Ramy Ragab
email: ragab@isima.fr

Lhouari Nourine
email: nourine@isima.fr

Farouk Toumani
email: ftoumani@isima.fr

Web services composition is hard but decidable

Keywords: Shue automata, Simulation relation, Web service composition, Web service protocol synthesis. 1

We study the problem of automatic web service composition. We consider a formal framework where web service business protocols are described by means of Finite State Machines (FSM) and focus on the protocol synthesis problem. We show that this problem can be reduced to that of testing a simulation relation between an FSM and an (innitely) iterated product of FSMs. While this later problem has never been investigated in the literature, existing results regarding close decision problems in the context of shue languages, an extension of regular languages with shue and shue closure operators, are rather negative and cannot be directly exploited in our context.

In this paper, we develop a novel technique to prove the decidability of testing simulation in the case of interest in our setting. As a consequence, our results solve the problem of web service composition (synthesis) existence in presence of an unbounded number of instances, a problem left open in recent related works.

Introduction

Web services is an emerging computing paradigm that tends to become the dominant technology for interoperation among autonomous and distributed applications in the Internet environment [START_REF] Alonso | Web Services -Concepts, Architectures and Applications[END_REF]. Informally, a service is a self-contained and platform-independent application (i.e., program) that can be described, published, and invoked over the network by using standards network technologies. In a nutshell, web services provide a mean to wrap, and expose over a network, a functionality (e.g., a program that accesses a database) via self-describing standard-based interfaces, thereby facilitating interoperability between disparate information systems that, at the origin, were not developed with the intent to be easily integrated. One of the ultimate goals of the web service technology is to enable rapid low-cost development and easy composition of distributed applications, a goal that has a long history strewn with only partial successes. To achieve this goal, there has been recently numerous research work [START_REF] Bultan | Conversation specication : a new approach to design and analysis of e-service composition[END_REF][START_REF] Hull | E-services : a look behind the curtain[END_REF][START_REF] Berardi | Automatic Composition of E-services That Export Their Behavior[END_REF][START_REF] Dustdar | A survey on web services composition[END_REF][START_REF] Berardi | Automatic Service Composition Based on Behavioral Descriptions[END_REF][START_REF] Berardi | Automatic Composition of Transitionbased Semantic Web Services with Messaging[END_REF][START_REF] Muscholl | A lower bound on web services composition[END_REF] on the challenges associated with web service composition. The research problems involved by service composition are varied in nature and depends mainly on the kind of the composition process, i.e., manual v.s. automatic, on the model used to describe the services and on the issues related to composition. A line of demarcation between existing works in this area lies in the nature of the composition process : manual v.s. automatic. The rst category of work deal generally with low-level programming details and implementation issues (e.g., WS-BPEL [START_REF] Andrews | Business Process Execution Language for Web Services[END_REF]) while automatic service composition focuses on dierent issues such as composition verication [START_REF] Bultan | Conversation specication : a new approach to design and analysis of e-service composition[END_REF][START_REF] Narayanan | Simulation, verication and automated composition of web services[END_REF][START_REF] Hamadi | A Petri net-based model for web service composition[END_REF], planning [START_REF] Traverso | Automated Composition of Semantic Web Services into Executable Processes[END_REF][START_REF] Pistore | Automated Composition of Web Services by Planning in Asynchronous Domains[END_REF][START_REF] Mcilraith | Adapting Golog for Composition of Semantic Web Services[END_REF] or synthesis [START_REF] Berardi | Automatic Service Composition Based on Behavioral Descriptions[END_REF][START_REF] Berardi | Automatic Composition of Transitionbased Semantic Web Services with Messaging[END_REF][START_REF] Muscholl | A lower bound on web services composition[END_REF].

