
HAL Id: hal-00678373
https://hal.science/hal-00678373

Submitted on 12 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web services composition is hard but decidable
Ramy Ragab, Lhouari Nourine, Farouk Toumani

To cite this version:
Ramy Ragab, Lhouari Nourine, Farouk Toumani. Web services composition is hard but decidable.
2007. �hal-00678373�

https://hal.science/hal-00678373
https://hal.archives-ouvertes.fr

Web services composition is hard but
decidable

Ramy Ragab1 Lhouari Nourine2 Farouk
Toumani3

Research Report LIMOS/RR-07-16

10 décembre 2007

1ragab@isima.fr
2nourine@isima.fr
3ftoumani@isima.fr

Abstract

We study the problem of automatic web service composition. We consider
a formal framework where web service business protocols are described by
means of Finite State Machines (FSM) and focus on the protocol synthesis
problem. We show that this problem can be reduced to that of testing a
simulation relation between an FSM and an (in�nitely) iterated product of
FSMs. While this later problem has never been investigated in the literature,
existing results regarding close decision problems in the context of shu�e
languages, an extension of regular languages with shu�e and shu�e closure
operators, are rather negative and cannot be directly exploited in our context.
In this paper, we develop a novel technique to prove the decidability of testing
simulation in the case of interest in our setting. As a consequence, our results
solve the problem of web service composition (synthesis) existence in presence
of an unbounded number of instances, a problem left open in recent related
works.

Keywords: Shu�e automata, Simulation relation, Web service composition,
Web service protocol synthesis.

1

1 Introduction

Web services is an emerging computing paradigm that tends to become
the dominant technology for interoperation among autonomous and distri-
buted applications in the Internet environment [1]. Informally, a service is a
self-contained and platform-independent application (i.e., program) that can
be described, published, and invoked over the network by using standards
network technologies. In a nutshell, web services provide a mean to wrap,
and expose over a network, a functionality (e.g., a program that accesses a
database) via self-describing standard-based interfaces, thereby facilitating
interoperability between disparate information systems that, at the origin,
were not developed with the intent to be easily integrated. One of the ultimate
goals of the web service technology is to enable rapid low-cost development
and easy composition of distributed applications, a goal that has a long his-
tory strewn with only partial successes. To achieve this goal, there has been
recently numerous research work [8, 16, 6, 11, 7, 5, 22] on the challenges
associated with web service composition. The research problems involved by
service composition are varied in nature and depends mainly on the kind
of the composition process, i.e., manual v.s. automatic, on the model used
to describe the services and on the issues related to composition. A line of
demarcation between existing works in this area lies in the nature of the
composition process : manual v.s. automatic. The �rst category of work deal
generally with low-level programming details and implementation issues (e.g.,
WS-BPEL [2]) while automatic service composition focuses on di�erent issues
such as composition veri�cation [8, 23, 14], planning [25, 24, 21] or synthesis
[7, 5, 22].

In this paper we investigate the problem of automatic web service compo-
sition. We consider more particularly the composition synthesis problem, i.e.,
how to generate automatically a new target service by reusing some existing
ones. We consider this problem at the web service business protocol abstrac-
tion level. A web service business protocol (or simply, a service protocol) is
used to describe the external behavior of a service. Recent works have drawn
attention to the importance of the state machine based formalisms for mode-
ling the external behaviors of web services [3, 4, 6]. Continuing with this line
of research, we build our work upon a formal framework where web service
business protocols are described by means of Finite State Machines (FSM)
and we concentrate on the following protocol synthesis problem : given a set
of n available web service protocols P1, . . . , Pn and a new target protocol PT ,
can the behavior described by PT be synthesized by combining (parts of) the
behaviors described by the available protocols. This problem has already been
addressed in recent literature [6, 7, 5, 22] under the restriction that the num-

2

ber of instances of an existing protocol that can be used in a composition is
bounded and �xed a priori. We call this restricted form of the composition
problem the instance bounded protocol (composition) synthesis problem. The
pioneer work of [6, 7] shows that the problem of composition existence in this
context can be reduced to that of testing the satis�ability of a Propositional
Dynamic Logic formula. In [5], the PDL-based framework proposed in [6, 7] is
extended to deal with a more expressive protocol model. Interestingly, in [22]
composition existence problem is reduced to the problem of deciding whe-
ther there exists a simulation relation between the target protocol and the
available ones. The authors build upon this reduction to prove the Exptime
completeness of the bounded instance protocol synthesis problem.

It should be noted that the restricted setting considered in existing works
has severe practical limitations that may impede the usage of automatic
service composition by organizations. Indeed, as illustrated in section 3 of
this paper, some very simple cases of web service composition cannot be
solved in such a restricted setting.

Contributions. In this paper, we concentrate on the general case of pro-
tocol synthesis problem by relaxing the restriction on the number of protocol
instances that can be used in a given service composition (i.e., we consider
the unbounded instances case). Up to our knowledge, the decision problem
underlying composition existence in such an unrestricted setting has been
left open in recent related work. We show that this problem can be reduced
to that of testing a simulation relation between an FSM and an (in�nitely)
iterated product of FSMs. Up to our knowledge, this later problem has never
been investigated in the literature.

This paper makes the following contributions :
� We formalize the composition existence problem as that of checking
simulation between a FSM and a (iterated) product closure of a FSM.

