
HAL Id: hal-00678344
https://hal.science/hal-00678344v1

Submitted on 12 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PRT: Parallel program for a full backtranslation of
oligopeptides

Mohieddine Missaoui, Cécile Militon, David R.C. Hill, Christophe Gouinaud,
Pierre Peyret

To cite this version:
Mohieddine Missaoui, Cécile Militon, David R.C. Hill, Christophe Gouinaud, Pierre Peyret. PRT:
Parallel program for a full backtranslation of oligopeptides. 2007. �hal-00678344�

https://hal.science/hal-00678344v1
https://hal.archives-ouvertes.fr

PRT: Parallel program for a full

backtranslation of oligopeptides

Mohieddine MISSAOUI
1,2

, Cécile MILITON,

David HILL, Christophe GOUINAUD, and

Pierre PEYRET

Research Report LIMOS/RR-O7-11

07 juin 2007

1
LBP – UMR CNRS 6023 Complexe des Cézeaux

2
LIMOS – UMR CNRS 6158 Complexe des Cézeaux

missaoui@isima.fr

ABSTRACT

DNA hybridization methods have become the most widely used tools in molecular biology to identify organisms and

evaluate gene expression levels. PCR (Polymerase Chain Reaction)-based methods, fluorescent in situ hybridization
(FISH) and the recent development of DNA microarrays as a high throughput technology need efficient primers or
probes design. Evaluation of the metabolic capacities of complex microbial communities found in terrestrial or

aquatic environments requires new probe design algorithms that reflect the genetic diversity. As only a small part of
the microbial diversity is known, gene sequences deposited in international databases do not reflect the entire
diversity. In this context we propose to use oligopeptide sequences for the design of complete set of DNA probes that
are able to target the entire genetic diversity of genes encoding enzymes. Due to the degenerated genetic code

backtranslation must be managed efficiently. To our knowledge no software has been developed to propose a full
backtranslation. This complexity is tractable since we only need to focus on short oligopeptides for DNA probe design.
We propose new algorithms that perform a high performance oligopeptide backtranslation into all potential nucleic
sequences. We use different efficient techniques such as memory mapping to perform such a computing. We also

propose a MPI parallel computing that reduces the whole execution time using data load balancing and network file
stream distribution on a cluster architecture.

Index Terms-- Oligopeptide, Probe design, Full back translation, Parallel computing,

I. INTRODUCTION

The overwhelming majority of life on our planet is microbial, both in terms of phylogenetic

diversity and sheer number of organisms. Virtually every conceivable environmental niche

harbours microorganisms capable of growing there. Traditional microbiological methods of

cultivation recover less than 1% of the total bacterial species, and the cultured portion of

bacteria is not representative of the total phylogenetic diversity. Considering the extent of

functional diversity described for microbes and the numerous applications of their secondary

metabolites, the biotechnological potential hidden among the 99% of the bacteria that are un-

cultured is immense. Deciphering the microbial metabolic pathway capacities in complex

environments (soils, lakes, oceans…) is essential for the protection of the environment.

However, conventional biochemical and molecular methods (PCR-based technologies) for

assessing microbial community structure and activities are labour-intensive. Microarrays are a

powerful tool for the parallel, high throughput detection and quantification of many nucleic

acid molecules [3]. Oligonucleotide microarrays are the most widely developed tools for

microbial diagnostics. However, probe design is not a trivial task and needs particular

attention [15]. Functional gene arrays (FGAs) contain probes corresponding to genes

encoding key enzymes involved in various ecological and environmental processes such as

carbon fixation, nitrification, denitrification, sulphate reduction, methane oxidation, and

contaminant degradation. Both PCR-amplified DNA fragments and oligonucleotides derived

from functional genes can be used to manufacture FGAs. In each situation we need to know

the gene sequences for the probe design. As a large part of microbial diversity is unknown we

can only use sequences from genes deposited in international databases. To develop an

explorative aspect for functional microarrays we propose to design probes derived from the

protein sequences. In this context we are able to determine the probes sets that characterize an

enzyme or a metabolic pathway of interest. We have developed full backtranslation

algorithms for oligopeptides able to provide interesting DNAs sequences for probe design in

the context of functional microarrays.

