N

N

Regular tree languages, cardinality predicates, and
addition-invariant FO
Frederik Harwath, Nicole Schweikardt

» To cite this version:

Frederik Harwath, Nicole Schweikardt. Regular tree languages, cardinality predicates, and addition-
invariant FO. STACS’12 (29th Symposium on Theoretical Aspects of Computer Science), Feb 2012,
Paris, France. pp.489-500. hal-00678210

HAL Id: hal-00678210
https://hal.science/hal-00678210
Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00678210
https://hal.archives-ouvertes.fr

Regular tree languages, cardinality predicates, and
addition-invariant FO

Frederik Harwath and Nicole Schweikardt

Institut fiir Informatik

Goethe-Universitidt Frankfurt am Main, Germany

Email: {harwath,schweika}@cs.uni-frankfurt.de

URL: http://www.tks.cs.uni-frankfurt.de/{harwath,schweika}

—— Abstract

This paper considers the logic FO¢ayq, i.e., first-order logic with cardinality predicates that can
specify the size of a structure modulo some number. We study the expressive power of FOcurq
on the class of languages of ranked, finite, labelled trees with successor relations.

Our first main result characterises the class of FO¢,,q-definable tree languages in terms of
algebraic closure properties of the tree languages. As it can be effectively checked whether
the language of a given tree automaton satisfies these closure properties, we obtain a decidable
characterisation of the class of regular tree languages definable in FO,yq-

Our second main result considers first-order logic with unary relations, successor relations,
and two additional designated symbols < and + that must be interpreted as a linear order and
its associated addition. Such a formula is called addition-invariant if, for each fixed interpret-
ation of the unary relations and successor relations, its result is independent of the particular
interpretation of < and 4. We show that the FO.,.q-definable tree languages are exactly the
regular tree languages definable in addition-invariant first-order logic.

Our proof techniques involve tools from algebraic automata theory, reasoning with locality
arguments, and the use of logical interpretations. We combine and extend methods developed
by Benedikt and Segoufin (ACM ToCL, 2009) and Schweikardt and Segoufin (LICS, 2010).

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.4.3 Formal Languages

Keywords and phrases regular tree languages, algebraic closure properties, decidable character-
isations, addition-invariant first-order logic, logical interpretations

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.489

1 Introduction

The search for decidable characterisations of certain classes of languages has a long tradition
in logic and automata theory. For the case of word languages definable by first-order logic
FO and extensions thereof, the situation is quite well-understood by now. For example, the
languages definable by FO over linearly ordered word structures are exactly the aperiodic
languages [10], and the languages definable by FO on word structures with successor relation
(but without order) are precisely the aperiodic languages closed under idempotent-guarded
swaps [1]. Similar results are known for extensions of FO such as, e.g., the logics FO_ 4
and FO_, 4 that enrich FO by quantifiers that count modulo some integer, respectively,
by predicates that specify the size of the word modulo some integer [11, 9]. All these
characterisations lead to effective procedures for deciding whether a given regular language
is definable by the respective logic. We refer to [11] for a detailed overview.

Transferring such characterisations from word languages to tree languages is usually quite a
challenge. In particular, it is a longstanding open problem to find a decidable characterisation
? Frederik Harwath z'lnd Nicole Schv&feikardt; N SYMPOSIUM

G licensed under Creative Commons License NC-ND V r ON THEORETICAL
29th Symposium on Theoretical Aspects of Computer Science (STACS’12). n }_ ASPECTS
Editors: Christoph Diirr, Thomas Wilke; pp. 489-500 17 / OF COMPUTER

\\v Leibniz International Proceedings in Informatics SCIENCE
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.489
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

490

Regular tree languages, cardinality predicates, and addition-invariant FO

of the regular tree languages definable by FO on tree structures with prefix-order (i.e., the
transitive closure of the parent-child relation). For trees with successor relations (and without
prefix-order), according results for FO and FO, 4 have been achieved in [2], using a new
notion of closure under guarded swaps.

The present paper transfers techniques of [2] from FO to FO_,. 4, generalising results of
[9] from word languages to tree languages. We consider languages of ranked, finite, labelled
trees with successor relations (and without prefix-order) definable in FO_, 4. Our first main
result identifies a new property of tree languages called closure under transfer and shows
that the FO_, 4
closed under transfer and under guarded swaps. This leads to a decidable characterisation of
the FO_, 4-definable regular tree languages.

Our second main result considers first-order logic with unary relations, successor relations,
and two additional designated symbols < and + that must be interpreted as a linear order
and its associated addition. Such a formula is called addition-invariant if, for each fixed
interpretation of the unary relations and successor relations, its result is independent of the

-definable tree languages coincide with the regular tree languages that are

particular interpretation of < and +. For some background on addition-invariant first-order
logic we refer to [7, 9]. The present paper’s second main result shows that the FO
definable tree languages are exactly the regular tree languages definable in addition-invariant

card”

first-order logic. Our proof techniques involve tools from algebraic automata theory [11, 2],
reasoning with locality arguments [7, 6], and the use of logical interpretations (cf., e.g., [7, 5]).
In particular, we combine and extend methods developed in [2, 9].

Structure of the paper. We start by fixing the necessary notations in section 2. In section 3,
we state and prove our algebraic characterisation of the FO_,,,-definable tree languages.
Section 4 shows that it can be effectively decided whether a given regular tree language
has the closure properties associated with FO_, 4-definability. In section 5, we consider
addition-invariant FO and show that the FO_, ;-definable tree languages are exactly the
regular tree languages definable in addition-invariant FO.

Due to space limitations, many technical details of our proofs are deferred to the full
version of this paper, available at the authors’ websites.