In this paper we investigate the problem of automatic web service composition. We consider more particularly the composition synthesis problem, i.e., how to generate automatically a new target service by reusing some existing ones. We consider this problem at the web service business protocol abstraction level. A web service business protocol (or simply, a service protocol) is used to describe the external behavior of a service. Recent works have drawn attention to the importance of the state machine based formalisms for modeling the external behaviors of web services [START_REF] Benatallah | Web Service Conversation Modeling : A Cornerstone for E-Business Automation[END_REF][START_REF] Benatallah | Representing, analysing and managing web service protocols[END_REF][START_REF] Berardi | Automatic Composition of E-services That Export Their Behavior[END_REF]. Continuing with this line of research, we build our work upon a formal framework where web service business protocols are described by means of Finite State Machines (FSM) and we concentrate on the following protocol synthesis problem : given a set of n available web service protocols P 1 , . . . , P n and a new target protocol P T , can the behavior described by P T be synthesized by combining (parts of) the behaviors described by the available protocols. This problem has already been addressed in recent literature [START_REF] Berardi | Automatic Composition of E-services That Export Their Behavior[END_REF][START_REF] Berardi | Automatic Service Composition Based on Behavioral Descriptions[END_REF][START_REF] Berardi | Automatic Composition of Transitionbased Semantic Web Services with Messaging[END_REF][START_REF] Muscholl | A lower bound on web services composition[END_REF] under the restriction that the num-ber of instances of an existing protocol that can be used in a composition is bounded and xed a priori. We call this restricted form of the composition problem the instance bounded protocol (composition) synthesis problem. The pioneer work of [START_REF] Berardi | Automatic Composition of E-services That Export Their Behavior[END_REF][START_REF] Berardi | Automatic Service Composition Based on Behavioral Descriptions[END_REF] shows that the problem of composition existence in this context can be reduced to that of testing the satisability of a Propositional Dynamic Logic formula. In [START_REF] Berardi | Automatic Composition of Transitionbased Semantic Web Services with Messaging[END_REF], the PDL-based framework proposed in [START_REF] Berardi | Automatic Composition of E-services That Export Their Behavior[END_REF][START_REF] Berardi | Automatic Service Composition Based on Behavioral Descriptions[END_REF] is extended to deal with a more expressive protocol model. Interestingly, in [START_REF] Muscholl | A lower bound on web services composition[END_REF] composition existence problem is reduced to the problem of deciding whether there exists a simulation relation between the target protocol and the available ones. The authors build upon this reduction to prove the Exptime completeness of the bounded instance protocol synthesis problem.

It should be noted that the restricted setting considered in existing works has severe practical limitations that may impede the usage of automatic service composition by organizations. Indeed, as illustrated in section 3 of this paper, some very simple cases of web service composition cannot be solved in such a restricted setting.

Contributions. In this paper, we concentrate on the general case of protocol synthesis problem by relaxing the restriction on the number of protocol instances that can be used in a given service composition (i.e., we consider the unbounded instances case). Up to our knowledge, the decision problem underlying composition existence in such an unrestricted setting has been left open in recent related work. We show that this problem can be reduced to that of testing a simulation relation between an FSM and an (innitely) iterated product of FSMs. Up to our knowledge, this later problem has never been investigated in the literature.

This paper makes the following contributions :

We formalize the composition existence problem as that of checking simulation between a FSM and a (iterated) product closure of a FSM.

We provide a suitable model, called Product Closure Automata (PCA), to describe (iterated) product closure of a FSM as an innite state machine.

Building upon our formal framework, we develop a novel technique to prove the decidability of testing simulation between a FSM and a PCA. As a consequence, our results solve the problem of web service composition (synthesis) existence in presence of an unbounded number of instances, a problem left open in recent related works.

Relationship with formal language theory. Our work is strongly connected with existing research dealing with issues related to shue languages, an extension of regular languages with shue and shue closure operators [START_REF] Gischer | Shue languages, Petri nets, and context-sensitive grammars[END_REF][START_REF] Jkedrzejowicz | Undecidability results for shue languages[END_REF]. It is well known that the class of shue languages is a proper subset of context sensitive-languages and can be recognized using Linearly Bounded Automata (LBA). More specically, [START_REF] Jedrzejowicz | Shue languages are in P[END_REF] introduces the notion of shue automata which accept shue languages and can be simulated by one way nondeterministic Turing machine in logarithmic space. The simulation problem has never been addressed in this context. However, close decidability problems are rather negative. For example, we know from [START_REF] Iwama | The universe problem for unrestricted ow languages[END_REF] that the universe problem for shue languages is undecidable and hence it is the case of the inclusion problem of a regular language in a shue one.

The PCA model, used in this paper, is a particular case of shue automata which recognizes a shue closure of a regular language. Note that the universe and the emptiness checking problems are decidable in the context of PCAs. Although not detailed here, the technique presented in this paper can be used to prove the decidability of the inclusion problem between a regular language and a shue closure of a regular language. Finally, it is worth mentioning the existing work related to the problem of shue decompositions of regular languages [START_REF] Ito | Shue decomposition of regular languages[END_REF][START_REF] Domaratzki | RESTRICTED SETS OF TRAJECTORIES AND DECIDABILITY OF SHUFFLE DECOMPO-SITIONS[END_REF]. Given a language L, a challenging question is to express L as a shue of two languages such that neither one of them is the singleton language of the empty word. In our case, we deal with a kind of dual problem, i.e., how to compose a given language using existing ones.

Paper outline. The remainder of the paper is organized as follows. Section 2 provides some basic denitions. Section 3 denes the service composition problem dealt with in this paper and points out the main theoretical and practical limitations of current state of the art. Section 4 contains the main technical contribution. It formally introduces Product Closure Automata, an innite state machines that are used to describe (innitely) iterated product of FSMs, and propose an algorithm that decide simulation between a FSM and a PCA. We draw some conclusions in Section 5.

Preliminaries

In this section, we recall some basic notions that will be useful for the rest of this paper.

Denition 1 (FSM)

A Finite State Machine (FSM) M is tuple M =< Σ M , S M , F M , q 0
M , δ M >, where : Σ M is a nite set of alphabet, S M is a nite set of states, F M ⊆ S M is the set of nal states, q 0 M ∈ S M is the initial state, and δ M ⊆ S M × Σ M × S M is the transition relation of the state machine.

