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Abstract

Given a directed graph with capacities on each arc and given a set of commodities, the QoS
constrained Routing Problem (QCRP) consists in routing each commodity while respecting a end-
to-end upper bound on the delay for each packet. This problem is NP-hard and we propose an
augmented Lagrangean approach to solve it. A flow deviation algorithm as well as a projected
gradient method are proposed to solve the inner problem in the augmented Lagrangean approach.
The delay and the load functions are approximated either by an analytical function or by a neural
network. Computational results are reported to show the effectiveness of the projected gradient
method and the neural network approximation.

Keywords: routing, quality of service, nonlinear programming, augmented Lagrangean, flow
deviation, projected gradient, neural network

Résumé

Étant donné un graphe muni de capacités sur les arcs ainsi qu’un ensemble de demandes, le
problème de Routage avec Contraintes de Qualité de Service (QRCP) consiste à router chaque
demande tout en respectant une borne supérieure sur le délai de bout en bout pour chaque paquet.
Ce problème est NP-difficile et nous proposons une approche de type Lagrangien Augmenté pour
le traiter. Nous proposons un algorithme de déviation de flot ainsi qu’une méthode de gradient pro-
jeté pour résoudre le sous-problème à chaque itération du Lagrangien Augmenté. Nous utilisons
deux types d’approximation pour les fonctions de délai et de charge sur les arcs : une fonction ana-
lytique ou un réseau de neurones. Cette approche est testée sur des instances de taille réaliste. Les
expérimentations montrent que l’utilisation de réseaux de neurones ainsi que du gradient projeté
permettent d’obtenir de bons résultats dans des temps acceptables.

Mots clés : routage, qualité de service, programmation non linéaire, lagrangien augmenté, déviation
de flot, gradient projeté, réseau de neurones



Introduction

The demand for a dynamic and efficient usage of network resources is one of the key points in the
current evolution of the Internet. However, to support both existing and emerging (VoIP, peer-to-
peer, ad-hod, etc.) multimedia applications with specific Quality of Service (QoS) requirements,
additional services and protocols are needed. IETF has proposed several approaches to address
QoS requirements in the Internet. DiffServ-based architectures have received the greatest favors of
operators and in the industry but the deployment of end-to-end QoS is still limited [11]. Although
the basic DiffServ concept (differenciation of packets per traffic classes) is being currently ex-
ploited to support voice traffic over IP network (VoIP), handling the traffic in term of performance
(delay, loss rate, jitter) is still an open issue [13].

One of the problems is to design effective routing policies that allow QoS constraints to be
respected and ressource occupation to be optimized. MultiProtocol Label Switching (MPLS) is
being considered as one (standardized) approach for scalable QoS provisioning in the Internet and
may be seen as a possible answer to Traffic Engineering (TE) needs. We adress here the prob-
lem of routing a set of demands in a MPLS backbone with QoS requirements expressed in term
of end-to-end delays. The classical optimization algorithms that are typically used in TE task to
maximize network performance and to balance traffic load suffer from a major issue: they still rely
on the assumption that the QoS in routers obeys the standard M/M/1 formula. In this work, we
define a multicommodity flow optimization procedure in which the M/M/1 approximation can be
substituted by a more realistic evaluation of the delay using a neural network trained on simulated
examples. We restrict ourselves to the QoS constraint defined as the end-to-end delay: for each
commodity, it corresponds to the delay incurred by a packet between its arrival time at the desti-
nation router and its departure time from the origin router. The QoS Contrainted Routing Problem
(QCRP) is then to route each commodity on the network in order to minimize the overall load
on the network – defined as the overall sum of the arc loads – while respecting all QoS require-
ments. Note that a somewhat different cost function could have been used, namely the maximal
congestion on the network (i.e. the utilization factor on the most saturated arc) as discussed in [7].

A mathematical formulation for (QCRP) is presented in Section 1. Then we describe in Sec-
tion 2 an augmented Lagrangean approach to solve the problem. The subproblem reduces to a
nonlinear minimum cost flow problem. It will be solved two different ways: first, by using the
flow deviation method, second, by using the projected gradient method. Due to the nature of the
objective function, the generation of the improving direction for both methods requires a specific
algorithm. In Section 3, two approximations (the classical Kleinrock’s delay function and a neural
network-based function) are presented for the delay and the load functions. Numerical results will
be presented in Section 4 before concluding remarks.

