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Abstract

Branching processes and Fleming-Viot processes are two main models in stochastic pop-
ulation theory. Incorporating an immigration in both models, we generalize the results of
Shiga (1990) and Birkner et al. (2005) which respectively connect the Feller diffusion with
the classical Fleming-Viot process and the α-stable continuous state branching process with the
Beta(2 − α,α)-generalized Fleming-Viot process. In a recent work, a new class of probability-
measure valued processes, called M -generalized Fleming-Viot processes with immigration, has
been set up in duality with the so-called M -coalescents. The purpose of this article is to investi-
gate the links between this new class of processes and the continuous-state branching processes
with immigration. In the specific case of the α-stable branching process conditioned to be never
extinct, we get that its genealogy is given, up to a random time change, by a Beta(2−α,α−1)-
coalescent.
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1 Introduction

The connections between the Fleming-Viot processes and the continuous-state branching processes
have been intensively studied. Shiga established in 1990 that a Fleming-Viot process may be re-
covered from the ratio process associated with a Feller diffusion up to a random time change, see
[23]. This result has been generalized in 2005 by Birkner et al in [7] in the setting of Λ-generalized
Fleming-Viot processes and continuous-state branching processes (CBs for short). In that paper
they proved that the ratio process associated with an α-stable branching process is a time-changed
Beta(2 − α, α)-Fleming-Viot process for α ∈ (0, 2). The main goal of this article is to study such
connections when immigration is incorporated in the underlying population. The continuous-state
branching processes with immigration (CBIs for short) are a class of time-homogeneous Markov pro-
cesses with values in R+. They have been introduced by Kawazu and Watanabe in 1971, see [15], as
limits of rescaled Galton-Watson processes with immigration. These processes are characterized by
two functions Φ and Ψ respectively called the immigration mechanism and the branching mechanism.
A new class of measure-valued processes with immigration has been recently set up in [13]. These
processes, called M-generalized Fleming-Viot processes with immigration (M-GFVIs for short) are
valued in the space of probability measures on [0, 1]. The notation M stands for a couple of finite
measures (Λ0,Λ1) encoding respectively the rates of immigration and of reproduction. The genealo-
gies of the M-GFVIs are given by the so-called M-coalescents. These processes are valued in the
space of the partitions of Z+, denoted by P0

∞.

In the same manner as Birkner et al. in [7], Perkins in [21] and Shiga in [23], we shall establish some
relations between continuous-state branching processes with immigration and M-GFVIs. A notion
of continuous population with immigration may be defined using a flow of CBIs in the same spirit
as Bertoin and Le Gall in [4]. This allows us to compare the two notions of continuous populations
provided respectively by the CBIs and by the M-GFVIs. Using calculations of generators, we show
that the following self-similar CBIs admit time-changed M-GFVIs for ratio processes:

• the Feller branching diffusion with branching rate σ2 and immigration rate β (namely the CBI
with Φ(q) = βq and Ψ(q) = 1

2
σ2q2) which has for ratio process a time-changed M-Fleming-Viot

process with immigration with M = (βδ0, σ
2δ0),

• the CBI process with Φ(q) = d′αqα−1 and Ψ(q) = dqα for some d, d′ ≥ 0, α ∈ (1, 2) which has
for ratio process a time-changed M-generalized Fleming-Viot process with immigration with
M = (c′Beta(2 − α, α− 1), cBeta(2− α, α)), where c′ = α(α−1)

Γ(2−α)
d′ and c = α(α−1)

Γ(2−α)
d.

We stress that the CBIs may reach 0 in which case the M-GFVIs involved describe the ratio
process up to this hitting time only. When d = d′ or β = σ2, the corresponding CBIs are respectively
the α-stable branching process and the Feller branching diffusion conditioned to be never extinct.
In that case, the M-coalescents are genuine Λ-coalescent viewed on P0

∞. We get respectively a
Beta(2 − α, α − 1)-coalescent when α ∈ (1, 2) and a Kingman’s coalescent for α = 2. This differs
from the α-stable branching process without immigration (already studied in [7]) for which the coa-
lescent involved is a Beta(2 − α, α)-coalescent.

Outline. The paper is organized as follows. In Section 2, we recall the definition of a continuous-state
branching process with immigration and of an M-generalized Fleming-Viot process with immigra-
tion. We describe briefly how to define from a flow of CBIs a continuous population represented by
a measure-valued process. We state in Section 3 the connections between the CBIs and M-GFVIs,
mentioned in the Introduction, and study the random time change. Recalling the definition of an M-
coalescent, we focus in Section 4 on the genealogy of the M-GFVIs involved. We establish that, when
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the CBIs correspond with CB-processes conditioned to be never extinct, the M-coalescents involved
are actually classical Λ-coalescents. We identify them and, as mentioned, the Beta(2 − α, α − 1)-
coalescent arises. In Section 5, we compare the generators of the M-GFVI and CBI processes and
establish the main result.

2 A continuous population embedded in a flow of CBIs and

the M-generalized Fleming-Viot with immigration

2.1 Background on continuous state branching processes with immigra-

tion

We will focus on critical continuous-state branching processes with immigration characterized by two
functions of the variable q ≥ 0:

Ψ(q) =
1

2
σ2q2 +

∫ ∞

0

(e−qu − 1 + qu)ν̂1(du)

Φ(q) = βq +

∫ ∞

0

(1− e−qu)ν̂0(du)

where σ2, β ≥ 0 and ν̂0, ν̂1 are two Lévy measures such that
∫∞

0
(1 ∧ u)ν̂0(du) < ∞ and

∫∞

0
(u ∧

u2)ν̂1(du) < ∞. The measure ν̂1 is the Lévy measure of a spectrally positive Lévy process which
characterizes the reproduction. The measure ν̂0 characterizes the jumps of the subordinator that de-
scribes the arrival of immigrants in the population. The non-negative constants σ2 and β correspond
respectively to the continuous reproduction and the continuous immigration. Let Px be the law of
a CBI (Yt, t ≥ 0) started at x, and denote by Ex the associated expectation. The law of (Yt, t ≥ 0)
can then be characterized by the Laplace transform of its marginal as follows: for every q > 0 and
x ∈ R+,

Ex[e
−qYt ] = exp

(

−xvt(q)−

∫ t

0

Φ(vs(q))ds

)

where ∂
∂t
vt(q) = −Ψ(vt(q)), v0(q) = q.

The pair (Ψ,Φ) is known as the branching-immigration mechanism. A CBI process (Yt, t ≥ 0)
is said to be conservative if for every t > 0 and x ∈ [0,∞[,Px[Yt <∞] = 1. A result of Kawazu and
Watanabe [15] states that (Yt, t ≥ 0) is conservative if and only if for every ǫ > 0

∫ ǫ

0

1

|Ψ(q)|
dq = ∞.

We follow the seminal idea of Bertoin and Le Gall in [4] to define a genuine continuous population
model with immigration on [0, 1] associated with a CBI. Emphasizing the rôle of the initial value, we
denote by (Yt(x), t ≥ 0) a CBI started at x ∈ R+. The branching property ensures that (Yt(x+y), t ≥

0)
law
= (Yt(x) + Xt(y), t ≥ 0) where (Xt(y), t ≥ 0) is a CBI(Ψ, 0) starting from y (that is a CB-

process without immigration and with branching mechanism Ψ) independent of (Yt(x), t ≥ 0). The
Kolmogorov’s extension theorem allows one to construct a flow (Yt(x), t ≥ 0, x ≥ 0) such that for
every y ≥ 0, (Yt(x + y) − Yt(x), t ≥ 0) has the same law as (Xt(y), t ≥ 0) a CB-process started
from y. We denote by (Mt, t ≥ 0) the Stieltjes-measure associated with the increasing process
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x ∈ [0, 1] 7→ Yt(x). Namely, define

Mt(]x, y]) := Yt(y)− Yt(x), 0 ≤ x ≤ y ≤ 1.

