c) (zzy)F =y

18.5. Analysis of s

Lemma 13.5.1.
(a) sT=P
(b) Doml[sT] = {T}

Proof of 13.5.1

(a) sT
= Ssypa 13.2.2(a)
=P Definition of S

(b) Dom|[sT]
= Dom[P] 13.5.1(a)
= {T} 11.8.1(f)

93

Lem mal352

(a) s(T::a) = Q(sa)
() saot L = Qo) % L
(¢) sa # L = Dom[s(T::a)] © Dom[sa]® — Dom][sa]

Proof of 13.5.2

(a) $(T::a)
= Ss)(T::a) 13.2.2(a)
= Q(s((T=a)F)) Definition of S
= Q(sa) 13.4.1(c)
(b) From sa # 1 we have D(sa) =T so
Q(sa)
= D(sa) ! Ay.--- Definition of @
=Tl Ay.--- From the assumption
= Ay.--- Definition of guards
#+ 1 Trivial
(¢c) We have Dom[sa] € O7(®) by 12.3.6(d) and Q(sa) # L by 13.5.2(b).
Hence,
Dom|[s(T::a)]
= Q(sa) 13.5.2(a)

D Domlsa]® — Dom[sa] 11.8.1(b)

Lemma 13.5.3. Assume f € F, Ya =T, and Vze®:s(f(az / ¥)) # L
(a) R18¢(f a)=T
(b) s(f:a) = Ay.Bz. (vz ! s(flaz / ¥))y)
(c) s(f:a) # L
(d) Domls(fza)] = U, ey Dom[s(f(az / ¢))]

Proof of 13.5.3
() Risp(fi0)
= Vz.D(s((f:a)T((f::a)Fz /))) =T Definition of R;
=Vz.D(s(flaz /¥))) =T 13.4.1
= Third assumption

b) s(fxa)
= Ssp(f::a) 13.2.2(a)
= Rstp(f::a) Definition of S
= Y((f:a)F) ! Rysu(f:a) ! Rosp(f::a) Definition of R
= va ! Risp(f:a)! Rosyp(f::a) 13.4.1
= Rysyp(f:a)! Rosw(f::a) Second assumption
= Rost(f::a) 13.5.3(a)
= Ay.Ez. (02! s((f:a)T((f:a)Fz / 0))y) Definition of Ry
= \y.Ez. (02! s(f(az / 0))y) 13.4.1

(c) Follows from 13.5.3(b)

o4

(d) y € Dom[s(f::a)]

< s(fra)y=T Definition of Dom
< Ez. (Yz ! s(flaz [/ ¢))y) = 13.5.3(b)

< JzeM: (Yzs(flaz [¥))y) =T Properties of E

S FzeM:(Wz=TAs(flaz /V))y)=T Properties of guards
& JzeM:(z € Dom[| As(f(az / ¢¥))y) =T Definition of Dom
& eM:(ze P As(flaz [/)y) =T Definition of 1)

= Elz@/) s(flaz /)y =T Trivial

& Jzerp:y € Dom[s(f(az / 1))] Definition of Dom
&y €U, ,;Domls(f(az / ¥))] Definition of Dom

13.6. Lower bounds
Recall f // g={x / g |z € Dom[f]} from Definition 13.3.1. Now define:

Definition 13.6.1. self[g]=g¢g// ¢

Fact 13.6.2. Suppose & € & and G = Dom[g] C @ and let b be any map.

(a) /g€ G (Lemma 11.7.3(a))
(b) self[g] C G°?
(c) self[sb] € Dom[sb]°? (because of UBT)

A key to proving LBT is to prove that self[sb] can have arbitrarily large car-
dinality below o which uses both that self[sb] can be large and that o is the
smallest inaccessible.

Lemma 13.6.3.
(a) self[sT]={T}
(b) self[sb] # 0 = sb# L
(c) T eself[sb] = 2 <. self[s(T:b)]
(d) 2 <. self[sb] = w <. s(T::b) // sb
(e) 2 <. self[sb] = P(self[sb]) <. s(T::b) // sb

Proof of 13.6.3

(a) self[sT|
=sT)/ sT Definition of self[x|
= {z / sT |2 € Dom[sT|} Definition of = // y
={z/sT|zeT} 13.5.1(b)
={T/sT} Trivial
={T} Definition of = / y

(b) Wehaveself[L] =1 // L ={z/L|z€Dom[l]}={z /L |z} =
(. Hence, self[z] # 0=z # L =z # L.

(c) Assume T € self[sb]. Let G = Dom[sb]. We have T € self[sb] = sb //
sb={z / sb|x € Dom[sb|} so Jx€Dom|[sb]:z / sb=T. Since x / sb=T
holds only for = T this proves T € Dom[sb] = G. From T € self[sb]
and 13.6.3(b) we have sb # L so Dom|[s(T::b)] D G° — G by 13.5.2(c).
Since T € G we have {T, Az. T} C G° — G C Dom[s(T::b)]. Now let

%)

H = self[s(T:b)] and w = (Az. T) / s(T::b). We have (Az.T) / s(T::b) €
F so {T,u} has two, distinct elements. Furthermore, self[s(T::b)] =
s(T=b) /) s(Tub) = {x / s(T=b) | x € Dom[s(T::b)]} D {z / s(T:b) |
x € {T, \x.T}} = {T / s(T=b),(Mz.T) / s(Tz:b)} = {T,u} proving
self[s(T::b)] >. 2.

Let G = Dom[sb] and V = self[sb]. Assume 2 <, self[sb] = V. Choose
u,v € V such that u # v. We have {u,v} C self[sb] = sb // sb={x / sb |
x € Dom[sb]} = {z / sb | z € G}. Choose p,q € G such that p / sb =u
and ¢ / sb = v. From self[sb] # (0 we have sb # L by 13.6.3(b) so
Dom[s(T::b)] D G° — G. Now define

fo=Azif[zuu---u, p, q]
We have f, € G° — G C Dom([s(T::b)] for all n € w. Now define

gn = /\x.if[xm, w, v]
We have g, = f, / sb € s(T::b) // sb and all the g,, are distinct, proving
w <. s(T::b) // sb.
Define G, V', u, v, p, and g as above. Assume 2 <, self[sb] = V. According
to [3], V C G°’ is a set of incompatible, compact maps. For all W C V
let fyr be the unique element of F for which
p ifzew!
fwr=<¢ q ifzxe (GO\W)"
1 otherwise
We have fiy € G° — G C Dom[s(T::b)] for all W C G. Now define
u ifxeWw?
gwr =< v ifxec (GO\W)T
1 otherwise
We have gy = fw / sb € s(T::b) // sb and all the gy are distinct, proving
P(V) <. s(T::b) // sb.