Let M =< Σ M , S M , F M , q 0 M , δ M > be a FSM and q ∈ S M a state in M . We note by SP (q) the shortest path leading from q to a nal state in F M .

We provide below a denition of the notion of simulation relation between FSMs.

Denition 2 (simulation relation)

Let M =< Σ M , S M , F M , q 0 M , δ M > and M =< Σ M , S M , F M , q 0
M , δ M > be two FSMs. A state q 1 ∈ S M is simulated by a state q 1 ∈ S M , noted q 1 q 1 , i :

(i) ∀a ∈ Σ M and ∀q 2 ∈ S M s.t. (q 1 , a, q 2) ∈ δ M there is (q 1 , a, q 2) ∈ δ M s.t. q 2 q 2 , and (ii

) if q 1 ∈ F M then q 1 ∈ F M . M is simulated by M , noted M M , i q 0 M q 0 M . Let M =< Σ M , S M , F M , q 0 M , δ M > and M =< Σ M , S M , F M , q 0 M , δ M >
be two FSMs. The asynchronous product (or simply, product) of

M and M , denoted M × M , is a FSM < Σ M ∪ Σ M , S M × S M , F M × F M , (q 0 M , q 0 M), λ >
where the transition function λ = {((q, q), a, (q 1 , q 1)) : (q, a, q 1) ∈ δ M or (q , a, q 1) ∈ δ M }.

Let R = {P 1 , . . . , P n } be a set of FSMs. We use (R) to denote the product of the FSMs in R (i.e., (R) = P 1 × . . . × P n). To make the presentation clearer, we assume that all the deterministic FSMs we are dealing in this paper recognize also the empty word. Note that, such an assumption does not impact the work presented here since any deterministic FSM M can be transformed into another deterministic FSM M which behaves exactly as M and recognizes in addition the empty word. Now, with such an assumption at hand we have (R) = X∈2 R (X). In other words, (R) denotes the union of the asynchronous product of all the subsets of R.

Let k > 0 be a positive integer. The k-iterated product of a state machine M is dened by

M ⊗ k = M ⊗ k-1 × M with M ⊗ 1 = M . A (iterated) product closure of an FSM M , noted M ⊗ , is an innitely iterated product of M (i.e, M ⊗ +∞).
It is worth noting that for any nite positive integer k, the k-iterated product M ⊗ k is still an FSM. Unfortunately, this property does not hold in the case of product closures. As we will see later, a product closure of a FSM can be described by an innite state machine.

Web services composition problem

In this section we dene the service composition problem dealt with in this paper and we point out the main theoretical and practical limitations of

Protocol model

We consider web services described by means of their protocols. A primary goal of a web service protocol is to describe the ordering constraints that govern message exchanges between a service and its clients (i.e., message choreography constraints). In this paper, we use the traditional state-machine formalism to represent message choreography constraints. States represent the dierent phases that a service may go through during its interaction with a requester. Transitions are triggered by messages sent by the requester to the provider or vice versa. Each transition is labeled with a message name.

Usually the message names are followed by message polarity [START_REF] Yellin | Protocol Specications and Component Adaptors[END_REF][START_REF] Benatallah | Representing, analysing and managing web service protocols[END_REF] to denote whether the message is incoming (e.g., the plus sign) or outgoing (e.g., the minus sign). For simplicity reasons, and w.l.o.g., we do not consider message polarities in this paper (i.e., we do not make distinction between incoming and outgoing messages). Therefore, we obtain a web service protocol model very similar the so-called Roman model [START_REF] Berardi | Automatic Composition of E-services That Export Their Behavior[END_REF],i.e., a FSM where transitions are labeled by abstract activities. For instance, Figure 1(b) depicts the protocol of an hypothetical nancing web service. The protocol species that the nancing service is initially in the Start state, and that clients begin using the service by executing the activity estimate payment, upon which the service moves to the Payment Estimated state (transition EstimatePayement).

In the gure, the initial state is indicated by an unlabeled entering arrow without source while nal (accepting) states are double-circled.

As usual, and also w.l.o.g, we assume that protocols are deterministic FSMs. This is because non-determinism make protocols ambiguous in the Fig. 2 Example of protocol composition (synthesis). sense that, for example, a service can move to a state that cannot be predicted by its client.

The protocol synthesis problem

Let us now turn our attention to the web service composition problem.

We rst illustrate this problem on an example. We assume a repository of two available services S 1 and S 2 , respectively, described by their protocols P 1 and P 2 depicted at Figure 1. We consider the development of a new web service S T whose protocol P T , called a target protocol, is depicted at Figure 2(a). An interesting question is to see whether or not it is possible to implement the service S T by combining the functionality provided by the available services S 1 and S 2 . Dealing with this composition problem at the business protocol abstraction level, leads to the following question : is it possible to generate the protocol P T by combining (parts of) the available protocols P 1 and P 2 .