Mt({0}) := Yt(0).

The process (Yt(1), t ≥ 0) is assumed to be conservative, therefore the process (Mt, t ≥ 0) is valued in
the space Mf of finite measures on [0, 1]. We stress that this space is locally compact, separable and
metrizable. Therefore we may consider its one-point compactification (see [20] page 7). By a slight
abuse of notation, we denote by (Yt, t ≥ 0) the process (Yt(1), t ≥ 0). The framework of measure-
valued processes allows us to consider an infinitely many types model. Namely each individual has
initially its own type (which lies in [0, 1]) and transmits it to its progeny. People issued from the
immigration have a distinguished type fixed at 0. Since the types do not evolve in time, they allow
us to track the ancestors at time 0. This model can be viewed as a superprocess without spatial
motion (or without mutation in population genetics vocable).
Let C be the class of functions on Mf of the form

F (η) := G (〈f1, η〉, ..., 〈fn, η〉) ,

where 〈f, η〉 :=
∫

[0,1]
f(x)η(dx), G ∈ C2(Rn) and f1, ..., fn are bounded measurable functions on [0, 1].

Section 9.3 of Li’s book [20] (see Theorem 9.18 p. 218) ensures that the following operator acting on
the space Mf is an extended generator of (Mt, t ≥ 0). For any η ∈ Mf ,

LF (η) := σ2/2

∫ 1

0

∫ 1

0

η(da)δa(db)F
′′(η; a, b) (1)

+ βF ′(η; 0) (2)

+

∫ 1

0

η(da)

∫ ∞

0

ν̂1(dh)[F (η + hδa)− F (η)− hF ′(η, a)] (3)

+

∫ ∞

0

ν̂0(dh)[F (η + hδ0)− F (η)] (4)

where F ′(η; a) := limǫ→0
1
ǫ
[F (η+ ǫδa)−F (η)] is the Gateaux derivative of F at η in direction δa, and

F ′′(η; a, b) := G′(η; b) with G(η) = F ′(η; a). The terms (1) and (3) correspond to the reproduction,
see for instance Section 6.1 p106 of Dawson [8]. The terms (2) and (4) correspond to the immigration.
We stress that in our model the immigration is concentrated on 0, contrary to other works which con-
sider infinitely many types for the immigrants. For the interested reader, the operator L corresponds
with that given in equation (9.25) of Section 9 of Li [20] by setting H(dµ) =

∫∞

0
ν̂0(dh)δhδ0(dµ) and

η = βδ0.

For all η ∈ Mf , we denote by |η| the total mass |η| := η([0, 1]). If (Mt, t ≥ 0) is a Markov
process with the above operator for generator, the process (|Mt|, t ≥ 0) is a CBI. Indeed, let ψ be a
twice differentiable function on R+ and define F : η 7→ ψ(|η|), we find LF (η) = zGBψ(z) + GIψ(z)
for z = |η|, where

GBψ(z) =
σ2

2
ψ′′(z) +

∫ ∞

0

[ψ(z + h)− ψ(z)− hψ′(z)]ν̂1(dh) (5)

GIψ(z) = βψ′(z) +

∫ ∞

0

[ψ(z + h)− ψ(z)]ν̂0(dh). (6)
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2.2 Background on M-generalized Fleming-Viot processes with immigra-

tion

We denote by M1 the space of probability measures on [0, 1]. Let c0, c1 be two non-negative real
numbers and ν0, ν1 be two measures on [0, 1] such that

∫ 1

0
xν0(dx) < ∞ and

∫ 1

0
x2ν1(dx) < ∞.

Following the notation of [13], we define the couple of finite measures M = (Λ0,Λ1) such that

Λ0(dx) = c0δ0(dx) + xν0(dx), Λ1(dx) = c1δ0(dx) + x2ν1(dx).

The M-generalized Fleming-Viot process with immigration describes a population with constant
size which evolves by resampling. Let (ρt, t ≥ 0) be an M-generalized Fleming-Viot process with
immigration. The evolution of this process is a superposition of a continuous evolution, and a
discontinuous one. The continuous evolution can be described as follows: every couple of individuals
is sampled at constant rate c1, in which case one of the two individuals gives its type to the other:
this is a reproduction event. Furthermore, any individual is picked at constant rate c0, and its
type replaced by the distinguished type 0 (the immigrant type): this is an immigration event. The
discontinuous evolution is prescribed by two independent Poisson point measures N0 and N1 on
R+ × [0, 1] with respective intensity dt⊗ ν0(dx) and dt⊗ ν1(dx). More precisely, if (t, x) is an atom
of N0 +N1 then t is a jump time of the process (ρt, t ≥ 0) and the conditional law of ρt given ρt− is:

• (1− x)ρt− + xδU , if (t, x) is an atom of N1, where U is distributed according to ρt−

• (1− x)ρt− + xδ0, if (t, x) is an atom of N0.

If (t, x) is an atom of N1, an individual is picked at random in the population at generation t− and
generates a proportion x of the population at time t: this is a reproduction event, as for the genuine
generalized Fleming-Viot process (see [5] p278). If (t, x) is an atom of N0, the individual 0 at time
t− generates a proportion x of the population at time t: this is an immigration event. In both cases,
the population at time t− is reduced by a factor 1 − x so that, at time t, the total size is still 1.
The genealogy of this population (which is identified as a probability measure on [0, 1]) is given by
an M-coalescent (see Section 4 below). This description is purely heuristic (we stress for instance
that the atoms of N0 +N1 may form an infinite dense set), to make a rigorous construction of such
processes, we refer to the Section 5.2 of [13] (or alternatively Section 3.2 of [14]).
For any p ∈ N and any continuous function f on [0, 1]p, we denote by Gf the map

ρ ∈ M1 7→ 〈f, ρ⊗p〉 :=

∫

[0,1]p
f(x1, ..., xp)ρ(dx1)...ρ(dxp).

Let (F ,D) denote the generator of (ρt, t ≥ 0) and its domain. The vector space generated by the
functionals of the type Gf forms a core of (F ,D) and we have (see Lemma 5.2 in [13]):

FGf(ρ) = c1
∑

1≤i<j≤p

∫

[0,1]p
[f(xi,j)− f(x)]ρ⊗p(dx) (1’)

+ c0
∑

1≤i≤p

∫

[0,1]p
[f(x0,i)− f(x)]ρ⊗p(dx) (2’)

+

∫ 1

0

ν1(dr)

∫

ρ(da)[Gf ((1− r)ρ+ rδa)−Gf (ρ)] (3’)

+

∫ 1

0

ν0(dr)[Gf((1− r)ρ+ rδ0)−Gf (ρ)]. (4’)

where x denotes the vector (x1, ..., xp) and
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• the vector x
0,i is defined by x

0,i
k = xk, for all k 6= i and x

0,i
i = 0,

• the vector x
i,j is defined by x

i,j
k = xk, for all k 6= j and x

i,j
j = xi.

