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Distribution of the number of accessible states in
a random deterministic automaton
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1 Université Paris-Est, LIGM, CNRS {carayol,nicaud}@univ-mlv.fr

Abstract
We study the distribution of the number of accessible states in deterministic and complete auto-
mata with n states over a k-letters alphabet. We show that as n tends to infinity and for a
fixed alphabet size, the distribution converges in law toward a Gaussian centered around vkn

and of standard deviation equivalent to σk
√
n, for some explicit constants vk and σk. Using

this characterization, we give a simple algorithm for random uniform generation of accessible
deterministic and complete automata of size n of expected complexity O(n

√
n), which matches

the best methods known so far. Moreover, if we allow a ε variation around n in the size of the
output automaton, our algorithm is the first solution of linear expected complexity. Finally we
show how this work can be used to study accessible automata (which are difficult to apprehend
from a combinatorial point of view) through the prism of the simpler deterministic and complete
automata. As an example, we show how the average complexity in O(n log logn) for Moore’s min-
imization algorithm obtained by David for deterministic and complete automata can be extended
to accessible automata.
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1 Introduction

The structure of an automaton with n states
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Figure 1 A structure (a) of T5,2 (a) and
its accessible automaton (b) in A3,2.

over a k-letter alphabet is simply a deterministic
and complete finite automaton with states in [n] =
{1, . . . , n} over the alphabet {a1, . . . , ak}. The
state 1 is always assumed to be the unique initial
state. We do not take final states into account
as we are only interested in the structure of the
automaton and not in the accepted language. We
denote by Tn,k (or Tn if k is understood) the set
of all such transition structures. As structures in
Tn,k can alternatively be described by k-tuples of
mappings from [n] to [n] (i.e. the i-th mapping
corresponds to the action of the transitions labeled
by ai), the cardinal of Tn,k is |Tn,k| = nkn. An
accessible automaton is a structure in Tn,k such
that all states are accessible from the initial state 1.
We denote by An,k (or An if k is understood) the set of all accessible automata in Tn,k. The
accessible automaton of a structure in Tn,k is obtained by restricting the structure to its
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set {s1 < . . . < sj} of accessible states and by renaming the state si as i for all i ∈ [j], as
depicted in Fig. 1. Since s1 = 1, the resulting automaton belongs to Aj,k.

In this article, we study the distribution of the size of the accessible automaton of a
random structure of Tn,k, as n tends to infinity. The alphabet size k ≥ 2 is assumed to
be fixed and in particular does not depend on n (the case k = 1 is quite different and can
be analyzed using known results on random mappings [9]). For all n ≥ 1, we consider the
random variable Xn describing the size of the accessible automaton of a structure in Tn,k,
for the uniform distribution. The probability for Xn to take value i, for i ∈ [n], is given by
the following formula first obtained in [16]:

P (Xn = i) =

labels of acc. states︷ ︸︸ ︷(
n− 1
i− 1

)
·

acc. aut.︷ ︸︸ ︷
|Ai,k| ·

remaining transitions︷ ︸︸ ︷
nk(n−i)

nkn
. (1)

Indeed if we fix the accessible automaton, it remains to choose the labels in [n] for its states
(as the initial state is always labeled by 1, we have

(
n−1
i−1
)
choices) and the target for the

k(n − i) transitions that take their source outside of the accessible component (kn total
transitions for the structure minus the ki of the accessible automaton). For these transitions,
all n choices of target are valid. An important consequence of this formula is that two
accessible automata in Ai,k appear in the same number of structures of Tn,k, for any i ∈ [n].

n 100 1000 10000
E[Xn](k=2) 79.6356 796.663 7967.41
E[Xn](k=3) 94.0138 940.489 9404.40
E[Xn](k=4) 97.9746 980.137 9801.89

k 2 3 4
vk 0.796812 0.940479 0.980176
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Figure 2 On the top left, an approximation of the average size of the accessible automaton based
on 10000 randomly generated structures from Tn,k. On the bottom left, the values of the constant
vk = 1 + 1

k
W0(−ke−k) for different values of k. On the right, the graphical representation of X100.