II. MATERIALS AND METHODS

A. Related Works

Parallel computing is often the best solution to optimize bioinformatics algorithms which

are time and memory consuming [17]. Computer architectures such as computing clusters and

grids are now appropriate for many bioinformatics applications [9]. The backtranslation

problem appeared after the protein synthesis mechanism discovery [13] followed by the entire

genetic code decoding in 1961 by the Nobel Prize laureate M. Nirenberg. Therefore,

Bioinformatics was incidental to biology advancement and contributed to solving difficult

problems such as local and global sequences alignment. Backtranslation is most often

required in larger applications using protein to DNA or RNA passing. Studying phylogeny

uses genetic code to perform a phylogenetic tree construction based on sequence homology

detection. Information detained by proteins is useful when constructing optimal multiple

DNA alignments for phylogenetic analysis [20]. In this case, backtranslation is simply a

replacement of amino acid by the existing codon in the initial corresponding nucleic

sequence. Thus, passing from protein to DNA can preserve this phylogenetic information.

Nevertheless, genomic and transcriptomic databases are used as a source of sequences

existing in protein alignment, so it is possible to find CDS (CoDing Sequences) [11] by

launching a BLAST [1] program and then construct the alignment using the ClustalW [6]

program. Similar tools that use backtranslation to perform an alignment are available [2] [17].

Moreover, using backtranslation can be made for direct derived nucleic sequences search

from a protein sequence. Most of them are based on IUB/IUPAC degenerate nucleotide base

codes [14], which assume the use of a consensus sequence to represent all possible sequences

corresponding to the initial protein. Figure 1 shows consensus triplet codons of all amino

acids using IUB degenerate nucleotide base codes. With this approach, one protein is

backtranslated to a unique IUB codon that represents all possibilities in only one nucleotide

triplet. Software that uses IUB codes to reverse translate a protein only uses a replacement of

their amino acids by corresponding codons. Consequently, to obtain a nucleic sequence from

input peptide, all we have to do is to combine the known codons in the appropriate order.

A C D E F G H I K L M N P Q R S T V W Y *

Reverse translation with degenerate code

GCNTGYGAYGARTTYGGNCAYATHAARMTNATGAAYCCNCARMGNWSNACNGTNTGGTAYTAR

Fig. 1. Consensus nucleic sequence of a backtranslated peptide using IUB degenerate nucleotide base codes. This example shows all possible

reverse translations (20 amino acids plus “STOP” codons given by ‘*’).

Reverse translation can be also used to calculate probable DNA codon usage for an

organism [12]. It can use genetic algorithm [10] to determine the most probable codon at a

given position by launching a data mining algorithm on a selected databank. In addition, some

software uses neural networks data mining to similarly perform the same task [21]. An

additional method is based on hierarchical clustering data mining to do this

backtranslation [8]. We note that several methods use particularly data mining algorithms or

distance matrix to find the most adapted reverse translation of a peptide [16]. The software

returns the most probable codon for a given species as shown in Figure 2. Similar tools which

use the most probable codon or user-selected codons to perform such a reverse translation are

available by web interface [21, 22, 23].

Fig. 2 Nucleic acid sequence determination by backtranslation based on the preferential genetic code usage in E. coli species. (See

http://cgpdb.ucdavis.edu/database/sms/javascript/index.html for more details).

From the previous works, and to the best of our knowledge no tool is available to

automatically perform a full backtranslation providing all possible non degenerate DNA

sequences corresponding to an input oligopeptide. In the next section we present high

performance parallel algorithms able to use cluster and grid resources to take up this

challenge. This work is limited to oligopeptide since it is practically impossible to produce all

the DNA sequences corresponding to a protein, or even to a long peptide. The main reason is

simply the unfeasibility of storing the results because of space and time constraints.

B. Why do we need a complete backtranslation?

Our method aims to show all potential DNA sequences that could spark a given

oligopeptide sequence for the development of functional microarrays used in microbial

ecology. Our approach supposes that the maximum length of the DNA generated sequences

does not exceed 24 bases because the target sequences are probes which will serve in biochip

design such as what we proposed in [15]. Thus, the given peptides used on backtranslation

process will be about 6 to 8 amino acids. Furthermore, backtranslation is still ambiguous due

to its memory-time consuming nature mainly caused by the genetic code degeneracy. Two

approaches are presented here; both use the genetic code degeneracy to construct the

algorithm. The main difference between the two approaches relies on data manipulation.