3 Relations between CBIs and M-GFVIs

3.1 Forward results

The expressions of the generators of (Mt, t ≥ 0) and (ρt, t ≥ 0) lead us to specify the connections
between CBIs and GFVIs. We add a cemetery point ∆ to the space M1 and define (Rt, t ≥ 0) :=
( Mt

|Mt|
, t ≥ 0), the ratio process with lifetime τ := inf{t ≥ 0; |Mt| = 0}. By convention, for all t ≥ τ ,

we set Rt = ∆. As mentioned in the Introduction, we shall focus our study on the two following
critical CBIs:

(i) (Yt, t ≥ 0) is CBI with parameters σ2, β ≥ 0 and ν̂0 = ν̂1 = 0.

(ii) (Yt, t ≥ 0) is a CBI with σ2 = β = 0, ν̂0(dh) = c′h−α1h>0dh and ν̂1(dh) = ch−1−α1h>0dh.

We first establish in the following proposition a dichotomy for the finiteness of the lifetime, depending
on the ratio immigration over reproduction.

Proposition 1 Recall the notation τ = inf{t ≥ 0, Yt = 0}.

• If β
σ2 ≥ 1

2
in case (i) or c′

c
≥ α−1

α
in case (ii), then P[τ = ∞] = 1.

• If β
σ2 <

1
2

in case (i) or c′

c
< α−1

α
in case (ii), then P[τ <∞] = 1

We then deal with the random change of time. In the case of a CB-process (that is a CBI process
without immigration), Birkner et al. used the Lamperti representation and worked on the embedded
stable spectrally positive Lévy process. We shall work directly on the CBI process instead.

Proposition 2 In both cases (i) and (ii), taking α = 2 in case (i), we have:

P

(∫ τ

0

Y 1−α
s ds = ∞

)

= 1.

In other words, the additive functional of (Yt, t ≥ 0) defined by C : t 7→
∫ t

0
Y 1−α
s ds maps [0, τ [ to

[0,∞[.

By convention, if τ is almost surely finite we set C(t) = C(τ) = ∞ for all t ≥ τ . Denote by C−1

the right continuous inverse of the functional C. This maps [0,∞[ to [0, τ [. We stress that in most
cases, (Rt, t ≥ 0) is not a Markov process. Nevertheless, in some cases, through a change of time,
the process (Rt, t ≥ 0) may be changed into a Markov process. This shall be stated in the following
Theorem where the functional C is central.
For every x, y > 0, denote by Beta(x, y)(dr) the finite measure with density

rx−1(1− r)y−11(0,1)(r)dr,

and recall that its total mass is given by the Beta function B(x, y).

Theorem 3 Let (Mt, t ≥ 0) be the measure-valued process associated to a process (Yt(x), x ∈
[0, 1], t ≥ 0) with characteristics σ2, β ≥ 0, and ν̂0, ν̂1 the Lévy measures.
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(i) If ν̂0 = ν̂1 = 0. Let C(t) =
∫ t

0
Y −1
s ds, the process (RC−1(t))t≥0 is a M-Fleming-Viot process with

immigration with

Λ0(dr) = βδ0(dr) and Λ1(dr) = σ2δ0(dr).

(ii) If σ2 = β = 0 and for some α ∈ (1, 2) and some c > 0, c′ ≥ 0

ν̂0(dh) = c′h−α1h>0dh and ν̂1(dh) = ch−1−α1h>0dh,

Let C(t) =
∫ t

0
Y 1−α
s ds, then the process (RC−1(t))t≥0 is a M-generalized Fleming-Viot process

with immigration with

Λ0(dr) = c′Beta(2 − α, α− 1)(dr) and Λ1(dr) = cBeta(2− α, α)(dr).

In case (i), the process (Yt, t ≥ 0) is a CBI with Ψ(q) = σ2

2
q2 and Φ(q) = βq, that is a Feller

branching diffusion with continuous immigration. In case (ii), the process (Yt, t ≥ 0) is a CBI with
Ψ(q) = dqα and Φ(q) = d′αqα−1 with d′ = Γ(2−α)

α(α−1)
c′ and d = Γ(2−α)

α(α−1)
c. The proof requires rather

technical arguments on the generators and is given in Section 5.

Remark 3.1 • The CBIs in the statement of Theorem 3 with σ2 = β in case (i) or c = c′ in
case (ii), are also CBs conditioned on non extinction and are studied further in Section 4.

• Contrary to the case without immigration, see Theorem 1.1 in [7], we have to restrict ourselves
to α ∈ (1, 2].

So far, we state that the ratio process (Rt, t ≥ 0) associated to (Mt, t ≥ 0), once time changed by
C−1, is a M-GFVI process. Conversely, starting from a M-GFVI process, we could wonder how to
recover the measure-valued CBI process (Mt, t ≥ 0). This lead us to investigate the relation between
the time changed ratio process (RC−1(t), t ≥ 0) and the process (Yt, t ≥ 0).

Proposition 4 In case (i) of Theorem 3, the additive functional (C(t), t ≥ 0) and (RC−1(t), 0 ≤ t <
τ) are independent.

This proves that in case (i) we need additional randomness to reconstruct M from the M-GFVI
process. On the contrary, in case (ii), the process (Yt, t ≥ 0) is clearly not independent of the ratio
process (Rt, t ≥ 0).
The proof of Propositions 1, 2 and 4 are given in the next Subsection.

3.2 Proofs of Propositions 1, 2 and 4

Proof of Proposition 1. Let (Xt(x), t ≥ 0) denote an α-stable branching process started at x (with
α ∈ (1, 2]). Denote ζ its absorption time, ζ := inf{t ≥ 0;Xt(x) = 0}. The following construction of
the process (Yt(0), t ≥ 0) may be deduced from the expression of the Laplace transform of the CBI
process. We write:

(Yt(0), t ≥ 0) =

(
∑

i∈I

X i
(t−ti)+

, t ≥ 0

)

(7)

with
∑

i δ(ti,Xi) a Poisson random measure on R+×D(R+,R+) with intensity dt⊗µ, where D(R+,R+)
denotes the space of càdlàg functions, and µ is defined as follows:
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• in case (ii), µ(dX) =
∫
ν̂0(dx)Px(dX), where Px is the law of a CB(Ψ) with Ψ(q) = dqα. For-

mula (7) may be understood as follows: at the jump times ti of a pure jump stable subordinator
with Lévy measure ν̂0, a new arrival of immigrants, of size X i

0, occurs in the population. Each
of these "packs", labelled by i ∈ I, generates its own descendance (X i

t , t ≥ 0), which is a
CB(Ψ) process.

• in case (i), µ(dX) = β N(dX), where N is the canonical measure of the CB(Ψ) with Ψ(q) = σ2

2
q2

(see Le Gall [19] for a definition of the canonical measure N). This case may be seen as
a limit case of the case (ii) when α → 2. The pure jump subordinator degenerates into a
continuous subordinator equal to (t 7→ βt). The immigrants no more arrive by packs, but
appear continuously. In other words, we have N(X0 > 0) = 0.

The process (Yt(0), t ≥ 0) is a CBI(Ψ,Φ) started at 0. We call R the set of zeros of (Yt(0), t > 0):

R := {t > 0; Yt(0) = 0}.

Denote ζi = inf {t > 0, X i
t = 0} the lifetime of the branching process X i. The intervals ]ti, ti + ζi[

represent the time where X i is alive. Therefore R is the set of the positive real numbers left uncovered
by the random intervals ]ti, ti + ζi[, that is:

R := R
⋆
+ \
⋃

i∈I

]ti, ti + ζi[.