� We provide a suitable model, called Product Closure Automata (PCA),
to describe (iterated) product closure of a FSM as an in�nite state
machine.

� Building upon our formal framework, we develop a novel technique
to prove the decidability of testing simulation between a FSM and a
PCA. As a consequence, our results solve the problem of web service
composition (synthesis) existence in presence of an unbounded number
of instances, a problem left open in recent related works.

Relationship with formal language theory. Our work is strongly
connected with existing research dealing with issues related to shu�e lan-
guages, an extension of regular languages with shu�e and shu�e closure
operators [13, 20]. It is well known that the class of shu�e languages is a
proper subset of context sensitive-languages and can be recognized using

3

Linearly Bounded Automata (LBA). More speci�cally, [19] introduces the
notion of shu�e automata which accept shu�e languages and can be simu-
lated by one way nondeterministic Turing machine in logarithmic space. The
simulation problem has never been addressed in this context. However, close
decidability problems are rather negative. For example, we know from [18]
that the universe problem for shu�e languages is undecidable and hence it
is the case of the inclusion problem of a regular language in a shu�e one.
The PCA model, used in this paper, is a particular case of shu�e automata
which recognizes a shu�e closure of a regular language. Note that the uni-
verse and the emptiness checking problems are decidable in the context of
PCAs. Although not detailed here, the technique presented in this paper can
be used to prove the decidability of the inclusion problem between a regular
language and a shu�e closure of a regular language. Finally, it is worth men-
tioning the existing work related to the problem of shu�e decompositions of
regular languages [17, 10]. Given a language L, a challenging question is to
express L as a shu�e of two languages such that neither one of them is the
singleton language of the empty word. In our case, we deal with a kind of
dual problem, i.e., how to compose a given language using existing ones.

Paper outline. The remainder of the paper is organized as follows. Sec-
tion 2 provides some basic de�nitions. Section 3 de�nes the service composi-
tion problem dealt with in this paper and points out the main theoretical and
practical limitations of current state of the art. Section 4 contains the main
technical contribution. It formally introduces Product Closure Automata, an
in�nite state machines that are used to describe (in�nitely) iterated product
of FSMs, and propose an algorithm that decide simulation between a FSM
and a PCA. We draw some conclusions in Section 5.

2 Preliminaries

In this section, we recall some basic notions that will be useful for the
rest of this paper.

De�nition 1 (FSM) A Finite State Machine (FSM) M is tuple M =<
ΣM , SM , FM , q

0
M , δM >, where :

� ΣM is a �nite set of alphabet,
� SM is a �nite set of states,
� FM ⊆ SM is the set of �nal states,
� q0

M ∈ SM is the initial state, and
� δM ⊆ SM × ΣM × SM is the transition relation of the state machine.

4

Let M =< ΣM , SM , FM , q
0
M , δM > be a FSM and q ∈ SM a state in M .

We note by SP (q) the shortest path leading from q to a �nal state in FM .
We provide below a de�nition of the notion of simulation relation between

FSMs.

De�nition 2 (simulation relation)
Let M =< ΣM , SM , FM , q

0
M , δM > and M ′ =< ΣM ′ , SM ′ , FM ′ , q

0
M ′ , δM ′ >

be two FSMs. A state q1 ∈ SM is simulated by a state q′1 ∈ SM ′, noted q1 � q′1,
i� :

(i) ∀a ∈ ΣM and ∀q2 ∈ SM s.t. (q1, a, q2) ∈ δM there is (q′1, a, q
′
2) ∈ δM ′

s.t. q2 � q′2, and
(ii) if q1 ∈ FM then q′1 ∈ FM ′.
M is simulated by M ′, noted M �M ′, i� q0

M � q0
M ′.

Let M =< ΣM , SM , FM , q
0
M , δM > and M ′ =< ΣM ′ , SM ′ , FM ′ , q

0
M ′ , δM ′ >

be two FSMs. The asynchronous product (or simply, product) of M
and M ′, denoted M × M ′, is a FSM < ΣM ∪ ΣM ′ , SM × SM ′ , FM ×
FM ′ , (q

0
M , q

0
M ′), λ > where the transition function λ = {((q, q′), a, (q1, q1′)) :

(q, a, q1) ∈ δM or (q′, a, q1
′) ∈ δM ′}.

Let R = {P1, . . . , Pn} be a set of FSMs. We use �(R) to denote the
product of the FSMs in R (i.e., �(R) = P1 × . . . × Pn). To make the pre-
sentation clearer, we assume that all the deterministic FSMs we are dealing
in this paper recognize also the empty word. Note that, such an assumption
does not impact the work presented here since any deterministic FSMM can
be transformed into another deterministic FSM M̃ which behaves exactly as
M and recognizes in addition the empty word. Now, with such an assumption
at hand we have �(R) =

⋃
X∈2R �(X). In other words, �(R) denotes the

union of the asynchronous product of all the subsets of R.
Let k > 0 be a positive integer. The k-iterated product of a state machine

M is de�ned by M⊗k = M⊗k−1 ×M with M⊗1 = M .
A (iterated) product closure of an FSM M , noted M⊗, is an in�nitely

iterated product of M (i.e, M⊗+∞). It is worth noting that for any �nite
positive integer k, the k-iterated product M⊗k is still an FSM. Unfortuna-
tely, this property does not hold in the case of product closures. As we will
see later, a product closure of a FSM can be described by an in�nite state
machine.