In our illustrative case the answer is yes and an example of the composition of the target protocol P T using the protocols P 1 and P 2 is depicted at Figure 2(b). In this case, P T is called the target protocol while P 1 and P 2 are called the component protocols. Informally speaking, the service composition (or protocol synthesis) problem is dened in [START_REF] Berardi | Automatic Composition of E-services That Export Their Behavior[END_REF][START_REF] Berardi | Automatic Service Composition Based on Behavioral Descriptions[END_REF] as the problem of generating a delegator of a target service using available services. A delegator is a FSM where the activities are annotated with suitable delegations in order to specify to which component each activity of the target service is delegated. Continuing with our example, Figure 2(b) shows a delegator that enables to compose the protocol P T using the available protocols P 1 and P 2 of Figure 1. For instance, this delagator species that the activity selectVehicle of the target protocol is delegated to the protocol P 1 while the activity estimatePayment is delegated to the protocol P 2 .

Fig. 3 Instance Bounded Limitations

The notion of a delegator is dened formally in [START_REF] Berardi | Automatic Composition of E-services That Export Their Behavior[END_REF][START_REF] Berardi | Automatic Service Composition Based on Behavioral Descriptions[END_REF] and the composition synthesis problem is expressed as the problem of nding a correct delegator for a given target protocol using a set of available protocols. A crucial question regarding this problem lies in the number of instances of the available services that can be used in a composition (i.e., to build a delegator). Figure 3 shows two examples of delegators, namely P C1 and P C2 , that use several instances of available services to respectively compose target protocols. More precisely, the delegator P C1 uses two instances of the protocol P 1 , namely P 1 1 and P 2 1 , to compose the target protocol P T 1 . The delegator P C2 uses however (innitely) many instances of the protocols P 1 and P 2 to compose the protocol P T 2 . Indeed, each execution of the loop a.d.b (respectively, c.b) of the target protocol P T 2 is realized by two new instances of the available protocol P 1 (respectively, one new instance of P 2).

We provide below a denition of a generic protocol synthesis problem that makes explicit the number of instances of protocols allowed in a composition.

Let R be a repository of services protocols, i.e., R = {P i , i ∈ [1, n]}, where each P i =< Σ i , S i , F i , s 0 i , δ i > is a protocol. For each P i ∈ R, we denote by P j i the j th copy of the protocol P i . Given a protocol repository R, we note by R m = n i=1 {P 1 i , . . . , P m i }, with m ∈ N.

Denition 3 generic protocol composition problem Let R be a set of available service protocols and P T be a target protocol and let k ∈ N. A (generic) protocol synthesis problem, noted Compose(R, S T , k) is the problem of deciding whether there exist a composition of P T using R k .

Note that, instances of this generic composition problem are characterized by the maximal number of instances of component protocols that are allowed to be used in a given composition. We distinguish in the following between two main cases, namely the bounded instance and the unbounded instance ones.

Protocol synthesis problem : the bounded case. Exiting work [START_REF] Berardi | Automatic Composition of E-services That Export Their Behavior[END_REF][START_REF] Berardi | Automatic Service Composition Based on Behavioral Descriptions[END_REF][START_REF] Berardi | Automatic Composition of Transitionbased Semantic Web Services with Messaging[END_REF][START_REF] Muscholl | A lower bound on web services composition[END_REF] that investigated the protocol synthesis problem make the simplifying assumption that the number of instances of a service that can be involved in the composition of a target service is bounded and xed a priori, i.e., they address the problem Compose(R, S T , k) with k nite and known a priori.

Note that this particular case, called the bounded instance protocol synthesis problem, can be reduced w.l.o.g to the simplest case where k = 1. Indeed, if k > 1 the problem Compose(R, S T , k) can be straightforwardly reduced to the problem Compose(R k , S T , 1).

The main idea described in [START_REF] Berardi | Automatic Composition of E-services That Export Their Behavior[END_REF][START_REF] Berardi | Automatic Service Composition Based on Behavioral Descriptions[END_REF] consists in reducing the problem

Compose(R, S T , 1) into satisability of a suitable formula of Deterministic Propositional Dynamic Logic (DPDL) [START_REF] Harel | Dynamic logic Foundations of computing[END_REF]. Interestingly, in [START_REF] Muscholl | A lower bound on web services composition[END_REF] the protocol synthesis problem is reduced to the problem of testing a simulation relation between the target protocol and the product of the existing protocols. Using such a reduction, [START_REF] Muscholl | A lower bound on web services composition[END_REF] shows the Exptime completness of this problem 4 .

It is worth noting that the setting of bounded instances is very restrictive in the sense that some simple protocol synthesis problems, in which the solution may use an innite number of instances of component protocols, cannot be solved. As an example, the problem depicted at Figure 3, and which consists in the synthesis of the target protocol P T 1 using the available protocols P 1 and P 2 , cannot be solved by current state of the art approaches although a solution (i.e., the delegator P C2) is not complex to construct.