The lengths ζi have law µ(ζ ∈ dt) thanks to the Poisson construction of Y (0). We now distinguish
the two cases:

• Feller case: this corresponds to α = 2. We have Ψ(q) := σ2

2
q and Φ(q) := βq, and thus

µ[ζ > t] = β N[ζ > t] =
2β

σ2

1

t

see Li [20] p. 62. Using Example 1 p. 180 of Fitzsimmons et al. [12], we deduce that

R = ∅ if and only if
2β

σ2
≥ 1. (8)

• Stable case: this corresponds to α ∈ (1, 2). Recall Ψ(q) := dqα,Φ(q) := d′αqα−1. In that case,
we have

µ[ζ > t] =

∫ ∞

0

ν̂0(dx)Px[ζ > t] =

∫ ∞

0

ν̂0(dx)[1− exp(−xN(ζ > t))] = Φ(N(ζ > t))

and
N(ζ > t) = d−

1
α−1 [(α− 1)t]−

1
α−1 ,

see Li [20] again. Thus, µ[ζ > t] = α
α−1

d′

d
1
t
. Recall that d′

d
= c′

c
. Therefore, using reference [12],

we deduce that

R = ∅ if and only if
c′

c
≥
α− 1

α
. (9)
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This allows us to establish the first point of Proposition 1: under the assumptions of the first point,
we get R = ∅, and the inequality Yt(1) ≥ Yt(0) for all t ensures that τ = ∞.

We deal now with the second point. Assume that c′

c
< α−1

α
or β

σ2 <
1
2
. By assertions (8) and (9),

we already know that R 6= ∅. Using Corollary 4 (Equation 17 p 183) of [12], we show below that R
is not bounded. Recall that

µ[ζ > s] = Φ(N(ζ > s)) =
κ

s

with κ = α
α−1

d′

d
= α

α−1
c′

c
< 1. Thus

∫ u

1
µ[ζ > s]ds = κ ln(u) and we obtain

exp

(

−

∫ u

1

µ[ζ > s]ds

)

=

(
1

u

)κ

.

Therefore, since κ < 1,
∫ ∞

1

exp

(

−

∫ u

1

µ[ζ > s]ds

)

du = ∞,

which implies that R is not bounded. Recall from Subsection 2.1 that we may write Yt(1) =
Yt(0) + Xt(1) for all t ≥ 0 with (Xt(1), t ≥ 0) a CB-process independent of (Yt(0), t ≥ 0). Let
ξ := inf{t ≥ 0, Xt(1) = 0} be the extinction time of (Xt(1), t ≥ 0). Since R is not bounded,
R ∩ (ξ,∞) 6= ∅, and τ < ∞ almost surely. The same argument applies for the Feller case with
α = 2, d′ = β

2
and d = σ2

2
. �

Proof of Proposition 2. Recall that Yt(x) is the value of the CBI started at x at time t. We
will denote by τx(0) := inf {t > 0, Yt(x) = 0}. The stopping time τ 1(0) is nothing but the variable τ
studied above. In both cases (i) and (ii), the processes are self-similar, see Kyprianou & Pardo [16].
Namely, we have

(xYx1−αt(1), t ≥ 0)
law
= (Yt(x), t ≥ 0) ,

where we take α = 2 in case (i). Performing the change of variable s = x1−αt, we obtain
∫ τx(0)

0

dt Yt(x)
1−α law

=

∫ τ1(0)

0

ds Ys(1)
1−α. (10)

We proved in Proposition 1 that, depending on the values of the parameters:

• Either P(τx(0) < ∞) = 1 for every x. In particular, denoting τx(1) = inf {t > 0, Yt(x) ≤ 1},
we have P(τx(1) <∞) = 1 for every x > 1. Let x > 1.

∫ τx(0)

0

dt Yt(x)
1−α =

∫ τx(1)

0

dt Yt(x)
1−α +

∫ τx(0)

τx(1)

dt Yt(x)
1−α

By the strong Markov property applied at the stopping time τx(1),
∫ τx(0)

τx(1)

dt Yt(x)
1−α law

=

∫ τ1(0)

0

dt Ỹt(1)
1−α,

with (Ỹt(1), t ≥ 0) an independent copy started from 1. Since

P

(
∫ τx(1)

0

dt Yt(x)
1−α > 0

)

= 1,

the equality (10) is impossible unless both sides of the equality are infinite almost surely. We
thus get that C(τ) = ∞ almost surely in that case.
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• Either P(τx(0) = ∞) = 1 for every x, on which case we may rewrite (10) as follows:
∫ ∞

0

dt Yt(x)
1−α law

=

∫ ∞

0

ds Ys(1)
1−α.

Since, for x > 1, the difference (Yt(x) − Yt(1), t ≥ 0) is an α-stable CB-process started at
x− 1 > 0, we again face a contradiction, and C(τ) = ∞ almost surely again.

This proves the statement �

Remark 3.1 The situation is quite different when the CBI process starts at 0, in which case the
time change also diverges in the neighbourhood of 0. The same change of variables as in (10) yields,
for all 0 < x < k,

∫ ιx(k)

0

dt Yt(x)
1−α law

=

∫ ι1(k/x)

0

dt Yt(1)
1−α,

with ιx(k) = inf{t > 0, Yt(x) ≥ k} ∈ [0,∞]. Letting x tend to 0, we get ι1(k/x) −→ ∞ and the right
hand side diverges to infinity. Thus, the left hand side also diverges, which implies that:

P

(
∫ ι0(k)

0

dt Yt(0)
1−α = ∞

)

= 1.

Proof of Proposition 4. Let (Yt)t≥0 be a Feller branching diffusion with continuous immigration with
parameters (σ2, β). Consider an independent M-Fleming-Viot (ρt, t ≥ 0) with M = (βδ0, σ

2δ0). We
first establish that (YtρC(t), 0 ≤ t < τ) has the same law as the measure-valued branching process
(Mt, 0 ≤ t < τ). Recall that L denote the generator of (Mt, t ≥ 0) (here only the terms (1) and
(2) are considered). Consider F (η) := ψ(z)〈φ, ρ〉m with z = |η|, ψ a twice differentiable map valued
in R+ and φ a non-negative bounded measurable function. Note that the generator acting on such
functions F characterizes the law of (Mt∧τ , t ≥ 0). First we easily obtain that

F ′(η; 0) = ψ′(z)〈φ, ρ〉m +
m

z
[φ(0)〈φ, ρ〉m−1 − 〈φ, ρ〉m],

F ′′(η; a, b) = ψ′′(z)〈φ, ρ〉m +m
ψ′(z)

z

[
(φ(b) + φ(a))〈φ, ρ〉m−1 − 2〈φ, ρ〉m

]

+
m(m− 1)

z2
φ(a)[φ(b)〈φ, ρ〉m−2 − 〈φ, ρ〉m−1].

Simple calculations yield,

LF (η) =

[

z

(
σ2

2
ψ′′(z)

)

+ βψ′(z)

]

〈φ, ρ〉m

+
1

z

[

σ2m(m− 1)

2

(
〈φ2, ρ〉〈φ, ρ〉m−2 − 〈φ, ρ〉m

)
+ βm

(
φ(0)〈φ, ρ〉m−1 − 〈φ, ρ〉m

)
]

.