Our main technical contribution is to describe the law of Xn for large values of n. As
hinted by Fig. 2, we show that the average size of the accessible automaton E[Xn] is equivalent
to vkn where vk is a constant depending1 on the size of the alphabet k. We also show that
the standard deviation is equivalent to σk

√
n, where σk is also a constant depending on k.

As shown in Fig. 2, the shape of the repartition of the size of the accessible automaton for a
fixed n looks like a Gaussian. This type of behavior is quite common with combinatorial
objects: it is the case for instance for the number of cycles in a random permutation of size
n, for the number of occurrences of a fixed pattern in a random string of length n, ... (see

1 Recall k is assumed to be fixed in our asymptotic analysis.
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196 Distribution of the number of accessible states

[10, p. 683]). It is formally captured by the notion of convergence in distribution to the
normal (or Gaussian) law. More precisely, we are going to show that in a random structure
of size n, once it has been centered by its mean and scaled by its standard deviation, the
distribution of the size of the accessible automaton is asymptotically Gaussian. Note that
standard analytic methods [10] cannot be directly applied here since there are no known
expressions for the associated generating function.

Our interest in studying the distribution of the size of the accessible automaton is not
only motivated by its fundamental nature but also by its rich implications in the algorithmic
and combinatorial study of accessible automata. To substantiate our claim, we provide three
applications of our theoretical results.

Our first application deals with the problem of uniform generation of deterministic and
complete accessible automata. This problem is declined in two variants: the exact one and the
ε-approximated one for ε ∈ (0, 1). The exact generation problem asks to generate uniformly at
random an automaton of Am, for a given size m ≥ 1, whereas the ε-approximated one asks for
an automaton in Am′ for some m′ ∈ [(1−ε)m, (1+ε)m] where m is given; the ε-approximated
also requires that two automata of the same size have the same probability to be generated.
The first solution [17, 4] to the exact generation problem, based on an adaptation of the
recursive method [18], has a complexity in O(m2) (consisting of a preprocessing in O(m2) and
a computation in O(m)). In [1], another solution based on a representation of deterministic
and complete accessible automata by words was proposed, with a complexity in O(m2). This
complexity was later improved in [3], using methods based on combinatorial bijections and
Boltzmann sampling [7], which gives an expected complexity of O(m

√
m). This last work

was then adapted to generate possibly incomplete automata [2], with the same expected
complexity. Note that the best known upper-bound for the ε-approximated problem is also
O(m

√
m) as all known solutions to the ε-approximated problem are in fact solutions to the

exact problem.
We propose a very simple algorithm for generating accessible automata of size m whose

expected complexity O(m
√
m) matches the best known upper bounds. This algorithm

consists in generating uniformly at random a transition structure in Tn,k with n =
⌊
m
vk

⌋
states and then to compute its accessible automaton. If it is of size m we output it, and
otherwise we restart the process. The correctness of the algorithm follows from the above
remark that two accessible automata of size m appear as accessible automata in the same
number of structures of Tn. The probability to obtain an accessible automaton of size exactly
m is in Θ( 1√

m
) and hence the average number of iterations of the algorithm is in O(

√
m).

As every iteration can be computed in linear time, the expected complexity is in O(m
√
m).

Slightly modifying the algorithm to output the automaton when its size belongs to the
interval [(1−ε)m, (1+ε)m] yields a solution to the ε-approximation problem with an expected
complexity of O(m). We also show that this algorithm can readily be adapted to generate
minimal automata (using a recent result on the asymptotic number of minimal automata
[11]), with the same expected complexity for the exact version and an expected complexity
in O(n log logn) for the approximated version.

The second application concerns the formula expressing the asymptotic number of
automata in An,k, as n tends to infinity. In [14], Korshunov established that:

|An,k| ∼ Ekn! {knn } with Ek =
1 +

∑∞
r=1

1
r

(
kr
r−1
)
(ek−1λk)−r

1 +
∑∞
r=1

(
kr
r

)
(ek−1λk)−r

and λk = ekvk − 1
ek−1vkk

, (2)

where {knn } designates the Stirling numbers of the second kind: {knn } is the number of different
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ways to partition kn elements into n non-empty sets. Recently in [15], Lebensztayn gave a
simplified expression of the constant Ek, using the theory of Lagrange inversion applied in
the context of generalized binomial series. Using our main result and the simple fact that∑n
i=1 P (Xn = i) = 1, we obtain another proof of his simplified expression for Ek. Note

that we do use Korshunov’s equivalent to obtain our results but never the expression of the
constant Ek given in Eq. (2).