These strong limitations motivated our work on the unbounded instance case of the protocol synthesis problem.

Protocol synthesis problem : the unbounded case. In the remainder of this paper we study the protocol synthesis problem in the case where the number of protocol instances that can be used in a composition may be innite (i.e., the problem Compose(R, S T , +∞)). In the same spirit of [START_REF] Muscholl | A lower bound on web services composition[END_REF],

we formalize the protocol synthesis problem as that of testing the existence of a simulation relation. More precisely, given a repository R = {P 1 , . . . , P n } 4 The Exptime upper bound is known from [START_REF] Berardi | Automatic Composition of E-services That Export Their Behavior[END_REF].

of service protocols, we consider the generation of new composite protocols that can be obtained by an asynchronous product of any subset of protocols in R. The following proposition can easily be derived from existing results

given in [START_REF] Berardi | Automatic Composition of E-services That Export Their Behavior[END_REF][START_REF] Berardi | Automatic Service Composition Based on Behavioral Descriptions[END_REF][START_REF] Berardi | Automatic Composition of Transitionbased Semantic Web Services with Messaging[END_REF][START_REF] Muscholl | A lower bound on web services composition[END_REF]. (R) is an FSM, we shall prove in next section that checking simulation between an FSM A and a product closure of an FSM M (i.e., M ⊗) is decidable. This enables to derive the decidability of the protocol synthesis problem.

Composition decidability problem

In this section we are interested by the problem of testing the existence of a simulation relation between an FSM and a product closure of an FSM. To investigate this problem, we need rst to dene a state machine model that enables to describe a product closure. Shue automata, introduced in [START_REF] Jedrzejowicz | Shue languages are in P[END_REF] to recognize the so-called shue languages, are an example of a candidate model that can be used to describe product closures of FSMs. However, as we deal only with a specic form of shue automata, i.e., automaton of the form M ⊗ where M =< Σ M , S M , F M , q 0 M , δ M > is an FSM, we use in our work a simpler tool inspired from [START_REF] Warmuth | On the complexity of iterated shue[END_REF][START_REF] Muscholl | A lower bound on web services composition[END_REF]. Informally, the product closure M ⊗ enables to run an innite number of parallel instances of M . An instantaneous description of M ⊗ may then be described by an FSM similar to M with a (innite) stack of tokens in each state. The size of the stack describes the number of parallel instances having reached that state. Let w ∈ Σ * M the input of M ⊗ , a symbol a ∈ w is recognized by the execution of such a state machine in two cases :

(creation of a new instance of M) if there is an outgoing transition labeled a from the initial state q 0 M of M to a state q. Upon such a transition, a token is added to q, or (moving an existing instance of M) if there exists two states q and q such that (q, a, q) ∈ δ M and q has one or more tokens, then upon this transition, a token is moved from q to q . Before providing a formal denition of the state machine M ⊗ , we rst dene below the notions of intermediate and hybrid states of an FSM M which will be useful in the remainder of this paper. Let M =< Σ M , S M , F M , q 0 M , δ M > be a FSM. Then : The set of hybrid states of M , denoted H s (M), contains all thenal states of M that have at least one outgoing transition. Formally,

H s (M) = {q ∈ F M | ∃q ∈ S M , a ∈ Σ M , (q, a, q) ∈ δ M }.
The set of intermediate states of M , denoted I s (M), contains the states of S M \F M that have at least one incoming and one outgoing transitions. Formally, I s (M) = {q ∈ S M \ F M | ∃q , q ∈ S M , a ∈ Σ M , (q, a, q) ∈ δ M and (q , b, q) ∈ δ M }. We provide now a formal denition of a state machine, called hereafter a PCA (Product Closure Automaton), that enables to describe the product closure of an FSM. A PCA is an innite state machine which enables to describe : (i) all possible executions of a product closure of an FSM, and (ii) the branching choices at each state of the execution of such an automaton.

We introduce below the notion of a conguration which provides an instantaneous description (ID) of a PCA. Unlike nite state automata, where the ID of a given automaton is given by its current state, an ID of a PCA involves the set of its states as well as the number of tokens in each state (number of instances having reached that state when recognizing a word).

Let M =< Σ M , S M , F M , q 0 M , δ M > be an FSM and let |I s (M)| = l and |H s (M)| = n. We assume states of I s (M) (respectively, H s (M)) ordered according to the lexicographical order and relabeled accordingly with integers from 1 to l (respectively, from l + 1 to l + n). The congurations of M ⊗ are formally dened below. Denition 4 (Conguration) A conguration C of the product closure M ⊗ is a tuple of size l + n of (may be innite) integers. The i th element of C, written C[i], denotes the number of tokens (i.e., instance of M) that are at state i. We say that C[i] is the witness of the state i in a conguration C. Note that, if i ≤ l (respectively, i > l) then C[i] is a witness of an intermediate state (respectively, an hybrid state).