We recognize in the first line the generator of (Yt, t ≥ 0) and in the second, 1
z
FGf(ρ) with f(x1, ..., xm) =∏m

i=1 φ(xi) and c0 = β, c1 = σ2. We easily get that this is the generator of the Markov process
(YtρC(t), t ≥ 0) with lifetime τ . We conclude that it has the same law as (Mt∧τ , t ≥ 0). We rewrite
this equality in law as follows:

(Yt ρC(t), 0 ≤ t < τ)
law
= (|Mt| RC−1(C(t)), 0 ≤ t < τ), (11)
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with C defined by C(t) =
∫ t

0
|Ms|

−1ds for 0 ≤ t < τ on the right hand side. Since (C(t), t ≥ 0) and
(ρt, t ≥ 0) are independent on the left hand side and the decomposition in (11) is unique, we have
also (C(t), 0 ≤ t < τ) and (RC−1(t), 0 ≤ t < τ) independent on the right hand side.

Concerning the case (ii) of Theorem 3, we easily observe that the presence of jumps implies that
such a decomposition of the generator cannot hold. See for instance Equation (2.7) of [7] p344. The
processes (RC−1(t), t ≥ 0) and (Yt,≥ 0) are not independent. �

4 Genealogy of the Beta-Fleming-Viot processes with immi-

gration

To describe the genealogy associated with stable CBs, Bertoin and Le Gall [6] and Birkner et al.
[7] used partition-valued processes called Beta-coalescents. These processes form a subclass of Λ-
coalescents, introduced independently by Pitman and Sagitov in 1999. A Λ-coalescent is an exchange-
able process in the sense that its law is invariant under the action of any permutation. In words,
there is no distinction between the individuals. Although these processes arise as models of genealogy
for a wide range of stochastic populations, they are not in general adapted to describe the genealogy
of a population with immigration. Recently, a larger class of processes called M-coalescents has
been defined in [13] (see Section 5). These processes are precisely those describing the genealogy of
M-GFVIs.

Remark 4.1 We mention that the use of the lookdown construction in Birkner et al. [7] may be
easily adapted to our framework and yields a genealogy for any conservative CBI. Moreover, other
genealogies, based on continuous trees, have been investigated by Lambert [17] and Duquesne [9].

4.1 Background on M-coalescents

Before focusing on the M-coalescents involved in the context of Theorem 3, we recall their general
definition and the duality with the M-GFVIs. Contrary to the Λ-coalescents, the M-coalescents are
only invariant by permutations letting 0 at 0. The individual 0 represents the immigrant lineage
and is distinguished from the others. We denote by P0

∞ the space of partitions of Z+ := {0}
⋃
N.

We recall that by convention the blocks of a partition are enumerated in the order of their smallest
element. Let [n ] denote the set {0, ..., n} and P0

n the space of partitions of [n ]. Moreover the
partition of [n ] into singletons is denoted by 0[n ]. As in Section 2.2, the notation M stands for a
pair of finite measures (Λ0,Λ1) such that:

Λ0(dx) = c0δ0(dx) + xν0(dx), Λ1(dx) = c1δ0(dx) + x2ν1(dx).

where c0, c1 are two non-negative real numbers and ν0, ν1 are two measures on [0, 1] subject to the
same conditions as in Section 2.2. Let N0 and N1 be two Poisson point measures with intensity
respectively dt⊗ ν0 and dt⊗ ν1. An M-coalescent is a Feller process (Π(t), t ≥ 0) valued in P0

∞ with
the following dynamics.

• At an atom (t, x) of N1, flip a coin with probability of "heads" x for each block not containing
0. All blocks flipping "heads" are merged immediately in one block. At time t, a proportion x
share a common parent in the population.

• At an atom (t, x) of N0, flip a coin with probability of "heads" x for each block not containing
0. All blocks flipping "heads" coagulate immediately with the distinguished block. At time t,
a proportion x of the population is children of immigrant.

11



In order to take into account the parameters c0 and c1, imagine that at constant rate c1, two blocks
(not containing 0) merge continuously in time, and at constant rate c0, one block (not containing
0) merged with the distinguished one. We refer to Section 4.2 of [13] for a rigorous definition. Let
π ∈ P0

n, the jump rate of an M-coalescent from 0[n ] to π, denoted by qπ, is given as follows:

• If π has one block not containing 0 with k elements and 2 ≤ k ≤ n, then

qπ = λn,k :=

∫ 1

0

xk−2(1− x)n−kΛ1(dx).

• If the distinguished block of π has k + 1 elements (counting 0) and 1 ≤ k ≤ n then

qπ = rn,k :=

∫ 1

0

xk−1(1− x)n−kΛ0(dx).

The next duality property is a key result and links the M-GFVIs to the M-coalescents. For any π
in P0

∞, define

απ : k 7→ the index of the block of π containing k.

We have the duality relation (see Lemma 4 in [14]): for any p ≥ 1 and f ∈ C([0, 1]p),

E

[∫

[0,1]p+1

f(xαΠ(t)(1), ..., xαΠ(t)(p))δ0(dx0)dx1...dxp

]

= E

[∫

[0,1]p
f(x1, ..., xp)ρt(dx1)...ρt(dxp)

]

,

where (ρt, t ≥ 0) is a M-GFVI started from the Lebesgue measure on [0, 1]. We establish a useful
lemma relating genuine Λ-coalescents and M-coalescents. Consider a Λ-coalescent taking values in
the set P0

∞; this differs from the usual convention, according to which they are valued in the set P∞

of the partitions of N (see Chapters 1 and 3 of [2] for a complete introduction to these processes).
In that framework, Λ-coalescents appear as a subclass of M-coalescents and the integer 0 may be
viewed as a typical individual.

Lemma 5 A M-coalescent, with M = (Λ0,Λ1) is also a Λ-coalescent on P0
∞ if and only if

(1− x)Λ0(dx) = Λ1(dx).

In that case Λ = Λ0.

4.2 The Beta(2− α, α− 1)-coalescent

The aim of this Section is to show how a Beta(2−α, α− 1)-coalescent is embedded in the genealogy
of an α-stable CB-process conditioned to be never extinct. Along the way, we also derive the fixed
time genealogy of the Feller CBI.

We first state the following straightforward corollary of Theorem 3, which gives the genealogy of
the ratio process at the random time C−1(t):

Corollary 6 Let (Rt, t ≥ 0) be the ratio process of a CBI in case (i) or (ii). Using Theorem 3, we
get for all t ≥ 0:

E

[∫

[0,1]p+1

f(xαΠ(t)(1), ..., xαΠ(t)(p))δ0(dx0)dx1...dxp

]

= E

[∫

[0,1]p
f(x1, ..., xp)RC−1(t)(dx1)...RC−1(t)(dxp)

]

,
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• In case (i), (Π(t), t ≥ 0) is a M-coalescent with M = (βδ0, σ
2δ0),

• In case (ii), (Π(t), t ≥ 0) is a M-coalescent with M = (c′Beta(2− α, α− 1), cBeta(2− α, α)).

In general, we cannot set the random quantity C(t) instead of t in the equation of Corollary
6. Nevertheless, using the independence property proved in Proposition 4, we get the following
Corollary.