13.7. Beth numbers

For all ordinals o we now give a non-standard definition of the Beth num-
ber/cardinal B,. The definition is non-standard in that By and B; are non-
standard and B, is shifted two places for finite «.

We use card(S) to denote the cardinality of S (i.e. the smallest ordinal
equinumerous to .5).

Definition 13.7.1.

B()El
BlEQ
BQEW

We proceed by giving some definitions related to co-finality.

Definition 13.7.2.

96

(a) cf(a) denotes the co-finality of «, i.e. cf(a) is the smallest ordinal such
that there exists an f:cf(a) — a which is unlimited in «.
(b) ccf(a) denotes the smallest ordinal 8 such that cf(a) <. Bg.

Thus cf(a) is always a cardinal and <. could be replaced by < in (b) above.
ccf(a) does not need to be a cardinal.

We note that cf(a) = 1 if « is a successor ordinal and that cf(a) = « if,
among others, « is 0, 1, w, or an infinite successor cardinal. We recall that an
ordinal « is a reqular cardinal if, by definition, cf(a) = a > w. Finally recall that
o is inaccessible if 0 > w and o is a regular cardinal and v < 0 = P(7y) <. 0.

Lemma 13.7.3.
(a) a <. B,
(b) ccf(a) < cf(a) < a
(c) cef(a) < @ or @ =0 or « is inaccessible.
(d) cef(a) < a if o is the first inaccessible and 0 < a < 0.

Proof of 13.7.3

(a) By induction in «

(b) By (a), cf(a) <c Beg(a)- Hence, ccf(a) < cf(a) by the definition of ccf(c).
cf(a) < « follows from the definition of cf(«).

(¢) Assume ccf(a) £ o and « # 0. We now prove that « is inaccessible. We
have a = cf(a) = ccf(a) from (b). From ccf(l) = 0, ccf(w) = 2, and
ccf(y) =1 for 1 <y < w we have a > w. Since cf(a) = a > w it remains
to prove v < a = P(y) <. a. Assume y < a. Since o = cf(a) is a limit
ordinal we have 7' < a. From 7/ < a = ccf(a) and the definition of ccf(«)
we have cf(a) €. B,. Thus P(v) <. P(B,) =¢ By <. cf(a) = .

(d) Follows trivially from (c).

13.8. Growth lemma

We now define b, such that Dom[sb,]| and self[sb, | are growing in « and
such that Vyeo3feo: v <. self[sbg|.

For defining b, we will use two auxiliary maps ¢, and d,, defined in Definition
13.8.2 and three auxiliary functions f,, g, and h, defined as follows:

Definition 13.8.1.

(a) Choose f,:cf(a) = « such that f, is unlimited in « (this is possible by
the definition of cf(a)).

(b) Choose gq:self| sbecs(a)] — cf(a) such that g, is surjective if cardinality
permits and non-surjective otherwise.

(c) Choose h,:Dom[sb,]°® — Dom|[sb,] such that h,y/sby, = y when y €
self[sb, |. We define h,, only if Dom[sb,] # 0. From Fact 13.6.2(c) recall
self[sby | € Dom[sb,]°?. Recall that self[sb, | = {x / sby | © € Dom[sb,]}
by definition so that the choice of h, is possible.

Definition 13.8.2.

o7

bs = cs::deer(s) for limit ordinals ¢
Let ¢, be the unique element of F for which
o= { Dfa(ga(e/sbectie)) I T/ 8bect(a) € self[sbect(a)]
¢ 1 otherwise
(e) If Dom[sb,] # 0 let do be the unique element of F for which
dow = { he(x / sby) if o/ sby € Dom[sb,]°?
T L otherwise

(a)
(b) ba’ =T:b
c)
d)

Lemma 13.8.3. For (b)-(f) assume Dom|[sb,] # 0
(@) car = co(T / sbect(a))

d,, € Dom|[sb,]° — Dom][sb,,]

)

(c)

(d) wda =T
)
)

Proof of 13.8.3

(a) From Fact 13.3.2 we have f / g = (f / g) / g The lemma follows from
x [8bect(a) = (T / Sbect(a)) / Sbec(a) and the definition of c,.

(b) Assume Dom|[sb,] # 0. Assume x € Dom[sb,]. We have Dom[sb,] C ®
by UBT so / sby € self[sb,] € Dom[sb,]°® by Fact 13.6.2(a). The
definition of d, gives dox = ho(x / sby). The definition of h, gives
hay /| sbo =y if y € self[sby], s0 ho(z / sby) / sba = x / sby. Thus,
dot | sbo = ha(x / sby) | sbo = x | sby. Hence, {dyx / sby | x €
Dom[sby|} = {z / sby | x € Dom[sb,]} = self]sb,].

(c) Assume Dom[sb,] # 0. If € Dom[sb,]° then z / sb, € Dom[sb,]°? by
Lemma 11.7.1(a). Thus, dox = ho(x / sby) € Dom[sb,] by the definitions
of d,, and h,.

(d) Assume Dom[sb,] # 0. Now sb, # L. d, € Dom[sb,]® — Dom[sb,] C
Dom([s(T::b,)] follows from sb, # L, (¢), and Lemma 13.5.2(c), proving
od, = T.

(e) Proof of D: Follows from (b) and ® O Dom[sb,]. Proof of C: Assume z €
{doz / $bo | © € ®}. Choose x € ® such that z = dyx / sb,. Like in the
proof of (b) we have z / sb, € Dom[sb,]°® and dox = ho(x / sby). The
definition of h, and = / sb, € Dom[sb,|°® gives h,(z / sba) € Dom[sb,].
Thus, z = dax / sby = ho(x / sba) / sba € self] sby .

(f) From 1) = Us we have Dom|[sb,] C 9. The lemma follows from (b), (e),
and Dom|sb,] C) C ®.

Lemma 13.8.4. For all a € o we have:
(a) By <. self[sb]
(b) VBea VyeB: Dom[sb,] C Dom[sbg]

Proof of 13.8.4 We prove the conjunction of (a) and (b) by transfinite induc-
tion up to o.

98

Base case. Suppose o = 0. We now prove (a).

By
=1 Definition of B
< AT} Trivial

= self[sT] 13.6.3(a)

= self[sby] Definition of b

= self[sby,] a=0

To prove (b) for a = 0 we merely have to prove Dom[sbg] C Dom][sb].