3 Web services composition problem

In this section we de�ne the service composition problem dealt with in
this paper and we point out the main theoretical and practical limitations of

5

Fig. 1 � A repository of two business protocols.

current state of the art.

Protocol model

We consider web services described by means of their protocols. A primary
goal of a web service protocol is to describe the ordering constraints that
govern message exchanges between a service and its clients (i.e., message
choreography constraints). In this paper, we use the traditional state-machine
formalism to represent message choreography constraints. States represent
the di�erent phases that a service may go through during its interaction
with a requester. Transitions are triggered by messages sent by the requester
to the provider or vice versa. Each transition is labeled with a message name.
Usually the message names are followed by message polarity [27, 4] to denote
whether the message is incoming (e.g., the plus sign) or outgoing (e.g., the
minus sign). For simplicity reasons, and w.l.o.g., we do not consider message
polarities in this paper (i.e., we do not make distinction between incoming
and outgoing messages). Therefore, we obtain a web service protocol model
very similar the so-called Roman model [6],i.e., a FSM where transitions
are labeled by �abstract� activities. For instance, Figure 1(b) depicts the
protocol of an hypothetical �nancing web service. The protocol speci�es that
the �nancing service is initially in the Start state, and that clients begin
using the service by executing the activity estimate payment, upon which the
service moves to the Payment Estimated state (transition EstimatePayement).
In the �gure, the initial state is indicated by an unlabeled entering arrow
without source while �nal (accepting) states are double-circled.

As usual, and also w.l.o.g, we assume that protocols are deterministic
FSMs. This is because non-determinism make protocols ambiguous in the

6

Fig. 2 � Example of protocol composition (synthesis).

sense that, for example, a service can move to a state that cannot be predicted
by its client.

The protocol synthesis problem

Let us now turn our attention to the web service composition problem.
We �rst illustrate this problem on an example. We assume a repository of two
available services S1 and S2, respectively, described by their protocols P1 and
P2 depicted at Figure 1. We consider the development of a new web service
ST whose protocol PT , called a target protocol, is depicted at Figure 2(a). An
interesting question is to see whether or not it is possible to implement the
service ST by combining the functionality provided by the available services
S1 and S2. Dealing with this composition problem at the business protocol
abstraction level, leads to the following question : is it possible to generate
the protocol PT by combining (parts of) the available protocols P1 and P2.
In our illustrative case the answer is yes and an example of the composi-
tion of the target protocol PT using the protocols P1 and P2 is depicted at
Figure 2(b). In this case, PT is called the target protocol while P1 and P2

are called the component protocols. Informally speaking, the service compo-
sition (or protocol synthesis) problem is de�ned in [6, 7] as the problem of
generating a delegator of a target service using available services. A delega-
tor is a FSM where the activities are annotated with suitable delegations in
order to specify to which component each activity of the target service is
delegated. Continuing with our example, Figure 2(b) shows a delegator that
enables to compose the protocol PT using the available protocols P1 and P2

of Figure 1. For instance, this delagator speci�es that the activity selectVe-
hicle of the target protocol is delegated to the protocol P1 while the activity
estimatePayment is delegated to the protocol P2.

7

Fig. 3 � Instance Bounded Limitations

The notion of a delegator is de�ned formally in [6, 7] and the composition
synthesis problem is expressed as the problem of �nding a �correct� delegator
for a given target protocol using a set of available protocols. A crucial question
regarding this problem lies in the number of instances of the available services
that can be used in a composition (i.e., to build a delegator). Figure 3 shows
two examples of delegators, namely PC1 and PC2, that use several instances
of available services to respectively compose target protocols. More precisely,
the delegator PC1 uses two instances of the protocol P1, namely P 1

1 and
P 2

1 , to compose the target protocol PT1. The delegator PC2 uses however
(in�nitely) many instances of the protocols P1 and P2 to compose the protocol
PT2. Indeed, each execution of the loop a.d.b (respectively, c.b) of the target
protocol PT2 is realized by two new instances of the available protocol P1

(respectively, one new instance of P2).
We provide below a de�nition of a generic protocol synthesis problem that

makes explicit the number of instances of protocols allowed in a composition.
Let R be a repository of services protocols, i.e., R = {Pi, i ∈ [1, n]}, where
each Pi =< Σi, Si, Fi, s

0
i , δi > is a protocol. For each Pi ∈ R, we denote by

P j
i the jth copy of the protocol Pi. Given a protocol repository R, we note

by Rm =
⋃n

i=1{P 1
i , . . . , P

m
i }, with m ∈ N.

De�nition 3 generic protocol composition problem Let R be a set of

8

available service protocols and PT be a target protocol and let k ∈ N. A
(generic) protocol synthesis problem, noted Compose(R, ST , k) is the problem
of deciding whether there exist a composition of PT using Rk.

Note that, instances of this generic composition problem are characterized
by the maximal number of instances of component protocols that are allowed
to be used in a given composition. We distinguish in the following between
two main cases, namely the bounded instance and the unbounded instance
ones.