2 Preliminaries

We write N for the set of natural numbers starting with 0, and N> for N\ {0}. The notation
[n,m] is used for the closed interval of natural numbers between n and m. We use the
abbreviations [n] := [0,n], (n] := [1,n] and [n) := [0,n — 1]. By xmop m we denote the
non-negative remainder when dividing x by m.

We consider tree languages of finite trees that are labelled with symbols of a finite alphabet
Y (fixed for the course of the paper). We assume that each node has at most two children,
called left child and right child, respectively. This is done for the ease of exposition; all our
results easily generalise to arbitrary ranked finite labelled trees. Words are identified with
trees where every node has at most one child. We write < (resp. <) for the transitive (resp.
reflexive-transitive) closure of the parent-child relation. On each tree, there exists a canonical
linear order of the nodes of the tree according to the order in which they are visited by a
breadth-first-traversal, where the left child of a node is visited before the right child. We
refer to this ordering as the bf-order of a tree. The size of a tree ¢, denoted [t|, is the number
of nodes of t.

A tree is identified with a logical structure, whose universe consists of all nodes of the

F. Harwath and N. Schweikardt

tree. For each a € X, it contains unary relations P, for the set of nodes with label a, and
binary relations S; resp. So for the left resp. right child relation. The set of all formulae of
first-order logic with these relation symbols is denoted by FO.

We now introduce some basic concepts that will be used throughout this article to talk
about the shape of trees. Let t be a tree. For a node v of ¢, we denote the subtree rooted

at v by t|,. The k-spill of v in ¢, denoted by t‘kv, is the restriction of ¢}, to all vertices with

"‘v under isomorphism is called the k-type

of v in t. We say that v realises its k-type in t. Two nodes (in, potentially, distinct trees) are

distance at most k from v. The equivalence class of ¢

k-similar, if they realise the same k-type. Two trees are k-similar if their roots are k-similar.

For each k-type 7, |t|- is the number of nodes of ¢ that realise 7. If ||, > 0, then 7 occurs
in t. For a tree s, we write s <yt if |s|; < |t|; holds for all k-types 7. We use s=jt and
5 <yt analogously. These notations are extended to finite sequences (t;);e(, of trees by the
definition |(t;)ic(n)lr = [t1lr + - 4 [tnlr-

An n-context C, for n € N>q, is a tree with distinguished leaves hy, ..., hy, called holes.
If n =1, C is plainly called a context. The inner tree of C is the tree obtained from C' by
removing its holes. The size |C| of C' is the size of its inner tree. By replacing a hole h; of
C by a tree t (resp. context) one obtains an (n — 1)-context (resp. n-context). Given trees
ty,...,tn, let Cfty,...,t,] be the tree obtained from C by replacing the hole h; by ¢;, for all
i € (n]. For a context C and a tree t, Ct := C -t := C|[t] is the concatenation of C' with t.
We mostly use contexts as means to decompose given trees. For a tree ¢t with a node v and
nodes vy,...,v, below u, let t{u,vy,...,v,) be the n-context obtained from ¢, by removing
all nodes strictly below vy, ..., v, and making vy, ..., v, holes. Usually, the k-type of a hole’s
parent in this n-context will not equal its k-type in ¢. For this reason, we introduce the
following concepts.

Let C be a context with a hole h. A k-type-labelling of C' is a labelling A of the nodes of
C' that assigns (k4 1)-types to the nodes of the inner tree of C, and a k-type to h. A tree t is
compatible with A, if the (k + 1)-type of ¢ induces A(h). If there exists such a tree ¢ and A(v)
is the (k + 1)-type of v in C - ¢, for each v € C with v # h, then X is consistent. A context C
together with a consistent k-type-labelling A of C' is called a k-abstract context. All concepts
introduced for trees will be used for abstract contexts as well. When we refer to the types of
nodes in abstract contexts, we always mean the types given by A. (C, \) is compatible with
a tree t, if ¢t is compatible with . If (C, A) is compatible with another k-abstract context
(C",XN), then C - (' is also a k-abstract context. A k-abstract loop is a k-abstract-context
where the (k4 1)-type of the root induces the k-type of its hole. Notice that for a k-abstract
loop C' the set of (k4 1)-types realised by nodes of C, and that realised by nodes of C™ is
the same, for any n € N>;.

Let L be a tree language. Two trees s,t agree on L if either s,t € L or s,t ¢ L. Two
contexts Cq, Cy are congruent modulo L, written Cy =, Cs, if for all contexts C' and trees t,
the trees C'-Cy -t and C - C5 - t agree on L. A context C is idempotent if C? =21 C. A tree
language is regular, if it is recognised by a (bottom-up) tree automaton (for a reference on
tree automata, see e.g. [4]). The set of all contexts with the operation of concatenation forms
a monoid. The quotient of this monoid by & is called, in analogy to the word case, the
syntactic monoid of L. Just as in the word case, a tree language is regular iff its syntactic
monoid is finite. Therefore, with each regular tree language L come two associated constants:
wy, is the least number such that for each context C, C*~L is idempotent; xj, is the least
number such that, for each context C there exists a context C’ of size at most k; with
C’" = C. In both cases, we usually omit the index L.

491

STACS’'12

492

Regular tree languages, cardinality predicates, and addition-invariant FO

3 First-order logic with cardinality predicates

In this section, we consider an extension of first-order logic by cardinality predicates, and we
characterise regular tree languages definable by this logic. Let FO_, 4 (resp. FOZ ;) denote
the set of formulae of first-order logic that, in addition to the common rules for the formation of
formulae of first-order logic, may use relation symbols from the set {C, ,,, : m € N>1,a € [m)},
(resp. {Cq,m : @ € [m)}) where each C, , is a nullary relation symbol. The formula C, ,,
shall be satisfied in a structure iff the size of the structure’s universe is congruent a modulo
m. A tree language L is FO_, 4-definable iff there exists an FO_, 4-sentence ¢ such that
te Liff t | o, for all trees t. For trees s,t, we write s ~,' t to denote that s and ¢ agree on
all tree languages definable by FO? ;-sentences of quantifier depth at most g.