From 13.5.1(a) we have sT = P which gives sT # L. Hence, by 13.5.2(b)
we have Dom[s(T::T)] = Dom[sT]° — Dom[sT]. T € Dom[sT] by 13.5.1(b)
combined with the definition of X — Y gives T € Dom[sT]® — Dom[sT] so
T € Dom[s(T::T)] which proves {T} C Dom[s(T::T)]. Hence,

Dom|[sbg]
= Dom][sT] Definition of b
= (T} 13.5.1(b)

Dom[s(T::T)] See above
Dom[s(T::bg)] Definition of b
= Dom|[sb] Definition of b

Induction step. Assume
(1) By, < self| sby]

(2) VBea"Vyef: Dom|sb,] C Dom[sbg]

To prove (2) in which « is replaced by o it is sufficient to prove Dom|[sb,] C
Dom[sby]. From (1) we have Dom|[sb,] # 0. Then, from (2) and 13.2.2(d) we
have sb, = sb,. Hence,

sby
= $(T::by) Definition of b
= Q(sby) 13.5.2(a)
<mQ(sbyr) Monotonicity
= s(Tuby) 13.5.2(a)
= sbyr Definition of b

From sby =< sber and 13.2.2(d) we have Dom[sb,/] C Dom[sb,] as re-
quired.

We now prove
(3) By <. self[sby]

From 13.6.3(a) we have T € self[sT]. From 13.6.3(c) we have By = 2 <,
self[s(T:T)] = self sby | so (3) holds for & = 0. For a = 1 we have Dom[sb;] C
Dom|[sbs] from (2). Hence, we may prove (3) for a = 1 as follows:

1N

By
=w Definition of B
<c8(T:by) // sby 13.6.3(d)
= sby // sby Definition of b
<. sby [/ sba 13.3.3(a) and Dom[sb;] € Dom|[sbs]
= self[by] Definition of self

Now assume « > 2. From 2 <. self[b;], (2), and 13.3.3(b) we have 2 <,
self[by]

99

%

By
= P(Ba) Definition of B
<. ’P(self[sb D (1)
<. 8(T:by) // sba 13.6.3(e)
= sby [/ sba Definition of b
<, by /] b 13.3.3(a) and (2)
= self[sby] Definition of self

Limit case. Suppose d € ¢ is a limit ordinal. For all o € ¢ assume
(4) B, <. self[sb,]

(5) Ve VyeB: Dom[sb,] C Dom[sbg]

From 13.7.3(d) we have ccf(d) € §. Hence, by the definition of ccf and (4) we
have cf(d) <c Beer(s) <c self[sbeci(s)]| 50 gs:self[sbee(sy] — cf(0) is surjective
according to 13.8.1(b).

From ccf(d) € ¢ and (4) we have Dom[sbecs(s)] 7#) so the conditions in
13.8.1(c), 13.8.2(e), and 13.8.3 (b)—(f) are satisfied. We have

Vzed: s(cs(dect(s)2 /| V) #

& V2e®: s(cs(decrsyz [/ Sbccf @) # L 13.8.3(a)
& V2e®: s(cs(dect(5)2 / Sbect(s))) 7# L 13.3.2(b) and 13.2.2(c)
& Vzeself] sbect(s } s(csz) # L 13.8.3(e)
54 Vz€self[sbccf(5)]: Sbfé(gé(z)) 7& 1L 13.8. Q(d)
= VZGCf(5): Sbfg(z) # 1 13.8.].(b)
& true (4)

Hence, we have

(6) Vze®: s(cs(dectsy2 / V) #
Furthermore,
Dom|[sbs]

= Dom([s(cs::dect(s))] Definition of b
= U, cgDomls(cs(deet(s)2 / ¥))] 13.5.3(d), 13.8.3(d), and (6)
= UzeqﬁDom[S(cé(dccf(é)Z / 1/) / Sbccf(&)))] 1383(&)
= U,cgDom[s(cs(dect ()2 / sbect(s)))] 13.3.2(b) and 13.2.2(c)
- Uye{dccf(é)Z/Sbccf(S)|261;}D0m[s(ccc£(6)y)] Trivial
= Uyeself[sbees(5) 1 D0m[s(c5Y)] 13.8.3(f)
= Uyeself[sbeer(s) 100M[8D 5 (g5 (1))] 13.8.2(d)
= Uwecf((;)Dom[sbfg(w)] 13.8.1(b)
= UyesDom|[sb,] 13.7.2(a) and (5)

Hence, we have Vy&€d: Dom[sb,] € Dom[sbs] and Vy€d: sby < sbs. Like in
the deduction step, the latter implies Vy€0: sb, < sbs and Vyed: Dom([sb,/] C
Dom(sbs:]. The latter implies Dom[sbs] = UyesDom[sb,] C Dom[sbs]. Hence,
we have proved (2) in which « is replaced by 4.

From Vye€d: Dom|[sb,] C Dom[sbs], 13.3.3(b), and (4) we have Vyed: B, <.
self[sby] <. self[sbs]. Hence, Bs = UyesB, <. self[sbs] which completes the
proof.

60

18.9. Proof of the lower bound theorem

To prove the lower bound theorem (Theorem 11.1.3) it is sufficient to prove

VGeO? (1h): G° — G C 1)
To do so, assume G € O7(1)). Choose o € & such that G <. self[sby]. Let
h:self[sby] — G be surjective. For all z € G choose i, € M such that = €
Dom|[si;]. Let ¢ be the unique element of F for which

or = Uh(z/sby) i T/ s.ba € self[sb,, |
1 otherwise

By a proof similar to the limit case of 13.8.4 we have G C Dom|[s(c::d,)]. Hence,
G° — G C Dom|[s(T::c::dy)] by 13.5.2(c) so G° — G C) as required.

A. Computational properties of canonical pre-models

We now proceed to compare the observational, computational behavior of
programs with their semantics as defined by the canonical models.

Let M, be the MT canonical k-model. Modelling € requires £ > o for an
inaccessible o, but modelling the other constructs just requires x > w. Now
assume kK > w. For all MT, MTg.s, and MTy programs d let d denote the
interpretation of d in M,,.