1 Mathematical formulations

Let G = (N,A, c) be a directed network, where N is the set of nodes (routers) and A is the set
of arcs (connections). A capacity (bandwidth) ca > 0 is associated with each arc a ∈ A. The set
of commodities (services) to be routed on G is defined as K = {(oi, di, qi, si), i = 1 . . .K}. For
each commodity k ∈ K, ok is the origin node, dk is the destination node, qk and sk are respectively
the requested bandwidth and the class of service. The bandwidth requirement qk is considered to
be fixed, i.e. the traffic is not subject to variations over the time. The set S = {si, i = 1 . . . S}
contains the classes of service. To each class of service s ∈ S, Ds is the upper bound on the
end-to-end delay. Thus, for every commodity k ∈ K, Dsk

corresponds to the maximal end-to-end
delay for each of its packets.
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Let Pk =
{
pk

i , i = 1 . . . Pk

}
be the set of all paths for commodity k ∈ K. Thus, P = ∪k∈KPk

denotes the set of all the paths. Each path p ∈ P can be expressed as a set of arcs. For each
commodity k, let xk

p > 0 be the percent of bandwidth assigned to the path p ∈ Pk. Throughout
this work, the delay will be considered as an additive function over the arcs. Therefore, the end-
to-end delay for a path p ∈ P is given by the sum of the delays on each arc a belonging to p. Let
φs(xa, ca) and ψs(xa, ca) be respectively the load function and the delay function for the class of
service s ∈ S on the arc a ∈ A, where xa is the aggregated bandwidth vector for each class of
service. The (QCRP) can be formulated as follows:

(QCRP)

Min Φ(x) =
∑

a∈A

∑

s∈S
φs(xa, ca)

s.t.
∑

p∈Pk

xk
p = 1 ∀k ∈ K (1)

xs
a =

∑

k∈K|sk=s

qk
∑

p∈Pk|a∈p

xk
p ∀a ∈ A, ∀s ∈ S (2)

dk
p =

∑

a∈A|a∈p

ψsk
(xa, ca) ∀k ∈ K, ∀p ∈ Pk (3)

xk
p

(
Dsk
− dk

p

)
> 0 ∀k ∈ K,∀p ∈ Pk (4)

xk
p > 0 ∀k ∈ K,∀p ∈ Pk

Constraints (1) require all the bandwidth to be assigned to the paths of commodity k. Equa-
tions (2) compute the bandwidth used on each arc according to the bandwidth that is assigned on
each path. Equations (3) compute the end-to-end delay of each path. Finally, constraints (4) are
the QoS constraint for each active path, i.e. for each path on which a positive amount of bandwidth
is routed. These constraints are nonlinear and nonconvex. It is worth noting that only (1) and (4)
define constraints, since xs

a and dk
p are auxiliary variables. Moreover, the capacity constraints are

not used in (QCRP) since the delay function ψs acts as a barrier on the arcs capacity. Thus, the
capacity constraints are redundant in our context. (QCRP) is NP-hard as shown by Ben-Ameur
and Ouorou [1]. In fact, even the computation of a shortest path given several QoS metrics is
NP-hard, as shown by [15]. To our knowledge, [1] is the only work trying to take the end-to-end
delay constraint into account. They consider a minimum cost flow problem subject to QoS con-
straints. They first give a mathematical model before proposing several lower and upper bounds
by performing convexifications. No computational results are given, though.

2 Augmented Lagrangean method for (QCRP)

A wide range of efficient methods are well-suited to solve convex multicommodity minimum cost
flow problems (see [14] for a comprehensive survey and comparison). Yet, most of them cannot
be applied to this problem since the load and the delay functions, φs(xa, ca) and ψs(xa, ca), are
nonlinear. Moreover, there is an exponential number of nonlinear, nonconvex QoS constraints
(4). Thus, they will be first dualized by performing a Lagrangean relaxation. Let gk

p(x) =
xk

p

(
dk

p −Dsk

)
. Then the objective function becomes
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L(x, λ) =
∑

a∈A

∑

s∈S
φs(xa, ca) +

∑

k∈K,p∈Pk

λk
pg

k
p(x) (1)

where λk
p > 0 are the Lagrangean coefficients associated with each relaxed QoS constraint.

