
HAL Id: hal-00678361
https://hal.science/hal-00678361v1

Submitted on 12 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerating convergence of a Separable Augmented
Lagrangian Algorithm

Arnaud Lenoir, Philippe Mahey

To cite this version:
Arnaud Lenoir, Philippe Mahey. Accelerating convergence of a Separable Augmented Lagrangian
Algorithm. 2007. �hal-00678361�

https://hal.science/hal-00678361v1
https://hal.archives-ouvertes.fr

Accelerating convergence of a Separable
Augmented Lagrangian Algorithm

Arnaud Lenoir Philippe Mahey

Research Report LIMOS/RR-07-14

22nd October 2007

Abstract

We analyze the numerical behaviour of a separable Augmented Lagrangian al-
gorithm with multiple scaling parameters, different parameters associated with
each dualized coupling constraint as well as with each subproblem. We show
that an optimal superlinear rate of convergence can be theoretically attained in
the twice differentiable case and propose an adaptive scaling strategy with the
same ideal convergence properties. Numerical tests performed on quadratic pro-
grams confirm that Adaptive Global Scaling subsumes former scaling strategies
with one or many parameters.

Keywords: Augmented Lagrangian, Decomposition

Résumé

Nous analysons ici le comportement numérique d’un algorithme de Lagran-
gien augmenté séparable avec plusieurs paramètres de mise à l’échelle : un par
contrainte couplante dualisée et par sous-problème. Nous montrons qu’un taux
de convergence superlinéaire peut être obtenu en théorie dans le cas deux fois
différentiable et nous proposons une stratégie de mise à jour auto-adaptive des
paramètres, qui conserve les propriétes de convergence. Des test numériques ef-
fectués sur des programmes quadratiques confirment l’amélioration apportée par
rapport à d’autres stratégies de mise à l’echelle avec un ou plusieurs paramètres.

Mots clés : Lagrangien augmenté, Décomposition

1

Introduction

This work is motivated by the need to improve the performance of SALA, a
separable Augmented Lagrangian algorithm proposed by Hamdi et al [HMD97]
for solving large-scale decomposable optimization problems.

(SALA) is an extension of the Proximal Decomposition method (see [MOD95])
and belongs to the family of splitting algorithms like the double-backward
method of Douglas and Rachford and the Alternate Direction Method of Mul-
tipiers (see [Fuk92, Eck89]). It is shown in [MOD95] that the Proximal Decom-
position leads to a separable regularization of the dual function which induces
in the primal space some block-coordinate Augmented Lagrangian functions.
A parameter can naturally be associated with the quadratic terms of the Aug-
mented Lagrangian (denoted hereafter by the scaling parameter λ > 0). The
algorithm was shown to be very sensitive to the value of that parameter, turning
difficult in practical situations to obtain the best convergence rate.

Furthermore, it was shown in [MDBH00] that, while λ penalizes the primal
coupling constraints and greater values will accelerate the primal sequence, λ−1

penalizes the dual sequence, so that a compromise value is expected to be opti-
mal. This is the reason why the parameter is no more a penalty parameter like
in the classical Augmented Lagrangian method, but a scaling parameter.

A first bound on the rate of convergence of the Douglas-Rachford’s algo-
rithm for finding a zero of the sum of two maximal monotone operators was
given early by Lions and Mercier [LM79]. This bound was derived too in the
scaled version of the Proximal Decomposition method by Mahey et al [MOD95]
and then improved when the optimal situation was known to correspond to a
compromise between accelerating the primal or the dual sequences [MDBH00].
Complementary results on the theoretical convergence rate of that family of al-
gorithms have been also reported by Luque [Luq84]. In his PhD thesis [Eck89],
Eckstein has reported many numerical experimentations on the Alternate Di-
rection Method of Multipliers, exhibiting the characteristic spiralling effect on
the primal-dual iterates. Multidimensional scaling was analyzed by Dussault et
al [DGM03] but the first experiments in the quadratic case have induced the
belief that the convergence rate could not be better than 1/2.

We are interested here in the numerical behaviour of SALA with a new
scaling strategy, quoted as the ’Global Scaling’, with respect to any coupling
constraints as well as to any subproblem. Moreover, practical implementation
issues like the iterative adjustment of the scaling parameters are also discussed
in order to build a general decomposition algorithm with global scaling.

After introducing SALA and its scaled version with multidimensional scaling,
we propose in section 2 a global scaling strategy with different parameters in
each subproblems. That strategy, sometimes called ’block-scaling’, appeared in
former works by Eckstein [Eck94, EF90] or Kontogiorgis and Meyer [KM95], but
it has not been formally analyzed from a computational point of view. In order
to analyze its convergence properties, we use the formal setting of maximal
monotone operators leading to a new version of the Proximal Decomposition
method with Global Scaling in section 3. The asymptotic behaviour of the

2

differentiable case shows that superlinear convergence could be attained at least
in theory, thus improving the bound of 1/2 observed in the case of a single
parameter. The optimal rate is derived from the gradient of the monotone
operator, i.e. from the Hessian matrix when dealing with optimization problems.

An adaptive scaling is introduced in section 7 to accelerate the convergence
in the general case. Numerical results described in the last section compare
the different updating rules on quadratic minimization problems with linear
coupling constraints.

1 Convex equality-constrained separable prob-

lems

We are interested in solving the following convex program defined on the product
space X = X1 × . . .×Xp, (Xi = R

ni).

Minimize

p
∑

i=1

fi(xi)

∀i, xi ∈ Xi

p
∑

i=1

gi(xi) = 0

(P1)

where fi are extended real valued convex functions supposed to be proper
and lower-semi-continuous (l.s.c) and gi are affine:

gi : xi 7→ gi(xi) = Gixi − bi (1)

Algorithm SALA tackles solving this problem via a decomposition -coordination
scheme which involves subproblems with local augmented lagrangian functions
to be minimized. Before introducing the method, we first reformulate (P1) with
the help of the following subspace of R

mp:

A =

y =

y1

...
yp

 ∈ (Rm)p/

p
∑

i=1

yi = 0

(2)

referenced to as the coupling subspace. If we allocate resource vectors to each
term of the coupling constraint yi = gi(xi), or in a shortened way:

y =

y1

...
yp

 =

g1(x1)
...

gp(xp)

 = g(x)

we get an embedded formulation of (P1) with a distributed coupling:

Minimize

p
∑

i=1

fi(xi)

∀i = 1, . . . , p y = g(x)
y ∈ A

(P2)

3

2 SALA : A Separable Augmented Lagrangian

Algorithm

The augmented Lagrangian function (of parameter λ > 0) obtained by associ-
ating multipliers ui to allocation constraints yi = gi(xi) is:

Lλ(x, y; u) = f(x)− 〈u, g(x)− y〉+ λ

2
‖g(x)− y‖2 (3)

where f(x) denotes
∑p

i=1 fi(xi). It decomposes into the sum:

Lλ(x, y; u) =

p
∑

i=1

Lλ,i(xi, yi; ui) (4)

with:

Lλ,i(xi, yi; ui) = fi(xi)− 〈ui, gi(xi)− yi〉+
λ

2
‖gi(xi)− yi‖2 (5)

Hypotheses on f and g ensures the existence of a saddle point of Lλ. (référence)
Consequently (P2) can be solved through the maxi-minimization of Lλ. The
classical method of multipliers finds such a saddle-point by alternating:

• the exact minimization of (x, y) 7→ Lλ(x, y, uk) over X×A giving (xk+1, yk+1)