A.1. Introduction of T. and auxiliary concepts

Let C,, = R4, (P.,). Recall from Section 9.5 that if p € P,, C P then
Ip € M is a prime map and if ¢ € C,, C C then Jc € M is a compact map. For
p € P, and ¢ € C,, we now proceed to define MTyes programs 7,, Tc, Xp, and
Xc which satisfy:

T = p
. = le
T iflp=ue
Xpt = 1 otherwise
_ T ifle=pmz
X = 1 otherwise

To define the terms above, we also define a number of auxiliary concepts. For
n € w and for n-tuples {(cy,...,¢c,) and (¢}, ...,c,) in C" we define

rn
(e1,...,eny 2 (c),...,d)y &N Ne, &,

and

\L(Ch"'7cn> = <\Lcl7"'7\lfc'ﬂ>

61

For (my,...,my,) and (m/,...,m}) in M™ we define

n
(my,...,mp) 2p (MY, ...,ml) & my Spmi A Amy, S ml,
For sets of n-tuples s, s’ € P¥(C!) we define
s s & Jeesddes:ec @

For p,p’ € Py, ¢, € C,, ¢ € C", and s, € P¥(C") for which p & p,

cpd, e, and s £ s’ we are going to define MTqer programs dppr, Ocer,
0z, and dgs which satisfy:

Sppr @ = T iflp2m2e

Opp' T = F iflpIma

Ocer T = T iflelpmz

[F ifJld Spmx

Segrxi--xn = T ifJe=pa (21,...,20)

ey -y, = F if & a0 (@1,...,20)
Osgr®1 - Xy = T if Jees:lc 2pq (x1,...,20)
Jssr1 - = F 3Ies & S (@10, 20)

Finally, for ¢ € C}, and s € P¥(C[}) we are going to define MT4e¢ programs
Xz, and xs which satisfy:

- T ifle =2 (1,...,2p)
Xe¥1In = 1 otherwise

_ T ifdces: e (T1,. ., 2n)
XsT1 ' dn = 1 otherwise

A.2. Parallel constructs

As a supplement to parallel or define parallel and:
v&y=-(-z| -y

Let € be a choice function over P, UC,, UC UP¥(C}). For finite subsets Z of
P,, Cu, CZ, or P¥(C") and for MT4es programs a., z € Z, define the MTqe¢
programs ., a. and [].., a. thus:

F ifZ=0
2oz 0 { acz || D.ezqezy @ otherwise

T ifZ=10
[Leza. = { Gez & HZGZ\{CZ} a, otherwise

62

A.3. Definition of T, and T
For p,p’ € P, ¢, € C,, n € w, ¢, € C", and 5,5 € PY(C) we define

the following M Ty programs by induction in the set rank of p,p’, ¢, ¢, ¢, , s, s":
T: = T
7—f = Az J_curry
7—<C’P> = Az If[XCx ’ 7;)) J~Curry]
Xt = Ax.if[z, T, Loumy]
Xt = Az.if[z, Loy, T]
X(e.p) = Az xp(@Te)
Xe = Azif[[[e.xp2: T, Louny]
X(er,en) = ATL T XeyT1 & -+ & Xe, Tn
Xs = Axl"'ajn'ZEeSXExl"'xn
Oep = Az.iflz, T, F] ifp#£t
Opt = Ax.if[z, F, T] ifp#£t
Seer = A Jle. e Opp® ifc d
s,/ = Ar1 T Yo pey Ocot1 - 2n i s s

Above, the definitions of 6.) (e prys e, and Te are missing. For (c,p) 2> (¢, p’)
define

6(C’P><C”p’) = Az. 5pp/(x7;ud)

In the definition above note that (c,p) & (¢/,p’) implies ¢ © ¢ and p 2 p'.

From ¢ C ¢ we have cU ¢ € C and the set rank of cU ¢’ is the larger of the set

ranks of ¢ and ¢’. Thus, the set rank of cU¢’ is smaller than one of the set ranks

of (¢,p) and (¢/,p’) which makes it legal to use Toue in the recursive definition.
For {(c1,--,cn) & {c},...,c)) define

5(61,“-,61,,)(0'1 -----) = ALY - T 561-6233%‘

where ¢ € {1,...,n} is the smallest index for which ¢; & ¢.
To define T, recall the definition of (¢, p) from Section 9.4 and define

def(n,c) = {ce€ Cl|3IpeP: (¢ p) € c}
true(n,c) = {ceCy|(ct) €c}
false(n,c) = def(n,c)\ true(n,c)

Now let ¢ be the smallest natural number for which def(¢, ¢) is empty and then
define the monstrous MTge¢ program 7. thus:

72 - !f[étrue(mc)false(o,c) » Xtrue(0,c) » Xfalse(0,c) PAzy.
!f[5true(1,c)fa|se(1,c)xl y Xtrue(1,c)L1 5 Xfalse(1,c)T1 ' Azy.
If[5true(2,c)fa|se(2,c)‘r1x27 Xtrue(2,c)T1L2 5 Xfalse(2,c)L1L2 P Azs.

if[Strue(,c)false(€,c) 1 * ** Tt 5 Xtrue(1,e)z1--zp » A-Curry | -]]]

In the definition above, dirue(e,c)false(t,c)T1 "+ Te = Oppx1 - - T = F.

63

Theorem A.3.1. Let p,p’ € Py, ¢,d € C,, ¢, € C, and s,s' € P¥(C")

satisfyp & p, e d, e @, and s & §'. Under these conditions, Ty, Te, Xp,
Xes Xes Xss Opp's Ocers Ozer, and dssr have the properties stated in Section A.1.

Proof. By induction in a we have that the theorem holds for all p, p’, ¢, ¢, ¢,
¢, s, and s’ of set rank less than o. O

Corollary A.3.2. For p € P, and ¢ € C,, the MTq4et programs T, and T
satisfy E =lpand 7. = lc.

Now recall the combinators Cq, ..., Cg, defined in Section 3.4 where C; and Cy
are the usual S and K combinators, respectively. We shall refer to terms built
up from these combinators and functional application as MT combinator pro-
grams. We refer to C5- and Cg-free MT combinator terms as MT 4ot combinator
programs, where Cs and Cg are the combinators corresponding to L and Y f,
respectively.

For all ¢ € C,, let 7/ denote the result of applying abstraction elimination
using S and K to 7. Thus, the MT4cs combinator program 7/ satisfies 7! = Tg,
so we have: o

Corollary A.3.3. Forp e P, and c € C, the MT4er combinator programs 7;
and T satisfy T, = |p and T = |c.

Corollaries A.3.2 and A.3.3 of course also hold for MT. They do not hold for
MT(because parallel or is missing in MTj.

A.4. Semantic and syntactic existence

As promissed in Section 3.9:
Lemma A.4.1. Mw ': Esemantic = Esyntactic

Proof of A.4.1 Both Egemantic and Egyntactic are characteristic functions. They
satisfy

Esemanticy = T iff pz =T for some map =
Egyntacticpy = T iff px =T for some program x

Thus we need to prove
pr =T for some map « iff pxr =T for some program x

The direction <= is trivial. To see = note that if pr = T for some map x then
py =T for some y € C, so pTy, =T.