The resulting problem consists in minimizing the nonlinear objective function (1) with linear con-
straints.

The Lagrangean relaxation cannot be solved directly as the objective function L(x, λ) is non-
convex (due to gk

p(x)). An augmented Lagrangean relaxation scheme can be built by adding a
quadratic penalty term to the objective function (see [6]). Let hk

p(x, λ, c) = max
{
0, λk

p + cgk
p(x)

}
.

Then the augmented Lagrangean function is

Lc(x, λ) =
∑

a∈A

∑

s∈S
φs(xa, ca) +

1
2c

∑

k∈K,p∈Pk

((
hk

p(x, λ, c)
)2
−

(
λk

p

)2
)

(2)

Lc(x, λ) is locally convex at the neighborhood of x and the resulting problem can be solved
by any classical optimization method (i.e. subgradient method, bundle method). At each itera-
tion of the augmented Lagrangean method, the Lagrangean multipliers λ are fixed (λt) and the
subproblem (L+

c,t) to be solved is as follows:

(L+
c,t)

Min Lc(x, λt)
s.t.

∑

p∈Pk

xk
p = 1 ∀k ∈ K (1)

xk
p > 0 ∀k ∈ K, ∀p ∈ Pk

At iteration t, let x+
t be the solution of (L+

c,t). The multipliers are updated using the formula

λt+1 = max{0, λt + ct g(xt)} (3)

The multipliers method is applied on the QoS constraints removal (partial constraint removal).
The remaining constraints are linear. This ensures the convergence of the method ([3, 8]). How-
ever, as L(x, λ) is nonconvex, the augmented Lagrangean method converges towards a local op-
timum. Thus, the computed solution x∗ is only a local optimum. However, this solution is still
interesting for two reasons: first, it is feasible, especially with respect to the QoS constraints.
Moreover, a lower bound can be computed within the method. This will give us an estimation of
the quality of our primal solution.

The choice for the serie {ct} is derived from [6]. It consists in multiplying ct by a constant
factor β (here β = 10) each time the overall violation of the QoS constraints has not been de-
creased by a factor γ (here γ = 1.0005). Thus, the main steps of the algorithm are summarized in
Algorithm 1.

2.1 Computation of the gradient

The multipliers method is used in the augmented Lagrangean scheme. At each step, a (L+
c,t) sub-

problem has to be solved. Two approaches will be considered: a flow deviation method and a pro-
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Algorithm 1 Multipliers method for (QRCP)
set λ0 = 0, c0 = 0, t = 0
repeat

solve (L+
c,t) to get xt

// multipliers update
λt+1 = max{0, λt + ct g(xt)}

// penalty update
if ||max{0, g(xt+1)}|| < γ||max{0, g(xt)}|| then
ct+1 = ct

else
ct+1 = βct

end if

t← t+ 1
until ||max{0, g(xt)}|| > 0

return xt

jected gradient method. Both methods require the computation of the gradient of the augmented
Lagrangean function,∇xLc(x, λ).

Proposition 1. Let λ be a multiplier vector and let c be a strictly positive penalty coefficient. The
component of the gradient∇xLc(x, λ) for the path p ∈ Pk of the commodity k ∈ K is :

∂Lc(x, λ)
∂xk

p

=
∑
a∈p

`sk
a + hk

p(x, λ, c)
(
dk

p −Dsk

)
(4)

where, for a given arc a ∈ A and for a given CoS s ∈ S, the quantity `sa is defined as:

`sa =
∑

s′∈S

∂φs′

∂xs
a

(xa, ca) +
∑

k∈K

∑

p∈Pk|a∈p

xk
ph

k
p(x, λ, c)

∂ψs

∂xs
a

(xa, ca) (5)

Proof.