• the multipliers update : uk+1 = uk − λ(g(xk+1)− yk+1)

This method is known not to take profit from the decomposable structure of
the problem. So as to exploit the separability of (P2), algorithm SALA (algo-
rithm 1) minimizes successively over x and y in a Gauss-Seidel fashion. The
minimization in x then decomposes into the p independent subproblems:

min
xi∈Xi

Lλ,i(xi, y
k
i ; uk

i) (SPi)

which can be solved in parallel. Suppose now that uk is in A⊥ for all k (this
fact that will be verified later), the dot product

〈
uk, y

〉
is hence null for any

y ∈ A and consequently the minimization with respect to y reduces to find the
closest vector yk+1 in A to g(xk+1) i-e the projection :

yk+1 = ΠAg(xk+1) (6)

with ΠA, ΠA⊥ denoting the projections on A and on A⊥. Since the optimal-
ity conditions for (P2) states u ∈ A⊥, the final stage consists in a projected
subgradient step:

uk+1 = uk + λΠA⊥g(xk+1) (7)

where the step length λ is the parameter we used in definition (3). The pro-
jection of g(xk+1) on A is equivalent to compute the amount of the coupling
constraint violation:

rk+1 =

p
∑

i=1

gi(x
k+1
i) (8)

4

and then to equitably distribute it among the subproblems. The components of
the projected vector are then:

yk+1
i = gi(x

k+1
i)− 1

p
rk+1 (9)

Observe that if we choose yk=0 and uk=0 in their mutually orthogonal feasi-
bility subspaces A and A⊥ (we can take yk=0 = uk=0 = 0 for instance), then the
updating formula (7), (8), (9) will provide sequences

{
yk
}

k
and

{
uk
}

k
staying

respectively in A and A⊥. The latter subspace has the explicit formulation:

A⊥ =

u =

u1

...
up

 ∈ (Rm)p/u1 = . . . = up ∈ R

m

(10)

We can interpret the fact that we compel uk to stay in A⊥ as the wish to
obtain the same utility of the shared resource in each of the subproblems. At
every iteration k, the knowledge of uk reduces to the knowledge of its common
component value vk = uk

1 = · · · = uk
p in (10) so the update step becomes:

vk+1 = vk − λ

p
rk+1 (11)

Algorithm 1 SALA : a Separable Augmented Lagrangian Algorithm

Require: λ > 0, ǫ > 0, yk=0 ∈ A, vk=0 ∈ R
m

1: repeat
2: for all i = 1, . . . , p do

3: xk+1
i :∈ argminxi

fi(xi) + λ
2

∥
∥gi(xi)− yk

i

∥
∥

2 −
〈
vk, gi(xi)

〉

4: end for
5: rk+1 ←∑p

i=1 gi(x
k+1
i)

6: for all i = 1, . . . , p do
7: yk+1

i ← gi(x
k+1
i)− 1

p
rk+1

8: end for
9: vk+1 ← vk − λ

p
rk+1

10: k ← k + 1
11: until

∥
∥g(xk+1)− yk

∥
∥ < ǫ

2.1 Choosing λ

SALA can be derived from the Douglas-Rachford splitting scheme for the sum
of two monotone operators [LM79]. In many numerical tests performed on
algorithms deriving from this method ([Eck89], [EB90], [Kon94], [MDBH00],
[MOD95], [RW91], [SR03]), the performance was observed to heavily depend
on the choice of λ. This parameter actually behaves like a scaling parameter
between primal and dual sequences, governing the behavior of the algorithm. A

5

too small (respectively too huge) value of λ will make the sequence too conserva-
tive with respect to primal (respectively to dual) information from one iteration
to other. In both cases, the resulting algorithm will turn out to be slow. Thus,
parameter λ must be tuned so as to balance the progress of primal and dual
sequences.

2.2 SALA with multidimensionnal scaling

A multi-dimensionnal scaling version of SALA is presented in [DGM03]. It
consists in setting λ = 1 and to multiply the coupling constraint by an invertible
scaling matrix M . We thus deal with the equivalent problem:

Minimize

p
∑

i=1

fi(xi)

∀i = 1, . . . , p zi = Mgi(xi)
z ∈ A

(P3)

This modifies steps 3, 7, 9 of algorithm 1, giving algorithm 2.

Algorithm 2 SALAMS: SALA with Multidimensional Scaling

Require: M, ǫ > 0, yk=0 ∈ A, vk=0 ∈ R
m

1: repeat
2: for all i = 1, . . . , p do

3: xk+1
i :∈ argminxi

fi(xi) + 1
2

∥
∥Mgi(xi)− zk

i

∥
∥

2 −
〈
vk, Mgi(xi)

〉

4: end for
5: rk+1 ←∑p

i=1 gi(x
k+1
i)

6: for all i = 1, . . . , p do

7: zk+1
i ←M

(

gi(x
k+1
i)− 1

p
rk+1

)

8: end for
9: vk+1 ← vk − 1

p
rk+1

10: k ← k + 1
11: until ∀i = 1, . . . , n

∥
∥Mgi(x

k+1
i)− zk

i

∥
∥ < ǫ

The use of a matrix M provides more freedom for primal-dual balancing.
However, this scaling must be the same in every subproblems. In the next
section, we present an extension of this scaling technique to allow the parameter
to be different in each subproblem.

3 Global scaling of SALA

3.1 Scaled allocations

Instead of allocating yi = Mgi(xi) with a common matrix M for all subproblems
in (P3), we can introduce matrices Mi different from each other for every i. We

6

thus use scaled allocations zi = Migi(xi) or z = Mg(x) with M denoting the
invertible bloc diagonal scaling matrix:

M =

M1

. . .

Mp

 (12)

To override the effect of this scaling, the concatenated scaled allocation vector
z has now to live in a subspace depending on M :

AM =

z =

z1

...
zp

 ∈ (Rm)p/

p
∑

i=1

M−1
i zi = 0

(13)

and we get a new equivalent formulation of (P1):

Minimize

p
∑

i=1

fi(xi)

∀i = 1, . . . , p zi = Migi(xi)
z ∈ AM

(P4)

Following the same approach as in SALAMS, we can write the augmented
lagrangian function (of parameter λ = 1) obtained by associating a multiplier
w to the scaled allocation constraint z = Mg(x):

LM (x, z; w) = f(x)− 〈w, Mg(x)− z〉+ 1

2
‖Mg(x)− z‖2 (14)

which also decomposes into a sum:

LM (x, z; w) =

p
∑

i=1

Li,Mi
(xi, zi; wi) (15)

with:

Li,Mi
(xi, zi; wi) = fi(xi)− 〈wi, Migi(xi)− zi〉+

1

2
‖Migi(xi)− zi‖2 (16)

3.2 Algorithm

Applying the same Gauss-Seidel technique as in SALA and SALAMS, we ob-
tain algorithm 3. The minimisation in x still consists in solving independant
subproblems:

min
xi

Li,Mi
(xi, z

k
i ; wk

i) (SP ′
i)

The minimization with respect to z will reduce to the projection :

zk+1 = ΠAM
Mg(xk+1) (17)

7

and the multiplier update will be:

wk+1 = wk + ΠA⊥

M

Mg(xk+1) (18)

To project onto AM we use the fact that AM = ker(N) and A⊥
M = Im(N⊤)

with:
N =

(
M−1

1 | . . . |M−1
p

)

Consequently, the projectors onto AM and A⊥
M respectively are:

ΠAM
= I −N⊤(NN⊤)−1N (19)

ΠA⊥

M

= N⊤(NN⊤)−1N (20)

The inner matrix (N⊤N)−1 is given by (
∑p

i=1 M−1
i M−⊤

i)−1 so we can compute
the projection v of a vector ṽ by the following procedure:

r =

p
∑

i=1

M−1
i ṽi (21a)

∀i vi = M−T
i (

p
∑

i′=1

M−1
i′ M−⊤

i′)−1r (21b)

Finally, if v is the projection of ṽ onto A⊥
M then (v − ṽ) is the projection onto

AM .