C. The Mathematical Model

We propose a new algorithmic approach to construct backtranslated DNA sequences from a

protein sequence. Let Γ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, *} and

Σ = {A, C, G, T} be the alphabets for amino acids and nucleotides, respectively. Let

ϕ : Σ3
 → Γ be the translation of a DNA sequence according to the genetic code. We denote

card(ϕ-1
(X)) the number of triplet codons that code for the amino acid ‘X’. It is called the

degeneracy of the amino acid ‘X’. We named the algorithm PRT for oligoPeptide Reverse

Translation. This algorithm can be assimilated to a function:

 PRTn (p): Γn
 → δn(p) × ()Σ

3 × n
 (1)

Given an oligopeptide ‘p’ of length ‘n’, the function will return PRTn()p DNA sequences;

PRTn()p is the total degeneracy of the input sequence ‘p’; it depends both on the sequence

and on its length. Therefore, for an oligopeptide X1X2X3...Xn, we have:

 δn (p) = ∏
i = 1

n
 card

ϕ

− 1
()xi (2)

Our algorithm uses the PRTn procedure (see equation 1) to compute non degenerated DNA

sequences.

D. Algorithm principle

Let p = X1X2X3...Xn be a peptide of ‘n’ amino acids. Let Xi ; 1 < i < n be an amino acid of

the peptide ‘p’ in position ‘i’ (see figure 3). We denote d(i) the calculated degeneracy from

the initial position to position ‘i’.

 d()i = ∏
k = 1

i
 card

ϕ

− 1
()xk (3)

We denote r(i) the remaining degeneracy in step ‘i’:

 r ()i =
δn ()p

d ()i
 (4)

We describe in details our algorithm as follows:

(1) For the i
th

 amino acid, append current codons according to degeneracy variable (see

below) in the appropriate order (see the following algorithm)

(2) Save the result in a structure

(3) Re-compute current degeneracy variables

(4) Reinitialize counters

Algorithm: procedure

Input: peptide of n length

Output: file of generated oligos

while i <= n do

repeat (for each codon of xi)

d (i)/card (ϕ-1(xi)) times

 repeat append (codon) r (i) times;

end repeat

 end repeat

 i = i + 1;

end while

This algorithm can be transposed using several techniques. We implemented the different

techniques using the C language capabilities. In this paper we show the most efficient

strategies we obtained. Additionally, our approach depends neither on the peptide length nor

on the sequence composition. The latter are computed by the algorithm according to the

codons table.

Fig. 3. An example to highlight the algorithm operation for backtranslation

E. Computer systems

The computer used for this study is a bi-processor equipped with an Intel
(R)

 Xeon
TM

 at 2.4

Ghz with 2 Gb of RAM. For sequential tests, we used a single processor. We developed the

algorithm using the C language with a GNU C compiler (version 3.4.1).

F. Backtranslation strategies

Two strategies based on the PRTn algorithm are presented here. A comparison between the

two implementations will give us decisive elements in order to retain the best solution for a

specific problem.

1) Dynamic memory allocation

The first strategy adopted to develop the PRT algorithm was to use a large array pre-

allocated in dynamic memory. We used a pointer data structure to store output data consisting

of generated backtranslated DNA sequences from the input peptide. Figure 4 shows the

structure used to save the generated nucleic acid sequences. The computing algorithm is used

with a dynamic memory allocation strategy in order to have all sequence possibilities. The

advantage of this strategy is to have access to DNA sequences at any time and the computing

allows storage of the output in a file.

......

.

.

.

.

.

.

......

......

......

0

δδδδn (p) - 1

0 3 ×××× n

0 3 ×××× n

char ** oligos;

......

.

.

.

.

.

.

......

......

......

0

δδδδn (p) - 1

0 3 ×××× n

0 3 ×××× n

char ** oligos;

Fig. 4. Dynamic Allocation main storage data structure. This C data structure is used to store all generated probes

Furthermore, the algorithm uses this data structure and the codon table structure. A single

line of code is required to store data in the structure. The storage of sequences follows the

data structure presented in figure 4 exactly.

2) File memory mapping

The second method used to perform backtranslation is based on file memory mapping.

We launch the algorithm to write the output nucleic sequences in a memory file managed like

a pointer. In our C code, we use appropriate structures such as start and end mapped file

pointers. First of all, we create a file formatted according to the output. Then, each codon is

placed by the algorithm in the appropriate position in the file. The position is computed for

each amino acid. Using file memory mapping management strategy is particularly interesting

because in opposition to dynamic memory allocation we save sequences directly in the output

file and we don’t introduce an intermediate data-structure. Though we rely on a file, we are

limited by the system RAM as with the dynamic allocation method. Copying results (codons)

is done nucleotide by nucleotide for each codon. This slows down the execution time, but it

remains more efficient than the dynamic memory allocation strategy. We copy codons to the

output oligos file using a file descriptor pointer that moves by finding the appropriate position

of each codon. The output file is used like a table structure so we can easily manipulate its

indexes.

