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We study asymptotically harmonic manifolds of negative curvature, without any cocompactness or homogeneity assumption. We show that asymptotic harmonicity provides a lot of information on the asymptotic geometry of these spaces: in particular, we determine the volume entropy, the spectrum and the relative densities of visual and harmonic measures on the ideal boundary. Then, we prove an asymptotic analogue of the classical mean value property of harmonic manifolds, and we characterize asymptotically harmonic manifolds, among Cartan-Hadamard spaces of strictly negative curvature, by the existence of an asymptotic equivalent τ (u)e Er for the volume-density of geodesic spheres (with τ constant in case DRM is bounded). Finally, we show the existence of a Margulis function, and explicitly compute it, for all asymptotically harmonic manifolds.

Introduction

Harmonic manifolds are those Riemannian manifolds whose geodesic spheres have constant mean curvature; equivalently, such that the volume density function, in normal coordinates at any point x, only depends on the distance d(x, •). Another equivalent condition is that the mean-value property

F (x 0 ) = 1 vol(S x0 (R)) Sx 0 (R) F (x)dv Sx 0 (R)
holds for all harmonic functions F on M (cf. [START_REF] Besse | Manifolds all of whose geodesics are closed, volume 93 of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]). In 1944, A. Lichnerowicz conjectured (and proved in dimension 4) that the rank one symmetric spaces (denoted ROSS, in the sequel) are the only harmonic manifolds. If this was proved to be true for compact simply connected manifolds (cf. [START_REF] Szabó | The Lichnerowicz conjecture on harmonic manifolds[END_REF]) and for negatively curved Cartan-Hadamard manifolds admitting compact quotients (cf. [START_REF] Besson | Entropies et rigidités des espaces localement symétriques de courbure strictement négative[END_REF] section 9.C), E. Damek and F. Ricci constructed harmonic homogeneous manifolds which are not ROSS (cf. [START_REF] Damek | A class of nonsymmetric harmonic Riemannian spaces[END_REF]). Since then, J. Heber proved that Damek-Ricci spaces and ROSS are the only homogeneous harmonic manifolds (cf. [START_REF] Heber | On harmonic and asymptotically harmonic homogeneous spaces[END_REF]), and then further relations between harmonicity, volume growth and Gromov hyperbolicity have been studied (cf. [START_REF] Ranjan | Harmonic manifolds with minimal horospheres[END_REF][START_REF] Knieper | New results on noncompact harmonic manifolds[END_REF]).

In several of these works, an asymptotic version of harmonicity naturally appears (cf. [START_REF] Foulon | Sur les variétés compactes asymptotiquement harmoniques[END_REF][START_REF] Heber | On harmonic and asymptotically harmonic homogeneous spaces[END_REF]) : a Cartan-Hadamard manifold M is asymptotically harmonic if its horospheres have constant mean curvature h. This notion was introduced by F. Ledrappier in [START_REF] Ledrappier | Harmonic measures and Bowen-Margulis measures[END_REF], and was mainly studied in the cocompact case (i.e. when the space admits compact quotients). F. Ledrappier proved that, within these spaces, asymptotic harmonicity is equivalent to the condition

1 inf σ(∆) = E 2
4 (where σ(∆) denotes the spectrum of the Laplacian of M , and E its volume-entropy); moreover, he showed that if M is asymptotically harmonic, then E = nh and inf σ(∆) = n 2 h 2 4 . It was then proved (as a consequence of the work of Y. Benoist, P. Foulon and F. Labourie on the geodesic flow of asymptotically harmonic spaces [START_REF] Benoist | Flots d'Anosov à distributions stable et instable différentiables[END_REF][START_REF] Foulon | Sur les variétés compactes asymptotiquement harmoniques[END_REF] and the characterization of locally symmetric spaces by their volume entropy due to G. Besson, G. Courtois and S. Gallot [START_REF] Besson | Entropies et rigidités des espaces localement symétriques de courbure strictement négative[END_REF]) that the ROSS are the only asymptotically harmonic manifolds among cocompact, negatively curved Cartan-Hadamard spaces. On the other hand, in [START_REF] Connell | Asymptotic harmonicity of negatively curved homogeneous spaces and their measures at infinity[END_REF] necessary and sufficient conditions are given in order that a homogeneous, negatively curved Cartan-Hadamard manifold is asymptotically harmonic; however, as far as the authors know, the problem whether any asymptotically harmonic manifold is a ROSS or a Damek-Ricci space is still open in this class. Recently, it was also proved that, in dimension 3, the only asymptotically harmonic Cartan-Hadamard manifold of strictly negative curvature is the hyperbolic space (cf. [START_REF] Heber | Asymptotically harmonic spaces in dimension 3[END_REF][START_REF] Schroeder | On 3-dimensional asymptotically harmonic manifolds[END_REF]).

The aim of this paper is to show that, for Cartan-Hadamard manifolds of strictly negative curvature of any dimension, even without any cocompactness or homogeneity assumption, asymptotic harmonicity provides a lot of information on the asymptotic geometry. In view of [START_REF] Ledrappier | Harmonic measures and Bowen-Margulis measures[END_REF], we are naturally interested in the volume entropy, the spectrum and the relations between visual and harmonic measures on the ideal boundary of a general asymptotically harmonic manifold. In particular, in section §3, we show rigidity of Cartan-Hadamard asymptotically harmonic manifolds under suitable curvature bounds (Corollary 3.7), we determine the volume entropy and the spectrum (cf. Theorems 3.3 & 3.4) and, when the curvature is negatively pinched, we find sharp upper and lower bounds for the volume-growth of the horospheres (Theorem 3.8 and ff. Remarks 3.9 & 3.10). Moreover, we prove an asymptotic analogue of the classical mean-value property holding on harmonic manifolds (Theorem 3.11). In section §4, we characterize asymptotically harmonic manifolds as those manifolds whose volume form, in normal coordinates, is asymptotically equivalent to a function τ (u)e ER , for some positive function τ on SM (Theorem 4.1); then, we show that the function τ is constant if DR M (the derivative of the Riemann tensor) is bounded (Proposition 4. 3(ii)). In §5 we prove the existence of a Margulis function (Proposition 5.2), we explicitly compute it for all asymptotically harmonic manifolds, and we find the relative densities of visual and harmonic measures on the ideal boundary (Proposition 5.1); we also show that they coincide when DR M is bounded. This result is to compare to what is known in the cocompact and homogeneous cases, where coincidence of two of the three natural families of measures on the ideal boundary (visual, harmonic and Patterson-Sullivan measures) forces, respectively in the two cases, symmetry and asymptotic harmonicity of the manifold (cf. [START_REF] Ledrappier | Harmonic measures and Bowen-Margulis measures[END_REF][START_REF] Ledrappier | Ergodic properties of the stable foliations[END_REF][START_REF] Yue | Brownian motion on Anosov foliations and manifolds of negative curvature[END_REF][START_REF] Yue | Rigidity and dynamics around manifolds of negative curvature[END_REF][START_REF] Connell | Asymptotic harmonicity of negatively curved homogeneous spaces and their measures at infinity[END_REF]); unfortunately, a similar characterization for general asymptotically harmonic Cartan-Hadamard manifolds is still missing.

The main tools we use are a comparison lemma for the second fundamental forms of two tangent spheres, which is proved in section 2, and the Riccati equation. The first section is devoted to notations and preliminary results.

Notations

Unless otherwise stated, throughout all the paper (M, g) will always be a Cartan-Hadamard manifold (CH-manifold, for short) of dimension n+1, i.e. a complete, simply connected Riemanniann manifold with nonpositive curvature.

The ideal boundary of M , denoted ∂ ∞ M , is the set of equivalent classes of geodesic rays, γ and σ being equivalent if sup{d(γ(t), σ(t)) | t ≥ 0} < ∞ (cf. [START_REF] Bridson | of Grundlehren der Mathematischen Wissenschaften[END_REF] definition II.8.1). For ξ ∈ ∂ ∞ M , lim t→+∞ γ(t) = ξ will mean that ξ is the equivalence class defined by γ. The cone topology turn M ∪ ∂ ∞ M into a compact manifold with boundary (cf [START_REF] Bridson | of Grundlehren der Mathematischen Wissenschaften[END_REF] definition II.8.6).