Algorithm 3 SALAGS : SALA with Global Scaling

Require: Mi invertible i = 1, . . . , p; ǫ > 0; z0 ∈ AM ; w0 ∈ A⊥
M

1: repeat
2: for all i ∈ {1, . . . , p} do

3: xk+1
i :∈ argminxi

fi(xi)− 〈wi, Migi(xi)− zi〉+ 1
2 ‖Migi(xi)− zi‖2

4: end for
5: rk+1 ←∑

i gi(x
k+1
i)

6: for all i ∈ {1, . . . , p} do
7: sk+1

i ←M−⊤
i (

∑p
i′=1 M−1

i′ M−⊤
i′)−1rk+1

8: zk+1
i ←Migi(x

k+1
i)− sk+1

i

9: wk+1
i ← wk

i + sk+1
i

10: end for
11: k ← k + 1
12: until ‖Mg(x)− z‖ < ǫ

The main difference between SALAGS and SALAMS (or SALA) is that the
orthogonal subspace where the optimal multipliers live is

A⊥
M =

w =

w1

...
wp

 ∈ (Rm)p/M⊤

1 w1 = . . . = M⊤
p wp

(22)

8

and consequently, each component of vector w will be different from each other.
However, we have not to store all of the wi but only v = M⊤

1 w1 = . . . = M⊤
p wp.

We thus operate the change of variable u = M⊤w ∈ A⊥ and just work with the
common component v as before. In the same spirit, we can also set y = M−1z so
as to work with the real allocations i-e vectors corresponding directly to gi(xi)
instead of Migi(xi). This notably simplifies the algorithmic procedure. Letting
Λi = M⊤

i Mi, we then obtain algorithm 4. Note that since Mi is invertible, Λi

must now be chosen symetric positive definite.

Algorithm 4 SALAGS : SALA with Global Scaling (reformulation)

Require: Λi; i = 1, . . . , p; ǫ > 0; y0 ∈ A; v0 ∈ R
m

1: repeat
2: for all i ∈ {1, . . . , p} do

3: xk+1
i :∈ argminxi

fi(xi) +
∥
∥gi(xi)− yk

i

∥
∥

2

Λi

−
〈
vk, gi(xi)

〉

4: end for
5: rk+1 ←∑

i gi(x
k+1
i)

6: for all i ∈ {1, . . . , p} do
7: yk+1

i ← gi(x
k+1
i)− Λ−1

i (
∑p

i′=1 Λ−1
i′)rk+1

8: end for
9: vk+1 ← vk − (

∑p
i′=1 Λ−1

i′)rk+1

10: k ← k + 1

11: until
∥
∥gi(x

k+1
i)− yk

i

∥
∥

2

Λi

< ǫ

Obviously, SALAGS generalizes SALA and SALAMS in the sense they re-
spectively are obtained by the choices Λ = λI and:

Λ =

M
⊤

M
. . .

M
⊤

M

4 Study of a quadratic case

We analyze in this section the very special case of the quadratic programming
version of (P1) when Gi are square and invertible and fi are quadratic functions
xi 7→ 1

2xi
⊤Qixi+qi

⊤xi where Qi are ni×ni symmetric positive-definite matrices,
qi ∈ R

ni :

Minimize

p
∑

i=1

1

2
xi

⊤Qixi + qi
⊤xi (23a)

p
∑

i=1

Gixi =

p
∑

i=1

bi (23b)

9

In this case, the convergence is linear and we theoretically always are able
to obtain the convergence rate of 1

2 .
We denote by Q and q the bloc-diagonal matrix and the vector:

Q =

Q1

. . .

Qp

 , q =

q1

...
qp

so that the objective function becomes:

x 7→ 1

2
x⊤Qx + q⊤x

4.1 Direct analysis of the iteration matrix

For this problem, one iteration of SALAGS reduces to applying an affine map-
ping IM the spectral radius of which determines the asymptotic rate of conver-
gence of the algorithm. We derive an upper bound for this rate by decomposing
IM into a product of three matrices.

Subproblems in step 3 of algorithm 3 take the form:

xk+1 :∈ argmin
x

1

2
〈x, Qx〉+ 〈q, x〉

−
〈
wk, M(Gx− b)− zk

〉
+

1

2

∥
∥M(Gx− b)− zk

∥
∥

2

the solution of which is:

xk+1 = (Q + G⊤M⊤MG)−1
[
G⊤M⊤(wk + zk + Mb)− q

]

The corresponding optimal resource consumption is:

z̃k+1 = M(Gxk+1 − b)

We can rewrite it with respect to wk and zk:

z̃k+1 = RM (wk + zk) + K (24)

with RM = MG(Q + G⊤M⊤MG)−1G⊤M⊤ and K is a constant depending on
the problem data. To simplify notations, we set:

T = G−⊤QG−1

we then have:
RM = (I + M−⊤TM−1)−1

We now introduce the cost sensitivity:

w̃k+1 = wk + zk − z̃k+1 (25)

10

Indeed, vector w̃k+1 is such that:

G⊤M⊤w̃k+1 = Qxk+1 + q (26a)

= ∇(
1

2
〈x, Qx〉+ 〈q, x〉)(xk+1) (26b)

We remark that:

zk+1 = ΠAM
z̃k+1 (27a)

wk+1 = ΠA⊥

M

w̃k+1. (27b)

Moreover, from (24) and (25), we have:

w̃k+1 = (I −RM)(wk + zk)−K (28)

We now are able to combine (24),(27),(28) to formulate the recursive formula
giving (z̃k+1, w̃k+1) from (z̃k, w̃k):

(
z̃k+1

w̃k+1

)

= IM

(
z̃k

w̃k

)

+

(
Kw

Kz

)

where IM is given by:

IM =

(
RM 0
0 (I −RM)

)

︸ ︷︷ ︸

SM

(
I I
I I

)

︸ ︷︷ ︸

Σ

(
ΠAM

0
0 ΠA⊥

M

)

︸ ︷︷ ︸

Π

(29)

and Kw and Kz are constant vectors depending on the problem data. The
matrix RM is bloc diagonal:

RM =

RM,1

. . .

RM,p

 =

(I + M−⊤
1 T1M

−1
1)−1

. . .

(I + M−⊤
p TpM

−1
p)−1

Each of the three matrices in the product (29) correspond to one stage in
the algorithm:

• Π operates the projection on AM ×A⊥
M

• Σ computes the subproblems input by adding primal and dual variables

• SM is the linear part of the application which solves subproblems

The asymptotic convergence rate of the algorithm is equal to the spectral
radius ρ(IM) of IM . So, if we want to accelerate the convergence, we might
choose M as a minimizer of this spectral radius. We can derive from relation
(29) the upper bound:

ρ(IM) ≤ ρ(SM) ρ(Σ.Π)
︸ ︷︷ ︸

=1

≤ ρ(SM) (30)

11

that we should minimize with respect to M .
Let remind that SM is the bloc-diagonal matrix:

SM =

(RM,1)
. . .