A conguration C is an initial conguration of M ⊗ if C[i] = 0, ∀i ∈ [1, l + n] and C is a nal conguration if C[i] = 0, ∀i ∈ [1, l].
Note that, a conguration keeps only the information about intermediate and hybrid states. Indeed, it is useless to store information about the number of tokens (i.e., instances of M) that are in nal, not hybrid, states. In the same spirit, as the number of instance of M that can be created is innite (i.e., the set of tokens in the initial state is innite) we do not describe the initial state in a conguration unless it is also an intermediate state.

Continuing with the example of Figure 4, the FSM M contains only one intermediate state (state q 1) and one hybrid state (state q 2). Hence, a conguration associated with M ⊗ is a pair of integers where the rst (respectively, the second) integer is the witness of the state q 1 (respectively, q 2). For instance, a conguration C = (2, 3) indicates an instantaneous description of M ⊗ in which there are two instances of M at state q 1 and three instances at state q 2 . We dene below two partial orders on congurations. Denition 5 (Conguration inclusion and cover) Let C 1 and C 2 be two congurations of size m of M ⊗ . We dene the two following partial orders on congurations.

Inclusion. C 1 ⊆ C 2 , i C 1 [i] ≤ C 2 [i]∀i ∈ [1, m], Cover. C 1 C 2 , i (C 1 ⊆ C 2 and C 1 [i] = C 2 [i], ∀i ∈ [1, |I s (M)|]). In this case, we say that C 1 is covered by C 2 .
Using the notion of conguration, we formally dene below PCAs.

Denition 6 Let M =< Σ M , S M , F M , q 0 M , δ M > be a FSM with |I s (M)| = l and |H s (M)| = n. The associated PCA of M is an innite state machine M ⊗ =< Σ M , C, F C , C 0 , φ >, where :
C is an (innite) set of states consisting of all the congurations of

M ⊗ , F C is the set of nal congurations of M ⊗ , i.e., {C ∈ C | C[i] = 0, ∀i ∈ [1, l]}, C 0 is the initial state of M ⊗ and corresponds to the initial conguration, i.e., C 0 [i] = 0, ∀i ∈ [1, l + n], φ ⊆ C × Σ M × C is an innite set of transitions.
The set φ is built as follows. Let C 1 and C 2 be two congurations in C. We have (C 1 , C 2 , a) ∈ φ if (q, a, q) ∈ δ M and one of the following conditions holds : 4(a). As mentioned before, congurations of M ⊗ are pairs (i, j) where i (respectively, j) is the witness of the state q 1 (respectively, q 2). The innite state machine M ⊗ is initially in the conguration C 0 = (0, 0) then it can, for example, execute the activity a, upon which it moves to the conguration C 1 = (1, 0). At this stage, M ⊗ has two possibilities to execute the activity c : (i) by moving the current instance of M that is at state q 1 into the nal state q 3 , or (ii) by creating a new instance of M and moving it from state q 0 into state the nal q 5 . Note that, as the nal states q 3 and q 5 are not described in congurations, case (i) make the M ⊗ moving back to the conguration C 0 while case (ii) makes it looping on conguration C 1 .

q = q 0 M and q ∈ (F M \H s (M)) with C 1 [i] = C 2 [i], ∀i ∈ [1, l + n], or q = q 0 M and q ∈ (I s (M) ∪ H s (M)) with C 2 [q] = C 1 [q] + 1, C 1 [i] = C 2 [i], ∀i ∈ [1, l + n] and i = q , or {q, q } ⊆ (I s (M) ∪ H s (M)) with C 1 [q] > 0, C 2 [q] = C 1 [q] -1, C 2 [q] = C 1 [q] + 1, C 1 [i] = C 2 [i], ∀i ∈ [1, l + n] and i / ∈ {q, q }, or q ∈ (I s (M) ∪ H s (M)) and q ∈ (F M \H s (M)) with C 2 [q] = C 1 [q] -1, C 1 [i] = C 2 [i], ∀i ∈ [1, l + n] and i = q.

Simulation existence decision problem.

We are now able to state formally the simulation decision problem we are interested in. Problem 2 Let A and M be two FSMs. Is it decidable whether A M ⊗ (or, equivalently, is decidable whether q 0 A C 0 ?). This section answers positively to this problem by providing a sound and complete algorithm that checks the existence of a simulation relation between a FSM and a product closure of a FSM.

Note that, the main diculty to devise our algorithm comes from the fact that we have to check the existence of a simulation relation between an FSM and a PCA, this later one being an innite state machine. The corner stone of our proof is to show that to check the existence of such a simulation relation we need only to explore a nite part of the corresponding PCA. We propose an algorithm made of three main parts : Check-Sim, Check-Candidate and Check-Cover. When checking the simulation between a given state q and a conguration C, the Check-Sim procedure will recursively generate new simulation tests by making calls to the Check-Candidate procedure for each transition (q, a, q) in A. This later procedure enables to check if the state q is simulated by at least one conguration C such that (C, a, C) is in M ⊗ .