For ξ ∈ ∂ ∞ M and x ∈ M , the Busemann function b ξ,x , centered at ξ and vanishing at x, is defined by b ξ,x (y) = lim t→+∞ (d(y, γ(t))t), where γ is the unique geodesic such that γ(0) = x and lim t→+∞ γ(t) = ξ. Two Busemann functions centered in the same point at infinity differ from a constant ; in many situations, we only need to know the Busemann functions up to a constant, and we shall note b ξ some Busemann function centered in ξ. Busemann functions are Lipschitz and, on CH-manifolds, they are at least C 2 , cf. [START_REF] Heintze | Geometry of horospheres[END_REF].

The

horospheres centered in ξ ∈ ∂ ∞ M are the level hypersurfaces of b ξ : H ξ (t) = {x ∈ M | b ξ (x) = t};
we shall also use the convenient notation H ξ (x) for the horosphere centred at ξ and passing through x. As the Busemann functions are limit of distance functions, the horospheres centered in ξ are (locally) limit of spheres whose centers tends to ξ. Since |∇b ξ | = 1 and the gradient lines of b ξ are the geodesics γ such that lim t→-∞ γ(t) = ξ, we can define the inner unit vector field of horospheres centred at ξ as ν = -∇b ξ (i.e. ν points towards the center ξ of the horosphere).

For a general hypersurface N of M , A N denotes its second (vector valued) fundamental form ; that is, for u, v ∈ T x N , A N (u, v) is the component of D M u V normal to N , where D M is the connection of M and V extends v in a neighborhood of x. Associated to the choice of a unit normal vector field ν to N we then have the second (scalar) fundamental form A N = A N , ν and the shape operator

A N ∈ End(T x N ), defined by A N u, v = D M u ν, v = -A N (u, v), ν . The mean curvature vector of N at x is h N (x) = 1 n T r A N (x), while the (scalar) mean curvature, associated with ν, is h N = h N , ν .
A manifold M is called asymptotically harmonic if all its horospheres have constant mean curvature h. The curvature of M being nonpositive, the horospheres are convex and we have f ≥ 0 when choosing ν pointing to the center of the horosphere.

Hessian and Laplacian of Busemann functions

The second fundamental form naturally appears when restricting a function to a submanifold : Proposition 1.1. Let i : N → M be an isometric immersion, let F : M → R be a smooth function and let f = F |N be its restriction to N .

For all x ∈ N and all u, v ∈ T x N we have

(Hess N f )(u, v) = (Hess M F )(u, v) + ∇ M F, A N (u, v)
Proof. The proof is standard.

As a consequence, the Hessian of the Busemann function is given by the second scalar fundamental form of its horospheres, with respect to the inner normal vector field ν; taking the trace we get ∆b ξ (y) = -T r(Hess y b ξ ) = -nh ξ (y), where h ξ (y) is the mean curvature at y of the horosphere centered in ξ passing through y, with respect to ν. (Similarly, the second fundamental form of spheres is the Hessian of the distance function to the center and the Laplacian of the distance from a point x gives the mean curvature of the spheres centered in x).

It follows, by the regularity theory of solutions of elliptic equations, that for asymptotically harmonic manifolds Busemann functions and horospheres are at least as regular as the metric (whereas they are known to be real analytic on harmonic manifolds, cf. [START_REF] Ranjan | Busemann functions in harmonic manifolds[END_REF]). Moreover, it is then straightforward to check that, for any asymptotically harmonic manifold M with horospheres of mean curvature h, the function f (y) = e -nhb ξ (y) is harmonic.

The Riccati equation

Let ξ ∈ ∂ ∞ M and γ be a geodesic such that lim t→-∞ γ(t) = ξ. For each t, let A ξ (t) be the shape operator of the horosphere centered in ξ passing through γ(t), with respect to the inner unit vector field ν = -∇b ξ = -γ ′ (t); this family of operators satisfies the Riccati equation (cf. [START_REF] Karcher | Riemannian comparison constructions[END_REF] §1.3):

A ′ ξ (t) + A 2 ξ (t) + R M ( γ(t), .) γ(t) = 0 (1.1)
where R M is the Riemann tensor of M .

Comparison of spheres on CH-manifolds

In the sequel, we note M n (-a 2 ) the simply connected Riemannian manifold with constant sectional curvature -a 2 , and we shall note C a and cot a the functions defined by:

C a (s) = 1 a 2 (cosh(as) -1) if a > 0 s 2 2
if a = 0 and cot a (s) = a coth(as) if a > 0

1 s if a = 0

Comparison of triangles

When assuming a sectional curvature upper bound K M ≤ -a 2 for M , the classical Toponogov theorem (cf. [START_REF] Karcher | Riemannian comparison constructions[END_REF]) implies that, given two edges of a triangle in M with angle α at the common vertex, then the third edge is larger than the one of a triangle in the model space M 2 (-a 2 ) with the same lengths for the first two edges and the same angle at the common vertex. The following lemma is a slight modification of this result, where we compare the ratio of (some function of) the lengths of the third edge and of an "intermediate edge".

Lemma 2.1 (Triangle comparison with curvature upper bound). Let M be a CH-manifold with K M ≤ -a 2 ≤ 0. Let (xyz) and (xỹ z) be triangles in M and M 2 (-a 2 ) respectively, such that r 1 = d(x, y) = d(x, ỹ), r 2 = d(x, z) = d(x, z) and α = ∠ x (y, z) = ∠ x(ỹ, z). Moreover, for θ ∈]0, 1[ let p, q and p, q be respectively the points on the geodesic segments xy, xz and xỹ, xz such that d(x, p) = d(x, p) = θr 1 and d(x, q) = d(x, q) = θr 2 (cf. figure 1). Then:

C a (d(y, z)) C a (d(p, q)) ≥ C a (d(ỹ, z)) C a (d(p, q)) = F a (r 1 , r 2 , α, θ).
Remark 2.2. By the cosine formula in M 2 (-a 2 ) (cf. [START_REF] Bridson | of Grundlehren der Mathematischen Wissenschaften[END_REF] proposition I.2.7) we know that the right-hand side of the above inequality only depends on the lengths r 1 , r 2 , α and θ, whence the existence of the function F a . When a = 0 we have F 0 = 1 θ 2 and lemma 2.1 is a direct consequence of the convexity of the distance function in CAT (0)-spaces (cf. [START_REF] Bridson | of Grundlehren der Mathematischen Wissenschaften[END_REF] proposition II.2.2).

When a > 0 we find :

F a (r 1 , r 2 , α, θ) = cosh(ar 1 ) cosh(ar 2 ) -sinh(ar 1 ) sinh(ar 2 ) cos(α) -1 cosh(aθr 1 ) cosh(aθr 2 ) -sinh(aθr 1 ) sinh(aθr 2 ) cos(α) -1 .

An important point in the proof of lemma 2.1 is that, whenever θ ≤ 1, the function F a is nondecreasing with respect to α.