(RM,p)
(I −RM,1)

. . .

(I −RM,p)

with
RM,i = (I + M−⊤

i GiQ
−1
i G⊤

i M−1
i)−1 ∀i = 1, . . . , p

The trace of SM , is equal to 1 whatever M . Moreover, if µ is an eigenvalue
of SM and (sz, sw) an associated eigenvector, then (1− µ) is also an eigenvalue
associated to (sw, sz). The minimization of the spectral radius will then consist
in a compromise between minimizing eigenvalues of RM and the ones of (I −
RM).

The better situation will occur when sp (RM) = {0.5} (in this case, we
will also have sp (I −RM) = {0.5}) furnishing the optimal value ρ(SM) =
max(ρ(RM), ρ(I − RM)) = 0.5. As soon as one eigenvalue becomes lower than
0.5, another one will necessary become greater than 0.5, increasing the spectral
radius of SM .

This ”optimal” case only happens when sp
(
M−⊤TM−1

)
= {1}. Under our

study hypotheses T is symetric positive definite, so it admits a square root T
1

2 .
If we choose M = T

1

2 i-e Λ = T , we obtain sp
(
M−⊤TM−1

)
= sp (I) = {1}

5 A more general setting : PDM

Problem (P2) can be embedded in a more general class of monotone inclusion
problems. Algorithm SALA then appears as a by-product of a more general
algorithm ([MOD95]) namely the proximal decomposition method (PDM). We
first present the class of problems in question (31) and the way to transform
(P2) in (31). Then we remind algorithm PDM and we give a bound on the
asymptotic convergence rate in the differentiable case.

5.1 Finding an orthogonal primal-dual couple in the graph

of a maximal monotone operator

Let H be an Hilbert space, of norm and inner product denoted by ‖.‖ and 〈., .〉.
A multivalued operator T : H⇉ H is monotone if:

∀y, y′ ∈ H, ∀u ∈ T (y), ∀u′ ∈ T (y′) 〈y − y′, u− u′〉 ≥ 0

12

Let A be a closed subspace of H. We consider the problem of finding a couple
(y, u) such that

y ∈ A (31a)

u ∈ A⊥ (31b)

u ∈ T (y) (31c)

These conditions arise as optimality condition of optimization and varia-
tionnal inequalities problems when the primal variable is constrained to live in
A.

We associate to T the following couple of operators:

P = (I + T)−1

Q = (I + T−1)−1

Both P and Q are monotone and firmly non-expansive, hence single-valued.
Moreover, the application:

H → H×H
s 7→ (P (s), Q(s))

is one-to-one from H to gr(T). These operators also have the property that
P + Q = I and N = 2P − I = I − 2Q = P −Q is non-expansive (i-e Lipschitz
with modulus 1).

5.2 Writing problem (P2) as a monotone inclusion prob-

lem

Let now transform problem (P2) under the form of inclusion problem (31), we
can define the convex implicit function F which gives the optimal cost for a
given resource allocation y:

F (y) = min
x

f(x) s.t g(x) = y (32)

The original problem (P1) is now equivalent to minimize F over the coupling
subspace A defined by (2) i-e :

Minimize F (y) (33a)

s.t y ∈ A (33b)

still equivalent to find (y, u) such that:

(y, u) ∈ gr(∂F) (34a)

(y, u) ∈ A×A⊥ (34b)

where gr(∂F) refers to the graph of the maximal monotone operator ∂F . Now,
if F is proper l.s.c, (it is true for instance when dom(f) is bounded or when
f is coercive ([Roc70], theorem 9.2)) then ∂F is maximal monotone ([Roc70],
corolary 31.5.2).

13

5.3 Algorithm

The proximal decomposition method aims at solving (31) by applying the fol-
lowing scheme:

1. Choose arbitrarly s0 ∈ H

2. Compute (ỹk+1, ũk+1) = (P (sk), Q(sk))

3. Compute (yk+1, uk+1) = (ΠA(ỹk), ΠA⊥(ũk))

4. Set sk+1 = yk+1 + uk+1 and go to 2

The operator ΠAP + ΠA⊥Q which maps sk to sk+1 is firmly non-expansive of
full domain ([MOD95]). Consequently sk weakly converges to a solution s∗ of
(31) for any starting value s0.

If we apply this algorithm to T and A as defined in subsection 5.2, we then
obtain algorithm SALA.

Remark 5.1. We also could have defined:

F̃ (x, y) =

{

f(x), if g(x) = y

+∞, else.
(35)

The problem then results in minimizing F̃ over R
n ×A the orthogonal of which

is {0Rn} × A⊥. We obtain an additional proximal term in variable x like in
[Eck94].

5.4 Convergence rate in the differentiable case

We suppose that T is differentiable at y ∈ H i-e T (y) is a singleton and there
is a linear continuous transformation ∇T (y) such that:

T (y) ⊂ T (y) +∇T (y)(y − y) + o(‖y − y‖)B

Let the algorithm converge to s∗ = y∗+u∗. If T is differentiable at y∗. Then
P and Q are also differentiable and:

∇P (s∗) = (I +∇T (y∗))−1

∇Q(s∗) = I − (I +∇T (y∗))−1

∇(P −Q)(s∗) = 2(I +∇T (y∗))−1 − I

Using the fact that 2P − I = I − 2Q = P −Q we rewrite:

ΠAP + ΠA⊥Q =
1

2
I +

1

2
(ΠA −ΠA⊥)(P −Q)

=
1

2
I +

1

2
RA(P −Q)

14

where RA = ΠA −ΠA⊥ is the reflection through space A. so:

sk+1 =
1

2
sk +

1

2
RA(P −Q)sk (36)

Now, as s∗ is a fixed point of this operator, we can write:

sk+1 − s∗ =
1

2
(sk − s∗) +

1

2
RA(P −Q)sk − 1

2
RA(P −Q)s∗

=
1

2
(sk − s∗) +

1

2
RA

(
(P −Q)sk − (P −Q)s∗

)

Using the fact that (P −Q) is differentiable at s∗, we have:

(P −Q)sk − (P −Q)s∗ ∈ ∇(P −Q)(s∗)(sk − s∗) + o(
∥
∥sk − s∗

∥
∥)B

Denoting ek = sk − s∗, we obtain:

ek+1 ∈ 1

2
ek +

1

2
RA∇(P −Q)(s∗)ek + o(

∥
∥ek
∥
∥)B

∥
∥ek+1

∥
∥ ≤ 1

2
‖(I + RA∇(P −Q)(s∗))‖

∥
∥ek
∥
∥+ o(

∥
∥ek
∥
∥)

Finally when sk → s∗,

lim
k→∞

sup

∥
∥ek+1

∥
∥

‖ek‖ ≤
1

2
‖(I + RA∇(P −Q)(s∗))‖ (37)

By formula∇(P−Q)(s∗) = 2(I+∇T (y∗))−1−I, we notice that if∇T (y∗) = I (if

T = ∂f , it means that f locally behaves like 1
2 ‖.‖

2
around y∗) then convergence

rate is lower than 1
2 . The value 1

2 actually corresponds to the relaxation factor
used in recursion (36). Super-linear convergence can therefore be achieved in
this case if we set this value to 0 (which consists in applying Peaceman-Rachford
scheme instead of the Douglas-Rachford one in [LM79]) or if we make it tend
to 0:

sk+1 = αksk + (1− αk)RA(P −Q)sk

αk → 0

6 Scaling of the proximal decomposition method

We now show that SALAGS can also be generalized in the setting of monotone
inclusion and that we are always (at less theoretically) able to obtain a linear
convergence rate of 1

2 .