Our aim for this section will be a characterisation of the FO_,,4-definable tree languages in
terms of their closure properties. To achieve this goal, we combine and extend the techniques
developed in [2] and [9]. In [2], necessary and sufficient conditions for the FO-definability of
a regular tree language were shown. To state the characterisation, we need to introduce the
following notions. A tree language L is aperiodic iff there exists a constant ¢ € N, such that
C*f =, ¢ for all contexts C.

car

» Definition 3.1 (Guarded Swaps, [2]). Let ¢ be a tree with root w.

Let u<v <’ <o’ be nodes of ¢t. Let C := t{w, u), Cy := tu,v), D = tlv,u’),Cy := t[u/,v)
be contexts and let s := Ty The wertical swap of the tree t = C' - Cy - D - Cy - s between C}
and C5 is the tree C - Cy - D - Cy - 5. If uw and v’ as well as v and v’ are k-similar, for some
k € N, then we say that the vertical swap is k-guarded.

Let u and v be incomparable nodes of ¢ (i.e., neither u < v nor v < u holds). Let
C :=tlw,u,v), and let sy := t|,, and sy := t|,. The horizontal swap of t = C[sy, 53] between
uw and v is the tree C[sg, s1]. If u and v are k-similar, for some k € N, then we say that the
horizontal swap is k-guarded.

A tree t' is a k-guarded swap of t iff it is either a k-guarded vertical swap or a k-guarded
horizontal swap of t. A tree language L is closed under k-guarded swaps iff each tree t agrees
on L with all its k-guarded swaps. L is closed under guarded swaps, if there exists a k such
that L is closed under k-guarded swaps.

The characterisation of FO-definable tree languages by Benedikt and Segoufin reads as
follows:

» Theorem 3.2 ([2]). A tree language is FO-definable iff it is reqular, aperiodic, and closed
under guarded swaps.

For the special case of regular word languages it was shown in [9] that FO_, ,-definability
of a regular language is characterised by certain closure properties as well. Let L be a
regular word language over an alphabet . The language L is said to be closed under
idempotent-guarded swaps if for all words p,q,r,e, f € ¥*, such that e, f are idempotent it
holds that ep freq f = eqfrepf. A regular word language L is closed under transfer iff
a@tlyzw 22p a9yt for all words x,vy, 2z with |z| = |2|. The following was proved in [9]:

card

» Theorem 3.3 ([9]). A word language L is FO_, 4-definable iff it is regular, closed under
idempotent-guarded swaps, and closed under transfer.

The present section’s goal is to show that Theorem 3.3 can be generalised to regular tree
languages. To this end, we introduce a generalisation of the notion of closure under transfer
to tree languages. Similarly to guarded swaps, it consists of a “vertical” and a “horizontal”

F. Harwath and N. Schweikardt

property. In this case, the vertical property is a direct translation of the notion of transfer
from the syntactic monoid of word languages to the syntactic monoid of tree languages.

» Definition 3.4 (Transfer). A regular tree language L is closed under vertical transfer if
Oyt .D.C§ =y CY - D-Cy™! holds for all contexts Cy, D, Cy with |Cy| = |Cy|. L is closed
under horizontal transfer if the trees C[Cy1! - 51, Cf - s5] and C[CY - 51, C5 ! - 53] agree on
L, for all 2-contexts C, contexts C7,Cy with |C1] = |Cs], and trees s; and so. If L is closed
under vertical and under horizontal transfer, then L is called closed under transfer.

The remainder of this section is devoted to the proof of the following theorem:

» Theorem 3.5 (Characterisation of the FO_, 4-definable tree languages). A tree language L
is FO_,,.q-definable iff it is regular, closed under guarded swaps, and closed under transfer.

The transfer property, as stated in Definition 3.4, makes the connection with the corres-
ponding property of word languages clear and will be useful when considering decidability
questions in section 4. For the proof of Theorem 3.5, however, another formulation of transfer
in terms of the following notion will be convenient:

» Definition 3.6 (Growing a tree by a context; n-Template). Let ¢ be a tree with root w, and
let A be a context. Let p be a node of ¢, and let C := t[w, p) and s :=t),, (i.e. t = C's). We
say that the tree C'As is obtained from ¢ by letting t grow by A at p.

For any n € N, an n-template is a tree T with n expansion points, i.e. n distinct distin-
guished nodes p1,...,p,. We define T() := T and, given a sequence of contexts Ay, ..., Ay,
for an ¢ < n, we let T(Aq,...,As) be the tree obtained by letting T(Aq,...,Ay_1) grow by
Ay at py.

The following lemma gives an alternative formulation of transfer in terms of templates and is
easily seen to be true:

» Lemma 3.7 (Alternative formulation of transfer). Let L be a regular tree language. L is
closed under transfer iff for all 2-templates T and all contexts Cy, Cy with |Cy| = |Cs|, the
trees T(CYTL, CY) and T(CY,CS™) agree on L.

The outline of our proof of Theorem 3.5 is similar to the proof of Theorem 3.2 given in [2],
in that a major part of it consists in the proof of the following lemma:

» Lemma 3.8 (Main lemma). Let L be a regular tree language that is closed under guarded
swaps and closed under transfer. There exist m,q € N, such that L is a union of ~'-
equivalence classes.