Protocol synthesis problem : the bounded case. Exiting work [6, 7,
5, 22] that investigated the protocol synthesis problem make the simplifying
assumption that the number of instances of a service that can be involved in
the composition of a target service is bounded and �xed a priori, i.e., they
address the problem Compose(R, ST , k) with k �nite and known a priori.
Note that this particular case, called the bounded instance protocol synthesis
problem, can be reduced w.l.o.g to the simplest case where k = 1. Indeed, if
k > 1 the problem Compose(R, ST , k) can be straightforwardly reduced to
the problem Compose(Rk, ST , 1).

The main idea described in [6, 7] consists in reducing the problem
Compose(R, ST , 1) into satis�ability of a suitable formula of Deterministic
Propositional Dynamic Logic (DPDL) [15]. Interestingly, in [22] the protocol
synthesis problem is reduced to the problem of testing a simulation relation
between the target protocol and the product of the existing protocols. Using
such a reduction, [22] shows the Exptime completness of this problem4.

It is worth noting that the setting of bounded instances is very restrictive
in the sense that some simple protocol synthesis problems, in which the
solution may use an in�nite number of instances of component protocols,
cannot be solved. As an example, the problem depicted at Figure 3, and
which consists in the synthesis of the target protocol PT1 using the available
protocols P1 and P2, cannot be solved by current state of the art approaches
although a solution (i.e., the delegator PC2) is not complex to construct.
These strong limitations motivated our work on the unbounded instance case
of the protocol synthesis problem.

Protocol synthesis problem : the unbounded case. In the remainder
of this paper we study the protocol synthesis problem in the case where the
number of protocol instances that can be used in a composition may be
in�nite (i.e., the problem Compose(R, ST ,+∞)). In the same spirit of [22],
we formalize the protocol synthesis problem as that of testing the existence
of a simulation relation. More precisely, given a repository R = {P1, . . . , Pn}

4The Exptime upper bound is known from [6].

9

of service protocols, we consider the generation of new composite protocols
that can be obtained by an asynchronous product of any subset of protocols
in R. The following proposition can easily be derived from existing results
given in [6, 7, 5, 22].

Proposition 1 Let Compose(R, ST , k) be a protocol synthesis problem with
k a �nite positive integer �xed a priori. The problem Compose(R, ST , k) has
a solution i� ST � �(Rk) (or equivalently, i� ST � (�(R))⊗k).

More precisely, we consider in this paper the decision problem
underlying the general protocol synthesis problem, i.e., the problem
Compose(R, ST ,+∞).

Problem 1 Let R and ST de�ned as previously. Is the problem
Compose(R, ST ,+∞) decidable ?

This problem has been left open in current related works. One way to
answer this open question is to consider the related 'simulation relation'
decision problem, i.e., is it decidable whether ST is simulated by (�(R))⊗ ?

Up to our knowledge, simulation relation has never been studied in the
context of product closure of FSMs. Since �(R) is an FSM, we shall prove
in next section that checking simulation between an FSM A and a product
closure of an FSM M (i.e., M⊗) is decidable. This enables to derive the
decidability of the protocol synthesis problem.

4 Composition decidability problem

In this section we are interested by the problem of testing the existence of
a simulation relation between an FSM and a product closure of an FSM. To
investigate this problem, we need �rst to de�ne a state machine model that
enables to describe a product closure. Shu�e automata, introduced in [19] to
recognize the so-called shu�e languages, are an example of a candidate model
that can be used to describe product closures of FSMs. However, as we deal
only with a speci�c form of shu�e automata, i.e., automaton of the formM⊗

whereM =< ΣM , SM , FM , q
0
M , δM > is an FSM, we use in our work a simpler

tool inspired from [26, 22]. Informally, the product closureM⊗ enables to run
an in�nite number of parallel instances of M . An instantaneous description
ofM⊗ may then be described by an FSM similar toM with a (in�nite) stack
of tokens in each state. The size of the stack describes the number of parallel
instances having reached that state. Let w ∈ Σ∗M the input of M⊗, a symbol
a ∈ w is recognized by the execution of such a state machine in two cases :

10

� (creation of a new instance of M) if there is an outgoing transition
labeled a from the initial state q0

M of M to a state q. Upon such a
transition, a token is added to q, or

� (moving an existing instance of M) if there exists two states q and q′

such that (q, a, q′) ∈ δM and q has one or more tokens, then upon this
transition, a token is moved from q to q′.

Before providing a formal de�nition of the state machine M⊗, we �rst
de�ne below the notions of intermediate and hybrid states of an FSM
M which will be useful in the remainder of this paper. Let M =<
ΣM , SM , FM , q

0
M , δM > be a FSM. Then :

� The set of hybrid states of M , denoted Hs(M), contains all the �-
nal states of M that have at least one outgoing transition. Formally,
Hs(M) = {q ∈ FM | ∃q′ ∈ SM , a ∈ ΣM , (q, a, q

′) ∈ δM}.
� The set of intermediate states ofM , denoted Is(M), contains the states
of SM\FM that have at least one incoming and one outgoing transitions.
Formally, Is(M) = {q ∈ SM \ FM | ∃q′, q′′ ∈ SM , a ∈ ΣM , (q, a, q

′) ∈
δM and (q′′, b, q) ∈ δM}.

Fig. 4 � Example of an FSM M and a part of its associated PCA M⊗.

For example, the intermediate states of the FSM M depicted at Fi-
gure 4(a) are Is(M) = {q1} while its hybrid states are Hs(M) = {q2}

Product Closure Automaton (PCA).