∂Lc(x, λ)
∂xk

p

=
∑

a∈A

∑

s∈S

∂φs

∂xk
p

(xa, ca) +
∑

k′ ∈K

∑

p′∈Pk′

hk′
p′ (x)

∂gk′
p′ (x)

∂xk
p

=
∑

a∈A

∑

s∈S

∂φs

∂xk
p

(xa, ca) +
∑

k′ ∈K

∑

p′∈Pk′

hk′
p′ (x)

∂xk′
p′

∂xk
p


∑

a∈p′
ψsk′ (xa, ca)−Dsk′




+
∑

k′ ∈K

∑

p′∈Pk′

hk′
p′ (x)x

k′
p′
∂

∂xk
p


∑

a∈p′
ψsk′ (xa, ca)−Dsk′


 (6)
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The first term of (6) can be written as:

∑

a∈A

∑

s∈S

∂φs

∂xk
p

(xa) =
∑

a∈A

∑

s∈S

∑

r∈S

∂φs

∂xr
a

(xa)
∂xr

a

∂xk
p

=
∑
a∈p

∑

s∈S

∂φs

∂xsk
a

(xa, ca) since
∂xr

a

∂xk
p

=

{
1 if a ∈ p and r = sk

0 otherwise.

(7)

The second term of equation (6) can also be simplified:

∑

k′ ∈K

∑

p′∈Pk′

hk′
p′ (x)

∂xk′
p′

∂xk
p


∑

a∈p′
ψsk′ (xa, ca)−Dsk′


 = hk

p(x)

(∑
a∈p

ψsk
(xa, ca)−Dsk

)
(8)

Considering the third term of equation (6):

∑

k′ ∈K

∑

p′∈Pk′

xk′
p′h

k′
p′ (x)

∂

∂xk
p


∑

a∈p′
ψsk′ (xa, ca)−Dsk′


 (9)

=
∑

k′ ∈K

∑

p′∈Pk′

xk′
p′h

k′
p′ (x)


∑

a∈p′

∑

s∈S

∂ψsk′

∂xs
a

(xa, ca)
∂xs

a

∂xk
p


 (10)

=
∑

k′ ∈K

∑

p′∈Pk′

xk′
p′h

k′
p′ (x)

∑

a∈p′∩p

∂ψsk′

∂xsk
a

(xa, ca) (11)

The term (11) can now be defined on the arcs:

∑

k′ ∈K

∑

p′∈Pk′

xk′
p′h

k′
p′ (x)

∑

a∈p′∩p

∂ψsk′

∂xsk
a

(xa, ca) =
∑
a∈p

∑

k′ ∈K

∑

p′∈Pk′ |a∈p′
xk′

p′h
k′
p′ (x)

∂ψsk′

∂xsk
a

(xa, ca) (12)

Thus, by considering (7), (8) and (12), the equation (6) can be reformulated:

∂Lc(x, λ)
∂xk

p

=
∑
a∈p


∑

s∈S

∂φs

∂xsk
a

(xa, ca) +
∑

k′ ∈K

∑

p′∈Pk′ |a∈p′
xk′

p′h
k′
p′ (x)

∂ψsk′

∂xsk
a

(xa, ca)




+ hk
p(x)

(∑
a∈p

ψsk
(xa, ca)−Dsk

)

This result is important as it shows that the gradient is made of two components: a pseudo cost
`sa on the arcs and a path-based cost. Both the following methods will use this result to compute
an improving direction.

2.2 Solving (L+
t ) using the flow deviation method

The inner problem (L+
c,t) in the multipliers method consists in minimizing a convex objective

function subject to linear constraints. Thus it can be solved by an adaptation of the Frank-Wolfe
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method to network routing problems: the flow deviation method [10, 5]. At each iteration, a
linearization of the objective function is performed at the current point xt to get an extremal point
xt. Then, the linear combination xt+1 = xt + θ(xt − xt) minimizing the objective function
Lc(x, λt) is computed. The method stops as soon as no sufficient improvement can be obtained.
In the context of classical routing problems, the problem can be separated over the commodities.
Computing the extremal point reduces to the computation of a shortest path for each commodity
and computing the optimal linear combination can be seen as a fair re-routing of some amount of
flow from the old flow xt to the new flow xt. In the context of (QCRP), the computation is a bit
more complex due to the structure of the gradient, as previously seen in Section (2.1).