Corollary A.4.2. M, ': Ea = Esemantic @ = Esyntactic a.

64

A.5. Computational adequacy
Recall the notions of Ny, Ny, and V| from Section 3.6.

Definition A.5.1. M is computationally adequate for a set T of MTg, MTget,
or MT programs if

aeN;, & MEa=T
aeNy & MEa=\.az
aeN, & MEa=1

for all a in T, where Ny, Ny, and N\ are defined using the reduction rules of
MTy, MTg4et, and MT, respectively.

As we shall see in a moment, M, is computationally adequate for MTj
programs, for E-free MTgo¢ programs, and for E-free MT programs.

Any term a satisfies one of a € N, a € Ny, and a € N, and one of
MEae=T, MEa=Ar.azr, and M | a = L (c.f Section 8.2), so each of
the three statements of Definition A.5.1 follows from the two other ones.

Each statement has a trivial direction:

aeN; = MEa=T
aeN; = MEa=X.ax
aeN, < MEa=1

Furthermore, if
aeN, = MEa=1
then

aeNy = MEa=T
aeNy « MEa=Mr.ax

follows trivially. The notion of computational adequacy of a model, as well as the
notion of full abstraction, were introduced by Plotkin in [13] (for a paradigmatic
simply typed lambda calculus called PCF). The definition of computational
adequacy given above is equivalent to the one in [13] which merely requires
a €N, & MEa= L. However, MT is an untyped lambda-calculus, which,
for the problems treated in this appendix, considerably increases the technicality
of the proofs.

Recall that M, denotes the canonical k-model. Theorem B.0.2 of [3] states:

Theorem A.5.2. M, is computationally adequate for MTy programs.
Likewise, we have:

Theorem A.5.3. M, is computationally adequate for E-free MT qet programs.

65

The proof of Theorem A.5.3 is the same as the proof in [3] of Theorem A.5.2
above with the following modifications: First, one has to include parallel or the
relevant places. Second, the proof of Lemma B.0.4 of [3], which is by structural
induction, has one more case, namely one for parallel or.

Finally, we have:

Theorem A.5.4. M, is computationally adequate for E-free MT programs.
Proof of A.5.4 The theorem follows trivially from
MylEa#1l)=aeN,UNs
which we prove in the following. Let 1 be the term
(Az. zz)(Az, z2)

Thus, L is Loury (c.f. Section 3.2). For terms f let Y{f} be the term

where z is chosen such that z is not free in f. Since M, is canonical we have
M, EL=1Land M, EYf=Y{f}.

For all terms b of MT we define the LY-less transform [b] of b to be the term
which results when replacing all occurrences of L and Yf in b by L and Y{f},
respectively. In M, we have [L] = 1L = L and [Yf] = Y{[f]} = Y[f]. This
allows to prove M, |= [a] = a for all terms a by structural induction.

For all E-free MT programs b, [b] is an E-free MT 4¢ program. Define b Le
as in Section 3.3 and 3.4. We have:

1 EN— in MT
Yf S f(Yf) inMT
1 L1 in MT gt
Y{f} = FY{f}) in MTay
L 5 [in MT et
IYfl 5 [FYH] in MTae

In general, if b = ¢ in MT then [b] RN [c] in MTges by structural induction in b
and c.
Let a be an MT program and assume M, = a # L. Now M, |= [a] # L.

Recall that for each a, a 2 b holds for at most one b (up to naming of bound
variables). Let a1, as, ... be the unique longest finite or infinite sequence such

that @ = a; — ag - -+ in MT. By Theorem A.5.3, the sequence [a] 5 [a1] 5
[as] 2 ... is finite and ends with a term in root normal form (ie. is T or an
abstraction). Hence, a N ay N as L ... has the same property, so a € N;UN;.

For programs that may contain E we have:

66

Theorem A.5.5. M, is computationally adequate for MTger programs and for
MT programs.

Proof of A.5.5 The proof is similar to that of A.5.4. Define a Sde db,c:a LN
bAb S cAc dand let a5 b be the transitive closure of a - b.

Recall the definition of Egyntactic from Section 3.9. The definition is recursive
and thus implicitly uses Y. Now define

E=Y{\f,a.aCy || -+ || aCr || a(Aa. fz) || fF(\z. f(Ay. a(ey)))}

We have Egyniactic = E and

Ea > aCy |- || aCs || a(Az. Ex) || E(Az. E(Ay. a(zy)))

For all terms b of MT we define the E-less transform [b] to be the term which
results when replacing all occurences of Ea by Ea. In M, we have [Ea] = E[a] =
Esyntactic [a] = E[a]. This allows to prove M., [= [a] = a by structural induction.

If b % ¢ in MT then 5] 5 [c] or [b] 2 [c] in MT and, in any case, [b] = [d].

The theorem follows from M,, = a # L = a € N; UN; which we now
prove. Assume M, Ea# L. Let a LN aq N as L ... be the unique reduction
sequence for a. Now [a] =+ [a1] = [ag] = - - - is finite by A.5.4, so a € Ny UN;.

The case x > w is open:

Open Question A.5.6. Is M, computationally adequate for MT qet programs
and for MT programs for k > w ?

A.6. Soundness
Recall from Section 3.6 that a =, b is shorthand for M,; = a = b.

Theorem A.6.1 (Soundness of M, and M,,).
(a) a =4 b= a =cps b for E-free MT programs a and b.
(b) a =4, b= a=cbs b for all MT programs a and b.
(c) a =4 b= a=cps b for E-free MTger programs a and b.
(d) a =4, b= a=cps b for all ~ MTq4et programs a and b.
(e) a =4 b= a=cps b forall MTy programs a and b.

Note that observational equality a =,ps b of MT, MTgef, and MTy is true if
ca ~ cb for all MT, MTg4et, and MT(programs ¢, respectively, so the notions of
observational equality are slightly different. Also note that MTy does not have
E in its syntax, so all MT, programs are born E-free.

Proof of A.6.1 Soundness follows trivially from computational adequacy. We
only prove (a). Assume a =, b. Assume c is an MT program. We have ca =, ¢b
so ca =, T & ¢b =, T and, by Theorem A.5.4, ca € N; < cb € N;. Likewise,
ca € Ny & ¢cb € Ny and ca € N| < ¢b € Ni. Thus, ca ~ c¢b for all MT
programs ¢ which, by definition of =,p5, gives a =¢ps b.