The last application and the main perspective of this work is the study of combinatorial
properties of accessible automata (which are difficult to apprehend from a combinatorial point
of view) through the prism of the simpler structures of Tn,k. This approach seems particularly
well suited for the average case analysis of classical algorithms on finite automata. We give
two examples of asymptotic properties of structures that can be transfered to accessible
automata. In particular, we show that the average complexity in O(n log logn) for Moore’s
minimization algorithm recently obtained for structures by David in [6] can be extended,
using our result, to accessible automata.

2 Preliminaries

2.1 Deterministic and complete automata
A deterministic and complete transition structure for an automaton over a finite alphabet Γ is
a tuple (Q, q0, δ, F ) where Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q×Γ 7→ Q

is the transition function and F ⊆ Q is the set of final sets. For all n ≥ 1 and k ≥ 2,
we denote by Tn,k the set of all structures over the alphabet {a1, . . . , ak} with states in
[n] = {1, . . . , n}, such that 1 is the initial state and with an empty set of final states.

A structure in Tn,k is said to be accessible (accessible automaton for short) if all its states
can be reached from the initial state 1. We denote2 by An,k the set of all accessible automata
in Tn,k. For a more detailed introduction to finite automata, we refer the reader to [13].

The equivalent of Korshunov given in Eq. (2) involves the Stirling numbers of the second
kind {knn }. In [12], Good establishes the following equivalent as n tends to infinity and for a
fixed k:

{knn } ∼
(kn)!(eρk − 1)n

n!ρknk
√

2πkn(1− ke−ρk )
with ρk = k +W0(−ke−k), (3)

where the classical Lambert function W0 [5] is implicitly defined by W0(x)eW0(x) = x

and W0(x) ≥ −1 for all x ≥ −e−1. Alternatively, ρk is the unique positive solution of
ρk = k − ke−ρk .

Using Eq. (3) and Stirling’s formula in Korshunov’s equivalent (cf. Eq. (2)), we obtain:

|An,k| ∼ Ekαkβnknkn with αk = 1√
1− ke−ρk

and βk = kk(eρk − 1)
ρkke

k
. (4)

2.2 Elements of probability
Let us first recall some basic definitions of probability theory (see [8, 10] for more details). If
X is a real valued random variable, we denote by E[X] its expected value and by V[X] its

2 Instead of labeled automata, we could consider unlabeled automata: the set Aun,k of deterministic and
complete automata with n states over {a1, . . . , ak} up to isomorphism. As deterministic and accessible
automata do not admit non-trivial automorphisms, we have |An,k| = (n− 1)!|Aun,k|. Remark that this
property does not hold for non-accessible structures or non-deterministic automata.

STACS’12



198 Distribution of the number of accessible states

variance, when they exist. The standard deviation is
√
V[X].

I Definition 1. Let (Xn)n≥1 be a sequence of real valued random variables and X be a real
valued random variable. We say that Xn converges in distribution to X when for every t ∈ R,
P (Xn ≤ t)→ P (X ≤ t) as n→∞.

I Definition 2. Let (Xn)n≥1 be a sequence of random variables such that E[Xn] and V[Xn]
exist for all n ≥ 1. We say that Xn is asymptotically Gaussian when the standardized
random variable X∗n = Xn−E[Xn]√

V[Xn]
converges in distribution to the normal distribution N (0, 1)

of parameters 0 and 1, defined by, for any t ∈ R, P
(
N (0, 1) ≤ t

)
= 1√

2π

∫ t
−∞ e−x

2/2dx.

3 Distribution of the size of the accessible component

In this section we state and prove our main result from which we derive all announced
properties of this paper. This result, in particular, explains the Gaussian shape of Fig. 2.