Before we turn to the proof of this lemma, we show how to prove Theorem 3.5 with its help.

Proof of Theorem 3.5 using Lemma 3.8: For the “if-direction”, let L be a regular tree
language closed under transfer and guarded swaps. We want to show that L is FO_, 4-
definable. By Lemma 3.8, we know that there exist m,q € N such that L is a union of
~,'-equivalence classes. It easy to see that each such class is definable by an FO_, .
and the number of these classes is finite. Hence L can be defined by the disjunction of such
sentences.

For the “only-if” direction, let L be an FO_, 4-definable tree language. For all m € N>;
and all a € [m), let T, ,,, denote the language of all trees of size @ modulo m. We make use
of the following easy observation:

4-sentence,

» Claim 3.9. There exists an m € N>; and FO-definable tree languages Lo, ..., Ly,—1, such
that L = | J (La N Tam).
a€m)

493

STACS’'12

494

Regular tree languages, cardinality predicates, and addition-invariant FO

Every FO-definable tree language is regular, as is each of the languages 7T} ,,. Hence Claim 3.9
immediately implies that L is regular, too. By Theorem 3.2, for each a € [m) thereisa k, € N
such that the language L, is closed under k,-guarded swaps. Let k := max{ko, ..., km—1}.
Each language L, is obviously closed under k-guarded swaps, too. As guarded-swaps do not
change the size of a tree, every language L, N T, ,, is closed under k-guarded-swaps, so their
union L is so as well.

It remains to show closure of L under transfer. By Lemma 3.7, it suffices to show that for
arbitrary 2-templates 7', and contexts C; and Cy with |C}| = |Cy|, the trees s := T(CY ™, CY)
and t := T(CY, C‘Q"‘H) agree on L. For each a € [m), let ¢, be the FO-sentence defining L,,
and let g, denote its quantifier depth. Let ¢ denote the FO_,, 4-sentence defining L. If s,t
agree on their size modulo m and on all sentences ¢q, ..., Pm_1, they must, by Claim 3.9,
agree on ¢ as well. Let ¢ := max{qo,...,qm—1}. Because of the idempotency of C} and
Oy, the trees s and t agree on L iff for some n € Nx; the trees s' := T(C7* ™' C3*) and
t' = T(CT,Cy“*!) agree on L. Note that, for any £ € N, the number of occurrences of
each f-neighbourhood-type in the trees s’ and ¢’ is either the same (this is the case for the
£-neighbourhood-types of nodes whose £-neighbourhood is neither strictly contained in the
sequence of repetitions of Cy nor in that of Cy) or can be made arbitrarily large by the
choice of n (for £-neighbourhood-types of nodes whose ¢-neighbourhood is strictly contained
in a long sequence of repetitions of C7 or C3). Thus we may deduce by an application of
Hanf’s Theorem (see e.g. [5]) that for some n, the trees s’ and t' agree on all FO-sentences
of quantifier depth at most q. By what was said above, this implies that the trees agree on
. Therefore they agree on L, so L is closed under transfer. |

The remainder of section 3 is dedicated to the proof of the main lemma (Lemma 3.8).

Let L be a regular tree language that is closed under transfer and under k-guarded swaps,
for a k € N. We want to show that there exist ¢ € N and m € N»; such that two trees s,t
that agree on all FO7? ;-sentences of quantifier depth ¢ agree on L. We let m be given by the
following lemma, which is an adaptation of a lemma proved in [9] for regular word languages.
Its proof is a simple restatement of the proof given in [9] in terms of templates and contexts.

» Lemma 3.10. Let L be a reqular tree language. L is closed under transfer iff there exists
an m € N1, such that for all £ € N>y, all contexts Ay, ..., Ay, all {-templates T and all
01,...,00 €N, if 01|Aq| + 02| Ag| + - - -+ 0¢|A¢| = 0 (mod m), then the trees T(AY, ..., A})
and T(AYT .. AT agree on L.

As an intermediate step towards our goal, we show that s ~7" ¢ implies that either ¢ has the
same number of occurrences of each (k+ 1)-type as s, and s and ¢ agree on L (in this case we
are done with the proof of the main lemma), or the number of occurrences of some type differs
between s and ¢ and, in this case, t agrees on L with “s with some additional contexts added”.
This is basically done as in the proof of Theorem 2 of [2], with only minor modifications of the
lemmas used therein. Note, however, that in contrast to [2], we also have to care about the
size of the trees modulo m. The following lemma gives a precise formulation of what we show:

» Lemma 3.11. Let L be a regular tree language that is closed under transfer and k-guarded
swaps, for a k € N. Let s,t be trees.

(a) If s=p41t and s,t are (k + 1)-similar, then both trees agree on L.

(b) Foralld,m € N there exists a ¢ € N such that, if s ~y' t and not s=y11t, then there ex-
ists an n € N>y and a sequence of k-abstract loops (S;)ie(n) and expansion points pi, ..., pn
in s such that (i) s{S1,...,Sn) agrees with t on L, (i) |s{(S1,...,Sx)| = |s| (modm),
(i) |s|; > d, for all (k + 1)-types T occurring in (S;)ic(n)-

F. Harwath and N. Schweikardt

We use Lemma 3.11(b) with d := mwb, where b is fixed according to Lemma 3.12 below.