 The method can be used with memory mapping only if we assume that output oligos are

stored in a file because we made preliminary actions and dedicated variables initialization to

run this algorithm : we should declare a size, a file status and a file descriptor to be able to use

memory mapping capabilities. Our algorithm uses different pointers to move along the

mapped file.

III. RESULTS

A. Sequential Performance comparison

Execution time decreases when we use the memory mapping approach because we write the

nucleic sequences directly in the output file, as shown in figure 5. We launched the tests on an

isolated computer to assert that the system overhead and load was the same.

Fig. 5. Performance of both strategies used for backtranslation (the length of peptide is minimal for each tested degeneracy). For example, if

we take degeneracy 20155392 it corresponds to RRRRRRRRRK oligopeptide which is the shortest peptide for this degeneracy.

In figure 5, the difference in execution time between the two strategies is due to the

memory allocation performed by the dynamic approach. When the dynamic structure is full

we print out the results in an output file of oligonucleotides. To be able to compare the two

strategies we must have an unlimited memory system; which is not reasonable. Table 1 shows

execution time of the two backtranslation strategies. We reported the whole execution time

returned by Linux ‘time’ function.

TABLE 1. DATA OF PERFORMANCE COMPARISON FOR THE TWO STRATEGIES USED FOR BACKTRANSLATION. IT BELONGS TO FIGURE 5.

As expected, we observe that if the peptide degeneracy increases, the performance

exponentially decreases. In fact, our algorithm has to handle an exponential complexity, and

even if the problem is tractable for oligopeptides, it can require a significant amount of disk

space. . This disk space (RDS : Required Disk Space) can easily be predicted for a given

oligopeptide. It depends on (p) and is given by the following equation:

 RDS = []δn ()p ×()n ×3 + 1 Bytes (5)

For an oligopeptide having a degeneracy around 10.10
6
, a single computer (see the

Computer System section) requires less than 300 Mb of disk space and less than 30 seconds

of execution time in the case of memory mapping strategy. In the study described by Tamura

et al., (1991), the degenerate code used to a find consensus nucleic sequence backtranslated

from a peptide does not require more than 3 times the size of the input peptide. In our new

approach, we should save all obtained sequences for only one oligopeptide. In practice, we

need to work with several thousand of oligopeptides. However, there is no need to keep the

resulting DNA sequences for all oligopeptides, they can be processed to design DNA probes

one by one and peptide by peptide. However, in order to increase the throughput, parallel

computing is well-adapted to reduce the complexity of this algorithm. In fact, the

backtranslation step is time-consuming because we try to backtranslate a large number of

oligopeptides knowing that the whole execution time increases when we work on long

oligopeptides. In the next section, we present Parallelization methods for our two algorithm

variants using the MPI library. The algorithms developed were run on a local cluster

architecture.

B. Parallel implementation

Even id a sequential approach is satisfactory, a parallelization process is interesting to to

optimise the performances of our algorithms. A local cluster architecture is perfectly adapted

to this kind of application. In the following section, we describe adaptations of the algorithms

which optimize the resources of a cluster computing environment. This approach achieve high

throughput non redundant protein to DNA backtranslation, it reduces the whole execution

time and the results are dispatched on several disks to avoid disk space overloading.

C. The computing cluster architecture

A computing cluster is an homogeneous systolic architecture, which uses the power of

interconnected machines to perform time consuming tasks. We have used the following

cluster architecture: a system of 15 PCs (one master with an Intel Xeon, 2.40 GHz bi-

processor; 2GB RAM and 14 worker nodes with the same configuration PCs are running

under Linux and the networking is assured by a 1 GB/s Ethernet switch. Communications are

mainly generated by the network file system (NFS). Although there are file systems

specifically designed for PC clusters (Wang et al., 2002) the NFS was considered to be

efficient enough for the purpose of this work. The main distributions of Linux include tools

for controlling a parallel execution on PC clusters [4] [5]. For the application development we

used the MPI library MPICH, v.1.1.2 with version 2.96 of the MPICC compiler (http://www-

unix.mcs.anl.gov/mpi/). Parallelization strategy

To have an efficient parallelization for the two strategies – dynamic memory allocation and

file memory mapping – we opted for a load balancing approach and a distribution of output

files on all used nodes. In fact, each process (assigned to a node) computes a part of the whole

result for a given peptide and locally save fragment results. Fragments are equally distributed

on the cluster in order to have maximal performance and storage balancing on each node. MPI

was used to dispatch data on all nodes and to subdivide computing for each process. Table 2

shows the execution time of the two parallel strategies

TABLE 2. PERFORMANCE DATA COMPARISON BETWEEN THE TWO PARALLEL ALGORITHMS.