I Theorem 3 (Asymptotically Gaussian). Let Xn be the random variable associated with the
size of the accessible part in a structure of Tn,k. Then Xn is asymptotically Gaussian with
expected value and standard deviation asymptotically equivalent to vk n and σk

√
n respectively,

with

vk = 1 + 1
k
W0(−ke−k) and σk =

√
vk(1− vk)
kvk − k + 1 . (5)

3.1 Outline of the proof of Theorem 3
In this section we present the ideas of the proof of Theorem 3. To shorten the presentation,
we do not derive the asymptotic value of the expected value and variance before establishing
the convergence in distribution to the Gaussian law. Initially, we estimated the values of
the expected value and variance from Eq. (10) and Eq. (11) respectively. As shown in the
next section, the proof of Theorem 3 can be reduced to the following statements: for all
` ∈ {0, 1, 2} and for all t ∈ R, as n tends to infinity we have

bvknc+bt√nc∑
i=1

(
i− bvk nc√

n

)`
· P (Xn = i) −→ 1

σk
√

2π

∫ t

−∞
x` · exp

(
− x2

2σ2
k

)
dx, (6)

n∑
i=bvknc+bt√nc

(
i− bvk nc√

n

)`
· P (Xn = i) −→ 1

σk
√

2π

∫ ∞
t

x` · exp
(
− x2

2σ2
k

)
dx, (7)

and there exists a positive constant C > 0 such that, for every i and n such that 1 ≤ i ≤ n,

P (Xn = i) ≤ C√
n

and P (Xn = bvknc) ∼
Ekαk

√
vk√

2πn(1− vk)
. (8)

3.1.1 Expected value and variance
Assuming that Eq. (6), Eq. (7) and Eq. (8) hold, we show how to establish Theorem 3.

For the expected value of Xn, we consider the sum of Eq. (6) and Eq. (7) for ` = 1 and
t = 0:

E(Xn)− bvk nc√
n

=
n∑
i=1

i− bvk nc√
n

· P (Xn = i) −→ 1
σk
√

2π

∫ ∞
−∞

x · exp
(
− x2

2σ2
k

)
︸ ︷︷ ︸

odd function

dx = 0
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This proves that E[Xn] = bvk nc+ o(
√
n) = vk n+ o(

√
n).

Similarly for the variance of Xn, we consider the sum of Eq. (6) and Eq. (7) for ` = 2
and t = 0, we prove E

[
(Xn − bvk nc)2

]
∼ σ2

k n. It follows that V[Xn] ∼ σ2
k n.

For the convergence in distribution to a normal distribution, we have, using the two
equivalents obtained previously, that P (X∗n ≤ t) ∼ P (Xn ≤ vk n+ σk t

√
n). The error terms

can be handled with Eq. (8), so that using Eq. (6) for ` = 0 gives the result.
Note that we cannot deduce E[Xn] ∼ vk n and V[Xn] ∼ σ2

k n from the case ` = 0 only,
since the convergence in distribution of Yn to Y does not necessarily imply that E[Yn]→ E[Y ]
or V[Yn]→ V[Y ]. In particular here, one can prove that not all the moments of X∗n converge.

3.1.2 Reducing the range of the sums of Eq. (6) and Eq. (7)
Our first step of the proof is to show there exist two reals a and b such that 1

e < a < vk < b < 1
and

banc∑
i=1

P (Xn = i) +
n∑

i=bbnc

P (Xn = i) = o

(
1
n

)
. (9)

This is proved using classical upper bounds for binomial coefficients and for the number of
automata in Eq. (1). As

(
i−bvk nc√

n

)`
∈ O(n`/2), this also shows that for ` ∈ {1, 2},

banc∑
i=1

(
i− bvk nc√

n

)`
P (Xn = i) +

n∑
i=bbnc

(
i− bvk nc√

n

)`
P (Xn = i) = o(1).

For the reminder of the proof, we fix a and b and we denote by In the set {banc+1, . . . , bbnc}.