We provide now a formal de�nition of a state machine, called hereafter
a PCA (Product Closure Automaton), that enables to describe the product
closure of an FSM. A PCA is an in�nite state machine which enables to
describe : (i) all possible executions of a product closure of an FSM, and (ii)
the branching choices at each state of the execution of such an automaton.

11

We introduce below the notion of a con�guration which provides an ins-
tantaneous description (ID) of a PCA. Unlike �nite state automata, where
the ID of a given automaton is given by its current state, an ID of a PCA
involves the set of its states as well as the number of tokens in each state
(number of instances having reached that state when recognizing a word).
Let M =< ΣM , SM , FM , q

0
M , δM > be an FSM and let |Is(M)| = l and

|Hs(M)| = n. We assume states of Is(M) (respectively, Hs(M)) ordered ac-
cording to the lexicographical order and relabeled accordingly with integers
from 1 to l (respectively, from l + 1 to l + n). The con�gurations of M⊗ are
formally de�ned below.

De�nition 4 (Con�guration) A con�guration C of the product closure
M⊗ is a tuple of size l + n of (may be in�nite) integers. The ith element of
C, written C[i], denotes the number of tokens (i.e., instance ofM) that are at
state i. We say that C[i] is the witness of the state i in a con�guration C. Note
that, if i ≤ l (respectively, i > l) then C[i] is a witness of an intermediate
state (respectively, an hybrid state).

A con�guration C is an initial con�guration of M⊗ if C[i] = 0, ∀i ∈
[1, l + n] and C is a �nal con�guration if C[i] = 0, ∀i ∈ [1, l].

Note that, a con�guration keeps only the information about intermediate
and hybrid states. Indeed, it is useless to store information about the number
of tokens (i.e., instances of M) that are in �nal, not hybrid, states. In the
same spirit, as the number of instance of M that can be created is in�nite
(i.e., the set of tokens in the initial state is in�nite) we do not describe the
initial state in a con�guration unless it is also an intermediate state.

Continuing with the example of Figure 4, the FSM M contains only one
intermediate state (state q1) and one hybrid state (state q2). Hence, a con�-
guration associated withM⊗ is a pair of integers where the �rst (respectively,
the second) integer is the witness of the state q1 (respectively, q2). For ins-
tance, a con�guration C = (2, 3) indicates an instantaneous description of
M⊗ in which there are two instances of M at state q1 and three instances at
state q2.

We de�ne below two partial orders on con�gurations.

De�nition 5 (Con�guration inclusion and cover) Let C1 and C2 be
two con�gurations of size m ofM⊗. We de�ne the two following partial orders
on con�gurations.

� Inclusion. C1 ⊆ C2, i� C1[i] ≤ C2[i]∀i ∈ [1,m],
� Cover. C1 / C2, i� (C1 ⊆ C2 and C1[i] = C2[i], ∀i ∈ [1, |Is(M)|]). In
this case, we say that C1 is covered by C2.

12

Using the notion of con�guration, we formally de�ne below PCAs.

De�nition 6 Let M =< ΣM , SM , FM , q
0
M , δM > be a FSM with |Is(M)| = l

and |Hs(M)| = n. The associated PCA of M is an in�nite state machine
M⊗ =< ΣM , C, FC , C0, φ >, where :

� C is an (in�nite) set of states consisting of all the con�gurations of
M⊗,

� FC is the set of �nal con�gurations of M⊗, i.e., {C ∈ C |C[i] = 0, ∀i ∈
[1, l]},

� C0 is the initial state ofM
⊗ and corresponds to the initial con�guration,

i.e., C0[i] = 0, ∀i ∈ [1, l + n],
� φ ⊆ C × ΣM × C is an in�nite set of transitions. The set φ is built as
follows. Let C1 and C2 be two con�gurations in C. We have (C1, C2, a) ∈
φ if (q, a, q′) ∈ δM and one of the following conditions holds :
� q = q0

M and q′ ∈ (FM\Hs(M)) with C1[i] = C2[i], ∀i ∈ [1, l + n], or
� q = q0

M and q′ ∈ (Is(M) ∪Hs(M)) with C2[q
′] = C1[q

′] + 1, C1[i] =
C2[i], ∀i ∈ [1, l + n] and i 6= q′, or

� {q, q′} ⊆ (Is(M)∪Hs(M)) with C1[q] > 0, C2[q] = C1[q]−1, C2[q
′] =

C1[q
′] + 1, C1[i] = C2[i], ∀i ∈ [1, l + n] and i /∈ {q, q′}, or

� q ∈ (Is(M) ∪Hs(M)) and q′ ∈ (FM\Hs(M)) with C2[q] = C1[q]− 1,
C1[i] = C2[i], ∀i ∈ [1, l + n] and i 6= q.

Figure 4(b) describes a part of M⊗, the PCA of the FSM M depicted at
Figure 4(a). As mentioned before, con�gurations ofM⊗ are pairs (i, j) where
i (respectively, j) is the witness of the state q1 (respectively, q2). The in�nite
state machine M⊗ is initially in the con�guration C0 = (0, 0) then it can, for
example, execute the activity a, upon which it moves to the con�guration
C1 = (1, 0). At this stage,M⊗ has two possibilities to execute the activity c :
(i) by moving the current instance ofM that is at state q1 into the �nal state
q3, or (ii) by creating a new instance of M and moving it from state q0 into
state the �nal q5. Note that, as the �nal states q3 and q5 are not described
in con�gurations, case (i) make the M⊗ moving back to the con�guration C0

while case (ii) makes it looping on con�guration C1.