Memory allocation specifically uses system memory but the memory mapping strategy only

uses CPUs and IOs. Our algorithms construct for each node their own fragment structures by

the two approaches and then perform locally the appropriate computation for each fragment

oligos. To have such results, we split output data into 14 structures because we have 14 nodes;

each structure contains the ordered oligos. For example, the oligo numbered 'n' is stored on

node number 'x' and the oligo numbered 'n+1' is stored on node number 'x+1'; if x = 14 then

oligo number n+1 is stored on node number 1 and so on until the last oligo. Moreover, each

amino acid is processed as in the sequential algorithms. As mentioned in the previous section,

the execution time for the sequential algorithms increases exponentially when input peptide

degeneracy exceeds 3.10
6
 oligos; but, with parallel approaches, we obtain the histograms

shown in figure 6.

Parallel implementation shows a decrease in the whole execution time compared to

sequential algorithms for the two approaches. We can even see a linear increase for the

dynamic memory allocation up to degeneracy of 6
10

. Dynamic memory allocation is more

advantageous for small degeneracy peptides (< 6
11

). Memory mapping execution time

increases faster than dynamic memory allocation because the CPUs are used every time for

computing codons and file pointer position. The algorithm using memory allocation has been

parallelized by sharing memory and output data between Cluster nodes.

Fig. 6. Performance of parallel algorithms. The two parallel approaches compared.

1) Performance Balance

Using a cluster framework to compute oligos generated from a peptide backtranslation by

parallel programming with MPI shows an improvement of the whole performance. In fact,

such a distributed system offers multiple resources to compute a large number of oligos

efficiently. Figure 7 shows that the time gain is enhanced when degeneracy increases if we

use a parallel backtranslation on a computer cluster. We can observe that the file memory

mapping approach is more efficient in the case of the sequential algorithms but, in the parallel

version, we can see a better behaviour of parallel dynamic allocation. Performance declines

when we try to find long oligos with high degeneracy (50 bases and more). We surpass

system capacities: CPU, memory, and disk space when we work with oligopeptides of 30

amino acids and a degeneracy greater than 6
13

.

Fig. 7. Parallel vs. sequential backtranslation programs. The parallel versions of our algorithm shows a liner like curve for degeneracy

smaller than 4.107.

In addition, Figure 8 evidences the relevance of parallel codes for such work. It shows that

when we use a cluster architecture algorithm to backtranslate a 6
9
 degeneracy oligopeptide,

performance increases with the two previously mentioned strategies. In fact, the whole

execution time decreases when algorithms use more and more nodes. The complexity remains

exponential, but it can be significantly decreased by the number of computing nodes.

Fig. 8. Cluster computing speedup for the two studied strategies. The speedup is given by the quotient between the sequential execution time

and the parallel one.

When we work on short oligopeptides we cannot distinguish the difference between parallel

and sequential algorithms. Indeed, the oligpeptide length has an incidence on the whole

execution time, as for sequential programs(when the length increases, the performance

logically decreases).

IV. CONCLUSION

This paper introduces a novel approach giving a full backtranslation of oligopeptides and

brings to light the utility of such a method in enzyme specific oligos design. This approach is

able to produce all possible non degenerate DNA sequences corresponding to an input

oligopeptide of reasonable degeneracy. This problem presents an exponential complexity and

we have presented a new algorithm implemented with the C programming language with two

different strategies minimising the execution time. In addition, we propose a parallel version

of the two strategies developed using MPI in a computing cluster environment. The

parallelization helps in dividing the algorithm complexity which remains however

exponential. Performance tests indicate that the parallelization has clear advantages because it

allows the fragmentation of the output oligos file knowing that a full backtranslation need

significant disk space.

ACKNOWLEDGEMENTS

This work was financially supported by the regional council of Auvergne (PREVOIR and

INSTRUIRE projects) and by a grant from the ACI Non Pollution-Dépollution, « Oxygen »

project. M. Missaoui was supported by a grant from the regional council of Auvergne and C.