3.1.3 Equivalent of P (Xn = i) for i ∈ In.
Our starting point is Eq. (1), which states that P (Xn = i) = i

n

(
n
i

)
|Ai,k|n−ki. For any integer

i in In we can use the equivalent for |Ai,k| of Eq. (4) and Stirling’s formula to obtain the
following equivalent of P (Xn = i):

P (Xn = i) ∼ Ekαk√
2πn

g

(
i

n

)[
f

(
i

n

)]n
, with f(x) = x(k−1)xβxk

(1− x)1−x and g(x) =
√

x

1− x. (10)

The constants αk and βk of Eq. (4) can be

1

0.8

1
e a vk b 1

useful range

f(x)

Figure 3 The variations of f on [0, 1].

reformulated in terms of vk using the facts that
vk = ρk

k and vk = 1 − e−kvk . We have αk =
(1 − ke−kvk )−1/2 and βk = 1

(1−vk)vk−1
k

ek
. As i

belongs to In, i
n belongs to [a, b]. On [a, b] the

function g is continuous and positive: it has little
influence on the analysis. The situation is different
for f because it is raised to the power n in the
expression. When n grows, the distribution of
probabilities is concentrated around the unique
point vk of [a, b] where f reaches its maximum
1. The function f is positive on [a, b], increasing on [a, vk] and decreasing on [vk, b], with
f(vk) = 1 and f ′(vk) = 0, as shown in Fig. 3. Notice that, since g is bounded on [a, b] and
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200 Distribution of the number of accessible states

|f | ≤ 1 on this interval, we have for all i ∈ In that P (Xn = i) ≤ C√
n
for some C ≥ 0 . This,

and Eq (9) for values of i outside of In, proves the first part of Eq. (8).
We now set i = bvknc + j to center around bvknc. Using Taylor’s formula near vk on

n ln f(x) and remarking that f ′′(vk) = − 1
σ2

k

we get:

f

(
bvknc+ j

n

)n
= exp

(
− j2

2σ2
kn

)(
1 +O

(
j3

n2

)
+O

(
1
n

))
. (11)

This equation and Eq. (10) for j = 0 proves the second part of Eq. (8).
The function x 7→ e−x

2/2σ2 appears in this formula, applied to x = j√
n
, from which we

will eventually obtain the asymptotic Gaussian shape. This hints that everything meaningful
happens at scale

√
n around bvknc. We now want to consider the sum where Eq. (11) is

useful, that is, on a range where it contains every window of scale
√
n and also where j3

n2 is
not too big, for the Gaussian approximation to hold. For these reasons3, we take a window of
scale n5/9 for j (we have

√
n� n5/9 � n3/2). One can verify that the contribution outside

of this window is negligible:
bvknc−bn5/9c∑
i=banc+1

P (Xn = i) +
bbnc∑

i=bvknc+bn5/9c
P (Xn = i) = o

(
1
n

)
. (12)

For the first sum, we use that f is increasing on [a, vk], so that we can bound from above
P (Xn = i) by its value computed from the estimation of Eq. (11) with i = vkn− n5/9; this
is enough to obtain the result. The second sum is calculated similarly.

3.1.4 Approximation by an integral at scale
√

n around vkn

At this point we have reduced the range of the sum to {bvknc −
⌊
n5/9⌋ , . . . , bvknc+

⌊
n5/9⌋},

and we aim at proving the following result: for all t ∈ R,

bt√nc∑
j=−bn5/9c

(
j√
n

)`
P (Xn = bvknc+ j) −−−−→

n→∞

Ekαk g(vk)√
2π

∫ t

−∞
x` · exp

(
− x2

2σ2
k

)
dx. (13)

In the working range of this section, we can use both Eq. (10) and Eq. (11). By Taylor’s
formula, g(vk +O( 1

n )) = g(vk) +O( 1
n ), and therefore, for all j ∈ {−

⌊
n5/9⌋ , . . . , ⌊n5/9⌋},

P (Xn = bvknc+ j) = Ekαk g(vk)√
2πn

exp
(
− j2

2σ2
kn

)(
1 +O(n−1/3) +O(κn)

)
, (14)

for some positive sequence (κn)n≥1 that tends to 0 as n tends to infinity, which comes from
Eq. (10): it is the maximum of the error term for j ∈ In.