Proof of lemma 2.1. First consider a comparison triangle (xȳ z) in M 2 (-a 2 ), that is such that d(x, ȳ) = r 1 , d(x, z) = r 2 , and d(ȳ, z) = d(y, z). Define p, q to be the points on the geodesic segments xȳ and xz respectively, such that d(x, p) = θr 1 , d(x, q) = θr 2 , and let ᾱ = ∠ x(ȳ, z). By Toponogov theorem, we have d(p, q) ≥ d(p, q) and ᾱ ≥ α. Using these inequalities and remark 2.2 we

y z q p α ᾱ ȳ q p z p q α x z ỹ x x (xȳz) in M 2 (-a 2 ) (xỹ z) in M 2 (-a 2 ) (xyz) in M Figure 1: comparison triangles have C a (d(y, z)) C a (d(p, q)) ≥ C a (d(y, z)) C a (d(p, q)) = F a (r 1 , r 2 , ᾱ, θ) ≥ F a (r 1 , r 2 , α, θ) = C a (d(ỹ, z)) C a (d(p, q))
A similar inequality holds for CH-manifolds with curvature lower bound:

Lemma 2.3 (Triangle comparison with curvature lower bound). Let M be a CH-manifold with K M ≥ -b 2 . Let (xyz) and (xỹ z) be triangles in M and M 2 (-b 2 ) respectively, such that r 1 = d(x, y) = d(x, ỹ), r 2 = d(x, z) = d(x, z) and α = ∠ x (y, z) = ∠ x(ỹ, z)
. Moreover, for θ ∈]0, 1[ let p, q and p, q be respectively the points on the geodesic segments xy, xz and xỹ, xz such that d(x, p) = d(x, p) = θr 1 and d(x, q) = d(x, q) = θr 2 . Then:

C b (d(y, z)) C b (d(p, q)) ≤ C b (d(ỹ, z)) C b (d(p, q)) = F b (r 1 , r 2 , α, θ).
Proof. The proof is similar to that of lemma 2.1. Toponogov theorem gives d(p, q) ≤ d(p, q) and ᾱ ≤ α, and by the monotonicity of the function F b we get

C b (d(y, z)) C b (d(p, q)) ≤ C b (d(y, z)) C b (d(p, q)) = F b (r 1 , r 2 , ᾱ, θ) ≤ F b (r 1 , r 2 , α, θ) = C b (d(ỹ, z)) C b (d(p, q))

Comparison of spheres

Let S x (r) and S y (R) be two geodesic spheres in M , with r < R, tangent at some point z, with S x (r) internal to S y (R). Let A x and A y (resp. A x , A y ) be the second, vector-valued (resp. scalar) fundamental forms of S x (r) and S y (R), and let ν be the common inner unit normal vector at z. We will now compare the two second fundamental forms A x and A y . Let u ∈ T z S x (r) be a unitary vector, and let c u (s) be the geodesic of S x (r) with initial tangent vector u. Denote by r x and r y the distance functions to x and y respectively, and let r y (s) = r y (c u (s)) be the restriction of the function r y to the curve c u . Applying proposition 1.1 to c and r y we find

r ′′ y (0) = Hess M r y (u, u) + ∇r y , A x (u, u) ,
and, since Hess M r y gives the second fundamental form of S y (R) w.r. to ν,

r ′′ y (0) = A y (u, u) -A x (u, u) (2.1)
But r ′′ y (0) ≤ 0 as z is the maximum of r y on S x (r), thus at the point z we have A y ≤ A x which means that S x (r) is "more curved" than S y (R). Using the above comparison lemmas for triangles, we get sharper comparison estimates for the tangent spheres : Lemma 2.4. Let (M, g) be a CH-manifold with K M ≤ -a 2 . With the above notations, the second fundamental forms of S x (r), S y (R) at the tangent point z satisfy:

0 ≤ A x -A y ≤ (cot a r -cot a R) g
Moreover, if we assume -b 2 ≤ K M then at the tangent point z we also have:

(cot b r -cot b R) g ≤ A x -A y
Remark 2.5. These estimates are optimal, since they are equalities when M has, respectively, constant curvature -a 2 or -b 2 .

Proof. We only consider the case a > 0 ; when a = 0, the proof is similar (just replace the hyperbolic laws by the Euclidean ones) and is left to the reader. As before, let u ∈ T z S x (r) be a unitary vector, let c(s) be the geodesic of S x (r) with initial tangent vector u and let r y (s) be the restriction of the function r y to the curve c. For s > 0 we consider (cf. figure 2) :

• the angle α(s) between ∇r y and ∇r x at c(s);

• the angle β(s) between the geodesic lines from y to z and from y to c(s); 

• θ = R-r
(ad(x, x(s))) ≥ cosh(ar) cosh(a(1 -θ)r y (s)) -sinh(ar) sinh(a(1 -θ)r y (s)) cos(α(s)) ≥ 1 + sinh(ar) sinh(a(1 -θ)r y (s))(1 -cos(α(s)) (2.2)
On the other hand, lemma 2.1 applied to the triangle (yzc(s)) implies that cosh(ad(x,

x(s))) -1 ≤ cosh(ad(z, c(s))) -1 F a (R, r y (s), β(s), θ) (2.3)
which, plugged in (2.2), yields :

1 -cos(α(s)) ≤ cosh(ad(z, c(s))) -1 sinh(ar) sinh(a(1 -θ)r y (s))F a (R, r y (s), β(s), θ) (2.4)
We divide by s 2 and pass to the limit for s → 0 in (2.4) : as r ′ y (s) 2 = sin 2 α(s) and r ′ y (0) = 0, we have lim s→0

1-cos α(s) s 2 = 1 2 lim s→0 r ′ y (s) s 2 = 1 2 r ′′ y (0) 2 ; then, notice that d(z,cu(s)) s → 1 and that, as r y (s) -R = O(s 2 ) and β(s) = O(s), we have lim s→0 F a (R, r y (s), β(s), θ) = sinh 2 (aR) sinh 2 (a(R-r))
. So from (2.4) we get

r ′′ y (0) ≤ a sinh(a(R -r)) sinh(ar) sinh(aR) = a(coth(ar) -coth(aR))
By (2.1), as r ′′ y (0) ≤ 0 we deduce A x (u, u) -A y (u, u) ≤ cot a r -cot a R. Consider now the curvature lower bound -b 2 ≤ K M . By Toponogov theorem and the law of cosine, equation (2.2) becomes

1 -cos(α(s)) ≥ cosh(bd(x, x(s))) -1 sinh(br) sinh(b(1 -θ)r y (s)) + 1 -cosh(br(1 - ry(s) R )) sinh(br) sinh(b(1 -θ)r y (s)) (2.5) while lemma 2.3 implies cosh(bd(x, x(s))) -1 ≥ cosh(bd(z, c(s))) -1 F b (R, r y (s), β(s), θ) , (2.6) 
which plugged in (2.5) yields

1 -cos(α(s)) ≥ cosh(bd(z, c(s))) -1 sinh(br) sinh(b(1 -θ)r y (s))F b (R, r y (s), β(s), θ) + 1 -cosh(br(1 - ry(s) R )) sinh(br) sinh(b(1 -θ)r y (s)) (2.7)
Dividing by s 2 and letting s → 0 as before, we get (cot b r-cot b R)g ≤ A x -A y .

In the sequel, we will be mainly interested in the second fundamental form of horospheres. We will use a result similar to lemma 2.4, where the sphere S y (R) is replaced by a horosphere: Lemma 2.6. Let (M, g) be a CH-manifold with K M ≤ -a 2 . Let S x (r) and H ξ (z) be respectively a sphere and a horosphere tangent at a point z, with S x (r) internal to the horosphere. Let A x , A ξ be the second fundamental forms of S x (r), H ξ (z) with respect to be the common inner unit normal vector at z. Then, at the tangent point z we have :

0 ≤ A x -A ξ ≤ (cot a r -a) g (2.8)
Moreover, if we assume -b 2 ≤ K M , then at the tangent point z we also have:

(cot b r -b) g ≤ A x -A ξ
This result can be obtained in two different ways: taking limits, in the inequalities of lemma 2.4, for y tending to ξ along the geodesic exp z (tν), or following the same proof with the Busemann function b ξ in place of r y . The proof is left to the reader.

Asymptotically harmonic CH-manifolds

In this section, M will always be an asymptotically harmonic CH-manifold with horospheres of constant mean curvature h.

The entropy and the spectrum

We are interested here in two invariants of the manifold M : the volume entropy and the spectrum. The entropy is determined by the behaviour of the volume of balls whose second derivative (with respect to the radius) is given, in turns, by the mean curvature of the spheres. On the other hand, the spectrum can be determined by using special functions whose Laplacian has a nice behaviour; in our case, the distance function, whose Laplacian is again given by the mean curvature of spheres (see discussion in §1).