Simulation existence decision problem.

We are now able to state formally the simulation decision problem we are
interested in.

Problem 2 Let A and M be two FSMs. Is it decidable whether A � M⊗

(or, equivalently, is decidable whether q0
A � C0 ?).

13

This section answers positively to this problem by providing a sound and
complete algorithm that checks the existence of a simulation relation between
a FSM and a product closure of a FSM.

Note that, the main di�culty to devise our algorithm comes from the
fact that we have to check the existence of a simulation relation between an
FSM and a PCA, this later one being an in�nite state machine. The corner
stone of our proof is to show that to check the existence of such a simulation
relation we need only to explore a �nite part of the corresponding PCA. We
propose an algorithm made of three main parts : Check-Sim, Check-Candidate
and Check-Cover. When checking the simulation between a given state q and
a con�guration C, the Check-Sim procedure will recursively generate new
simulation tests by making calls to the Check-Candidate procedure for each
transition (q, a, q′) in A. This later procedure enables to check if the state q′

is simulated by at least one con�guration C ′ such that (C, a, C ′) is in M⊗.
Informally speaking, the execution of the algorithm can be seen as a tree
where the nodes are labeled with pairs (q, C) and correspond to the calls
of the Check-Sim algorithm. As an example, Figure 5(b) shows an execution
of a Check-Sim between the initial state q1 of the FSM of Figure 5(a) and
the initial con�guration C0 = (0, 0) of the product closure of the FSM of
Figure 4(a).

A crucial question is then to ensure that the algorithm terminates. Ob-
serve that for each state q′, the number of candidates C ′ generated by the
Check-Candidate procedure is linear in the size of M since for any con�gura-
tion C of a PCAM⊗, the number of outgoing transitions is �nite and bounded
by the total number of transitions in M . Therefore, to ensure termination of
the algorithm it remains to show that there are no in�nite branches in the
execution tree of the algorithm. In the simple case where A is a loop-free
FSM, it is easy to see that the corresponding execution tree of the algo-
rithm is �nite since the length of the branches are bounded by the size of
the maximal path in A. For the general case, a state q belonging to a loop
in A may appear (in�nitely) many times in a branch of the execution tree
of the algorithm. Such a case is illustrated on the Figure 5(b) where the
branch depicted in bold involves many times the state q1 which belong to
the loop (a.b)∗ of the FSM A. An important technical contribution of this
work is to provide necessary and su�cient conditions that enable to cut early
such in�nite branches. This is achieved by the second terminating condition
of the Check-Sim (i.e., the call to the Check-Cover procedure) which is ba-
sed on the following property : if a state q appears in�nitely many times
in a given branch then there is necessarily a sub-path in this branch from
a node (q, C) to a node (q, C ′) such that C ′ is a cover of C. Interestingly,
this condition characterizes the cases where a loop in A is simulated by M⊗.

14

Continuing with the example of Figure 5(b), the bold branch which is po-
tentially in�nite is cut at node (q1, (0, 1)) since the con�guration (0, 1) is a
cover of the con�guration (0, 0) which appear previously in a node (q1, (0, 0))
in the same branch. Note that, to verify such a condition, the Check-Cover
procedure maintains for each state q in a given branch a list, noted L(q), of
all the con�gurations C ′ corresponding to the nodes (q, C ′) of this branch.
In our example, we have at node (q1, (0, 1)) of the bold branch the sequence
L(q1) = [(0, 0), (1, 0)].

Fig. 5 � Simulation

Algorithm 1: Check-Sim

Input: Two FSM A and M , a state q of A, a con�guration C of M⊗

Output: boolean
begin

if q ∈ FA \Hs(A) then

return(
∑|Is(M)|

i=1 C[i] = 0);

if Check-Cover(q,C) then
Return(true);

for each transition (q, a, q′) in δA do

if not(Check-Candidate(q′, C, a)) then
return(false);

return(true);
end

15

Algorithm 2: Check-Candidate

Input: a state q′ of A, a con�guration C of M⊗, a ∈ ΣM

Output: boolean
begin

Candidates=∅;
for each transition (C, a, C ′) in φ do

if
∑|Is(M)|

i=1 C ′[i] ≤ SP (q′) then
Candidates= Candidates ∪{C ′};

�ag=0;
while Candidates6= ∅ and (not �ag) do

C ′ =�rst element in Candidates;
�ag= Check-Sim(q',C');

return(�ag);
end

Algorithm 3: Check-Cover

Input: a state q of A, a con�guration C of M⊗

Output: boolean
begin

for C ′ ∈ L(q) do
if C ′ / C then

return(true);

return(false);
end

Correction of the algorithm.

In the remainder of this section, we shall prove that the procedure Check-
Sim halts and is sound and complete.

Theorem 1 The algorithm Check-Sim halts.

Proof 1 Let us suppose that the procedure Check-Sim does not halt, i.e. there
exists an in�nite branch in its execution tree. This means that a given state
q ∈ SM may appear in�nitely many times in this branch, i.e. |L(q)| is in�nite.
Thus L(q) corresponds to a cover-free sequence (Ci)i∈N of con�gurations,i.e.
∀j, k ∈ N j < k ⇒ Cj 6 Ck.