15

6.1 Principle

Let come back to our problem which consists in finding a couple (y, u) such
that:

u ∈ T (y) (38a)

(y, u) ∈ A×A⊥ (38b)

Let M be an invertible matrix. We operate the change of variable:

z ←My

w ←M−⊤u

We denote AM = MA and A⊥
M = M−⊤A⊥. So the problem is equivalent to

find M⊤w ∈ T (M−1z) with (z, w) ∈ AM ×A⊥
M . But operator:

U = M−⊤T (M−1.) (39)

is maximal monotone so we get a scaled version of original problem (38) which
keeps an identical structure i-e find (z, w) such that:

w ∈ U(z) (40a)

(z, w) ∈ AM ×A⊥
M (40b)

6.2 Algorithm

Applying PDM to this formulation gives algorithm 5:

Algorithm 5 GSPDM : Globally Scaled PDM

Require: (y0, u0) ∈ A×A⊥, M invertible.
1: (zk, wk) = (Myk, M−⊤uk).
2: find (z̃k+1, w̃k+1) such that:

w̃k+1 ∈ U(z̃k+1)

z̃k+1 + w̃k+1 = zk + wk

3: compute (zk+1, wk+1) = ΠAM×A⊥

M

(z̃k+1, w̃k+1).

4: (yk+1, uk+1) = (M−1zk, M⊤wk).

In term of original variables, step 2 is equivalent to find (ỹk+1, ũk+1) such
that:

ũk+1 ∈ T (ỹk+1) (41a)

Mỹk+1 + M−⊤ũk+1 = Myk + M−⊤uk (41b)

16

Combining (41a) and (41b) gives ỹk+1 as the unique solution of:

Myk + M−⊤uk ∈ (M + M−⊤T)(ỹk+1)

0 ∈ T (ỹk+1) + M⊤M(ỹk+1 − yk)− uk

Remark that steps 3 and 4 can be written:

(
yk+1

uk+1

)

=

(
M−1PAM

M
M⊤PA⊥

M

M−⊤

)(
ỹk+1

ũk+1

)

(42)

which is different from projecting directly onto A×A⊥.

6.3 Global convergence of SALAGS

Proposition 6.1. If F is proper l.s.c, then the sequence
{
(yk, uk)

}

k
generated

by algorithm 4 converges to some (y, u) satisfying (40).

Proof. As noticed earlier, algorithm 4 is GSPDM applied to T = ∂F with de-
finition (2) of A. If F is proper l.s.c, then so is F (M ·) and U = ∂(F (M ·))
is therefore maximal monotone. From ([MOD95], p459) we obtain the conver-
gence of

{
(zk, wk)

}

k
generated by PDM to solve (40) and consequently the

convergence of
{
(yk, uk)

}

k
generated by GSPDM to solve (38).

6.4 Convergence rate

If T is differentiable at y, then U = M−⊤TM−1 is differentiable at z = My
and:

∇U(z) = M−⊤∇T (y)M−1

so the convergence rate for the sequence
{
(zk, wk)

}

k
is given by (37):

lim
k→∞

sup

∥
∥(zk+1, wk+1)− (z∗, w∗)

∥
∥

‖(zk, wk)− (z∗, w∗)‖ ≤ 1

2

∥
∥
(
I + RA(2(I + M−⊤∇T (y∗)M−1)−1 − I)

)∥
∥

Consequently, if y∗ is unique, then the knowledge of ∇T (y∗) and the choice

M = (∇T (y∗))
1

2 will make the algorithm applied to the scaled problem to
converge with a linear rate lower than 1

2 .

7 Variable scaling matrix

We study in this section the method when the matrix M is allowed to change at
each iteration according to a sequence {Mk}k converging to an invertible limit
M i-e algorithm 6:

17

Algorithm 6 Variable metric GSPDM

Require: (y0, u0) ∈ A×A⊥, {Mk}k →M

1: (zk, wk) := (Mkyk, M−⊤
k uk)

2: sk := zk + wk

3: Compute (z̃k+1, w̃k+1) := (PMk
(sk), QMk

(sk))
4: Compute (z̄k+1, w̄k+1) := (ΠAM

k
z̃k+1, ΠA⊥

M
k

w̃k+1).

5: (yk+1, uk+1) := (M−1
k zk, M⊤

k wk).
6: k := k + 1
7: Go to 1

Variable scaling parameter have already been introduced in the litterature in
Douglas-Rachford splitting based methods. For instance in [KM95], a variable
scaling matrix is employed but the difference between two successive matrices
must be positive semi-definite from some rank onwards. In [HYW00], [MDBH00]
or [HLW03] an assumption on the speed of convergence of the scaling parameter
is needed. However, only the case of a one-dimensional scaling parameter is
treated.

We propose here to use a sequence of matrix scaling parameter. We will
prove the convergence under hypothesis similar to the one in [HLW03], namely:

Assumption 7.1. Setting Λk = M⊤
k Mk, the sequence of scaling matrices {Λk}k

converges and:

+∞∑

k=0

‖Λk+1 − Λk‖ < +∞

7.1 Convergence analysis of global scaling with a variable

metric

We focus on sequences:

sk = zk + wk

s̄k = z̄k + w̄k

generated by algorithm 6. Let (y∗, u∗) be any solution of (31) and {σk}k the
sequence defined by:

σk = Mky∗ + M−⊤
k u∗

We have for all k:

s̄k = JMk
sk

σk = JMk
σk

so firm-nonexpansiveness of JMk
gives:

∥
∥s̄k − σk

∥
∥

2 ≤
∥
∥sk − σk

∥
∥

2 −
∥
∥s̄k − sk

∥
∥

2
(43)

18

The following lemma gives an asymptotic relation between sk+1 and s̄k as Mk

converges.

Proposition 7.1. Under assumption 7.1, there is a sequence {µk}k such that
for all k:

(1 − µk)
∥
∥sk+1 − σk+1

∥
∥

2 ≤
∥
∥s̄k − σk

∥
∥

2
(44)

and:

+∞∑

k=0

µk = S < +∞

Proof. We have in the one hand:

∥
∥sk+1 − σk+1

∥
∥

2
=
∥
∥Mk+1(ȳ

k − y∗) + M−⊤
k+1(ū

k − u∗)
∥
∥

2

=
〈
ȳk − y∗, Λk+1(ȳ

k − y∗)
〉

+
〈
ūk − u∗, Λ−1

k+1(ū
k − u∗)

〉

because ȳk − y∗ ∈ A and ūk − u∗ ∈ A⊥ and in the other hand:

∥
∥s̄k − σk

∥
∥

2
=
∥
∥Mk(ȳk − y∗) + M−⊤

k (ūk − u∗)
∥
∥

2

=
〈
ȳk − y∗, Λk(ȳk − y∗)

〉
+
〈
ūk − u∗, Λ−1

k (ūk − u∗)
〉

Substracting the second term from the first one gives:

∥
∥sk+1 − σk+1

∥
∥

2 −
∥
∥s̄k − σk

∥
∥

2

=
〈
ȳk − y∗, (Λk+1 − Λk)(ȳk − y∗)

〉
+
〈
ūk − u∗, (Λ−1

k+1 − Λ−1
k)(ūk − u∗)

〉

=
〈
ȳk − y∗, Λk+1Λ

−1
k+1(Λk+1 − Λk)(ȳk − y∗)