Informally speaking, the execution of the algorithm can be seen as a tree where the nodes are labeled with pairs (q, C) and correspond to the calls of the Check-Sim algorithm. As an example, Figure 5(b) shows an execution of a Check-Sim between the initial state q 1 of the FSM of Figure 5(a) and the initial conguration C 0 = (0, 0) of the product closure of the FSM of A crucial question is then to ensure that the algorithm terminates. Observe that for each state q , the number of candidates C generated by the Check-Candidate procedure is linear in the size of M since for any conguration C of a PCA M ⊗ , the number of outgoing transitions is nite and bounded by the total number of transitions in M . Therefore, to ensure termination of the algorithm it remains to show that there are no innite branches in the execution tree of the algorithm. In the simple case where A is a loop-free FSM, it is easy to see that the corresponding execution tree of the algorithm is nite since the length of the branches are bounded by the size of the maximal path in A. For the general case, a state q belonging to a loop in A may appear (innitely) many times in a branch of the execution tree of the algorithm. Such a case is illustrated on the Figure 5(b) where the branch depicted in bold involves many times the state q 1 which belong to the loop (a.b) * of the FSM A. An important technical contribution of this work is to provide necessary and sucient conditions that enable to cut early such innite branches. This is achieved by the second terminating condition of the Check-Sim (i.e., the call to the Check-Cover procedure) which is based on the following property : if a state q appears innitely many times in a given branch then there is necessarily a sub-path in this branch from a node (q, C) to a node (q, C) such that C is a cover of C. Interestingly, this condition characterizes the cases where a loop in A is simulated by M ⊗ .

Continuing with the example of Figure 5(b), the bold branch which is potentially innite is cut at node (q 1 , (0, 1)) since the conguration (0, 1) is a cover of the conguration (0, 0) which appear previously in a node (q 1 , (0, 0)) in the same branch. Note that, to verify such a condition, the Check-Cover procedure maintains for each state q in a given branch a list, noted L(q), of all the congurations C corresponding to the nodes (q, C) of this branch. In our example, we have at node (q 1 , (0, 1)) of the bold branch the sequence L(q 1) = [(0, 0), (1, 0)]. Input: Two FSM A and M , a state q of A, a conguration

C of M ⊗ Output: boolean begin if q ∈ F A \ H s (A) then return(|Is(M)| i=1 C[i] = 0);
if Check-Cover(q,C) then Return(true);

for each transition (q, a, q) in δ A do if not(Check-Candidate(q , C, a)) then

∈ (C ik) i k ∈N C 1 C 2 ⇔ C 1 ⊆ C 2 .
Hereafter, we will prove that such a sequence (C ik) i k ∈N of congurations without inclusion cannot exist. This proof is based on the following lemma established by [START_REF] Leonard | Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors[END_REF] and reported in [START_REF] Gallier | What's so special about Kruskal's theorem and the ordinal Γ 0 ?A survey of some results in proof theory[END_REF].

Lemma 1 Let n be any integer such that n > 1. Given any innite sequence (C i) i≥1 of n-tuples of natural numbers, there exists positive integers i, j such that i < j and C i n C j , where n is the partial order on n-tuples of natural numbers induced by the natural ordering ≤ on N.

Lemma1 states that there does not exist an innite sequence of congurations without inclusion. Thus (C ik) i k ∈N is not innite without inclusion. Thus we conclude that (C i) i∈N can not be an innite without cover and therefore the procedure Check-Sim halts.

Theorem 2 The Algorithm Check-Sim is correct.

Proof 2

Soundness. Suppose that Algorithm Check-Sim returns true.

We show that there exists simulation between q 0 and C 0 , and thus, there exists simulation between A and M ⊗ . Let us consider a call to the Algorithm Check-Sim with q a state of A and C a conguration of M ⊗ .

We can distinguish three acceptance cases :

q ∈ F A \ H s (A) and (|Is(B)| i=1 C[i] = 0; i.e.
C is nal). Then q C. For each transition (q, a, q) ∈ δ A : q is simulated by a given C . Then q C. Cover(q, C) = 1. This case represents the dierence between our algorithm and classic simulation algorithms. It corresponds to an execution of a loop in A which go through q. That is to say, there exists a sub-path in the execution tree from (q, C) to (q, C) such that C C . This cover condition allows us to avoid the test of simulation between q and C , because C possesses the same number of tokens as C on intermediate states of M and more tokens than C for hybrid states of M . Since C and C need to simulate the same state q, we can restrict C to be equal to C by deleting the extra tokens in hybrid states of C .

Completness. Now suppose that Algorithm Check-Sim returns false. First we show that Algorithm Check-Sim looks for all the possibilities to simulate the state q by a conguration C. In order to simulate q by C, the Algorithm Check-Sim checks for each transition (q, a, q) in δ A if q can be simulated by a conguration C such that (C, a, C) ∈ φ.