For points x and y in M , let h x (y) be the mean curvature vector at y of the sphere S x (d(x, y)), and h x (y) =h x (y), ∇r x . Notice that, as K M ≤ 0, balls and horoballs are convex, so both h and h x (y) are non-negative. Lemma 3.1. Let M n+1 be an asymptotically harmonic CH-manifold. For all x ∈ M and r > 0, the sphere S x (r) satisfies

∀ y ∈ S x (r) h ≤ h x (y) ≤ h + 1 r .
Proof. From lemma 2.6 we have

A ξ (u, u) ≤ A x (u, u) ≤ A ξ (u, u) + 1 r |u| 2
where A x and A ξ are, respectively, the second fundamental forms of S x (r) and of the horosphere H ξ (y), tangent to S x (r) at y. Taking the trace on an orthonormal basis gives the result.

We fix x ∈ M . For r > 0, let B x (r) be the ball of radius r centered in x, and V (r) = Vol(B x (r)) the growth function. The entropy of M is defined by

E = lim sup r→∞ 1 r log V (r).
A first consequence of asymptotic harmonicity is the following linear isoperimetric inequality : Proposition 3.2. Let M n+1 be an asymptotically harmonic CH-manifold. For any domain Ω ⊂ M with smooth boundary ∂Ω we have nhVol(Ω) ≤ vol(∂Ω).

Proof. Fix some ξ ∈ ∂ ∞ M . Since -∆b ξ = nh, integrating by parts on Ω the function -∆b ξ gives the result. Theorem 3.3. Let M n+1 be an asymptotically harmonic CH-manifold. The entropy of M is E = nh.

Proof. By the co-area formula we have V ′ (r) = vol(S x (r)), and by proposition 3.2 we get nhV (r) ≤ V ′ (r). Integrating this inequality we get V (r) ≥ Ae nhr for some constant A, so that the entropy is bounded below by nh. Now, the second derivative of V is given by V ′′ (r) = n Sx(r) h x (y)dv r (y) where dv r is the volume form of S x (r). Choose ε > 0 and let r 0 = 1 ε . By lemma 3.1, we have V ′′ (r) ≤ n(h + ε)V ′ (r) for any r ≥ r 0 . Integrating this inequality between r 0 and r, yields V ′ (r) ≤ Ae n(h+ε)r for some constant A. Integrating once again between r 0 and r, we get V (r) ≤ B + Ce n(h+ε)r , which implies that E ≤ n(h + ε). Since ε is arbitrarily small, this concludes the proof.

Theorem 3.4. Let M n+1 be an asymptotically harmonic CH-manifold. The spectrum of the Laplacian of

M is σ(∆) = [ n 2 h 2 4 , +∞)
Proof. By proposition 3.2 and Cheeger's inequality, we have σ(∆) ⊂ [ n 2 h 2 4 , +∞). Conversely, we choose x ∈ M and consider the distance function r x to x. Since the Laplacian of r x is given by the mean curvature of spheres, we have

sup y∈M\Bx(R) { |∆r x (y) -nh| } ≤ n R (3.1)
Using (3.1) and the fact that |∇r x | = 1, we can follow the method initiated by H. Donnelly to determine the essential spectrum (cf. [START_REF] Donnelly | On the essential spectrum of a complete Riemannian manifold[END_REF]) : for each λ > n 2 h 2 4

we use radial functions to construct sequences satisfying Weyl's criterion for λ (cf. [START_REF] Reed | Methods of modern mathematical physics. I. Functional Analysis[END_REF] theorem VII.12 p. 237). See for example [START_REF] Kumura | On the essential spectrum of the Laplacian on complete manifolds[END_REF] theorem 1.2 for a general result, whose hypotheses are satisfied by the function r x .

Remark 3.5. From theorems 3.3 and 3.4 we deduce inf{σ(∆)} = E 2 4 . For cocompact negatively curved manifolds, this equality is equivalent to the asymptotic harmonicity (cf. [START_REF] Ledrappier | Harmonic measures and Bowen-Margulis measures[END_REF] theorem 1). But, in the general case, it is easy to construct manifolds satisfying this inequality, which are not asymptotically harmonic. For example, the conclusions of theorems 3.3 and 3.4 hold true for any Cartan-Hadamard manifold with curvature less than -h 2 and tending to -h 2 at infinity.

Rigidity

Consider the second fundamental form A ξ of a horosphere H ξ , and let λ 1 , . . . , λ n be the principal curvatures of H ξ at some point x, with respect to the inner unit normal of H ξ . If M satisfies the curvature upper bound K M ≤ -a 2 , then it is well known that λ i ≥ a (cf [START_REF] Karcher | Riemannian comparison constructions[END_REF]). Therefore we get

n 2 h 2 = ( i λ i ) 2 = i λ 2 i + 2 i<j λ i λ j ≥ |A ξ | 2 + n(n -1)a 2 ,
and

|A ξ | 2 ≤ n 2 h 2 -n(n -1)a 2 . (3.2)
When assuming a curvature lower bound K M ≥ -b 2 , a similar argument gives

|A ξ | 2 ≥ n 2 h 2 -n(n -1)b 2 . (3.3)
Now, as the mean curvature is the same for all horospheres, taking the trace of Riccati equation (1.1) gives |A ξ | 2 + Ric M (u, u) = 0 for any u ∈ SM , for the second fundamental form A ξ of a horosphere tangent to u ⊥ . Therefore we get : Proposition 3.6. Let M n+1 be an asymptotically harmonic CH-manifold. For any u ∈ SM we have

i. if M satisfies K M ≤ -a 2 , then Ric M (u, u) ≥ -n 2 h 2 + n(n -1)a 2 ; ii. if M satisfies K M ≥ -b 2 , then Ric M (u, u) ≤ -n 2 h 2 + n(n -1)b 2 .
As a consequence, we have the following characterization of constant curvature spaces : Corollary 3.7. Let M n+1 be an asymptotically harmonic CH-manifold.

i. if M satisfies K M ≤ -a 2 then h ≥ a, and h = a if and only if M = M n+1 (-a 2 ); ii. if M satisfies K M ≥ -b 2 then h ≤ b, and h = b if and only if M = M n+1 (-b 2 ).
Proof. The curvature upper bound K M ≤ -a 2 implies h ≥ a. If h = a, then proposition 3.6 gives Ric M ≥ -na 2 , and since the Ricci curvature is a sum of n sectional curvatures which are not greater then -a 2 , this implies that all the sectional curvatures are equal to -a 2 . The proof is the same when assuming a curvature lower bound.

Growth of horospheres

It is well known that, on CH-manifolds with pinched curvature, horospheres have polynomial volume growth, whose degree depend on the bounds on the curvature (cf. [START_REF] Karp | Horospherical means and uniform distribution of curves of constant geodesic curvature[END_REF]). We will now see that, under the asymptotic harmonicity assumption, an upper bound K M ≤ -a 2 < 0 is enough to estimate from above the polynomial growth of horospheres. Let H ξ be a horosphere centered in some point at infinity ξ, let b ξ be the Busemann function vanishing on H ξ , and let g 0 be the Riemannian metric induced on H ξ . For each t ∈ R, there is a natural diffeomorphism ϕ t :

H ξ → H ξ (t) defined by ϕ t (x) = exp x (t∇b ξ ), which in turns induces a diffeomorphism Φ R × H ξ (0) → M (t, x) → ϕ t (x)
In these "horospherical" coordinates (t, x), the metric of M reads g = dt 2 + g t , where g t = ϕ * t g H ξ (t) and g H ξ (t) is the induced Riemannian metric of H ξ (t). When assuming a sectional curvature upper bound K ≤ -a 2 , the map ϕ t increases the distance for t > 0 and decreases the distance if t < 0. In fact, as a consequence of comparison theorem for Jacobi fields, we have that all the eigenvalues of dϕ t are greater than or equal to e at if t > 0, and less than or equal to e at if t < 0 (cf. [START_REF] Heintze | Geometry of horospheres[END_REF]). Now, it is a standard fact that the mean curvature gives the derivative of the volume form of a submanifold under a deformation. In our setting, if dv t = J t (x)dv 0 is the volume form of the metric g t and J t (x) is the density of dv t with respect to dv 0 , we have J ′ t = nh t J t , where h t is the mean curvature of H ξ (t). By asymptotic harmonicity, we deduce that dv t = e nht dv 0 for all t; therefore, in horocyclic coordinates the volume form of M reads dv M = e nht dtdv 0 .