Corollary 7 In case (i) of Theorem 3, assume β
σ2 ≥ 1

2
, then for all t ≥ 0,

E

[∫

[0,1]p+1

f(xαΠ(C(t))(1), ..., xαΠ(C(t))(p))δ0(dx0)dx1...dxp

]

= E

[∫

[0,1]p
f(x1, ..., xp)Rt(dx1)...Rt(dxp)

]

,

where (Π(t), t ≥ 0) is a M-coalescent with M = (βδ0, σ
2δ0), (C(t), t ≥ 0) =

(∫ t

0
1
Ys
ds, t ≥ 0

)

and

(Yt, t ≥ 0) is independent of (Π(t), t ≥ 0).

We stress on a fundamental difference between Corollaries 6 and 7: whereas the first gives the
genealogy of the ratio process R at the random time C−1(t), the second gives the genealogy of the
ratio process R at a fixed time t. Notice that we impose the additional assumption that β

σ2 ≥ 1
2

in
Corollary 7 for ensuring that the lifetime is infinite. Therefore, Rt 6= ∆ for all t ≥ 0, and we may
consider its genealogy. Lemma 5 will allow us to establish our last result.

Theorem 8 (i) If the process (Yt, t ≥ 0) is a CBI such that σ2 = β, ν̂1 = ν̂0 = 0, then the process
(Π(t/σ2), t ≥ 0) defined in Corollary 6 is a Kingman’s coalescent valued in P0

∞.

(ii) If the process (Yt, t ≥ 0) is a CBI such that σ2 = β = 0 and ν̂0(dh) = ch−αdh, ν̂1(dh) =
ch−α−1dh for some constant c > 0 then the process (Π(t/c), t ≥ 0) defined in Corollary 6 is a
Beta(2 − α, α− 1)-coalescent valued in P0

∞.

In both cases, the process (Yt, t ≥ 0) involved in that Theorem may be interpreted as a CB-process
(Xt, t ≥ 0) without immigration (β = 0 or c′ = 0) conditioned on non-extinction, see Lambert [18].
We then notice that both the genealogies of the time changed Feller diffusion and of the time changed
Feller diffusion conditioned on non extinction are given by the same Kingman’s coalescent. On the
contrary, the genealogy of the time changed α-stable CB-process is a Beta(2 − α, α)-coalescent,
whereas the genealogy of the time changed α-stable CB-process conditioned on non-extinction is a
Beta(2−α, α− 1)-coalescent. We stress that for any α ∈ (1, 2) and any borelian B of [0, 1], we have
Beta(2−α, α− 1)(B) ≥ Beta(2−α, α)(B). This may be interpreted as the additional reproduction
events needed for the process to never extinct.

4.3 Proofs.

Proof of Corollary 7. We first write:

E

[∫

[0,1]p
f(x1, ..., xp)Rt(dx1)...Rt(dxp)

]

= E

[∫

[0,1]p
f(x1, ..., xp)RC−1(C(t))(dx1)...RC−1(C(t))(dxp)

]

.

Then, using the independence between RC−1 and C, the right hand side above is also equal to
∫

P(C(t) ∈ ds) E

[∫

[0,1]p
f(x1, ..., xp)RC−1(s)(dx1)...RC−1(s)(dxp)

]

.
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And using Corollary 6, we have
∫

P(C(t) ∈ ds) E

[∫

[0,1]p
f(x1, ..., xp)RC−1(s)(dx1)...RC−1(s)(dxp)

]

=

∫

P(C(t) ∈ ds) E

[∫

[0,1]p+1

f(xαΠ(s)(1), ..., xαΠ(s)(p))δ0(dx0)dx1...dxp

]

= E

[∫

[0,1]p+1

f(xαΠ(C(t))(1), ..., xαΠ(C(t))(p))δ0(dx0)dx1...dxp

]

.

The last equality holds by independence of (Π(t), t ≥ 0) and (C(t), t ≥ 0).�

Remark 4.2 Notice the crucial rôle of the independence in order to establish Corollary 7. When
this property fails, as in the stable case, we can no more perform the same manipulations and the
question of describing the fixed time genealogy of the α-stable CB or CBI remains open. We refer to
the discussion in Section 2.2 of Berestycki et. al [1].

The proof of Theorem 8 is a straightforward application of Lemma 5. Indeed, we easily check that
the M-coalescents for which M = (σ2δ0, σ

2δ0) and M = (cBeta(2−α, α− 1), cBeta(2−α, α)) fulfill
the conditions of Lemma 5. Therefore, we only have to establish this lemma.

Proof of Lemma 5. Let (Π′(t), t ≥ 0) be a Λ-coalescent on 0
∞. Let n ≥ 1, we may express the

jump rate of (Π′
| [n ](t), t ≥ 0) from 0[n ] to π by

q′π =







0 if π has more than one non-trivial block

∫

[0,1]
xk(1− x)n+1−kx−2Λ(dx) if the non trivial block has k elements.

Consider now a M-coalescent, denoting by qπ the jump rate from 0[n ] to π, we have

qπ =







0 if π has more than one non-trivial block

∫

[0,1]
xk(1− x)n−kx−2Λ1(dx) if π0 = {0} and the non trivial block has k elements

∫

[0,1]
xk−1(1− x)n+1−kx−1Λ0(dx) if #π0 = k.

Since the law of a Λ-coalescent is entirely described by the family of the jump rates of its restriction
on [n ] from 0[n ] to π for π belonging to P0

n (see Section 4.2 of [3]), the processes Π and Π′ have
the same law if and only if for all n ≥ 0 and π ∈ P0

n, we have qπ = q′π, that is if and only if
(1− x)Λ0(dx) = Λ1(dx). �

5 Proof of Theorem 3

Recall the statement of Theorem 3. In order to get the connection between the two measure-valued
processes (Rt, t ≥ 0) and (Mt, t ≥ 0), we may follow the ideas of Birkner et al. [7] and rewrite the
generator of the process (Mt, t ≥ 0) using the "polar coordinates": for any η ∈ Mf , we define

z := |η| and ρ :=
η

|η|
.

The proof relies on four lemmas. Lemmas 9, 10 and 12 allow us to study the generator L on the
class of functions of the type F : η 7→ Gf(ρ). We recall that this class forms a core for the M-GFVI
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processes. Lemma 11 (lifted from Lemma 3.5 of [7]) relates stable Lévy-measures and Beta-measures.
We end the proof using results on time change by the inverse of an additive functional. We conclude
thanks to a result due to Volkonskĭı in [24] about the generator of a time-changed process.

Lemma 9 Assume that ν̂0 = ν̂1 = 0 and b = 0, the generator L of (Mt, t ≥ 0) is reduced to the
expressions (1) and (2):

LF (η) = σ2/2

∫ 1

0

∫ 1

0

η(da)δa(db)F
′′(η; a, b) + βF ′(η; 0)

Let f be a continuous function on [0, 1]m and F be the map η 7→ Gf (ρ) := 〈f, ρ⊗m〉. We have the
following identity

|η|LF (η) = FGf(ρ),

where F is the generator of a Fleming-Viot process with immigration with reproduction rate c1 = σ2

and immigration rate c0 = β, see expressions (1’) and (2’).

Proof. By the calculations in Section 4.3 of Etheridge [10] (but in a non-spatial setting, see also the
proof of Theorem 2.1 p. 249 of Shiga [23]), we get:

σ2

2

∫ 1

0

∫ 1

0

η(da)δa(db)F
′′(η; a, b) = |η|−1σ

2

2

∫ 1

0

∫ 1

0

∂2Gf

∂ρ(a)∂ρ(b)
(ρ)[δa(db)− ρ(db)]ρ(da)

= |η|−1σ2
∑

1≤i<j≤m

∫

[0,1]p
[f(xi,j)− f(x)]ρ⊗m(dx).