The Algorithm Check-Candidate computes all congurations that may be candidate to simulate q . Candidates that do not satisfy the condition |Is(B)| i=1

C [i] ≤ SP (q) are rejected. Indeed, these congurations cannot simulate q , since there exists a path from q to a nal state in F A such that the tokens on the intermediate states of C cannot be all consumed. From the list of candidates, the Algorithm Check-Candidate try to nd a candidate conguration that simulates q . The algorithm returns false if no such a conguration exist. Now suppose that the Algorithm Check-Sim returns false. We distinguish two cases : q ∈ F A \ H s (A) and |Is(B)| i=1 C[i] = 0. This means that q is a nal state and C is not a nal state. Thus q cannot be simulated by C. There is a transition (q, a, q) in δ A such that the state q cannot be simulated. Since all candidate congurations C such that (C, a, C) ∈ φ are checked, we conclude that q cannot be simulated by C.

We conclude that Algorithm Check-Sim is correct.

It is worth noting that the proposed proof is constructive in the sense that if the answer is true, the algorithm may be easily modied to exhibit a simulation relation between its inputs. This is an interesting point in the context of the protocol synthesis problem since such a simulation relation can be eectively used to build a delegator.

Conclusion

We have studied the web service protocol synthesis problem in the general case where the number of protocol instances that can be used in a composition is unbounded. We made a reduction of this problem to that of of checking simulation between a FSM and a product closure of a FSM.

To cope with this later problem, we rst proposed PCAs as a suitable tool for describing the behavior of a product closure of an FSM and built upon this formal framework to prove the decidability of checking the simulation relation between a FSM and a PCA.

As a perspective of this work, we point out several interesting issues : the algorithmic issues related to the optimization of the proposed algorithm as well as the development of suitable implementation strategies, complexity, by identifying particular cases that either reduce the complexity of the problem or can be solved using classical simulation algorithms, extension of our technique to more expressive models that enable for example modeling message exchanges and impacts on the real world such as the Colombo model [START_REF] Berardi | Automatic Composition of Transitionbased Semantic Web Services with Messaging[END_REF], application of our technique to tackle close problems in the formal language theory, as for example, identifying restricted classes of shue automata for which fundamental problems such as languages inclusion and the universe problems are decidable.

Fig. 1 A

 1 Fig. 1 A repository of two business protocols.

Fig. 4

 4 Fig. 4 Example of an FSM M and a part of its associated PCA M ⊗ .

Figure 4 (

 4 Figure4(b) describes a part of M ⊗ , the PCA of the FSM M depicted at Figure4(a). As mentioned before, congurations of M ⊗ are pairs (i, j) where i (respectively, j) is the witness of the state q 1 (respectively, q 2). The innite state machine M ⊗ is initially in the conguration C 0 = (0, 0) then it can, for example, execute the activity a, upon which it moves to the conguration C 1 = (1, 0). At this stage, M ⊗ has two possibilities to execute the activity c : (i) by moving the current instance of M that is at state q 1 into the nal state q 3 , or (ii) by creating a new instance of M and moving it from state q 0 into state the nal q 5 . Note that, as the nal states q 3 and q 5 are not described in congurations, case (i) make the M ⊗ moving back to the conguration C 0 while case (ii) makes it looping on conguration C 1 .

Figure 4 (

 4 Figure 4(a).

Fig. 5

 5 Fig. 5 Simulation

 Proposition 1 Let Compose(R, S T , k) be a protocol synthesis problem with k a nite positive integer xed a priori. The problem Compose(R, S T , k) has a solution i S T (R k) (or equivalently, i S T ((R)) ⊗ k).

	More precisely, we consider in this paper the decision problem
	underlying the general protocol synthesis problem, i.e., the problem
	Compose(R, S

T , +∞). Problem 1 Let R and S T dened as previously. Is the problem Compose(R, S T , +∞) decidable ? This problem has been left open in current related works. One way to answer this open question is to consider the related 'simulation relation' decision problem, i.e., is it decidable whether S T is simulated by ((R)) ⊗ ? Up to our knowledge, simulation relation has never been studied in the context of product closure of FSMs. Since

 ∈ (C ik) k∈N , C[j] = C [j] ∀j ∈[1, l] . In other words, each (C ik) i k ∈N represents a sequence of congurations where the witnesses for intermediate states are the same. Hence, (C i) i∈N is an innite cover-free sequence of congurations i (C ik) i k ∈N is an innite sequence of congurations without inclusion, i.e. ∀C 1 , C 2

	that for all C, C
	return(false);
	return(true);
	end

In the remainder of this section, we shall prove that the procedure Check-Sim halts and is sound and complete.

Theorem 1 The algorithm Check-Sim halts.

Proof 1 Let us suppose that the procedure Check-Sim does not halt, i.e. there exists an innite branch in its execution tree. This means that a given state q ∈ S M may appear innitely many times in this branch, i.e. |L(q)| is innite. Thus L(q) corresponds to a cover-free sequence

Since the sum of tokens in intermediate state are bounded by SP (q) then (C i) i∈N may be split into a nite number of sub-sequences (C ik) i k ∈N , such