The computation of the solution minimizing the gradient (4) cannot be reduced to the compu-
tation of a shortest path anymore as the last term of this expression depends on the path. However,
it can still be separated over the commodities. Thus, one has to compute an extreme point (that is,
a path) for each commodity. Let `sa be the arc-based cost and let ckp be the path-based cost in the
gradient.

ckp = hk
p(x)

(∑
a∈p

ψsk
(xa, ca)−Dsk

)
(13)

One can note ckp can only be positive for paths that have already been used in the previous
solutions. Let Hk(x) =

{
p ∈ Pk | hk

p 6= 0
}

be the set containing the active paths violating the
QoS constraints as well as some paths that once were active. Then, for each commodity, the
algorithm works in two steps (see Algorithm 2): first a shortest path p is computed using the first
term `sa as the arc cost. Then the path p∗ ∈ Hk(x) ∪ {p} minimizing the whole expression (4) is
computed.

Algorithm 2 Computation of the improving path in flow deviation
set δ∗ =∞, p∗ = ∅
compute the shortest path using `sa to get p

for all path p ∈ Hk(x) ∪ {p} do
compute δk

p =
∑

a∈A

`sa + ckp

if δk
p < δ∗ then
δ∗ ← δk

p

p∗ ← p
end if

end for

return p∗

In the classical version of the flow deviation method, the first order Taylor approximation is a
lower bound as the probem is convex. Thus, it can be used to define a stopping criterion as the gap
between the lower bound and the current solution (upper bound) is known. This cannot be used in
our context as L(x, λ) is not convex. Another stopping criterion have to be used. Some consider
the norm of the gradient, which is hard to compute here since only the components related to
active paths are known. Moreover Lc is minimized on the set of compatible multiflows, thus the
first order optimality conditions do not reduce to a null gradient. A solution consists in stopping
the algorithm when the improving direction does not improve the current point enough.
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2.3 Solving (L+
t ) using the projected gradient method

Another approach consists in solving the routing problem over a fixed set of paths before adding
new paths in a way similar to the flow deviation iteration. A full optimization of the flows over
the set of active paths is performed before looking for new paths. This approach is similar to the
column generation method in mixed integer linear programming. The new paths to be added are
the shortest paths, with respect to the first deriatives of the objective function. This technique has
been cited by Bertsekas [4] within a projected Newton method and the algorithm is summarized
in Algorithm 3.

Algorithm 3 Column generation algorithm for (QCRP)
// initialization
let x0 be an initial feasible solution
let Pk be the set of active paths for commodity k
set stop = false

repeat
// fixed-dimension optimization
compute the optimal flows over the set ∪k∈KPk

// column generation
compute the shortest paths pk, ∀k ∈ K with respect to the gradient

// stopping criterion
if pk ∈ Pk, ∀k ∈ K then

stop← true
end if

// update the pool
Pk ← Pk ∪ {pk}, ∀k ∈ K

until stop = true

return p∗

The projected gradient will be used in the first step of the loop to compute the optimal flows
over the set of active paths. The method has been proposed by Goldstein in 1964 and relies on a
projection operator P to compute the projection PX (x) of x on a convex set X . At each iteration,
the improving direction at the current point is computed. Then the optimal step on this direction
is computed and the resulting point is projected on X to give the new point. The algorithm stops
when the new point is close enough to the old point.

In the context of (DCRP), X is the convex set of compatible multiflows and the optimal step
is computed by using the generalized Armijo rule proposed by Bertsekas [2].