We focus now on the immigration part. We take f a function of the form f : (x1, ..., xm) 7→
∏m

i=1 φ(xi)
for some function φ, and consider F (η) := Gf(ρ) = 〈f, ρ⊗m〉. We may compute:

F (η + hδa)− F (η) =

〈

φ,
η + hδa
z + h

〉m

− 〈φ, ρ〉m

=

m∑

j=2

(
m

j

)(
z

z + h

)m−j (
h

z + h

)j

[〈φ, ρ〉m−jφ(a)j − 〈φ, ρ〉m] (⋆)

+m

(
z

z + h

)m−1(
h

z + h

)

[〈φ, ρ〉m−1φ(a)− 〈φ, ρ〉m] (⋆⋆).

We get that:
F ′(η; a) =

m

z

[
φ(a)〈φ, ρ〉m−1 − 〈φ, ρ〉m

]
.

Thus,

F ′(η; 0) = |η|−1
∑

1≤i≤m

∫

[0,1]p
[f(x0,i)− f(x)]ρ⊗m(dx) and

∫

F ′(η; a)η(da) = 0 (12)

for such function f . Now, we observe that the map f 7→ Gf is linear. Therefore, equation (12) holds
true for linear combinations of these functions f . But, from the Stone-Weierstrass theorem, any
symmetric continuous map from [0, 1]m to R can be uniformly approximated by linear combinations
of these functions. We now take f symmetric and continuous, and let fk be an approximating
sequence. We want to prove that (12) holds for f , knowing it holds for each fk. We begin with the
first identity of (12). The following computation identifies the limit of the right hand side:

∑

1≤i≤m

∫

[0,1]m
[fk(x

0,i)− fk(x)]ρ
⊗m(dx) −→

k→∞

∑

1≤i≤m

∫

[0,1]m
[f(x0,i)− f(x)]ρ⊗m(dx).
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For dealing with the left hand side, we introduce:

∆a
hF :=

1

h
[F (η + hδa)− F (η)].

Since the function fk − f is symmetric, we may expand the m-fold product
〈

fk − f,
(
η+hδa
z+h

)⊗m
〉

as

follows:
〈

fk − f,

(
η + hδa
z + h

)⊗m
〉

=

m∑

i=0

(
m

i

)(
h

z + h

)i
〈

fk − f,

(
η

z + h

)⊗m−i

⊗ δ⊗i
a

〉

=

〈

fk − f,

(
η

z + h

)⊗m
〉

+

m∑

i=1

(
m

i

)(
h

z + h

)i
〈

fk − f,

(
η

z + h

)⊗m−i

⊗ δ⊗i
a

〉

.

We use here the notation

〈g, µ⊗m−i ⊗ δ⊗i
a 〉 :=

∫

g(x1, ..., xm−i, a, ..., a
︸ ︷︷ ︸

i terms

)µ(dx1)...µ(dxm−i).

An easy calculation yields

∆a
hFk −∆a

hF =
1

h

[〈

fk − f,

(
η + hδa
z + h

)⊗m
〉

− 〈fk − f, ρ⊗m〉

]

.

For any continuous map f on [0, 1]m, we denote by ||f ||∞ its supremum. On the one hand, we have
∣
∣
∣
∣
∣

〈

fk − f,

(
η

z + h

)⊗m
〉

−
〈
fk − f, ρ⊗m

〉

∣
∣
∣
∣
∣
=
∣
∣[(z + h)−m − z−m]〈fk − f, η⊗m〉

∣
∣

≤
h

zm
|〈fk − f, η⊗m〉| ≤ h||fk − f ||∞.

On the other hand, we have
∣
∣
∣
∣
∣

m∑

i=1

(
m

i

)(
h

z + h

)i
〈

fk − f,

(
η

z + h

)⊗m−i

⊗ δ⊗i
a

〉∣
∣
∣
∣
∣
≤

m∑

i=1

(
m

i

)

hi||fk − f ||∞.

Dividing both expressions by h ∈ (0, 1], we get:

|∆a
hFk −∆a

hF | ≤ ||fk − f ||∞ +

m∑

i=1

(
m

i

)

hi−1||fk − f ||∞ ≤ 2m||fk − f ||∞

and thus,
sup

h∈(0,1]

|∆a
hFk −∆a

hF | −→
k→∞

0.

We may therefore exchange the limits when h tends to 0 and k goes to ∞ and we finally identifies
the limit of the right hand side as: lim

k→∞
F ′
k(η; a) = F ′(η; a). We have that the first identity of (12)

holds for any symmetric continuous function. The quantity F ′
k(η; a) is bounded, and appealing to the

Lebesgue Theorem, we get that the second identity of (12) also holds for any symmetric continuous
function.
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Now, for any continuous function f , we have Gf = Gf̃ where f̃ is the symmetrised version of f . We
thus get (12) for the continuous functions also. Recalling (1’) and (2’), we then have the factorization

LF (η) = |η|−1FGf(ρ)

where F is the generator of a Fleming-Viot process with immigration with reproduction rate c1 = σ2

and immigration rate c0 = β. This proves the Lemma.�

This first lemma will allow us to prove the case (i) of Theorem 3. We now focus on the case
(ii). Assuming that σ2 = β = 0, the generator of (Mt, t ≥ 0) reduces to

LF (η) = L0F (η) + L1F (η) (13)

where, as in equations (3) and (4) of Subsection 2.1,

L0F (η) =

∫ ∞

0

ν̂0(dh)[F (η + hδ0)− F (η)]

L1F (η) =

∫ 1

0

η(da)

∫ ∞

0

ν̂1(dh)[F (η + hδa)− F (η)− hF ′(η, a)].

The following lemma is a first step to compute the generator of (Rt, t ≥ 0) in the purely discontinuous
case.

Lemma 10 Let f be a continuous function on [0, 1]m and F be the map η 7→ Gf (ρ) := 〈f, ρ⊗m〉.
Recall the notation ρ := η/|η| and z = |η|. We have the identities:

L0F (η) =

∫ ∞

0

ν̂0(dh)

[

Gf

(

[1−
h

z + h
]ρ+

h

z + h
δ0

)

−Gf(ρ)

]

L1F (η) = z

∫ ∞

0

ν̂1(dh)

∫ 1

0

ρ(da)

[

Gf

(

[1−
h

z + h
]ρ+

h

z + h
δa

)

−Gf(ρ)

]

.

Proof. The identity for L0 is plain, we thus focus on L1. In the same manner as in Lemma 9, we
begin by considering a function f of the form

∏m
i=1 φ(xi). As checked in Lemma 2 for F (η) = Gf(ρ),

we have F ′(η; a) = m
z
[〈φ, ρ〉m−1φ(a)− 〈φ, ρ〉m] and then

∫

ρ(da)

[

m

(
z

z + h

)m−1(
h

z + h

)

[〈φ, ρ〉m−1φ(a)− 〈φ, ρ〉m]− hF ′(η; a)

]

= 0.