On the other hand, by theorem 3.3, the volume entropy of M is nh: heuristically, this means that the exponential rate of the volume growth of M comes from the behaviour of the volume form in the R direction, and that the volume growth of the slices H ξ (t) should be subexponential. Namely: Theorem 3.8. Let M n+1 be an asymptotically harmonic CH-manifold with sectional curvature upper bound K M ≤ -a 2 < 0. Then, there exists a constant C (depending only on n, a and h) such that, for any horosphere H of M , the balls of H satisfy vol(B H x (r)) ≤ Cr nh a for all r > 0.

Proof. Let H = H ξ be a horosphere centered in ξ. For any u, v ∈ T H, Gauss equation implies that

K H (u, v) = K M (u, v)+A ξ (u, u)A ξ (v, v)-A ξ (u, v) 2
, where K H and K M are the sectional curvatures of H and M respectively, and A ξ is the second fundamental form of H. Taking the trace with respect to v we get

Ric H (u, u) = Ric M (u, u) -K M (u, ν) + nhA ξ (u, u) - i A ξ (u, e i ) 2 ≥ Ric M (u, u) -|A ξ | 2 ≥ -2n 2 h 2 + 2n(n -1)a 2
where the last inequality comes from (3.2) and Proposition 3.6. Therefore, by Bishop's comparison theorem, there exists a constant C (depending only on n, a and h) such that, for any x in H we have Vol(B H x (1)) ≤ C. Let now x ∈ H and consider the map ϕ -t : H → H ξ (-t) defined above, for t > 0. As K M ≤ -a 2 , we have ϕ -t (B H x (r)) ⊂ B H ξ (-t) ϕ-t(x) (e -at r). Moreover, as dv -t = e -nht dv 0 , we have vol(ϕ -t (B H x (r))) = e -nht vol(B H x (r)); so, choosing t = ln r a we obtain vol(B H x (r))) ≤ e nh ln r a vol(B

H ξ (-t) ϕ-t(x) (1)) ≤ Cr nh a
Remark 3.9. This theorem proves that the degree of the polynomial volume growth of the horospheres is bounded above by nh a . This upper bound is sharp, as it is the degree of the volume growth of the horospheres in the hyperbolic space (the horospheres being Euclidean in that case). Note that the upper bound is also sharp for the rank one symmetric spaces. Remark 3.10. Using a similar proof, it is easy to see that the lower bound -b 2 ≤ K M ≤ 0 gives a lower bound on the volume growth of the horospheres, namely vol(B H x (r)) ≥ Cr nh b . The proof is left to the reader.

The mean value property

Harmonic manifolds are characterized by the fact that the harmonic functions have the mean value property : for any harmonic function F and any R > 0,

F (x 0 ) = 1 vol(S x0 (R)) Sx 0 (R) F (x)dv Sx 0 (R)
This can be proved by taking the derivative of the right-hand side of the above equality, and by observing that it vanishes for any harmonic function F if and only if the spheres have constant mean curvature.

In the following theorem we prove that harmonic functions on an asymptotically harmonic manifold satisfy a mean value property, where, naturally, the mean is taken on horospheres. As the horospheres are non-compact, the mean on an horosphere is obtained as the limit of the means on an exhaustion. The computations of these horospherical means are very similar to those in [START_REF] Karp | Horospherical means and uniform distribution of curves of constant geodesic curvature[END_REF].

Theorem 3.11. Let M n+1 be an asymptotically harmonic manifold with sectional curvature upper bound K M ≤ -a 2 < 0, and let F be a function which is continuous on M ∪ ∂ ∞ M and harmonic on M .

For any ξ ∈ ∂ ∞ M , any horosphere H ξ centered in ξ, and any x ∈ H ξ , there exists a sequence (r j ) j∈N tending to +∞ such that

lim j→∞ 1 Vol(B H ξ x (r j )) B H ξ x (rj) F dv H ξ = F (ξ)
where

B H ξ x (R) denote the ball in H ξ centered in x of radius R.
Proof. Let H ξ be a horosphere centered in some point at infinity ξ, and let ϕ t : H ξ → H ξ (t) be the diffeomorphism defined in §3.3.

Choose x ∈ H ξ . Because H ξ has polynomial volume growth, there exists a sequence (r j ) j∈N tending to +∞ such that lim j→∞ vol(∂B

H ξ x (r j )) Vol(B H ξ x (r j )) = 0.
For t ∈ R and j ∈ N, let Ω j,t = ϕ t (B H ξ x (r j )). As pointed out in §3.3, we have Vol(Ω j,t ) = e nht Vol(B H ξ x (r j )). Moreover, the boundary of Ω j,t satisfy

d dt vol(∂Ω j,t ) = -(n -1) ∂Ωj,t k j,t , ∂ ∂t
where k j,t is the mean curvature vector of ∂Ω j,t (seen as a submanifold of M ).

Taking an orthonormal basis (e 1 , . . . , e n-1 ) of T ∂Ω j,t and η j,t its exterior unit normal in H ξ (t) we have

-(n -1) k j,t , ∂ ∂t = n-1 i=1 D M ei ∂ ∂t , e i = nh -D M ηj,t ∂ ∂t , η j,t ≤ nh -a
where the last inequality comes from the curvature upper-bound on M . Therefore we have d dt vol(∂Ω j,t ) ≤ (nha)vol(∂Ω j,t ), and integrating this inequality we get vol(∂Ω j,t ) ≤ e (nh-a)t vol(∂Ω j,0 ) and vol(∂Ω j,t ) Vol(Ω j,t )

≤ e -at vol(∂B

H ξ x (r j )) Vol(B H ξ x (r j ))
.

(3.4) Consider now

g j (t) = 1 Vol(Ω j,t ) Ωj,t F dv t (3.5)
where dv t is the volume form of H ξ (t) and F a function which is continuous on M ∪ ∂ ∞ M and harmonic on M . In particular, F is bounded. Using the fact that horospheres have constant mean curvature, we have

g ′ j (t) = 1 Vol(Ω j,t ) Ωj,t ∇F, ∂ ∂t dv t (3.6)
and

g ′′ j (t) = 1 Vol(Ω j,t ) Ωj,t .(Hess M F )( ∂ ∂t , ∂ ∂t )dv t (3.7)
Using proposition 1.1 and the fact that F is harmonic in M we get

(Hess M F )( ∂ ∂t , ∂ ∂t ) = -tr((Hess H ξ (t) F ) | T H ξ (t) ) = ∆ H ξ (t) f + nh ∇F, ∂ ∂t
where f is the restriction of F to H ξ (t). Equation (3.7) gives

g ′′ j (t) -nhg ′ j (t) = 1 Vol(Ω j,t ) Ωj,t ∆ H ξ (t) f dv t = - 1 Vol(Ω j,t ) ∂Ωj,t ∇F, η j,t dv t . (3.8)
As Ric M is bounded from below and F is bounded on , using Yau's gradient estimate for harmonic functions [START_REF] Yau | Harmonic functions on complete Riemannian manifolds[END_REF], there exists a constant C (depending on n, a, h and ||F || ∞ ) such that |∇F | ≤ C on M . Therefore, using (3.4), the right-hand side of (3.8) satisfies 1 Vol(Ω j,t ) ∂Ωj,t ∇F, η j,t dv t ≤ Ce -at vol(∂B

H ξ x (r j )) Vol(B H ξ x (r j ))
and tends uniformly to zero on bounded intervals when j tends to +∞. In particular, it implies that, on bounded intervals, the C 0 norms of the functions g ′′ j are uniformly bounded. The fact that F is bounded and Yau's gradient estimate also imply that the C 0 norms of the functions g j and g ′ j are uniformly bounded, and, using Arzela-Ascoli convergence theorem, we have that, up to a subsequence, (g j ) j∈N tends in C 1 topology to a function g.

Moreover, multiplying (3.8) by a test function, integrating by part and letting j tend to +∞ we find that, in the sense of distributions, g is a solution of g ′′ (t)nhg ′ (t) = 0.

Therefore, by classical regularity theory, g is smooth and g ′ (t) = g ′ (0)e nht . Since g ′ is bounded on R we must have g ′ ≡ 0 and g is constant.