The column generation step consists in generating improving paths once the optimal flows
have been computed. The procedure is simpler than the computation of the improving path in the
flow deviation method as ckp 6= 0 only if p ∈ Hk(x), due to the nature of the algorithm. Thus
we are looking for new paths such that ckp = 0. It is sufficient to compute a shortest path with
respect to `sa and check if this is a new and improving path. This simplified version is summarized
in Algorithm 4.
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Algorithm 4 Computation of the improving path in column generation
p∗ = ∅
compute the shortest path using `sa to get p

if
∑

a∈p

`sa 6
∑
a∈p

`sk
a + ckp, ∀p ∈ Hk(x) then

p∗ ← p
end if

return p∗

3 Approximating the functions φs and ψs

We propose two ways to compute the load and the delay functions, φs(xa, ca) and ψs(xa, ca).
The first approach (the classical one) is based on an analytical formulation. It assumes strong
hypotheses on the traffic (Poisson traffic, independent flows). Let fa =

∑
s∈S x

s
a be the aggregated

flow on the arc a. Under such hypotheses, the average delay is then φ̃s(xa, ca) = fa

ca−fa
. This

approximation is mostly referred as the Kleinrock’s delay function. By using Little’s theorem, the
load can be obtained from the delay: φ̃s(xa, ca) = xs

aψ̃s(xa, ca). Those functions have interesting
properties: they are C∞, convex and they definie a barrier on the arc capacity. As both φ̃s(xa, ca)
and ψ̃s(xa, ca) are computed on the aggregated flow, they are identical for each class of service
which means that no differenciation of service can be done.

The second approach tries to compute a more realistic approximation with respect to the dif-
ferenciation of service (DiffServ). The QoS is usually expressed in terms of average response
time and / or loss rate. It is difficult to express it analytically in terms of the incoming traffic
characteristics. Thus, it may be particularly interesting to train a feed-forward neural network as
a “black-box” on simulation data for the evaluation of the QoS values. As the delay is monoton-
ically increasing with respect to the incoming traffic rates, inclusion of this prior knowledge into
the training procedure can lead to better generalization. Here, neural networks (multi-level percep-
tron) are trained to approximate φs(xa, ca) and ψs(xa, ca). By construction, these two functions
are derivable. The monotonicity is imposed by a penalty algorithm during the learning procedure
(see [12]). However, convexity can only be assumed.

In the augmented Lagrangean method, traffic flows are only characterized by their bandwidth.
After aggregating these traffic rates per class of service, the neural network will be able to esti-
mate the mean delay for each class since it was trained to approximate the function {xs

a}s∈S →
{ds

a}s∈S , where ds
a is the average delay for the class s on the arc a.

4 Numerical results

We consider several randomly generated planar network instances, whose size ranges from 10
nodes, 20 edges and 40 commodities to 30 nodes, 78 edges and 180 commodities. The program
has been coded in C and compiled with gcc version 3.3.2 on a Pentium 4 computer with 4Gb
memory running linux 2.6.6.

Table 1 displays the results for all the instances and for the analytical delay and load approxi-
mations (by using Kleinrock’s function). For each instance, five strategies are compared. The first
two strategies, “FD” and “FDh”, correspond to the flow deviation algorithm running on (QCRP)
without the QoS constraints. “FDh” uses some path removal procedures as explained in [9]. The
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last three strategies, “AL+FD”, “AL+FDh”, and “AL+PG”, consists in solving (QRCP) using the
augmented Lagrangean method described in Section 2. The subproblem is solved by respec-
tively the classical flow deviation, the flow deviation with path removal and the projected gradient
method. For each strategy, the value of the optimal solution Φ∗ = Φ(x∗), the maximal violation
||g||∞ of the solution over all the paths, the number nvio of active paths violating QoS constraints
over the active paths ntot, and the CPU time in seconds are reported. The maximal violation is
computed as follows: ||g||∞ = maxp∈Pk,k∈Kmax

{
0, gk

p(x∗)
}

, where gk
p(x∗) denotes the QoS

constraint on the path p for the demand k (cf. the constraints (4) in (QCRP)). In the objective
function, the analytical approximation function φ̃s is kept in all cases for two reasons: first, this
evaluation function is not critical because it only gives a direction for the optimization, and also
because it is a barrier function for the capacity on the arcs, which simplifies sub-problems.

instance strategy Φ∗ ||g||∞ nvio/ntot cpu (s)