Militon by a grant from “Ministère de l’éducation, de la recherche et de la technologie”. The

authors thank Pr. Philip Hoggan for his helpful advices.

REFERENCES

[1] S. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool," Journal of molecular biology,

vol. 215, pp. 403-10, October 5 1990

[2] O. R. Bininda-Emonds, "transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences," BMC

Bioinformatics, vol. 6, p. 156, june 22 2005.

[3] L. Bodrossy and A. Sessitsch, "Oligonucleotide microarrays in microbial diagnostics," Current Opinion in Microbiology vol. 7, pp.

245-254, May 14 2004.

[4] C. Bookman, Linux Clustering: Building and Maintaining Linux Clusters. USA: New Riders Publishing, 2002.

[5] I. Campbell, Linux: Assuring High Availability. USA: John Wiley & Sons, 2001.

[6] R. Chenna, H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins, and J. D. Thompson, "Multiple sequence alignment with the

Clustal series of programs," Nucleic Acids Research, vol. 31, pp. 3497-3500, 2003.

[7] R. M. Lewis, "PROBFIND: a computer program for selecting oligonucleotide probes from peptide sequences," Nucleic Acids Research,

vol. 14, pp. 567-70, January 10 1986.

[8] J. Ma, T. Zhou, W. Gu, X. Sun, and Z. Lu, "Cluster analysis of the codon use frequency of MHC genes from different species,"

Biosystems, vol. 65, pp. 199-207 March 5 2002.

[9] N. Melab, S. Cahon, and E. Talbi, "Grid computing for parallel bio inspired algorithms," Journal of parallel and Distributed

Computing, vol. 66 pp. 1052-1061, August 2006.

[10] A. Moreira and A. Maass, "TIP: protein backtranslation aided by genetic algorithms," Bioinformatics, vol. 20, pp. 2148-2149 April 1

2004.

[11] S. Moretti, F. Reinier, O. Poirot, F. Armougom, S. Audic, V. Keduas, and C. Notredame, "PROTOGENE: turning amino acid

alignments into bona fide CDS nucleotide alignments," Nucleic Acids Research, vol. 34, pp. W600-W603, March 20 2006

[12] J. Nash, "A computer program to calculate and design oligonucleotide primers from amino acid sequences," Computer applications in

the biosciences, vol. 9, pp. 469-71, August 1993.

[13] M. W. Nirenberg, "Historical review: Deciphering the genetic code--a personal account," Trends in biochemical sciences vol. 29, pp.

46-54, january 2004.

[14] G. Pesole, M. Attimonelli, and S. Liuni, "A backtranslation method based on codon usage strategy," Nucleic Acids Research, vol. 16,

pp. 1715-1728, November 15 1988.

[15] S. Rimour, D. Hill, C. Militon, and P. Peyret, "GoArrays: highly dynamic and efficient microarray probe design," Bioinformatics, vol.

21, pp. 1094-1103 2005.

[16] P. Stothard, "The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences,"

Biotechniques, vol. 28, pp. 1102, 1104, June 2000.

[17] M. Suyama, D. Torrents, and P. Bork, "PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon

alignments," Nucleic Acids Research, vol. 34, pp. W609-W612, April 11 2006.

[18] T. Tamura, S. Holbrook, and S. Kim, "A Macintosh computer program for designing DNA sequences that code for specific peptides

and proteins," Biotechniques, vol. 10, pp. 782-4, 1991.

[19] J. Wang and Z. Xu, "Cluster file systems: a case study," Future Generation Computer Systems, vol. 18, pp. 373-387, 2002.

[20] R. Wernersson and A. G. Pedersen, "RevTrans: multiple alignment of coding DNA from aligned amino acid sequences," Nucleic Acids

Research, vol. 31, pp. 3537-3539, April 14 2003.

[21] G. White and W. Seffens, "Using a neural network to backtranslate amino acid sequences," Electronic Journal of Biotechnology, vol. 1,

pp. 17-18, December 1998.

[22] WebLab: backtranseq: http://weblab.cbi.pku.edu.cn/program.inputForm.do?program=backtranseq

[23] CLC Protein Workbench: http://www.clcbio.com/index.php?id=93

[24] Gene Design - Reverse translation: http://slam.bs.jhmi.edu/cgi-bin/gd/gdRevTrans.cgi