For any neighbourhood U of ξ (for the cone topology) there exist t such that the horosphere H ξ (t) is contained in U . By continuity of F on M ∪ ∂ ∞ M and by the definition of g j , the value g j (t) can be made arbitrary close to F (ξ) (for any j). Therefore we have g(t) = F (ξ) for any t ∈ R, and g(0) = F (ξ) gives the result.

Remark 3.12. It would be better to have a similar result without taking a sequence of radii tending to infinity, that is to have

lim r→∞ 1 Vol(B H ξ x (r)) B H ξ x (r) F dv H ξ = F (ξ).
For the proof to work in that case, one need to have lim r→∞ vol(∂B

H ξ x (r)) Vol(B H ξ
x (r)) = 0. However, from the polynomial volume growth of horospheres one only get lim inf r→∞ vol(∂B

H ξ x (r)) Vol(B H ξ x (r)) = 0.

Asymptotic behaviour of the volume form

In the previous section, in order to compute the entropy, we integrated the inequalities of lemma 2.6 on spheres. But since these inequalities hold pointwise, we can try to determine the asymptotic behaviour of the volume form at least in a fixed direction. Actually, let θ x (u, r) be the density of the volume form of M in normal coordinates centered in some point x; so the volume form reads dv M = θ x (u, r)dv SxM dr, where dv SxM is the volume form of S x M .

Harmonic manifolds are characterized by the fact that θ x (u, r) only depends on r. In this section we give a characterization of asymptotically harmonic manifolds in term of the asymptotic behaviour of θ x (u, r): Theorem 4.1. Let M be a CH-manifold with K M ≤ -a 2 < 0 and entropy E. M is asymptotically harmonic if and only if there exists a positive function τ : SM → R + such that θ x (u, r) is uniformly equivalent to τ (u)e Er for r → ∞.

"Uniformly equivalent" here means that the quotient of θ x (u, r) by τ (u)e Er converges to 1 for r → ∞, uniformly with respect to u ∈ SM . This result will be consequence of the three propositions proved in the following subsections.

A Riemannian manifold is harmonic if and only if the density function only depends on r. As an asymptotic analogue, one would expect that lim r→∞ θ(u,r)

e Er

does not depend on u, and thus that τ (u) be constant on SM . In proposition 4.3 we prove it holds under the restrictive assumption that DR M is bounded.

The asymptotic volume-density function τ

The function θ x is related to the mean curvature h x of spheres centered in x of radius r by the formula

θ ′ x (u, r) θ x (u, r) = nh x (exp x (ru)) (4.1) 
where θ ′ x denotes the derivative of θ x with respect to r. In what follows, we shall often write for short the point exp x (ru) as (u, r) to avoid cumbersome notations; moreover, we will regard θ x (u, r) as a function on SM × R, so we can drop the index x.

Using lemma 2.6 we get the following result :

Proposition 4.2. Let M be a CH-manifold with curvature K M ≤ -a 2 < 0.
If M is asymptotically harmonic, then there exists a bounded, positive function

τ : SM → R + such that ∀u ∈ SM θ(u, r) τ (u)e nhr -1 ≤ ε(r)
for an explicit function ε(r) only depending on a and n such that lim r→∞ ε(r) = 0.

Proof. As θ ′ (u,r) θ(u,r) = h x (u, r), taking traces in (2.8) yields:

0 ≤ θ ′ (u, r) θ(u, r) -nh ≤ na(coth(ar) -1), that is 0 ≤ d dr ln(θ(u, r)e -nhr ) ≤ na [coth(ar) -1] .
The first inequality implies that θ(u, r)e -nhr is nondecreasing with respect to r.

On the other hand, integrating the second one gives θ(u, r)e -nhr ≤ θ(u, s)e -nhs e na r s (coth(at)-1)dt

(4.2)
and, as ∞ s (coth(at) -1)dt is finite, we deduce that θ(u, r)e -nhr is bounded, which implies that lim r→∞ θ(u, r)e -nhr exists. Therefore we can define the function τ on the unitary tangent bundle as

τ (u) = lim r→∞ θ(u, r)e -nhr (4.3) 
Moreover, as θ(u, r)e -nhr is nondecreasing we have

∀r > 0 0 < θ(u, r)e -nhr ≤ τ (u) (4.4) 
Again from (4.2), subtracting θ(u, s)e -nhs and letting r → ∞ we deduce

τ (u) -θ(u, s)e -nhs ≤ θ(u, s)e -nhs e na ∞ s (coth(at)-1)dt -1
As θ(u, s)e -nhs is nondecreasing the left-hand side is nonnegative, so by (4.4), θ(u, r) τ (u)e nhr -1 ≤ e na ∞ r (coth(at)-1)dt -1

The right-hand side is uniformly bounded from above and tends to 0 when r tends to infinity, which concludes the proof.

Properties of the function τ

First, we remark that the function τ is bounded : for any u ∈ SM we have τ (u) ≤ 1 (2a) n . In fact, from equation (4.2) we obtain θ(u, r)e -nhr ≤ θ(u, s)e -nhs sinh n (as) e -na(r-s) sinh n (ar).

Letting s tend to 0, as θ(u,s) s n

→ 1, we deduce θ(u, r)e -nhr ≤ e -nar sinh n (ar) a n , and for r → ∞ we get τ (u) ≤ 1 (2a) n . Therefore, proposition 4.2 implies

|θ(u, r)e -nhr -τ (u)| ≤ 1 (2a) n ε(r)
and the function τ is the uniform limit of θ(u, r)e -nhr ; as the convergence is uniform, the function τ is continuous on SM . Moreover, as soon as θ(u, r)e -nhr has a limit, this limit can be expressed in terms of Jacobi tensors. This was used to study the asymptotic behaviour of the volume on harmonic manifolds (cf. [START_REF] Knieper | New results on noncompact harmonic manifolds[END_REF][START_REF] Connell | Asymptotic harmonicity of negatively curved homogeneous spaces and their measures at infinity[END_REF][START_REF] Heber | Asymptotically harmonic spaces in dimension 3[END_REF]). Using this approach we get more information on the function τ .

Proposition 4.3. Let M be an asymptotically harmonic CH-manifold with curvature K M ≤ -a 2 < 0. Then: i. τ : SM → R + is invariant by the geodesic flow and flip invariant, i.e. :

• τ ( γ(t)) is constant for any geodesic γ;

• τ (v) = τ (-v) for all v ∈ SM . ii. if DR M is bounded on M , then τ is constant on SM ;
iii. τ ≥ 1 (2h) n , with equality if and only if the curvature is constant.

Proof. A Jacobi tensor along a geodesic γ is a smooth family J(t) of endomorphisms of γ(t) ⊥ satisfying the Jacobi equation J ′′ (t) + R(t)J(t) = 0, where R(t) is defined from the Riemann tensor by R(t)u = R( γ(t), u) γ(t). Then, applying J to any parallel vector field V (t) along γ gives a Jacobi vector field J(t)V (t). Let v ∈ S x M and γ(t) = exp x (tv), and consider the Jacobi tensor J v along γ defined by J v (0) = 0 and J ′ v (0) = Id. It is well known that J ′ v (r)J -1 v (r) gives the shape operator A x (v, r) of the sphere S x (r) at exp x (rv) (with respect to the inner normal to the sphere), and that θ(v, r) = det(J v (r)).