Let h` be the function defined on R by h`(x) = x` · exp
(
− x2

2σ2
k

)
and let (ωn)n≥1 be a

sequence of positive reals4 with ωn → +∞, ωn ·κn → 0 and ωn ·n−1/9 → 0 as n→∞. Using
this properties, one can obtain from Eq. (14) that for any fixed real t,

bt√nc∑
j=−bωn

√
nc

(
j√
n

)`
P (Xn = bvknc+ j) = Ekαk g(vk)√

2πn

bt√nc∑
j=−bωn

√
nc
h`

(
j√
n

)
+ o(1).

3 There are other technical reasons for which n
5
9 is a better choice than others nλ with 1

2 < λ < 2
3 , but

these are the main ones.
4 For instance ωn = min{logn,− log κn} for n large enough.
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Here we recognize a Riemann sum of step 1√
n
. Using that h′` is bounded on R, we can

therefore prove that it can be approximated by an integral (see Figure 4) as follows:

1√
n

bt√nc∑
j=−bωn

√
nc
h`

(
j√
n

)
=
∫ t

−ωn

h`(x)dx+O

(
ωn√
n

)
. (15)

h0(x)

1√
n

h0(
j√
n
)

j√
n

1

bt√nc√
n

−bωn
√

nc√
n

Figure 4 The sum is equal to the area
in blue. It is well approximated, when
n grows, by the surface below the curve
between −ωn and t, since the rectangles’
width is smaller and smaller. For our
function h`, the error term of this ap-
proximation is in O( ωn√

n
), including the

last rectangle.

It remains to estimate the sum for j in {−
⌊
n5/9⌋ , . . . , bt√nc}. We use integral bounds,

which are similar to Riemann sums, to obtain that there exists a constant D > 0 such that

−bωn
√
nc∑

j=−bn5/9c

(
j√
n

)`
P (Xn = bvkc n+ j) ≤ D

∫ −ωn

−∞
|h`(x)|dx.

Since −ωn → −∞, this part is asymptotically negligible, completing the proof of Eq. (13).
Hence, using Eq. (9) and Eq. (12) we obtain the proof that Eq. (6) holds. The same

techniques can also be applied in order to prove Eq. (7).

3.1.5 Another proof of Lebensztayn’s theorem [15]
Observe that

1 =
n∑
i=1

P (Xn = i) =
bvknc∑
i=1

P (Xn = i) +
n∑
bvknc

P (Xn = i)− P (Xn = bvknc)︸ ︷︷ ︸
O(n−1/2) by Eq. (8)

.

Hence, from what we have just proven, by taking ` = 0 and t = 0 in Eq. (6) and Eq. (7), we
obtain that

n∑
i=1

P (Xn = i) −−−−→
n→∞

Ekαk g(vk)√
2π

∫ ∞
−∞

h0(x)dx.

But the left quantity is equal to 1, and the right part can be computed and is equal to
Ekαk g(vk)σk. Hence, Ekαk g(vk)σk = 1, and after basic simplifications we obtain the
following expression for Ek, which is much simpler than Eq. (2):

Ek = 1
αk g(vk)σk

= k + k − 1
vk

.

Note that we only needed to know that Ek exists to obtain the formula above, yielding
another proof of Lebensztayn’s theorem that does not use Korshunov’s complicated expression
for Ek.
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4 Algorithms for random sampling

In this section we describe random generation algorithms for deterministic and complete
accessible automata, which are all variations on the same rejection algorithm5. As explained
in the introduction, our main algorithm RandomSampler(m,k) (presented in Fig. 5) generates
at random structures in Tn,k for n =

⌊
m
vk

⌋
and extracts their accessible automata. The

algorithm rejects until the accessible automaton is of size m. Recall that the accessible
automaton of a structure is obtained by restricting the structure to its set {s1 < . . . < sj} of
accessible states and by relabeling the state si as i for all i ∈ [j].

vk ← 1 + 1
kW0(−ke−k)1

n←
⌊
m
vk

⌋
2

repeat3

for (p, a) ∈ [n]× {a1, . . . , ak} do4

δT (p, a)←Uniform([n])5

A← accessible automaton of T6

until A has m states7

return A8

RandomSampler(m,k)

v ← e−11

repeat2

n←
⌊
m
v

⌋
3

for (p, a) ∈ [n]× {a1, . . . , ak} do4

δT (p, a)←Uniform([n])5

A←accessible automaton of T6

v ← max( |A|n , e
−1)7

until A has m states8

return A9

AdaptiveRandomSampler(m,k)

Figure 5 Random samplers for deterministic and complete accessible automata. δT (p, q) is the
target of the transition starting at p and labeled by a in T .