Now choose ¢ according to Lemma 3.11(b), and let s, be trees such that s ~7* t. Our aim
is to prove that s and ¢ agree on L. If s=4;t, we are done due to Lemma 3.11(a). For
the remainder of this section, assume that s =1 ¢ does not hold. Let (S;);¢(n] be given by
Lemma 3.11(b). Let ' := s(S1,...,S,). We know that ¢’ and ¢ agree on L, both trees have
the same size modulo m, and each (k + 1)-type occurring in (S;);c(n) occurs strictly more
than d times in s. We will construct a new tree s’, (k 4+ 1)-similar to s, agreeing with s on
L, and with all the (k + 1)-types from the loops that distinguish s from ¢’ added. L.e., we
want to achieve |s'|; =[]+ +[(Si)ie(n|- = |t'|+ for all (k + 1)-types 7. Then we are assured
by Lemma 3.11(a) that ¢’ and s’ agree on L. Therefore, because t' and ¢ as well as s’ and s
agree on L, we know that s and t agree on L, which is the conclusion that we are aiming at.
As a first step to construct s’, we replace each loop S; by a loop congruent to it modulo
L, the size of which is bounded by a constant b depending only on L. The existence of such a
loop is guaranteed by the following lemma, whose proof uses a standard pumping argument,
where we have to ensure that the size of the given tree remains unchanged modulo m.

» Lemma 3.12 (Loop bound). Let k € N, m € N>q, and let L be a regular tree language.
There exists a (computable) bound b € N such that for all k-abstract loops A there exists a
loop A" satisfying: (1) A' =y A, (2) |A] < b, (3) |A'] = |A] (modm), (4) A g A.

For each ¢ € (n], let S] be the loop of size at most b given by the lemma for the
loop S;. Let I := {i1,...,i¢} C [n] be a non-empty set of size at most m such that
|Si, |+ +5;,| = 0 (modm). Such a set exists by a simple application of the pigeonhole
principle, because, as a consequence of Lemma 3.11(b), the summed size of the loops (S;);e(n]
is 0 modulo m. The next lemma tells us that there exists a tree, obtained from s by a
sequence of k-guarded swaps, which contains (disjoint) copies of the loops (S/“);c;. The
proof of the lemma uses Lemma 4 of [2] to include one loop after another into a tree obtained
from s by k-guarded swaps (note that these change neither the (k + 1)-type of the root nor
the number of occurrences of (k + 1)-types in a tree [2]), and then removes intersections
between the images of the individual loops under the inclusion mappings by k-guarded swaps.

» Lemma 3.13. Let L be a regular tree language closed under k-guarded swaps, for k € N.
Let (A)ie(q, for £ € N>y, be a sequence of k-abstract loops. For all trees s such that
(Ai)ic(q <k+18, there exists an (-template T' such that T(Aq,. .., Ag) agrees with s on L,
T(A1,...,Af) =418, and T{Aq,...,Ap) is (k + 1)-similar to s.

Recall that we know, by Lemma 3.11 and 3.12, that each (k + 1)-type occurring in one of
the loops (S})ie(n) occurs more than d times in s. The contexts (S});c(n) being k-abstract
loops, we do not introduce any new (k + 1)-types when taking their w-powers. Hence, each
(k + 1)-type of (S/“);er occurs at least d times in s.

We want to apply Lemma 3.13 for (A;);cq := (S5)ier and s. To do this, we need
to make sure that (5);er <g+1 s. This is assured by taking d := mwb as, obviously, there
cannot be more occurrences of any particular (k + 1)-type in (S});c; than there are nodes
in (S))ier altogether. Let T be given by Lemma 3.13. By Lemma 3.10, we know that
(S}, ..., Si,") agrees with T(S;” - S; ,..., S} - Si,) on L. This tree, in turn, agrees with
T(S/Si,...,SL”+S;,) on L, as each context S/ is congruent S; modulo L by Lemma 3.12.
By this reasoning, we have added a copy of (S;);er (and hence, especially, a copy of every
(k + 1)-type therein) to a tree that agrees with s on L.

Now we may apply the same argument successively on the tree just obtained to add the
remaining (k + 1)-types from {Si,...,S,} \ {Si,...,Si,}. Finally this yields the desired
tree s’. This finishes the proof of Lemma 3.8. <

495

STACS’'12

496

Regular tree languages, cardinality predicates, and addition-invariant FO

4 Decidability

In this section we show that it is possible to decide if a given regular tree language is closed
under transfer. Combined with the decidability of closure under guarded swaps (see [2])
and our results from section 3 this implies that FO_,,-definability of a given regular tree
language is decidable.

» Theorem 4.1. [t is decidable whether the language L recognised by a given tree automaton
A is closed under transfer.

Proof. We assume w.l.o.g. that A is a minimal deterministic tree automaton with state set
Q. In order to decide whether L is closed under horizontal transfer, we will check all possible
counter examples to this property. If L does not posses the closure property, there exists
a 2-context C and contexts A1, As with |Aj| = |As| and trees s1, s such that the trees
t) = C[A“f“sl, A% s9] and tg := C[AY s1, A‘;‘HSQ} do not agree on L. Let fa,, fa, 1 Q — @
and fo: Q X Q — @ denote the transition functions induced by A and, respectively, A, Ao,
and C on Q. The trees t; and ¢, do not agree on L iff there exist states py, ps and ¢} ,q1,g2,
q3 such that: (1) fx, (1) = @1 and fle(Pl) =q/, (2) fx,(p2) = g2 and fX;H(Pz) =q5,
(3) felal a2) # fela, a3)-

Let R C Q° be a relation such that a tuple of states ¢ := (p1,p2, 4}, 1, g2, ¢35) belongs to
R, iff there are contexts A1, Ay with |A;] = |Ag| satisfying conditions (1) and (2) above.