For r > 0, let U v,r , S v,r be the Jacobi tensors on γ defined by U v,r (-r) = 0, U v,r (0) = S v,r (0) = Id and S v,r (r) = 0. The unstable and stable Jacobi tensors at v are defined by U v = lim r→∞ U v,r and S v = lim r→∞ S v,r . As U ′ v,r (0) = J ′ γ(-r) (r)J -1 γ(-r) (r) is the shape operator of the sphere S γ(-r) (r) at x, it follows that U ′ v (0) is shape operator at x of the horosphere centered in ξ -= lim r→∞ γ(-r). In a similar way, we have that -S ′ v (0) is the shape operator at x of the horosphere centered in ξ + = lim r→∞ γ(r). Since M is asymptotically harmonic, we have tr(U ′ v (0)) = nh; following the proof of Corollary 2.5 of [START_REF] Knieper | New results on noncompact harmonic manifolds[END_REF] we get

θ(v, t)e -nht = 1 det(U ′ v (0) -S ′ v,t (0) 
) , which, taking the limit for t → ∞, gives

τ (v) = 1 det(U ′ v (0) -S ′ v (0)) . ( 4.5) 
The proposition then follows from this expression of τ (v). First, as U ′ v (0) and -S ′ v (0) are the shape operators of the horospheres centered in ξ -and ξ + , relative to their respective inner normals, it is clear that τ is flip invariant. The invariance by the geodesic flow is just lemma 2.2 in [START_REF] Heber | Asymptotically harmonic spaces in dimension 3[END_REF].

To prove the second point, let us first show that τ (u) = τ (v) when u, v ∈ SM point towards the same boundary point ξ ∈ ∂ ∞ M , i.e. lim s→+∞ γ u (s) = lim s→+∞ γ v (s). By the invariance of τ under the geodesic flow, we may as well assume that u and v are normal to the same horosphere, so d(γ u (t), γ v (t)) ≤ c 1 e -at for all t > 0. For any r, t > 0 we have 

|τ (u) -τ (v)| ≤ |τ (u) -θ( γu (t),
|τ (u) -τ (v)| ≤ (τ (u) + τ (v))ε(r) + |θ( γu (t), r) -θ( γv (t),
′ u,t (s) + A 2 u,t (s) + R u,t (s) = 0 and A ′ v,t (s) + A 2 v,t (s) + R v,t ( 
s) = 0, where R u,t (s) is the matrix of the endomorphism R( γu (t + s), .) γu (t + s), and analogously for R v,t (s). Because of the assumption on DR M , we have that the tensor r

(s) = R u,t (s) -R v,t (s) satisfies |r(s)| ≤ C 3 e -a(t+s) . (4.7) 
Consider now B(s) = A u,t (s) -A v,t (s) and Q(s) = 1 2 (A u,t (s) + A v,t (s)). From the Riccati equations we have that B is solution of

B ′ (s) + B(s)Q(s) + Q(s)B(s) + r(s) = 0.
A direct computation shows that for any 0 < ε < s we have the formula

B(s) = t C(s) t C(ε) -1 B(ε)C(ε) -1 - s ε t C(ζ) -1 r(ζ)C(ζ) -1 dζ C(s) (4.8) where C(s) is a solution of C ′ (s) = -C(s)Q(s).
In particular, because of the curvature upper bound we have Q(s) ≥ aId hence, for any 0 < ε < s, |C(ε) -1 C(s)| ≤ e -a(s-ε) . Plugging this estimate and (4.7) in the formula (4.8) we get

|B(s)| ≤ |B(ε)|e -2a(s-ε) + c 4 e -a(t+s)
Since both A u,t (s) and A v,t (s) behave, for s → 0, as 

≤ ln θ( γ(-s), R + s) θ( γ(-s), r + s) -n R r h(t)dt ≤ ln sinh n (a(R + s))
sinh n (a(r + s)) e -na(R-r) (4.10)

The right-hand side tends to 0 when s tends to infinity. Moreover, by hypothesis we have | θ( γ(-s),R+s) τ ( γ(-s))e E(R+s) -1| ≤ ε(R + s) with lim s→∞ ε(R + s) = 0, and we get

lim s→∞ θ( γ(-s), R + s) τ ( γ(-s))e Es = e ER .
Analogously, we find lim s→∞ θ( γ(-s),r+s)

τ ( γ(-s))e Es = e Er , so letting s tend to infinity in (4.10) we obtain

E(R -r) -n R r h(t)dt = 0.
Therefore R r (Enh(t))dt = 0 for all r < R, from which we deduce that h(t) = E n for all t ∈ R, and M is asymptotically harmonic.

Margulis function and measures at infinity

In this last section, we assume that M is a asymptotically harmonic CH-manifold with pinched curvature -b 2 ≤ K M ≤ -a 2 < 0, and h is always the mean curvature of the horospheres.

Visual and harmonic measures

There are two families of measures naturally defined on the ideal boundary of Cartan-Hadamard manifolds: the visual and harmonic measures.

To define the visual measures, consider the homeomorphism given by the "projection on ∂ ∞ M from x":

φ x : S x M → ∂ ∞ M u → φ x (u) = lim t→∞ exp x (tu)
The measure λ x is the push-forward on ∂ ∞ M of the (normalized) Riemannian measure of S x M . On the other hand, the family of harmonic measures comes from the uniqueness of the solution to the Dirichlet problem at infinity (cf. [START_REF] Anderson | Positive harmonic functions on complete manifolds of negative curvature[END_REF]): given a continuous function f on ∂ ∞ M , there exists a unique bounded harmonic function F on M such that lim x→ξ F (x) = ξ. Then, it is a consequence of Riesz representation theorem that there exists a unique family of measures µ x , x ∈ M , such that F (x) = ∂∞M f (ξ)dµ x (ξ). Proposition 5.1. Let M be an asymptotically harmonic CH-manifold with pinched curvature -b 2 ≤ K M ≤ -a 2 < 0. For any x, y ∈ M we have

dλ x dλ y (ξ) = τ (φ -1 y (ξ)) τ (φ -1 x (ξ))
e -nh(b ξ (x)-b ξ (y)) and dµ x dµ y (ξ) = e -nh(b ξ (x)-b ξ (y)) .

Proof. Consider the distance functions r x and r y to x, y ∈ M respectively, and the sphere S x (t) centered in x of radius t. For t great enough, each geodesic ray from y intersect S x (t) at a unique point; for v ∈ S y M , let F t (v) be the intersection point of the geodesic s → exp y (sv) and S x (t). The map F t : S y M → S x (t) so defined is a diffeomorphism whose Jacobian is Jac v F t = θ(v, r y (F t (v))) ∇r y (F t (v)), ∇r x (F t (v))

(5.1)

Now, let U ⊂ ∂ ∞ M be a measurable set with negligible boundary, and let

U t = {exp x (tu) | u ∈ φ -1
x (U )} be the projection of U on S x (t) from x. By definition of λ x we have

λ x (U ) = φ -1
x (U) where dσ y is the normalized measure on S y M . Now we observe that, letting t tend to infinity, we have

dσ
• lim t→∞ P -1 t • F t (v) = φ -1 x • φ y (v); • lim t→∞ χ F -1 t (Ut) = χ φ -1
y (U) almost everywhere; • lim t→∞ ∇r y (F t (v)), ∇r x (F t (v)) = 1 Moreover, from Theorem 4.2 we know that τ (v)ε(r y (F t (v))) τ (P -1 t • F t (v))) + ε(t) e nh(ry(Ft(v))-t) ≤ θ y (v, r y (F t (v)))

θ(P -1 t • F t (v), t) ≤ τ (v) + ε(r y (F t (v))) τ (P -1 t • F t (v)) -ε(t)
e nh(ry(Ft(v))-t)

By definition of Busemann function we have that r y (F t (v))t converges, uniformly on S y M , to b φy(v) (y)b φy(v) (x); so, as τ is continuous and bounded, by dominating convergence (5.2) yields

λ x (U ) = φ -1 y (U) τ (v) τ (φ -1 x • φ y (v))
e -nh(b φy (v) (x)-b φy (v) (y)) dv SyM (v) = U τ (φ -1 y (ξ)) τ (φ -1

x (ξ))

e -nh(b ξ (x)-b ξ (y)) dλ y (ξ) which proves the first equality of the proposition.