Since the sum of tokens in intermediate state are bounded by SP (q) then
(Ci)i∈N may be split into a �nite number of sub-sequences (Cik)ik∈N, such

16

that for all C,C ′ ∈ (Cik)k∈N, C[j] = C ′[j] ∀j ∈ [1, l] . In other words, each
(Cik)ik∈N represents a sequence of con�gurations where the witnesses for in-
termediate states are the same. Hence, (Ci)i∈N is an in�nite cover-free se-
quence of con�gurations i� (Cik)ik∈N is an in�nite sequence of con�gurations
without inclusion, i.e. ∀C1, C2 ∈ (Cik)ik∈N C1 / C2 ⇔ C1 ⊆ C2.

Hereafter, we will prove that such a sequence (Cik)ik∈N of con�gurations
without inclusion cannot exist. This proof is based on the following lemma
established by [9] and reported in [12].

Lemma 1 Let n be any integer such that n > 1. Given any in�nite sequence
(Ci)i≥1 of n-tuples of natural numbers, there exists positive integers i, j such
that i < j and Ci �n Cj, where �n is the partial order on n-tuples of natural
numbers induced by the natural ordering ≤ on N.

Lemma1 states that there does not exist an in�nite sequence of con�gura-
tions without inclusion. Thus (Cik)ik∈N is not in�nite without inclusion. Thus
we conclude that (Ci)i∈N can not be an in�nite without cover and therefore
the procedure Check-Sim halts.

Theorem 2 The Algorithm Check-Sim is correct.

Proof 2 � Soundness. Suppose that Algorithm Check-Sim returns true.
We show that there exists simulation between q0 and C0, and thus, there
exists simulation between A and M⊗. Let us consider a call to the
Algorithm Check-Sim with q a state of A and C a con�guration of M⊗.
We can distinguish three acceptance cases :
� q ∈ FA \Hs(A) and (

∑|Is(B)|
i=1 C[i] = 0; i.e. C is �nal). Then q � C.

� For each transition (q, a, q′) ∈ δA : q′ is simulated by a given C ′.
Then q � C.

� Cover(q, C) = 1. This case represents the di�erence between our al-
gorithm and classic simulation algorithms. It corresponds to an exe-
cution of a loop in A which go through q. That is to say, there exists
a sub-path in the execution tree from (q, C) to (q, C ′) such that C/C ′.
This cover condition allows us to avoid the test of simulation between
q and C ′, because C ′ possesses the same number of tokens as C on
intermediate states of M and more tokens than C for hybrid states of
M . Since C ′ and C need to simulate the same state q, we can restrict
C ′ to be equal to C by deleting the extra tokens in hybrid states of
C ′.

� Completness. Now suppose that Algorithm Check-Sim returns false. First
we show that Algorithm Check-Sim looks for all the possibilities to si-
mulate the state q by a con�guration C. In order to simulate q by C,

17

the Algorithm Check-Sim checks for each transition (q, a, q′) in δA if
q′ can be simulated by a con�guration C ′ such that (C, a, C ′) ∈ φ.
The Algorithm Check-Candidate computes all con�gurations that may
be candidate to simulate q′. Candidates that do not satisfy the condi-
tion

∑|Is(B)|
i=1 C ′[i] ≤ SP (q′) are rejected. Indeed, these con�gurations

cannot simulate q′, since there exists a path from q′ to a �nal state in
FA such that the tokens on the intermediate states of C ′ cannot be all
consumed. From the list of candidates, the Algorithm Check-Candidate
try to �nd a candidate con�guration that simulates q′. The algorithm
returns false if no such a con�guration exist.
Now suppose that the Algorithm Check-Sim returns false. We distinguish
two cases :
� q ∈ FA \ Hs(A) and

∑|Is(B)|
i=1 C[i] 6= 0. This means that q is a �nal

state and C is not a �nal state. Thus q cannot be simulated by C.
� There is a transition (q, a, q′) in δA such that the state q′ cannot be
simulated. Since all candidate con�gurations C ′ such that (C, a, C ′) ∈
φ are checked, we conclude that q cannot be simulated by C.

We conclude that Algorithm Check-Sim is correct.

It is worth noting that the proposed proof is constructive in the sense
that if the answer is true, the algorithm may be easily modi�ed to exhibit
a simulation relation between its inputs. This is an interesting point in the
context of the protocol synthesis problem since such a simulation relation
can be e�ectively used to build a delegator.

5 Conclusion

We have studied the web service protocol synthesis problem in the ge-
neral case where the number of protocol instances that can be used in a
composition is unbounded. We made a reduction of this problem to that
of of checking simulation between a FSM and a product closure of a FSM.
To cope with this later problem, we �rst proposed PCAs as a suitable tool
for describing the behavior of a product closure of an FSM and built upon
this formal framework to prove the decidability of checking the simulation
relation between a FSM and a PCA.

As a perspective of this work, we point out several interesting issues :
� the algorithmic issues related to the optimization of the proposed algo-
rithm as well as the development of suitable implementation strategies,

� complexity, by identifying particular cases that either reduce the com-
plexity of the problem or can be solved using classical simulation algo-
rithms,

18

� extension of our technique to more expressive models that enable for
example modeling message exchanges and impacts on the real world
such as the Colombo model [5],

� application of our technique to tackle close problems in the formal
language theory, as for example, identifying restricted classes of shu�e
automata for which fundamental problems such as languages inclusion
and the universe problems are decidable.