For all i € N, let M; denote the set of transition functions induced by contexts of size i on
Q. The set M; can be computed by simply enumerating all of the (finitely many) contexts of
size i and computing the transition function of each such context in turn. Hence, we can
recursively enumerate R by iterating through all the sets M; and comparing the behaviour
of the transition functions therein upon all combinations of states. By a pumping argument
one sees that there exists a computable bound n such that, if there are contexts Ay, Ag
witnessing conditions (1) and (2) for a tuple ¢, then there have to be such witnesses of size
at most n. Hence, R is decidable.

Now we can decide closure under horizontal transfer by checking all possible counter
examples: For all 6-tuples ¢ as above with ¢ € R, we compute all possible transition functions
f:QxQ — Q induced by A and check if f(qi,q2) # f(q1,q5). If such an f is found,
condition (3) is satisfied and L cannot be closed under horizontal transfer. On the other
hand, if the check fails for all functions f, we know that L is closed under horizontal transfer.

The decidability of closure under vertical transfer follows using an analogous argument. <«

Combining Theorem 3.5 with Theorem 4.1 and the decidability of closure under guarded
swaps obtained in [2], immediately leads to:

» Corollary 4.2. [t is decidable whether the language L recognised by a given tree automaton
A is FO_,.q-definable.

5 Addition-invariant FO

The set of all first-order formulae that may use the additional binary relation symbol <
and a ternary relation symbol + is denoted by FO[<,+]. A {<,+}-expansion of a tree
t is a structure that keeps the interpretation of P, (for all @ € X) and Sy, S2 given by ¢,
and interprets < as a linear order on ¢ and + as the addition relation induced by <. A
FO[<, +]-formula ¢ is addition-invariant, if for all {<, +}-expansions of s, s’ of a tree, s |= ¢
iff s = ¢. Let +—inv—FO denote the set of addition-invariant formulae. This section’s main
result is the following theorem, generalising a result of [9] from words to trees:

F. Harwath and N. Schweikardt

» Theorem 5.1. Let L be a regular tree language. The following statements are equivalent:
(1) L is +—inv-FO-definable, (2) L is closed under transfer and guarded swaps, (3) L is
FO,,,q-definable.

The equivalence of statements (3) and (2) was proved in Theorem 3.5. It is easily seen that
any regular tree language definable by an FO_,, ,-sentence ¢ is definable by an 4—inv-FO-
sentence. For example, the following +—inv—FO-sentence defines Cy 2 (where we assume that
the least element with respect to < has index 0):

3z (z=z+z A -3y (y < 2)).

For the remainder of this section, we will be occupied by the proof that +—inv-FO-
definability implies closure under guarded swaps and transfer. The following proofs make
extensive use of first-order interpretations; see e.g. [5] for an exposition of this technique.

Closure under guarded swaps. To prove the closure of +-inv—FO-definable regular tree
languages under guarded swaps, we use the following Lemma 5.2, which is an immediate
consequence of [8, Proposition 6.11] (which lies at the heart of the results from [9], too). To
state the lemma, we need the following notations: Let ¢ be a relational signature. For each
o-structure A, we write ¢4 for the set of relations of A. Let A, B be o-structures. Let o
be a mapping from the universe of A to the universe of B. For a relation R € ¢ of arity
m, we define a(R) := {(a(a1),...,a(am)) : (a1,...,am) € R}. For 04 = {Ry,..., R,}, let
a(o?) = {a(Ry),...,a(R,)}. We write A ~, B to indicate that A and B satisfy the same
first-order-sentences of quantifier depth at most q.

» Lemma 5.2 ([8]). Let ¢, h,e € N>y and let o be a signature. There exists an infinite set
P :={p1 <p2<p3...} SN withp, > h and p; = h(mode), for all i € N>, and a number
q' such that the following is true for all finite o-structures M and all linear orders <i and
<o on M ’s universe: if (M,<1) ~y (M, <2), then (Z,+, P,a1(c™)) ~y (Z,+, P, az(c™M)),
where o is a map taking the j-th node of M according to <; to p;, for i € (2] and j € N>q.

The second ingredient to our proof of the closure of +-inv—FO-definable tree languages under
guarded swaps is a lemma of [6] which was used in [3] to prove closure under guarded swaps
of order-invariantly definable tree languages:

» Lemma 5.3 (implicit in [6]). Let z,¢' € N, and let o be a signature. There exists k' € N
such that for each finite o-structure M and all z-tuples @ and b of M with isomorphic
k'-neighbourhoods, there exist linear orders <y and <o of the universe of M, whose initial
elements are respectively ab and ba, such that (M, <) a2y (M, <s).

We use the lemmas 5.2 and 5.3 together with an interpretation argument, to prove:

» Lemma 5.4. Let L be a regular tree language. If L is definable by an +—inv-FO-sentence,
then L is closed under guarded horizontal swaps.

Proof sketch. Let ¢ be an +-inv-FO-sentence defining L. Let @ be the state set of a
minimal deterministic tree automaton recognising L. We want to show that L is closed under
k-guarded horizontal swaps, for a k € N that will be fixed later on. Consider a tree t with
incomparable k-similar nodes u and v. Let t; := t|, and ty := t|,, i.e. t = C[t1,ts] for a
2-context C. Let t' := C[ta, t1]. We may assume that the trees ¢; and ¢2 have height at least
k. Taking k > kpk’ +|Q@| (with k7, as defined at the end of section 2), where k" will be fixed
later on by our application of Lemma 5.3, a standard pumping argument shows that we may

497

STACS’'12

498

Regular tree languages, cardinality predicates, and addition-invariant FO

assume that t; = DFEt], for a tree ¢} and contexts F, D such that F is idempotent, and D is
krk'-similar to to. Let e := |E|. Without loss of generality, e < xr, (if not, we can replace E
by a congruent context of that size) and |¢]| > e (if not, we can prepend a copy of F to it).