〉

+
〈
ūk − u∗, Λ−1

k+1Λk+1(Λ
−1
k+1 − Λ−1

k)(ūk − u∗)
〉

≤
∥
∥Λ−1

k+1(Λk+1 − Λk)
∥
∥
〈
ȳk − y∗, Λk+1(ȳ

k − y∗)
〉

+
∥
∥Λk+1(Λ

−1
k+1 − Λ−1

k)
∥
∥
〈
ūk − u∗, Λk+1(ū

k − u∗)
〉

≤ µk

∥
∥sk+1 − σk+1

∥
∥

2

where µk = max(
∥
∥Λ−1

k+1(Λk+1 − Λk)
∥
∥ ,
∥
∥Λk+1(Λ

−1
k+1 − Λ−1

k)
∥
∥). Therefore:

µk ≤
∥
∥Λ−1

k+1(Λk+1 − Λk)
∥
∥

≤
∥
∥Λ−1

k+1

∥
∥ ‖Λk+1 − Λk‖

and:

µk ≤
∥
∥Λk+1(Λ

−1
k+1 − Λ−1

k)
∥
∥

≤
∥
∥(Λk − Λk+1)Λ

−1
k

∥
∥

≤
∥
∥Λ−1

k

∥
∥ ‖Λk+1 − Λk‖

as,
{∥
∥Λ−1

k

∥
∥
}

k
converges, it is consequently bounded and as µk ≥ 0, it follows

that
∑∞

k=0 µk converges.

19

Lemma 7.1. If assumption 7.1 holds, then the sequence
{
sk
}

k
generated by

algorithm 6 is bounded.

Proof. Combining (43) and (44), we obtain for all k:

(1 − µk)
∥
∥sk+1 − σk+1

∥
∥

2 ≤
∥
∥sk − σk

∥
∥

2
(45)

There is a rank K and a constant α > 0 such that the partial product
∏l

k=K(1−
µk) ≥ α. Using recursively (45) from K until l we obtain:

(
l∏

k=K

(1 − µk)

)

∥
∥sl − σl

∥
∥

2 ≤
∥
∥sK − σK

∥
∥

2

∥
∥sl − σl

∥
∥

2 ≤ α−1
∥
∥sK − σK

∥
∥

2

hence, the sequence
{∥
∥sk − σk

∥
∥

2
}

k
is bounded. Moreover, since Mk converges,

so does
{
σk
}

k
which entails boundedness of

{
sk
}

k
.

Proposition 7.2. If assumption 7.1 holds, the sequence
{
sk
}

k
generated by

algorithm 6 converges to a fixed point of JM .

Proof. Lemma 7.1 provides the existence of cluster points for the sequence
{
sk
}

k
. Combining (43) and (44) gives for all k:

(1 − µk)
∥
∥sk+1 − σk+1

∥
∥

2 ≤
∥
∥sk − σk

∥
∥

2 −
∥
∥s̄k − sk

∥
∥

2

Summing up this relation until K, we get:

K∑

k=0

∥
∥s̄k − sk

∥
∥

2 ≤
∥
∥s0 − z0

∥
∥

2 −
∥
∥sK − σK

∥
∥

2
+

K∑

k=0

µk

∥
∥sk+1 − σk+1

∥
∥

2

every term of the right hand side is bounded, hence the left hand side series

is bounded and
∥
∥s̄k − sk

∥
∥

2 → 0. So every cluster point (s̄∞, s∞) of (s̄k, sk)
satisfies s̄∞ = s∞. Moreover (s̄k, sk) ∈ gr(Jk) for all k, and JMk

graphically
converges to JM∞

so (s̄∞, s∞) ∈ gr(JM∞
) and cluster points of

{
sk
}

k
are fixed

point of JM∞
.

Let (y∞, u∞) the solution associated to a cluster point s∞. The sequence
σk = Mky∞ + M−⊤

k u∞ converges to s∞. Let ǫ > 0 and K a rank such that:

i)
{
σk
}

k≥K
⊂ B(s∞, ǫ)

ii) sK ∈ B(s∞, ǫ)

iii)
∏l

k=K(1− µk) ≥ α > 0 for all l ≥ K

20

We have by i) and ii):
∥
∥sK − σK

∥
∥ ≤ 2ǫ

using recursively (45) from K to l ≥ K, we get:

l∏

k=K

(1− µk)
∥
∥sl − σl

∥
∥

2 ≤
∥
∥sK − σK

∥
∥

2 ≤ 4ǫ2

by iii), so:

∥
∥sl − σl

∥
∥ ≤ 2ǫ

√
∏L

k=K(1− µk)
≤ 2ǫ√

α

and:
∥
∥sl − s∞

∥
∥ ≤

∥
∥sl − σl

∥
∥+

∥
∥σl − s∞

∥
∥

≤
∥
∥sl − σl

∥
∥

2
+ ǫ

≤ (1 +
2√
α

)ǫ

That is true for all ǫ > 0 so sk → s∞.

7.2 Adaptive scaling strategy

We propose in this section a family of strategies to accelerate the convergence
of SALA which is based on observations made in the differentiable case in a
previous section but applies in the general case.

Indeed, if the involved operator T were differentiable, we would be able to
gain knowledge about ∇T (y∗) as the algorithm progresses by using intermediate
guesses ỹk and ũk which satisfy :

ũk = T (ỹk)

The differences between two iterates thus satisfies:

ũk+1 − ũk = ∇T (ỹk)(ỹk+1 − ỹk) + o(
∥
∥ỹk+1 − ỹk

∥
∥)

The idea is to use a matrix update so as to obtain a sequence of matrices
approaching ∇T (y∗) as yk → y∗.

The procedures we propose in what follows consist in updating the scaling
matrix at each iteration by taking a convex combination (of coefficient 0 < αk ≤
1) of the current matrix Λk with an other matrix Dk we hope to be close to
∇T (ỹk).

Λk+1 = (1− αk)Λk + αkDk (46)

In order that the sequence
{
Λk
}

k
satisfies assumption 7.1, we will impose the

series of term αk and Dk to satisfy hypothesis of the following lemma:

21

Lemma 7.2 (Convergence of adaptive scaling sequences). Let {Λk}k a sequence
of matrices satisfying:

Λk+1 = (1− αk)Λk + αkDk (47)

Let denote 0 < dk
1 ≤ . . . ≤ dk

m the m eigenvalues of Dk. If there exists 0 < d ≤
d̄ < +∞ such that:

d ≤ dk
1 ≤ . . . ≤ dk

m ≤ d̄

and if the series of term αk ≥ 0 converges:

+∞∑

k=0

αk = S < +∞

then {Λk}k is positive definite and converges to a positive definite limit, more-
over:

+∞∑

k=0

‖Λk+1 − Λk‖ = S′ < +∞.

Proof. Without loss of generality, we can choose [d, d̄] containing the eigenvalues
of Λ0. Then, the compact convex set B of symmetric matrices eigeinvalues of
which are in [d, d̄] contains the sequence {Dk}k along with Λ0. As the update
formula (47) consists in making convex combinations in B, the whole sequence
{Λk}k is in B and every Λk is positive definite as well as the possible limit.
Moreover, there exists a constant C > 0 such that for every k:

Λk+1 − Λk = −αkΛk + αkDk

‖Λk+1 − Λk‖ ≤ αk (‖Λk‖+ ‖Dk‖)
≤ Cαk

so, we get
∑+∞

k=0 ‖Λk+1 − Λk‖ = S′ ∈ R and as a consequence, the convergence
of {Λk}k.