Above, we use computational adequacy to prove soundness, and Open Question
A.5.6 may be restated thus:

67

Open Question A.6.2.

(a) a =4 b= a=ups b for MT programs a and b and k > w ?¢
(b) a =4 b= a=cps b for MT et programs a and b and k > w ¢

A.7. Full abstraction

Definition A.7.1. A model M is fully abstract for MT/MTqet /MTq if @ =cbs
b MEa=b for all MT/MT et /MTq programs a and b.

We now state and prove that M, is fully abstract for MT:

Theorem A.7.2 (Full Abstraction of M,). a =eps b < a =, b for MT
programs a and b.

Proof. (<) follows from Theorem A.6.1. (=) Assume a =gps b. Assume
p € Py. From a =.ps b we have Tipy.na € Ny & Tipynb € Ny Hence, by
Theorem A.5.4, Tiprna =w T < Tipynb =o T. Thus, by Corollary A.3.2,
({pht))a=T e (({p}.t)b=Tsop €a« pecbforall p e P,. Hence,
a=banda=,0b. O

Theorem A.7.2 also holds for MT qe, i.e. M, is also fully abstract for MT ges.

MT lacks parallel or and Theorem A.7.2 does not hold for MTy, i.e. M, is
not fully abstract for MT(. As a counterexample, take

a = Mx.if[zT LAz LTA=SzFF, T, 1]
b = . L

The map a above is a parallel or tester, i.e. ax = T if zuw is the parallel or of u
and v. We have a =, b in MT.

A.8. Negative results
We now prove that M, is not fully abstract for MT for kK > w, k regular:

Theorem A.8.1. If k > w, Kk regular, then there exist MT programs a and b
for which a =¢ps b and a #, b.

Proof. Take a = Egemantic = Az. Ez. Take b = Egyntactic S0 that b = Az. (zC; ||
<o+ || zCg || bAu. bAv. z(uv)), c.f. Section 3.4 and 3.9.

We first prove a =qps b. According to Theorem A.7.2 is is enough to prove
a =, b. Furthermore, a and b are both characteristic maps, so it is enough to
prove ap =, T < bp =, T for all p € M,,. Now ap =, T iff px =, T for some
x € My, and bp =, T iff pxr =, T for some MT program z. If pz =, T for some
x € M, then pc =, T for some compact ¢ € M, so pT. =, T proving bp =, T.
Hence, ap =, T=bp =, T. If bp =, T then px =, T for some MT program
x so pxr =, T for some x € M, proving ap =, T. Hence, bp =, T = ap =, T
which ends the proof of a =, b.

We then prove a #, b. Let tg = t and t,11 = (0,¢,) for n € N. We
have t; & t; & i = j. Now let g € N — N be non-computable. Let () =

{{ti}, tye)) i€ N}, ¢ =1Q, and p = [(Q,1). We have p,q € M, and pg =, T

68

so ap =, T. Furthermore, px =, T for no program z since g is non-computable,
so bp #, T proving a #, b. O

Theorem A.8.1 is not too surprising since E quantifies over M, whereas the
computable approximation b in the proof essentially quantifies over {|p | p €
P, }. We may however strengthen the theorem above as follows:

Theorem A.8.2. If k > w, k reqular, then there exist E-free MT programs a
and b for which a =qpbs b and a %, b.

The proof of Theorem A.8.2 spans the rest of this section.

Let I' = [{{{p},p) | p € Pu}, i.e. let I’ be the smallest element of M, for
which I'({p) = |p for all p € P,,. I’ is compact but I’ ¢ C,,. As we shall see in
a moment, there exists an MT-term b which denotes I'.

To prove the lemma, we take a = Ax.x and we take b to be a term which
denotes I'. Now a =¢ps b is true and a =,. b is false.

The rest of the proof is a definition of a b which denotes I’. The definition
is long and technical.

Sections A.1-A.3 define 7, in ZFC. We now reflect that definition in MT.

Recall (z::y)T = « and (x:y)F = y. Let (x1,...,2,) be shorthand for
@1 nxy T, We shall refer to (21,...,z,) as a list and use lists to represent
finite sets. We now port the constructs of Section A.2 from ZFC to MT:

YA = Y y0aA)
> ya ifly, F,a(yT) | X' (yF)a]
[le, A [T y(\z.A)
[Tya = ifly,T,a@T) &I (yF)a]

Above, > ([]) expresses existential (universal) quantification. We also need a
strict version of universal quantification:

Nya = ifly, T,ayTAN (yF)a]

We now proceed to port the definitions of P, and C, from ZFC to MT. We
represent the elements P, thus:

t = T
f = T:T
(¢,p) = Tucup

Recall that x::y is right associative so that T::c::p is shorthand for T::(c::p). We
have (¢, p)FT = ¢ and (¢, p)FF = p.

Elements of C,, are finite sets of elements of P, so we represent them
by lists. As an example, ({(¢),t),{(f), f)) represents the element of C,, whose
downward closure is the interpretation of \z.if[z, T, Ay. L].

69

A list like (¢, f) does not represent an element of C, since ¢ and f are
incoherent. We now define the coherence relations <, (Z;) on P, (Cy):

pCOq = If[palf[Q7TaF]7lf[q7F7
if[pF, T, if[qF, T,
pFT & ¢gFT=pFF & ¢FF]]]]
c C1 d = /\pec Aqup OO q

The definitions above allow to define characteristic maps xp,,, Xc,,, and xgs«
which test for membership of P, C,,, and CS%, respectively:

xe.p = if[pF, T, xc. (pFT)Axp, (PFF)]
Xc,¢ = cCTreA N xpop
Xcsw€¢ = if[¢, T, xc,(€T) A xgz« (cF)]

We now port the definitions in Section A.3 from ZFC to MT. The definitions of
Ti, Ty, and T py in Section A.3 define 7, for all p € P,. Below, Top is the MT
translation of the ZFC construct 7p:

Top = if[p, T,
if[pF, Az. Lcurry ,
Az if[x1(pFT)z, To(pFF), Lcurry]]]

The definitions of xp, xc, Xe, and xs of Section A.3 translate into the following:

Xopxr = lf[p7 If[CC) Ta J—Curry])
if [pF, if[z, Lcouwry, T),
Xo(PFF) (271 (pFT))]]
X1¢r = /\peC XopT
x2¢Z = if[e, T,eT(ZT) & x2(cF)(ZF)]
X35T = D ocs X2CT

The union of two sets represented by lists is a classical:
cUd = fif[e,d, cTu(cFUd)]