For i € {1,2}, we decompose t; into blocks of size e, plus a residual block of size
n; := |ti| mop e, if |t;| is not divisible by e: A block consists of e consecutive nodes of t;,
ordered according to the bf-order of the tree (cf., section 2). We let M be a structure using
the set of blocks of size e of t; and ¢y as universe, with relations which encode the following
information about #; and ¢9: the successor relations between the nodes of the different blocks
(resp., between the blocks and the residual blocks not in M), the position of F, and the
labels of the nodes in each block. Let b; and by be the blocks containing the roots of t;
and to, respectively. Since t; and ty are k-similar, the k/e-neighbourhoods of by and bs in
M are isomorphic. We let &’ be given by Lemma 5.3 for z := 1 and a ¢’ to be fixed later
on. By our choice of k we have k' < k/e < k/kr. By Lemma 5.3 we obtain two linear
orders < and <5 on M such that, according to <;, by comes first and by comes second, and
according to <g it is just the other way round. Lemma 5.3 guarantees that (M, <;) and
(M, <2) agree on all FO[<, +]-sentences of quantifier depth < ¢’. Thus, by Lemma 5.2, we
obtain structures M; and My over the integers which contain “stretched copies” of (M, <1)
and (M, <s), respectively. Le. some elements of M; and My, marked by a unary predicate P,
correspond to the original structures, and other positions in between do not. The number h
of Lemma 5.2 is set to be |C| + ny + ne, and ¢” will be fixed later on. We choose ¢’ as given
by Lemma 5.2 and obtain that M; and M, agree on all FO[<, +]-sentences of quantifier
depth at most ¢”.

Now we specify an FO[<, +]-interpretation that transforms M; into a tree agreeing with
t on L, and M, into a tree agreeing with ¢’ on L: The set of nodes of the trees consist of all
non-negative integers before the least position in P that is not included in any “stretched
relation”. The successor relations and labels of the first e nodes starting at a node p where P
holds are interpreted in such a way that ¢; and to are simulated on these nodes; for this, the
“stretched copies” of the relations from (M, <;) resp. (M, <3) are used. The nodes between
p + e and the next number p’ in P, are interpreted as copies of the idempotent context E;
the same is done for the nodes between the positions h and p; — 1. All these copies of E
are inserted at the original position of E in the simulated tree ¢1. In the first A nodes, the
(inner tree of) the 2-context C' and the two residual blocks of size n; and nsy are simulated.
The simulated parent of the first hole of C is linked to the node that is simulated at the first
position in P; the parent of the second hole of C' is linked to the node at the second position
in P. This way, for t~1 = DE’ {, for a suitable ¢ € N1, the interpretation turns M; into the
tree C[t1, 5] (which, as F is idempotent, agrees with ¢t on L), and My into C[ty, ;] (which
agrees with ¢’ on L). By choosing ¢” larger than the sum of the maximal quantifier depth of
the formulae of this interpretation, and the quantifier depth of the formula ¢ defining the
language L, we ensure that ¢ and ¢’ agree on ¢, finishing the proof. |

Our next goal is to prove that every +—inv—FO-definable regular tree language is closed under
guarded vertical swaps as well. To achieve this, we first prove the closure under a variant of
guarded vertical swaps, where the guardedness assumptions are somewhat strengthened: A
language L is said to be closed under strongly-k-guarded vertical swaps, for k € N, if each
tree ¢ containing nodes u < v < v/ <1 v/, such that v and v’ are k-similar, v and v’ have
isomorphic k-neighbourhoods, and the k-neighbourhoods of v and v and k-spills of v and v’
are all mutually disjoint, agrees on L with its vertical swap between t[u, v) and t[u’, v’).

F. Harwath and N. Schweikardt

» Lemma 5.5. Let L be a regular tree language. If L is +—inv—FO-definable, then L is
closed under strongly-k-guarded vertical swaps, for some k € N.

The proof of Lemma 5.5 proceeds similarly to the proof of Lemma 5.4 (the strongly-guarded
swaps being necessary to apply Lemma 5.3). We continue by showing that being closed under
strongly-guarded vertical swaps is actually equivalent to being closed under guarded vertical
swaps, if the language under consideration is closed under guarded horizontal swaps, too.

» Lemma 5.6. Let L be a tree language. L is closed under guarded swaps iff it is closed
under strongly-guarded vertical swaps and guarded horizontal swaps.

Proof idea. Closure under guarded swaps immediately implies closure under strongly-guarded
swaps and guarded horizontal swaps. Let L be a tree language that is closed under strongly-
k’-guarded vertical swaps and k’-guarded horizontal swaps. We show that L is closed under
k-guarded vertical swaps, for a suitable number k > k’. Let t := CA1;AA3s be given as in
the definition of vertical guarded-swaps, and let ¢’ := CA3AA;s. The proof proceeds by
distinguishing cases depending on the root-hole-distance of the contexts Ay, A, As. We show
how to find nodes @ and @ in the k-spills of the root of Ay resp. Ay, and v and ¢’ in the
k-spills of the hole of Aj resp. Ay in ¢, fulfilling the preconditions for a strongly-k'-guarded
vertical swap between t[i,) and ¢[d,7"). After this swap, we have either swapped “too
much” or “not enough” of A; and As. In these cases, we are able to repair the remaining
parts by a series of k’-guarded horizontal swaps between the (incomparable) nodes “around”
the nodes swapped in the strongly-guarded vertical swap. |

Closure under transfer. We now show that a regular tree language definable by an
+—inv—FO-sentence is closed under transfer. This is the easier part of the proof of The-
orem 5.1, as we are able to build directly on results proved in [9]. To state the according
result, we need some further notation: Given words w,z € ¥*, with |w| > |z|, we denote by
|w|, the number of non-overlapping occurrences of z as a factor in w. Furthermore we say
that a sentence ¢ separates languages L1 and Lo iff every word in L1, but no word in Lo,
satisfies (.