The map h 7→
∫ 1

0
ρ(da)[F (η+hδa)−F (η)−hF ′(η, a)] is then integrable with respect to the measure

ν̂1. This allows us to interchange the integrals and yields:

L1F (η) = z

∫ ∞

0

ν̂1(dh)

∫ 1

0

ρ(da)

[

Gf

(
η + hδa
z + h

)

−Gf (ρ)

]

. (14)

for this function f . Once again, we may extend the validity of (14) to linear combinations of such
functions f . We thus take f symmetric and continuous and approach it uniformly through such
linear combinations fk (thanks to Stone-Weierstrass theorem) for which equality (14) holds:

L1Fk(η) = z

∫ ∞

0

ν̂1(dh)

∫ 1

0

ρ(da)

[

Gfk

(
η + hδa
z + h

)

−Gfk(ρ)

]

, (15)
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with the notation Fk = Gfk . We first identify the limit in the right hand side of (15). We note that,
from the uniform convergence of (fk) to f ,

lim
k→∞

∫ 1

0

ρ(da)

[

Gfk

(
η + hδa
z + h

)

−Gfk(ρ)

]

=

∫ 1

0

ρ(da)

[

Gf

(
η + hδa
z + h

)

−Gf(ρ)

]

.

Now, the term (⋆), which may be found in the computation of Lemma 2, yields the following bound:

∫

[0,1]

ρ(da)

[

Gfk

(
η + hδa
z + h

)

−Gfk(ρ)

]

≤

(
h

h+ z

)2

H(fk)

where H(fk) := 2m (||fk||∞ − 〈fk, ρ
⊗m〉)+ converges to H(f), and is thus bounded. Right hand side

of the last inequality is then integrable with respect to the measure ν̂1. This allows us to apply
Lebesgue’s theorem:

lim
k→∞

z

∫ ∞

0

ν̂1(dh)

∫ 1

0

ρ(da)

[

Gfk

(
η + hδa
z + h

)

−Gfk(ρ)

]

= z

∫ ∞

0

ν̂1(dh)

∫ 1

0

ρ(da)

[

Gf

(
η + hδa
z + h

)

−Gf(ρ)

]

.

It remains to identify the limit in the left hand side of (15). Recall equation (3). Uniform convergence
of fk towards f together with the convergence of F ′

k(η, a) to F ′(η, a) ensure pointwise convergence
inside the integral. We now look for a domination in order to apply Lebesgue’s theorem. In the
integral with respect to the measure ν̂1, the term (⋆⋆) in Fk(η + hδa) − Fk(η) is compensated by
hF ′

k(η, a), namely their difference is bounded by C h2

z(z+h)
for some constant C > 0. Moreover, the

term (⋆) is bounded by C
(

h
z+h

)2
. Since both quantities are bounded by C(h2 ∧ h) with a constant

C independent of k, we finally get that:

lim
k→∞

L1Fk = L1F.

Uniqueness of the limit allows us to conclude that (14) holds for symmetric and continuous function,
and the same argument as in Lemma 2 finally yields (14) for every continuous function. �

The previous lemma leads us to study the images of the measures ν̂0 and ν̂1 by the map φz :
h 7→ r := h

h+z
, for every z > 0. Denote λ0z(dr) = ν̂0 ◦φ

−1
z and λ1z(dr) = ν̂1 ◦φ

−1
z . The following lemma

is lifted from Lemma 3.5 of [7]:

Lemma 11 There exist two measures ν0, ν1 such that λ0z(dr) = s0(z)ν0(dr) and λ1z(dr) = s1(z)ν1(dr)
for some maps s0, s1 from R+ to R if and only if for some α ∈ (0, 2), β ∈ (0, 1) and c, c′ > 0:

ν̂1(dx) = cx−1−αdx, ν̂0(dx) = c′x−1−βdx.

In this case:

s1(z) = z−α, ν1(dr) = r−2cBeta(2− α, α)(dr)

and

s0(z) = z−β, ν0(dr) = r−1c′Beta(1 − β, β)(dr).

Proof. The necessary part is given by the same arguments as in Lemma 3.5 of [7]. We focus on the
sufficient part. Assuming that ν̂0, ν̂1 are as above, we have

• λ1z(dr) = cz−αr−1−α(1− r)−1+αdr = z−αr−2cBeta(2 − α, α)(dr), and thus s1(z) = z−α.
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• λ0z(dr) = c′z−βr−1−β(1− r)−1+βdr = z−βr−1c′Beta(1 − β, β)(dr) and thus s0(z) = z−β. �

The next lemma allows us to deal with the second statement of Theorem 3.

Lemma 12 Assume that σ2 = β = 0, ν̂0(dh) = ch−α1h>0dh and ν̂1(dh) = ch−1−α1h>0dh. Let f be
function on [0, 1]m, and F be the map η 7→ Gf(ρ). We have

|η|α−1LF (η) = FGf(ρ),

where F is the generator of a M-Fleming-Viot process with immigration, with M = (c′Beta(2 −
α, α− 1), cBeta(2− α, α)), see expressions (3′), (4′).

Proof. Recall equation (13):
LF (η) = L0F (η) + L1F (η)

Recall from Lemma 9 that we have
∫ 1

0
F ′(η; a)η(da) = 0 for F (η) = Gf (ρ). Applying Lemma 10 and

Lemma 11, we get that in the case σ2 = β = 0 and ν̂1(dx) = cx−1−αdx, ν̂0(dx) = c′x−1−βdx:

LF (η) = LGf(ρ) = s0(z)

∫ 1

0

r−1c′Beta(1 − β, β)(dr)[Gf((1− r)ρ+ rδ0)−Gf(ρ)]

+ zs1(z)

∫ 1

0

r−2cBeta(2− α, α)(dr)

∫ 1

0

ρ(da)[Gf ((1− r)ρ+ rδa)−Gf(ρ)].

Recalling the expressions (3’), (4’), the factorization h(z)LF (η) = FG(ρ) holds for some function h
if

s0(z) = zs1(z),

if β = α− 1. In that case, h(z) = zα−1. �

To treat the case (i), replace α by 2 in the sequel. The process (Yt, Rt)t≥0 with lifetime τ has
the Markov property. The additive functional C(t) =

∫ t

0
1

Y α−1
s

ds maps [0, τ) to [0,∞). From Theo-
rem 65.9 of [22] and Proposition 2, the process (YC−1(t), RC−1(t))t≥0 is a strong Markov process with
infinite lifetime. Denote by U the generator of (Yt, Rt)t≥0. As explained in Birkner et al. [7] (Equa-
tion (2.6) p314), the law of (Yt, Rt)t≥0 is characterized by U acting on the following class of test
functions:

(z, ρ) ∈ R+ ×M1 7→ F (z, ρ) := ψ(z)Gf (ρ)

for f a continuous function on [0, 1]m, m ≥ 1 and ψ a twice differentiable non-negative map. Theorem
3 of Volkonskĭı, see [24] (or Theorem 1.4 Chapter 6 of [11]) states that the Markov process with
generator

ŨF (z, ρ) := zα−1UF (z, ρ)

coincides with (YC−1(t), RC−1(t))t≥0. We establish now that (RC−1(t), t ≥ 0) is a Markov process with
the same generator as the Fleming-Viot processes involved in Theorem 3. Let G(z, ρ) = Gf(ρ). In
both cases (i) and (ii) of Theorem 3, we have:

zα−1UG(z, ρ) = zα−1LF (η) with F : η 7→ Gf (ρ)

= FGf(ρ).

First equality holds since we took ψ ≡ 1 and the second uses Lemma 9 and Lemma 12. Since it
does not depend on z, the process (RC−1(t), t ≥ 0) is a Markov process, moreover it is a generalized
Fleming-Viot process with immigration with parameters as stated. �
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