Remark 7.1. We could also have defined the recursion:

Λk+1 = Λ
(1−αk)
k Dαk

k (48)

in place of (47). Using the same arguments, we obtain that the sequence
{ln(Λk)}k is in the set of matrices eigenvalues of which are in [ln(d), ln(d̄)]
obtaining the positive definiteness of {Λk}k and of its limit. Then, using the
fact that the logarithm is Lipschitz on every compact set, we also obtain the
absolute convergence.

22

7.2.1 Single parameter update

If we restrict ourselves to a single real parameter i-e Λk = λkI, one way to use
second order information is to take profit directly of the ratio:

γk =

∥
∥ũk+1 − ũk

∥
∥

‖ỹk+1 − ỹk‖

In the general case, we have no idea about the boundedness of {γk}k, so we can
consider an interval [γ, γ̄] and use:

Dk = (Π[γ,γ̄]γ
k)I (49)

where Π[γ,γ̄] represents the projection onto [γ, γ̄].

7.2.2 Subproblem parameter update

We can apply the same updating policy but separately in each of the subprob-
lems i-e for i = 1, . . . , p, we set:

γk+1
i =

∥
∥ũk+1

i − ũk
i

∥
∥

∥
∥ỹk+1

i − ỹk
i

∥
∥

(50)

and Dk is the diagonal matrix:

Dk =

(Π[γ,γ̄]γ
k
1)Im

. . .

(Π[γ,γ̄]γ
k
p)Im

Remark 7.2. If Ti is strongly monotone of modulus ai and lipschitz with con-
stant Li then:

ai ≤
∥
∥ũk+1

i − ũk
i

∥
∥

∥
∥ỹk+1

i − ỹk
i

∥
∥
≤ Li

and

min
i

ai ≤
∥
∥ũk+1 − ũk

∥
∥

‖ỹk+1 − ỹk‖ ≤ max
i

Li

therefore, the sequences γk and γk
i defined in (49) and (50) are automatically

bounded and we can relinquish projection onto [γ, γ̄].

7.2.3 Component update

An other updating policy involving as many parameters as the dimension of the
problem consists in computing for all i = 1, . . . , p, j = 1, . . . , m the ratio:

γk+1
i,j =

∥
∥(ũk+1

i)j − (ũk
i)j

∥
∥

∥
∥(ỹk+1

i)j − (ỹk
i)j

∥
∥

23

Matrix Dk will then be the diagonal matrix:

Dk =

Π[γ,γ̄]γ
k
1,1

. . .

Π[γ,γ̄]γ
k
1,m

. . .

Π[γ,γ̄]γ
k
p,1

. . .

Π[γ,γ̄]γ
k
p,m

8 Some examples

We now present some numerical results obtained on small instances of problem
(23). We show the relevance of scaling techniques on some basic examples.

8.1 First example : on the utility of multidimensionnal

scaling

Let consider the following example

Q1 = Q2 =

(
1 0
0 100

)

c1 =

(
1
2

)

, c2 =

(
3
4

)

G1 = G2 =

(
1 0
0 1

)

b1 = b2 =

(
1
1

)

We have:

T1 = T2 =

(
1 0
0 0, 01

)

which involves:

(Rλ)1 = (Rλ)2 =

(1
1+λ

0

0 1
1+0,01λ

)

We have sp (Sλ) =
{

1
1+λ

, 1
1+0.01λ

}

so the spectral radius of the iteration oper-

ator cannot go beyond 10
11 . This optimal upper bound is attained for the value

λ♯ = 10 (see figure 1).
If we now allow Λ to be a diagonal positive definite matrix:

Λ =

(
λ1 0
0 λ2

)

24

10
−1

10
0

10
1

10
2

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

λ

ρ(Iλ)

ρ(Sλ)

ρ = 10/11

Figure 1: Spectral radius of Sλ with respect to λ in example 1

We now get:

sp (SΛ) =

{
1

1 + λ1
,

1

1 + 0.01λ2

}

While with a single parameter, the best convergence rate is 10
11 (see figure 1).

Here, we can attain the value 1
2 by choosing λ1 = 1 et λ2 = 100.

8.2 Second example: on the utility of subproblems scaling

Let consider the following example:

Q1 =

(
100 50
50 100

)

, Q2 =

(
1 1

2
1
2 1

)

c1 =

(
1
2

)

, c2 =

(
3
4

)

G1 =

(
1 0
0 1

)

, G2 =

(
1 0
0 1

)

b1 = b2 =

(
1
1

)

Figure 2 shows the number of iterations with different scaling values (λ1, λ2)
and the corresponding single parameter case obtained by enforcing λ1 = λ2.

We launched SALA with and without the implementation of an updating
rule. Figure 3 compares the number of iterations needed to converge in both

25

0 0.5 1 1.5 2012
0

20

40

60

80

100

120

140

160

180

200

log(λ
1
)log(λ

2
)

nu
m

be
r

of
 it

er
at

io
ns

λ
1
 = λ

2

10
0

10
1

10
2

60

70

80

90

100

110

120

130

140

150

λ

nu
m

be
r

of
 it

er
at

io
ns

number of iterations

Figure 2: Number of iterations with and without problem scaling on example 2.

cases, for several starting values of λk=0. Figure 4 shows the behavior of the
corresponding sequences (λ)k. The rule implemented here consists in taking:

{

αk ≡ 1 if mod(k, 3) = 0;

αk ≡ 0 else.

which clearly do not satisfy hypothesis of lemma 7.2.

8.3 A third example

Let consider this third example:

Q1 =

(
8 4
4 6

)

, Q2 =

(
30 10
10 20

)

, Q3 =

(
1 0
0 3

)

c1 =

(
1
2

)

, c2 =

(
3
4

)

, c3 =

(
5
6

)

G1 = G2 = G3 =

(
1 0
0 1

)

b1 = b2 = b3 =

(
1
1

)

We lanched SALA with and without auto-adaptive strategies with αk =
k− 10

9 . Number of iterations for several starting values are reported on figures 5
and 6. The first plot (figure 5) is obtained with additive updating rule while the
second one (figure 6) is obtained with logarithmic updating rule. Algorithm was

stopped when
∥
∥ũk+1 − uk

∥
∥

2
+
∥
∥ỹk+1 − yk

∥
∥

2
< 3.10−5. We observ that additive

updating rules are less efficient when initial scaling parameters are too much
grater than ideal values.

26

Figure 3: Number of iterations of SALA with and without updating λ

Figure 4: Trajectories of (λk)k for several starting values

27

10
−1

10
0

10
1

10
2

10
3

0

100

200

300

400

500

600

700

800

none
single
subProblem
componentwise

Figure 5: Additive updating rules in example 3

10
−1

10
0

10
1

10
2

10
3

0

100

200

300

400

500

600

700

800

none

single

subProblem

componentwise

Figure 6: Logarithmic updating rules in example 3

28

9 Numerical results

9.1 Experimentations

We generated quadratic problems for different values of p and m and we com-
pared performances of the method with and without updating heuristics. We
take p ∈ [2, 5, 10, 20, 40] and m ∈ [5, 10, 20, 50, 100] and ni = m. Coefficients of b
and c are drawn log-uniformly in [−100,−0.01]∪ [0.01, 100]. Q is contructed by
generating a matrix P and a vector p of coefficients drawn log-uniformly respec-
tively in [−10,−0.1]∪ [0.1, 10] and [0.1, 1], and by setting Q = P⊤P + diag(p).
Updates are performed 1 iteration out of 3.