» Lemma 5.7 (Proposition 3.3 of [9]). Letn € Nwithn > 2,y € ¥*, z € (¥ x {1})* and
z € (X x{2})*. Foralla,beN, let

Lyap = {weyz(zz|22)" : |w|z, |w|z > n, |w|z = a (modn), |w|z = b(modn)}.

There exists no FO[<, +]-sentence that separates Ly, 1o from Ly o.1.

We use Lemma 5.7 and proceed with a proof by contradiction: If a regular tree language
L is not closed under transfer, we show by an interpretation argument that there exists a
FO[<, +]-sentence separating a suitable word language L, 1,0 from a word language L, 9.1
for n := wr. This is akin to what is done in [9] to prove that every regular word language
is closed under transfer, the difference being that we have to simulate trees in words.

» Lemma 5.8. Let L be a regular tree language. If L is definable by an +—inv—FO-sentence,
then L is closed under transfer.

Proof sketch. Assume that L is not closed under transfer. This means, there are contexts
A1, As with |Ay] = |As] and a 2-template T, such that ¢ := T(A‘f“,A;’) € L, but
t=T(AY, AT ¢ L. Let t; ;== T(AL, A}), for all i,j € N>1. Because AY and Ay are
idempotent, we may repeat both contexts in the trees ¢ and ¢’ without affecting membership

499

STACS’'12

500

Regular tree languages, cardinality predicates, and addition-invariant FO

in L. Hence, for all 4,j > w, (1) if i = 1 (modw),j = 0(modw), then t;; € L, and
(2) if i = 0(modw),j = 1 (modw), then t;, ; ¢ L. As we are aiming at a contradiction to
Lemma 5.7, we fix the numbers and words therein: We take n to be w. To each tree we
assign the word of its labels, ordered according to the bf-order on the nodes of the tree. Let
y be the word obtained from the template T in that way. Let x and z be the words obtained
from the inner tree of the contexts A; and As, respectively. Let & be the word = with each
symbol a € ¥ that occurs in z replaced by the tuple (a,1), and let zZ be obtained from z
by tagging each symbol of z accordingly by 2. Let Ly := {¢;; : i,j € N}. We define an
FO[<, +]-interpretation that interprets trees from Ly in words from the language yz(zz|zz)*
such that, given a word w € yZz(zz|zz)* with ¢ := |w|z and j := |w|z, this interpretation
constructs the tree ¢; ;. It is possible to do this by FO[<, +]-formulae, because A, Ag,
and T are fixed, and we can use the tags 1 and 2 in the words x and z to identify the
positions in a word where subwords corresponding to A; resp. As start. Now consider the
languages L, 1,0 and Ly o1 (for n := w) of Lemma 5.7: If w € L,, 1 o, then, by (1), ¢; ; € L.
On the other hand, if w € L, 91, then ¢; ; ¢ L. Let ¢ be the +—inv—FO-sentence defining
L. We alter ¢ according to our interpretation to obtain an FO[<, 4]-sentence ¢’. By the
addition-invariance of ¢, the choice of the addition relation (here, the one induced by the
linear order on the word) is immaterial for the satisfaction of ¢ by ¢; ;. Therefore, w = ¢’
iff t; ; =@ iff t; ; € L. Thus, ¢ separates L, o1 from L, 1 o, contradicting Lemma 5.7 and
finishing the proof of Lemma 5.8. |

From the lemmas 5.8, 5.4, 5.5, 5.6, we obtain that every +—inv—FO-definable regular tree
language is closed under transfer and guarded swaps, concluding the proof of Theorem 5.1. <«

Acknowledgement. We thank Luc Segoufin for helpful discussions on the subject of this
paper.

—— References

1 D. Beauquier and J.-E. Pin. Factors of words. In Proc. ICALP’89, volume 372 of Lecture
Notes in Computer Science, pages 63—79. Springer-Verlag, 1989.

2 M. Benedikt and L. Segoufin. Regular tree languages definable in FO and in FO,,,q. ACM
Transactions on Computational Logic, 11(1), 2009.

3 M. Benedikt and L. Segoufin. Towards a characterization of order-invariant queries over
tame graphs. Journal of Symbolic Logic, 74(1):168-186, 2009.

4 H. Comon, M. Dauchet, R. Gilleron, C. Loding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available at http://tata.
gforge.inria.fr/. Release: October, 12th 2007.

5 H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 2nd edition, 1999.

6 M. Grohe and T. Schwentick. Locality of order-invariant first-order formulas. ACM Trans-
actions on Computational Logic, 1(1):112-130, 2000.

7 L. Libkin. Elements of Finite Model Theory. Springer-Verlag, 2004.

8 N. Schweikardt. An Ehrenfeucht-Fraissé game approach to collapse results in database
theory. Information and Computation, 205(3):311-379, 2007.

9 N. Schweikardt and L. Segoufin. Addition-invariant FO and regularity. In Proc. 25th IEEE
Symposium on Logic in Computer Science (LICS’10), pages 285-294. IEEE, 2010.

10 M.P. Schiitzenberger. On finite monoids having only trivial subgroups. Information and
Control, 8(2):190-194, 1965.
11 H. Straubing. Finite automata, formal logic, and circuit complexity. Birkduser, 1994.

http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/

	Introduction
	Preliminaries
	First-order logic with cardinality predicates
	Decidability
	Addition-invariant []