Let us now analyze the expected complexity of RandomSampler(m,k). The computation
of vk can be achieved [5] using a truncation of the formula W0(x) =

∑∞
i=1

(−i)i−1

i! xi, which
converges exponentially fast for |x| < 1

e and hence in particular for x = −ke−k. Hence if
we keep the m first terms only, we have enough precision for the rest of the algorithm. A
breadth-first search algorithm is used to compute the accessible part in time Θ(m), since k
is fixed. The relabeling necessary to obtain the accessible automaton can also be computed
in Θ(m).

Hence the expected complexity is a linear function of m times the expected number of
iterations. The expected number of iterations is the expected value of the number of tries to
obtain the event Xn = m which is equal to 1

P (Xn=m) . Using Eq. (10) and Eq. (11), we have
that P (Xn = m) is equivalent to Ekαkg(vk)√

2πn . The expected number of iterations is therefore
in Θ(

√
n). This leads to the expected complexity stated in the theorem below.

I Theorem 4. For any fixed integer k ≥ 2, the expected complexity of RandomSampler(m,k)
is in Θ(m3/2).

4.1 Approximate Sampling
If we relax the condition of Line 7 in RandomSampler(m,k) to keep A when its number of
states is in [m−ε

√
m,m+ε

√
m], we obtain algorithm ApproxRandomSampler(m,k,ε). Notice

that ApproxRandomSampler(m,k,ε) outputs automata of different sizes, in [m− ε
√
m,m+

5 Some prefer the name “pseudo-algorithm” since it may never halt; but this event has probability 0.
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ε
√
m]. However, if we only consider automata of fixed size m′ ∈ [m − ε

√
m,m + ε

√
m],

ApproxRandomSampler(m,k,ε) is a uniform generator for accessible automata of size m′.
As for RandomSampler(m,k), the expected complexity is a linear function of m times

the average number of iterations, which depends on P (m− ε
√
n ≤ Xn ≤ m+ ε

√
n). For any

ε > 0, the average number of iterations of ApproximateSampling(m) is

P (m− ε
√
n ≤ Xn ≤ m+ ε

√
n) ∼

(
1

σk
√

2π

∫ ε

−ε
exp

(
− x2

2σ2
k

)
dx

)
= Θ(1). (16)

More precisely, Equation (16) shows that the average number of iterations is in Θ(ε−1).

I Theorem 5. For any fixed integer k ≥ 2 and real ε > 0, the expected complexity of
ApproxRandomSampler(m,k,ε) is in Θ(m).

Remark that the usual approximated range interval is [m(1− ε),m(1 + ε)]: the algorithm
we propose is much more precise.

4.2 Avoiding the computation of the constant vk.
It is possible to avoid the explicit computation of vk, using the self-adaptive algorithm
AdaptiveRandomSampler(m,k) presented in Fig. 5. The idea is that if n is large enough,
generating a structure of size n and computing the size n′ of its accessible automaton
yields an estimation of vk by n′

n , which is likely to be precise. The approximated sampler
AdaptiveApproxRandomSampler(m,k,ε) is defined similarly.

Though needing more iterations than the first versions6, these two adaptive algorithms
have the same expected complexity as stated in the following theorem.

I Theorem 6. For any fixed integer k ≥ 2 and real ε > 0, the expected complexities of
AdaptiveRandomSampler(m,k) and AdaptiveApproxRandomSampler(m,k,ε) are respect-
ively Θ(m3/2) and Θ(m).

Note that it could be tempting to replace vk by a fixed approximation. For instance,
one could take 0.8 for v2. It is easy to show that doing so results in an asymptotically
exponential number of rejections. For instance, when taking v2 = 0.8, if we use f(0.8)n to
estimate the proportion of additional rejects, we see that for automata of size 100,000 we do
approximatively 7 times as many rejections, but moving to automata of size 1,000,000 this
number jumps to approximatively 142,000,000 times as many. This underlines the importance
of mathematical analysis not only to study algorithms but also to devise them.