The second equality follows from [START_REF] Anderson | Positive harmonic functions on complete manifolds of negative curvature[END_REF]: the relative densities of harmonic measures are given by the Poisson kernel, and, as ∆b ξ = -nh, by unicity of the Poisson kernel we have dµx dµy (ξ) = e -nh(b ξ (x)-b ξ (y)) . As a consequence of Theorem 4.3, we have that, when the derivative of the Riemann tensor is bounded, the visual and harmonic measures class have the same relative densities. where E is the volume entropy of M . The main conjecture concerning this function is that it is constant if and only if M is a symmetric space, cf. [START_REF] Yue | Brownian motion on Anosov foliations and manifolds of negative curvature[END_REF][START_REF] Knieper | Spherical means on compact Riemannian manifolds of negative curvature[END_REF] for some related results. Theorem 4.2 allows us to define the Margulis function for asymptotically harmonic manifolds (even noncocompact) : Proof. Let V x (r) = Vol(B x (r)) and v x (r) = vol(S x (r)), so V ′ x (r) = v x (r). Since v x (r) = SxM θ(u, r)du, integrating (4.3) on S x M , by monotone convergence we get the first equality with m(x) = SxM τ (u)du.

The Margulis function

Then, by Proposition 3.2, we have V ′ x (r) -nhV x (r) ≥ 0, so V x (r)e -nhr is increasing. As V x (r) = from which we deduce that V x (r)e -nhr is bounded; hence, it converges to some limit l(x). As V x (r)e -nhr is increasing and converging, there exists a sequence r k → ∞ such that 0 = lim Finally, to show that the Margulis function is harmonic, we write it using the visual measures : and we are done, because e -nh(b ξ (x) is harmonic.
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 2 Figure 2: Comparing the second fundamental forms of tangent spheres (c(s)x(s)x) and the law of cosine in M 2 (-a 2 ) we get cosh(ad(x, x(s))) ≥ cosh(ar) cosh(a(1θ)r y (s))

  r)e -nhr | + |θ( γu (t), r)θ( γv (t), r)|e -nhr + |τ (v)θ( γv (t), r)e -nhr |, and using the invariance of τ by the geodesic flow and Proposition 4.2 we get

For

  cocompact CH-manifolds Margulis introduced the function m(x) = lim r→∞ vol(S x (r))e -Er .

Proposition 5 . 2 .

 52 Let M be an asymptotically harmonic CH-manifold with -b 2 ≤ K ≤ -a 2 < 0. There exists a function m : M → R + such that lim r→∞ vol(S x (r))e -nhr = m(x) and lim r→∞ vol(B x (r))e -nhr = m(x) nh for any x ∈ M . Moreover, the function m is harmonic.

r0 1 ε

 1 SxM θ(u, s)duds, Theorem 4.2 implies, for any r ≥ 1,V x (r) ≤ V x (1) + m(x) nh (e nhr -e nh ) + vol(S n ) r (s)e nhs ds

  k→∞ d dr |r=r k V x (r)e -nhr = lim k→∞ (v x (r k )e -nhr k -nhV x (r k )e -nhr k ) = m(x)nhl(x).

  ))dλ x (ξ) Choosing a fixed point x 0 ∈ M , we get m(x) = ∂∞M τ (φ -1 x0 (ξ))e -nh(b ξ (x)-b ξ (x0)) dλ x0 (ξ)

  r)|e -nhr . (4.6)For s ∈]0, r], let h u,t (s) (resp. h v,t (s)) be the mean curvature, at the point γ u (t + s) (resp. at γ v (t + s)), of the sphere of radius s centered in γ u (t) (resp. γ v (t)). Following the Lemma 2.3 in[START_REF] Heber | Asymptotically harmonic spaces in dimension 3[END_REF], we will use comparison theory for Riccati equation to estimate |h u,t (s)h v,t (s)|. We choose orthonormal parallel basis e u,i (s) of γu (t + s) ⊥ and e v,i (s) of γv (t + s) ⊥ ) such that, for any i, d(e u,i (s), e v,i (s)) ≤ c 2 e -a(t+s) in SM , for some constant c 2 . Let A u,t (s) and A v,t (s) be the matrices of the second fundamental forms of the spheres of radius s centered in γ u (t), γ v (t) in these basis. They satisfy the Riccati equations A

  1 s Id + o(1) we have lim ε→0 B(ε) = 0; therefore we deduce that |B(s)| ≤ c 4 e -a(t+s) and, taking the trace, |h u,t (s)h v,t (s)| ≤ c 5 e -a(t+s)

	and integrating on [r, R] with respect to t we get
	0		
	for some constant c 5 . By the expression (4.1) for h x , integrating on [0, r] yields
	-c 6 (1 -e -ar )e -at ≤ ln	θ( γu (t), r) θ( γv (t), r)	≤ c 6 (1 -e -ar )e -at

  (u) = exp x (tu) for u ∈ S x M , dσ x is the normalized measure of S x M , and dv Sx(t) the volume forms of S x (t).

				x =	1 vol(S n ) Ut	1 θ(P -1 t (z), t)	dv Sx(t) (z)
	where P t By (5.1), we get	
	λ x (U ) =	F -1 t	(Ut)	θ(v, r y (F t (v))) θ(P -1

t • F t (v), t) ∇r y (F t (v)), ∇r x (F t (v)) -1 dσ y (v) (5.2)

We thank professor S. Gallot for his suggestions and encouragement, and professor G. Knieper for explaining us the expression of the function τ in terms of Jacobi tensors.

With these inequalities we can bound the last term of (4.6): θ( γv (t), r)e -nhr exp(-c 6 (1 -e -ar )e -at ) -1 ≤ |θ( γu (t), r)θ( γv (t), r)|e -nhr ≤ θ( γv (t), r)e -nhr exp(c 6 (1 -e -ar )e -at ) -1 (4.9)

Choosing r large enough, the term ε(r) in (4.6) can be made arbitrary small; for this value of r, θ( γv (t), r)e -nhr stays close to τ (v) for all t by proposition 4.2, and the above estimate (4.9) implies that we can choose t large enough to make also the last term of (4.6) arbitrary small. Therefore τ (u) = τ (v).

Consider now any vector u, v ∈ SM , and let σ be a geodesic such that lim s→-∞ σ(s) = lim s→+∞ γ u (s) and lim s→+∞ σ(s) = lim s→+∞ γ v (s). From the above computations we must have τ (v) = τ ( σ(0)) and τ (u) = τ (-σ(0)), so by flip invariance we get τ (u) = τ (v). Therefore τ is constant.

The third point is similar to Corollary 2.6 in [START_REF] Knieper | New results on noncompact harmonic manifolds[END_REF].

and the inequality follows. The case of equality follows, as in the proof of Corollary 2.6 in [START_REF] Knieper | New results on noncompact harmonic manifolds[END_REF], from the fact that s → U ′ γ(s) (0) and s → S ′ γ(s) (0) satisfy the Riccati equation, and because

The second point is very close to Lemma 2.3 and Corollary 2.1 of [START_REF] Heber | Asymptotically harmonic spaces in dimension 3[END_REF], but, in our proof, we don't need any lower bound on the curvature and rather use Proposition 4.2.

Characterization of asymptotic harmonicity

Proposition 4.2 says that the volume form of M has purely exponential growth, with isotropic exponential rate (and is asymptotically perfectly isotropic when DR M is bounded). In fact this is a characterization of asymptotic harmonicity: Proposition 4.5. Let M be a CH-manifold with K M ≤ -a 2 < 0 and entropy E. If there exists a positive function τ : SM → R such that θ(u, r) is uniformly equivalent to τ (u)e Er for r → ∞, then M is asymptotically harmonic. Remark 4.6. Notice that, together with Benoist-Foulon-Labourie and Besson-Courtois-Gallot characterization of cocompact asymptotically harmonic spaces, Proposition 4.5 shows that if a CH-manifold with compact quotients has volume form which is (uniformly) equivalent to a function τ (u)e ER , then it is a ROSS.

Proof. Let γ(t) be a geodesic of M with lim t→-∞ γ(t) = ξ ∈ ∂ ∞ M , and let h(t) be the mean curvature at γ(t) of the horosphere H ξ (t) centered in ξ and passing through γ(t). We shall prove that the function h(t) is constant.

Let r < R be two real numbers, and choose s > -r. For any t ∈ [r, R], we use Lemma 2.6 to compare the second fundamental forms of H ξ (t) and S γ(-s) (t + s) at γ(t). Taking the trace in (2.8), we have 0 ≤ θ ′ ( γ(-s), t + s) θ( γ(-s), t + s) nh(t) ≤ na coth(a(t + s)) -1