T 10 20 FD 27.780763 1.266620× 10−1 13 / 48 44

FDh 27.780651 1.260117× 10−1 12 / 46 12

AL+FD 30.307937 4.733780× 10−5 9 / 48 20228

AL+FDh 28.215005 9.886708× 10−7 4 / 48 477

AL+PG 29.214939 0. 0 / 37 131

T 10 60 FD 60.211874 3.386479× 10−1 4 / 105 23

FDh 60.211124 3.406511× 10−1 2 / 101 13

AL+FD 61.975698 1.664052× 10−5 3 / 165 2841

AL+FDh 61.733936 1.488083× 10−8 1 / 240 50851

AL+PG 60.460260 0. 0 / 99 1

T 20 40 FD 46.993231 2.243466× 10−1 25 / 152 72

FDh 46.993028 2.237437× 10−1 25 / 150 45

AL+FD 48.402162 1.055846× 10−6 3 / 305 10796

AL+FDh 48.299828 8.354941× 10−7 4 / 273 2069

AL+PG 47.494344 0. 0 / 107 81

T 20 120 FD 92.888822 1.461434× 10−1 14 / 349 198

FDh 92.888238 1.454175× 10−1 15 / 358 159

AL+FD 95.899077 1.599609× 10−6 9 / 638 8184

AL+FDh 93.326225 3.660244× 10−7 1 / 409 7692

AL+PG 92.929370 0. 0 / 303 24

T 30 180 FD 164.440426 5.961343× 10−3 28 / 1022 718

FDh 164.437816 4.764601× 10−3 29 / 1034 562

AL+FD 164.437284 0. 0 / 973 31270

AL+FDh 164.437470 9.992447× 10−7 3 / 982 2539

AL+PG 164.437230 0. 0 / 939 109

Table 1: results for the analytical approximation.

As can be seen, taking the QoS into account (strategy AL) consumes a lot more time as it
calls iteratively the FD algorithm. The difference can be really high, as for the instance T 10 60.
However, the computed solutions using the AL strategy produce a very limited violation on the
QoS, and for only few paths. In general, the number of paths carrying the traffic is higher since
AL tries to use more paths to reduce the delay on each path. This has an impact on the value of the
objective function. Values computed by FD and FDh are lower because QoS constraints are not
taken into account. For the instance T 30 180, the FD strategy behaves rather poorly and stops
too early. Thus, in that case, the AL strategy produces a better solution.

Table 2 displays a comparison between the analytical (KL) approximation and the neural
network (NN) approximation (column “approx.”). For the neural network, two traffic scenarios
(Poissonian sources and OnOff sources, which better approximate the nature of the traffic) are
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considered. As the neural network consumes a lot of time, the experiments have only been done
on a small instance (10 nodes, 22 edges and 40 commodities). In order to measure the impact of
the global congestion, several throughputs (τ = 0.9, 1.0 and 1.1) have been tested. Each through-
put τ is a common multiplying factor for all the demands. Thus, the bandwidth demands are
both equally and globally increased. For each throughput and each approximation, three strategies
haves been considered: the flow deviation with path reduction and without the QoS constraints
(“FDh”), the augmented Lagrangean with either the FDh approach (“AL+FDh”) or the projected
gradient (“AL+PG”).

τ approx. strategy Φ∗ ||g||∞ nvio/ntot cpu (s)