4.3 Sampling random accessible minimal automata
Recently, in [11] it was shown that the probability for an automaton of An,k to be minimal
tends toward some constant λk > 0 as n tends to infinity.

So if we replace the condition of Line 8 of RandomSampler(m,k) by “A has m states
and is minimal”, we obtain a random sampler for accessible and minimal automata. This is
strictly equivalent to first use RandomSampler(m,k) and then apply a rejection algorithm
to keep minimal automata only; the induced distribution on minimal automata is therefore
the uniform distribution.

6 Simulations for a two-letter alphabet seem to indicate that at most twice as much iterations are required,
on average.
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If we use Moore’s algorithm (which has an average complexity in O(n log logn), see
Section 5) to test for minimality, we obtain an expected complexity in Θ(m3/2+m log logm) =
Θ(m3/2). For the ApproxRandomSampler(m,k,ε), we obtain an approximated sampler for
minimal accessible automata with an expected complexity in Θ(m log logm).

5 Application to analysis of algorithm

The main perspective of this work is to help analyze the average complexities of algorithms
that deal with accessible automata using average complexities of this same algorithms on
structures.

A common technique for such studies is to isolate sets of inputs with non-typical behaviors,
and then prove that the contribution of such sets to the average complexity is negligible,
because an input belongs to such a set with a small probability. In our context, it is usually
much easier to prove such properties for structures rather than for automata, since they are
simpler combinatorial objects. In this section, we briefly describe a general scheme that can
be used in these situations: under some general conditions, properties that sufficiently rarely
hold for structures still rarely hold for automata.

The idea is the following: let P be a property of automata (accessible or not) such that if
the property holds for the accessible automaton of a structure it also holds for the structure
itself. A property such as “being accessible” obviously does not satisfy this requirement but
a property such as “having a sink state” does. In the following we explain and illustrate why,
if one can afford a

√
m multiplier, the negligibility of such a property can be transfered from

structures to automata.
Let pA(m) and pT (n) denote the probabilities that P holds for a size-m automaton and

for a size-n structure, respectively. Then, if AT denotes the accessible automaton of the
structure T ,

pA(m) = |{T ∈ Tn : |AT | = m and AT satisfies P}|
|{T ∈ Tn : |AT | = m}|

≤ |{T ∈ Tn : T satisfies P}|
|{T ∈ Tn : |AT | = m}|

.

The last quantity is equal to pT (n)
P (Xn=m) by multiplying and dividing the quantity by |Tn|. By

taking n =
⌊
m
vk

⌋
, and using Eq. (8), we obtain that for any such property P,

pA(m) ≤ pT
(⌊

m

vk

⌋)
·O(
√
m). (17)

We now give two examples to illustrate how Eq. (17) can be used. First, we prove that
the probability that an automaton has a sink state is asymptotically negligible:

I Lemma 7. For the uniform distribution, the probability that an automaton with m states
on an alphabet with k ≥ 2 letters has a sink state is in O(n3/2−k).

Proof. As remarked previously Eq. (17) holds for this property. The probability that a
structure with n states has at least one sink state is at most n1−k, since every given state is
a sink state with probability n−k. This conclude the proof by taking n = bm/vkc. J

The same technique can be used to prove a deeper result on Moore’s minimization
algorithm. David [6] proved that for the uniform distribution on structures with n states
on an alphabet with at least two letters, the average complexity of Moore’s algorithm is
O(n log logn).
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His result can almost readily be adapted to the uniform distribution on accessible
automata, using the method described above. First notice that when applied to a structure
T , the complexity of Moore’s algorithm is greater than or equal to its complexity for the
accessible automaton of T . David’s proof relies on showing that the probability that a
structure needs more than Θ(n log logn) instructions is small enough to have a negligible
contribution to the average complexity. With some care, one can show that his error terms
can be handled with the O(

√
m) multiplier of Eq. (17), giving the result.
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