Références

[1] Gustavo Alonso, Fabio Casati, Harumi A. Kuno, and Vijay Machi-
raju. Web Services - Concepts, Architectures and Applications. Sprin-
ger, 2004.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, and others.
� Business Process Execution Language for Web Services, Version 1.1
�. Speci�cation, BEA Systems, IBM Corp., Microsoft Corp., SAP AG,
Siebel Systems, 2003.

[3] Boualem Benatallah, Fabio Casati, and Farouk Toumani. � Web
Service Conversation Modeling : A Cornerstone for E-Business Automa-
tion �. IEEE Internet Computing, 08(1) :46�54, 2004.

[4] Boualem Benatallah, Fabio Casati, and Farouk Toumani. � Repre-
senting, analysing and managing web service protocols �. Data Know-
ledge. Engineering, 58(3) :327�357, 2006.

[5] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard
Hull, and MassimoMecella. � Automatic Composition of Transition-
based Semantic Web Services with Messaging �. In VLDB, pages 613�
624, 2005.

[6] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Mauri-
zio Lenzerini, and Massimo Mecella. � Automatic Composition of
E-services That Export Their Behavior. �. In ICSOC, pages 43�58, Dec.
2003.

[7] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Mauri-
zio Lenzerini, and Massimo Mecella. � Automatic Service Compo-
sition Based on Behavioral Descriptions �. Int. J. Cooperative Inf. Syst.,
14(4) :333�376, 2005.

[8] T. Bultan, X. Fu, R. Hull, and J. Su. � Conversation speci�cation :
a new approach to design and analysis of e-service composition �. In
WWW'03. ACM, 2003.

19

[9] Leonard Eugene Dickson. � Finiteness of the odd perfect and primitive
abundant numbers with n distinct prime factors. �. Amer. Journal Math,
35 :413-422, 1913.

[10] M. Domaratzki and K. Salomaa. � RESTRICTED SETS OF
TRAJECTORIES AND DECIDABILITY OF SHUFFLE DECOMPO-
SITIONS �. International Journal of Foundations of Computer Science,
16(5) :897�912, 2005.

[11] Schahram Dustdar and Wolfgang Schreiner. � A survey on web
services composition �. International Journal of Web and Grid Services,
1(1) :1�30, 2005.

[12] Jean H. Gallier. � What's so special about Kruskal's theorem and the
ordinal Γ0 ?A survey of some results in proof theory �. Annals of Pure
and Applied Logic, 53 :199�260, 1991.

[13] Jay Gischer. � Shu�e languages, Petri nets, and context-sensitive
grammars �. Communications of the ACM, 24(9) :597�605, 1981.

[14] R.Hamadi and B.Benatallah. � A Petri net-based model for web ser-
vice composition �. Proceedings of the Fourteenth Australasian database
conference on Database technologies 2003-Volume 17, pages 191�200,
2003.

[15] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic Foundations of
computing. the MIT Press, 2000.

[16] Richard Hull, Michael Benedikt, Vassilis Christophides, and Jian-
wen Su. � E-services : a look behind the curtain �. In PODS, San Diego,
USA. ACM, Jun' 03.

[17] M. Ito. � Shu�e decomposition of regular languages �. Journal of
Universal Computer Science, 8(2) :257�259, 2002.

[18] Kazuo Iwama. � The universe problem for unrestricted �ow languages
�. Acta Informatica, 19(1) :85�96, 1982.

[19] Joanna Jedrzejowicz and Andrzej Szepietowski. � Shu�e lan-
guages are in P. �. Theor. Comput. Sci., 250(1-2) :31�53, 2001.

[20] Joanna Jkedrzejowicz. � Undecidability results for shu�e languages
�. Journal of Automata, Languages and Combinatorics, 1(2) :147�159,
1996.

[21] S. McIlraith and T.C. Son. � Adapting Golog for Composition of
Semantic Web Services �. Proceedings of the Eighth International Confe-
rence on Knowledge Representation and Reasoning (KR2002), pages
482�493, 2002.

20

[22] Anca Muscholl and Igor Walukiewicz. � A lower bound on web
services composition �. In Proceedings FOSSACS, volume 4423 of LNCS,
pages 274�287. Springer, 2007.

[23] S. Narayanan and S.A. McIlraith. � Simulation, veri�cation and
automated composition of web services �. Proceedings of the eleventh
international conference on World Wide Web, pages 77�88, 2002.

[24] M. Pistore, P. Traverso, and P. Bertoli. � Automated Compo-
sition of Web Services by Planning in Asynchronous Domains �. Proc.
ICAPS'05, 2005.

[25] P. Traverso and M. Pistore. � Automated Composition of Semantic
Web Services into Executable Processes �. International Semantic Web
Conference, 3298 :380�394, 2004.

[26] Manfred K. Warmuth and David Haussler. � On the complexity
of iterated shu�e. �. Journal of Computer and System Sciences,
28(3) :345�358, 1984.

[27] D.M. Yellin and R.E. Storm. � Protocol Speci�cations and Com-
ponent Adaptors �. ACM Trans. Program. Lang. Syst., 19(2) :292�333,
March 1997.

21