0.9 KL FDh 18.190555 3.76× 10−3 2 / 42 12

AL+FDh 18.190524 0. 0 / 39 640

AL+PG 18.190524 0. 0 / 38 0.02

Poisson FDh 18.190555 1.67× 10−3 1 / 42 13

AL+FDh 18.190524 0. 0 / 39 5358

AL+PG 18.190524 0. 0 / 38 0.2

OnOff FDh 18.190555 1.90× 10−3 2 / 42 13

AL+FDh 18.190524 0. 0 / 39 6461

AL+PG 18.190524 0. 0 / 38 0.2

1.0 KL FDh 22.455972 2.02× 10−2 7 / 45 16

AL+FDh 22.483721 0. 0 / 43 3320

AL+PG 22.483877 1.48× 10−7 1 / 36 0.7

Poisson FDh 22.455972 1.04× 10−2 4 / 45 17

AL+FDh 22.456047 0. 0 / 40 13312

AL+PG 22.456090 0. 0 / 38 4

OnOff FDh 22.455972 2.25× 10−1 5 / 45 17

AL+FDh 22.730098 8.08× 10−8 1 / 61 6575

AL+PG 22.475819 0. 0 / 40 41

1.1 KL FDh 27.780724 8.28× 10−2 8 / 46 14

AL+FDh 28.384249 1.71× 10−5 3 / 69 15051

AL+PG 28.029748 0. 0 / 37 84

Poisson FDh 27.780724 9.22× 10−2 5 / 46 16

AL+FDh 28.384249 9.00× 10−9 2 / 69 10526

AL+PG 27.803175 2.62× 10−6 2 / 45 41

OnOff FDh 27.780724 1.38 8 / 46 16

AL+FDh Failed

AL+PG 28.218878 4.67× 10−7 1 / 40 288

Table 2: results for both Kleinrock and NN approximations.

First, we can observe that the AL+FDh approach converges towards a feasible solution or a
quasi-feasible solution. As the value ||g||∞ remains small, output from the algorithm can be used
after a cleaning step. This holds for all values of τ . The FDh approach does not take the QoS
constraints into account. Therefore, the QoS model cannot have any impact on the behavior of this
method. This explains why, for any given value of τ , the optimal value of FDh remains the same
whatever the approximation. For the same reason, the number of violated QoS constraints nvio

if higher than for AL. This number increases with higher congestion (higher throughput), along
with the number of active paths (which is a classical result). About the AL approach, it can be
noted that the impact of the delay model on the solution increases as the overall traffic load (i.e.
the throughput τ ) increases. For moderate values of τ , AL gives solutions with fewer active paths.
However this situation becomes different when the network comes close to saturation (to the QoS
contraint point of view). At this point, it is difficult to keep a small number of active paths and
the solution must use a lot more paths (i.e. τ = 1.0 with OnOff neural approximation of delay).
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The last line of the table should indicate that the problem has become infeasible with respect to
the OnOff QoS constraint. It still remains feasible with less accurate QoS approximations, namely
Kleinrock and neural approximation with Poissonian traffic.

Overall, these experiments are useful in proving that the way QoS is approximated has a strong
impact on the routing solution computed. According to the QoS approximation used, the routes
that are obtained can differ significantly. It is worth mentioning that the higher the overall demand,
the better balanced the load throughout the network. Moreover, the numerical results show that the
neural network approach provides reliable estimates of the delay and it can be successfully applied
on a simple context. It shows promises for QoS-based traffic control, routing and congestion
avoidance in multiservice telecommunication networks.

Conclusion

The (QRCP) corresponds to the integration of QoS constraints, namely the end-to-end delay con-
straints, into routing problems. Such constraints are hard to take into accound as they rely on path
rather than on arcs. We have proposed an augmented Lagrangean method to solve the nonlinear
problem. This approach involves the computation of an optimal solution to a routing problem
with convex costs. Two algorithm have been proposed: a flow deviation approach and a projected
gradient approach. The numerical results show that the later approach is a lot more efficient in
many aspects (CPU time, quality of the solution, number of active paths in the solution). It allows
telecom instances of realistic size to be solved in a reasonnable amount of time. Two functions
have been tested to model the delay: the analytical M/M/1 approximation and a neural network.
The neural network provides a better approximation as it is able to take the differenciation of ser-
vice (DiffServ) into account. It has been trained on two traffic scenarios (Poisson and OnOff).
The numerical results show that the overhead when using a neural network instead of an analytical
function can be significant. The solutions produced can also differ significantly since the neural
network provides a more realistic approximation.

As the augmented Lagrangean method cannot guaranty the optimality of the solution, an exact
method still remain to be developped, even if the gaps produced here are small. Another approach
could be to embed the augmented Lagrangean into a multistart procedure to try to reach the optimal
solution. Other lines of work would be to deal with the minimization of the maximal congestion
and consider end-to-end delay and loss rate constraints.
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