We stop the algorithm when
∥
∥ỹk+1 − yk

∥
∥

2
+
∥
∥ũk+1 − uk

∥
∥

2
is lower than

p.10−3 or when the iteration number exceeds 3000.

9.2 Results

We used Λk=0 = λ0I as a starting value for λ0 ranging in [10−4, 100]. Table 1
gives the best number of iterations obtained for these values. We observe that
BFGS update gives the faster convegence. Other updating rules do not improve
significantly convergence with respect to the classical algorithm. We can also
note that the coupling update is not competitive when the size of the problem
increases.

Unfortunately, BFGS update has the same drawback as the original method :
it heavily depends on the original scaling parameter. Table 2 gives the standard
deviation of the number of iterations with respect to the initial value λ0. To
illustrate this fact, we plotted for each updating rule the number of iterations
with respect to the starting value λk=0 in the case p = 20 and m = 10, on figure
7.

Moreover, updating separately in each subproblem gives a better conver-
gence (for an equivalent computational cost) when the number of subproblems is
large. The reason is that the subproblem-update approaches the matrix∇T (y∗)
with block second-order information which are averaged in the single-parameter
update.

References

[DGM03] Jean-Pierre Dussault, Oumar Mandione Guèye, and Philippe Ma-
hey, Separable augmented lagrangian algorithm with multidimen-
sional scaling for monotropic programming, Journal of Optimization
Theory and Application 127 (2003), 1–20.

[EB90] Jonathan Eckstein and Dimitri P. Bertsekas, An alternating direc-
tion method for linear programming, Tech. report, Laboratory for
Information and Decision Sciences, MIT, April 1990.

29

Mises à jour
p m without Single Subproblem Coupling BFGS

2

5 55 43 45 39 35
10 112 116 116 78 42
20 56 63 66 60 39
50 69 62 62 63 47
100 74 79 79 77 55

5

5 45 51 51 44 24
10 62 64 71 57 32
20 61 63 61 82 44
50 83 88 83 80 50
100 81 103 102 101 57

10

5 129 75 74 53 23
10 81 70 66 73 33
20 89 91 87 119 41
50 96 141 84 132 53
100 103 190 111 161 63

20

5 52 67 51 53 22
10 67 72 68 76 28
20 82 86 87 117 36
50 107 149 107 1487 49
100 117 300 122 3000 64

40

5 56 50 39 52 22
10 55 69 59 65 24
20 69 74 71 82 31
50 102 230 111 2673 42
100 119 299 135 3000 54

Table 1: Best iteration number.

30

Mises à jour
p m without Single Subproblem Coupling BFGS

2

5 720.21 6.58 6.74 11.20 74.21
10 790.36 31.76 41.99 19.00 207.00
20 723.18 7.90 8.58 11.54 200.37
50 800.90 5.14 5.19 9.48 222.67
100 915.96 5.51 5.37 8.97 335.24

5

5 833.13 7.15 9.21 8.75 665.61
10 870.71 11.37 8.91 8.91 437.60
20 743.84 10.26 10.13 . 591.45
50 851.43 7.93 7.83 10.54 548.15
100 749.94 7.00 6.72 10.35 433.48

10

5 885.91 7.97 8.41 6.16 504.62
10 662.29 38.72 21.81 8.53 456.35
20 831.13 37.54 18.11 21.54 450.76
50 801.91 24.51 23.47 353.45 577.97
100 841.89 45.24 21.79 . 647.38

20

5 729.93 5.93 6.99 6.01 659.09
10 692.33 11.10 6.66 67.06 628.24
20 839.47 31.05 8.70 347.06 644.39
50 821.78 66.33 8.87 . 561.73
100 835.67 223.10 27.31 . 475.39

40

5 861.50 7.31 7.05 7.97 460.00
10 807.06 9.66 8.47 164.98 549.61
20 705.92 15.02 9.67 752.24 574.56
50 885.72 41.58 16.02 . 580.81
100 668.82 189.17 16.75 . 591.20

Table 2: Standard deviation of the number of iteration w.r.t log λ0.

31

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
1

10
2

10
3

10
4

λk=0

nu
m

be
r

of
 it

er
at

io
ns

without
single
subProblem
coupling
BFGS

Figure 7: Number of iterations w.r.t λk=0 for different updating rules. Case
p = 20, m = 10.

[Eck89] Jonathan Eckstein, Splitting methods for monotone operators with
applications to parallel optimization, Ph.D. thesis, Massachusetts
institute of technology, cambridge, June 1989.

[Eck94] , Some saddle-function splitting methods for convex program-
ming, Optimization Methods and Software 4 (1994), 75–83.

[EF90] Jonathan Eckstein and Michael C. Ferris, Operator splitting methods
for monotone affine variational inequalities, with a parallel applica-
tion to optimal control, Tech. report, Laboratory for Information
and Decision Sciences, MIT, April 1990.

[Fuk92] M. Fukushima, Application of the alternating directions method of
multipliers to separable convex programming problems, Computa-
tional Optimization and Applications 1(1) (1992), 83–111.

[HLW03] B.S He, L-Z Liao, and S.L Wang, Self-adaptive operator splitting
methods for monotone variational inequalities, Numerische Mathe-
matik 94 (2003), 715–737.

[HMD97] A. Hamdi, P. Mahey, and J.P Dussault, A new decomposition
method in nonconvex programming via a separable augmented la-
grangian, Lecture Notes in Economics and Mathematical Systems
452 (1997), 90–104.

32

[HYW00] B.S He, H. Yang, and S.L Wang, Alternating directions method with
self-adaptive penalty parameters for monotone variational inequali-
ties, Journal of Optimization Theory and applications 106 (2000),
349–368.

[KM95] Spyridon Kontogiorgis and Robert R. Meyer, A variable-penalty al-
ternating directions method for convex optimization, Tech. Report
MP-TR-1995-18, University of Wisconsin Computer sciences de-
partment, 1995.

[Kon94] Spyridon. A. Kontogiorgis, Alternating directions methods for the
parallel solution of large-scale block-structured optimization prob-
lems, Ph.D. thesis, University of Wisconsin - Madison, 1994.

[LM79] P.L. Lions and B. Mercier, Splitting algorithms for the sum of
two nonlinear operators, SIAM Journal on Numerical Analysis 16
(1979), 964–979.

[Luq84] Fernando Ravier Luque, Asymptotic convergence analysis of the
proximal point algorithm, SIAM J.Control and optimization 22
(1984), 277–293.

[MDBH00] Philippe Mahey, Jean-Pierre Dussault, Abdelhamid Benchakroun,
and Abdelouahed Hamdi, Adaptive scaling and convergence rates
of a separable augmented lagrangian algorithm, Lecture Notes in
Economics and Mathematical Systems 481 (2000), 278–287.

[MOD95] Philippe Mahey, Said Oualibouch, and Pham Din Tao, Proximal
decomposition on the graph of a maximal monotone operator, SIAM
J. Optimization 5 (1995), 454–466.

[Roc70] Rockafellar, Convex analyis, Princeton University Press, 1970.

[RW91] R. Tyrrel Rockafellar and Roger. J-B Wets, Scenarios and policy
aggregation in optimization under uncertainty, Mathematics of Op-
erations Research 16 (1991), 119–147.

[SR03] David. H Salinger and R. Tyrrel Rockafellar, Dynamic splitting:an
algorithm for deterministic and stochastic multiperiod optimization,
Working Paper (2003).

33