The discriminator constructs d,p/, dcer, Ozzr, and dss of Section A.3 translate
into the following:

dopp'x = if[p,iflz, T, F],
if[pF, if[x, F, T],
do (pFF) (p'FF)(x(TL(pFT U p'FT)))]]
drecr = e, e dopp'e
edz = if[eT <, T, §2(cF)(@F)(ZF), 61 (eT)(@T)(ZT)]
0358t = Y o [loey 020CT

The empty set and the singleton set is straightforward:

0
{z}

T
x:T

70

The ZFC construct def(n,c) of Section A.3 translates into the MT construct
defZc below where we represent the natural number n in the ZFC construct by
a list = of length n in the MT construct.

if[c, 0, def’ Z(cT)T U defz(cF)]
if[z, {¢}, if[pF, 0, def’(ZF)(pFF)(pFT::e)]]

def(n, ¢) is a set of tuples and defZc is a list of lists. If (p1,...,p,) is an element

of def(n,c) then (py,...,p1) is an element of defZc. Note the list reversal.
Note that the parameter ¢ of def’ accumulates a list in reverse order. Use of

such accumulating parameters is a standard trick in functional programming.
We now proceed:

defze
def'zce

trueze = if[e, 0, true’Z(cT)T U trueZ(cF) |
true'zec = if[z, if[p, {c}, O], if[pF, 0, true’(ZF)(pFF)(pFT::c)]]
falsezc = if[c, 0, false’z(cT)T U falsez(cF)]
false'zecc = if[z, if[p, 0, {e}], if[pF, 0, false’(zF)(pFF)(pFT::¢)]]

We now define 77c¢ which corresponds to 7. in Section A.3. We do so using an

accumulating parameter Z which accumulates (x,,,...,x1) where z1,...,z, are
the bound variables in the definition of 7, in Section A.3. The definition reads:
Tic = T{cT
Tlcz = if[x3(defze)z, Loumy ,

if[03 (trueZc)(falseZc)z , x3(truezc)z,
x3(falseze)z ! Ax. T e(x::3)]]
This completes the port of Sections A.1-A.3 from ZFC to MT. We now define
constructs with the following properties:

applyz(yYn, ..., y1) = Y1 Yn
(Cna"'vcl)'_)p = <Clv"'<cn7p>"'>
Note the list reversal. The definitions read:

applyzy if(g, z, applyz(yF)(yT)]
cC—p if[c, p, cF — (T::eT:p)]

Finally, we may define a term b which denotes I’ where I’ is the smallest element
of M, for which I’({p) = |p for all p € P,. The definition uses an accumulating
parameter y:

bx = VT
Vay = if[applyzy, Ec: xgswCAxo(C — t)zAx2cy,
Ec: xozwAxo(C > fleAxacy ! Ay Vx(y:y)]
As an example, if bxyy -+ yp—1 € {T,L} and 2y; -- -z, = T then
by yn = VaTyr--yn
= bll‘(y,,“ .. '.a.yl) R
= EexgseeAxo(e— t)zAX20(Yn, - - -, Y1)

Thus, in the situation above, bxy; - - -y, returns T iff there exists a ¢ € CS¥
such that {(¢ — t) <y 2 and [¢ Zpaq (Y1, - -5 Yn)-

71

B. Summary of MT

B.1. Syntax
V = xlylz]--
T o= V|IXNVT|TT|T|H[T, T, TI|LIY|TIT |ET |eT
W o= T=T

B.2. Definitions
A,B,C, ... denote (possibly open) terms. a,b,...z, 6 denote variables.

Elementary definitions

1 = (Az.zx)(Az. zx) (Only in MTgcr)

Y = Af. (Az. f(zx))(Az. f(zx)) (Only in MTger)
Azy. A=Az Ay A

F=Xz. T

1= \ry.zy

x by =if[z,ifly, T, L],ifly, L, A\z.(z2) | (y2)]]
r3y=c=xly
~e =iflx, T, F]
zoy = Az.z(yz)
X = Az Az.if[zz, T, 1]
x =y =if[z,y,F] =if[z, T,F]
le = if[x, T, T)
Az = if[z, F, T]

Quantification
. I =~=(plep))
dr: A=\ A
Va: A = =3z 5 A
ev: A=celr. A
Vp =Vz:px
Ex. A=EX\z. A

The definition of ¥
P =Us
s=YS
S=Af.Sf(Uf)
S = Mfba.if[a, P,iflaT, Q(f(aF)), Rf0(aT)(aF)]]
P=)y.ifly, T, 1]
Q= v.Dv! \y.Vz.o(y(z / v))
R = A\fObc.fc! Ry fbc! Ry fobe
Ry = Af0bc. V2. D(f(b(cz / 6)))
Ro = AfObcy.Ez. (02! f(b(cz / 6))y)
U= Afy. Ez. fxy
xly=iflz,y, L]
D= M\x.if[z, T, T]
flg=iflf. T, Az.gz! (fz /g)]

72

B.3. Azioms and inference rules

Elementary axioms and inference rules

Trans
Sub
Gen

Al
A2 (B)
A3
11
12
13

QND

P1
P2
P3

Y

A=B,A=CFB=C
B=CkFAB = AC
A=BFXx. A= \z.B

Az A)B=C ifC=(A|xz:=B)

TB=T
1B=1
if[T,B,C] = B
if(\z.A, B,C] = C
if[L,B,C] = L

AT = BT; A(1C) = B(1C); AL = B - AC = BC

TIB=T
AT=T

Az A || Ay.B = AzT

YA=AYA)

Monotonicity and minimality

Mono
Min

Eaxtensionality

Ext

Azioms on E

ET
EB
EX
EC

B<CFAB =< AC
AB=<BFYA=<B

(Not needed in MTgef)

if x and y are not free in A and B then
~(Ax) = ~(Bx); Avy=AC; Bxy=BC + Ax = Bz

ET=T
EL=1

Exz = E(xx)
E(zoy) —» Ex

Quantification axioms

Elim
Ackermann
StrictE
StrictA

(Va:pz) A by — py
ex: px = ex: (Y A px)

Y(ex:pz) = Va:(pr)
|(Va: pr) = Va: (pz)

73

C. Index

Greek letters

e, 10, 14
ex: A, 20

0, 47

A(h), 31, 32, 39
Ax.A, 10

®, 34, 43

¢, 43

Y, 19, 34

¥, 10, 22

¥, 14, 35

w, 17, 29

Arrows

[D —, D], 30

f:G — H (ZFC function type), 29
AL B 11

G — H (set of maps), 34, 44

x — y (implication), 19

Lz, 29, 37, 38

xly, 16

T, 29

Equal signs/Equivalences

G=.H,44
(Alz:=8B),10
A= B, 16
azobsb, 13
a=4xb, 13
a~b, 13

r =y, 17
A=58,10

Order relations
G<.H, 44
G<.H, 44

§D7 36

j./\/la 30
z Xy, 16

Double dot constructs

Ip, 20
31‘ A, 20
Vp, 20
Vr: A, 20
=z, 20
=y, 20
=1, 20
z€y, 20

Superscript set constructs

GT, 44
G°, 34, 44
G, 44
G¥, 29
G<¥, 29

Other nulary constructs

0, 17

1, 10, 32, 39
J—Curry7 10
(), 29

1,16

L, 21

Other unary constructs
lz, 20

', 17

~x, 16, 18

Other binary constructs

roy, 19
z Ay, 16
zly, 21

74

Al B, 10, 33 guard, 21
AB (functional application), 10

£/ g, 53 head, 38
flg 21 757
A, 31, 32, 39 if, 10, 33
abstract, fully, 68 inaccessible ordinal, 57
Ackermann’s axiom, 14 incompatible, 46
adequate, computationally, 65
¢-axioms, 7, 24 K, 30
bottom, 29 ¢, 38
LBT, 35, 43
C. 38 Lower Bound Theorem, 35, 43
cc G<. H,44
c: G =, H, 44 M, 14, 25, 39
¢ G<.H,44 M., 39
canonical model, see model, canonical M, 13, 39
card(5), 56 My, 39

cardinal, regular, 57 map, characteristic, 17, 21, 52

characteristic map, 17, 21, 52 Min, 17
compact, 30 minimality, 16
computationally adequate, 65 model, 25
k-continuous, 25, 30 canonical, 10, 25, 28, 33, 35, 39

Curry: Lcurry, 10 MT, 25, 28

MTy, 28, 35
D, 21 pre-, 25, 27, 33, 39
Dom, 21, 34 quasi-, 10, 25, 28, 35

standard, 10, 14, 25, 28, 35
E, 10, 33 Mono, 17
Ex. A, 12 monotonicity, 16, 30
Esemantic s 19 MT, 4
Esyntactic ; 15 MT model, see model, MT
Eq,., 32 MTy model, see model, MTy
Eq., 38 MT program, 13
essentially x-small, 30 MTy, 4
essentially o-small, 22, 34, 44 MTget, 10
Ext, 18
Extensionality, 18 normal term, function, 11
extensionality, semantic, 14 normal term, root, 11

normal term, true, 11

F, 16
F, 32, 39 07, 34
F,, 34 obs: a =qps b, 13
fully abstract, 68 observationally equal, 13
function normal term, 11 k-open, 30

ordinal, inaccessible, 57

(6]

P, 22 Y, 10

P, 29 Ycurry, 10
P, 29

Pr, 37 ZFC, 4

p.o., 29 ZFC+SI, 7, 27
partially ordered set, 29

pcs, 36

premodel, see model, pre-

prime, 30

program, MT, 13

Q, 22

quasimodel, see model, quasi-

R, 22

r, 40

Ry, 22

Ry, 22

rank, 38

reflexive object, 31
regular cardinal, 57
rk(p), 38

root equivalence, 13
root normal term, 11

S, 22
S, 22
s, 22
k-Scott domain, 25, 29
k-Scott semantics, 25, 29
self[g], 55
semantic extensionality, 14
k-small, 29
o-small, 34
standard model, see model, standard

T, 10, 32, 39
Tarski’s fixed point operator, 31
true normal term, 11

L, 21
UBT, 35, 43
Upper Bound Theorem, 35, 43

wellfounded map, 14
wellfounded w.r.t. a set G of maps, 17

76

[1] P. Aczel. Non-Well-Founded Sets, volume 14 of Lecture Notes. CSLI, 333
Ravenswood Avenue, Menlo Park, CA 94025, USA, 1988.

[2] C.Berline. From computation to foundations via functions and application :
the lambda-calculus and its webbed models. Theoretical Computer Science,
249:81-161, 2000.

[3] C. Berline and K. Grue. A k-denotational semantics for Map Theory in
ZFCHSI. Theoretical Computer Science, 179(1-2):137-202, June 1997.

[4] A. Church. A set of postulates for the foundations of logic I. Ann. Math.,
1933.

[6] A. Church. A set of postulates for the foundations of logic II. Ann. Math.,
1934.

[6] R.C. Flagg. rk-continuous lattices and comprehension principles for Frege
structures. Annals of Pure and Applied Logic, 36:1-16, 1987.

[7] R.C. Flagg and J. Myhill. A type-free system extending ZFC. Annals of
Pure and Applied Logic, 43:79-97, 1989.

[8] K. Grue. Map theory. Theoretical Computer Science, 102(1):1-133, July
1992.

[9] K. Grue. Map theory with classical maps. Technical Report 02/21, DIKU,
Universitetsparken 1, DK-2100 Copenhagen, Denmark, 2002.
http: //www.diku.dk/~grue/papers/classical /classical.html.

[10] K. Grue. Logiweb. In Fairouz Kamareddine, editor, Mathematical Knowl-
edge Management Symposium 2003, volume 93 of Electronic Notes in The-
oretical Computer Science, pages 70-101. Elsevier, 2004.

[11] Rainer Kerth. Définissabilité dans les domaines réflexifs. Comptes rendus
de I’Acadmie des sciences. Série 1, Mathématique, 318(7):685-688, 1994.

[12] Rainer Kerth. Isomorphisme et équivalence équationelle entre modéles du
lambda-calcul. Ph.D thesis, Université Paris 7, 1995.

[13] G. Plotkin. LCF considered as a programming language. Theoretical Com-
puter Science, 5(3):223-255, December 1977.

[14] G. Plotkin. Set-theoretical and other elementary models of the lambda-
calculus (in a collection of contributions in honour of Corrado Bohm on
the occasion of his 70th birthday). Theoretical Computer Science, 121(1-
2):159-192, 1993.

[15] Thierry Vallée. ”Map theory” et antifondation. Electr. Notes Theor. Com-
put. Sci., 79:1-260, 2003. (Ph.D. Thesis, Université Paris 7, 2001).

(s

[16] Thierry Vallée. Map theory: From well-foundation to antifoundation. In
Proceedings of the 6th Workshop on domains (WDG6), volume 73 of Electron.
Notes Theor. Comput. Sci., pages 217-245, Amsterdam, The Netherlands,
The Netherlands, October 2004. Elsevier Science Publishers B. V.

78

