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Abstract
We determine the asymptotic proportion of minimal automata, within n-state accessible de-
terministic complete automata over a k-letter alphabet, with the uniform distribution over the
possible transition structures, and a binomial distribution over terminal states, with arbitrary
parameter b. It turns out that a fraction ∼ 1 − C(k, b)n−k+2 of automata are minimal, with
C(k, b) a function, explicitly determined, involving the solution of a transcendental equation.
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1 Introduction

To any regular language, one can associate in a unique way its minimal automaton, i.e. the
only accessible complete deterministic automaton recognizing the language, with a minimal
number of states. Therefore the space complexity of a regular language can be seen as the
number of states of its minimal automaton. The worst-case complexity of algorithms dealing
with finite automata is usually known [27]. But the average-case analysis of algorithms
requires weighted sums on the set of possible realizations, and in particular the enumeration
of the objects that are handled [10]. Therefore a precise enumeration is often required for
the algorithmic study of regular languages.

The enumeration of finite automata according to various criteria (with or without initial
state [18], non-isomorphic [13], up to permutation of the labels of the edges [13], with a
strongly connected underlying graph [21, 18, 26, 19], acyclic [22],. . . ) has been investigated
since the fifties.

In [18] Korshunov determines the asymptotic estimate of the number of accessible com-
plete and deterministic n-state automata over a finite alphabet. His derivation, and even the
formulation of the result, are quite complicated. In [4] a reformulation of Korshunov’s result
leads to an estimate of the number of such automata involving the Stirling number of the
second kind. On the other side, in [20] a different simplification of the involved expressions
is achieved, by highlighting the role of the Lagrange Inversion Formula in the analysis.

A natural question is to ask what is the fraction of minimal automata, among accessible
complete and deterministic automata of a given size n and alphabet cardinality k. Nicaud
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[25] shows that, asymptotically, half of the complete deterministic accessible automata over
a unary alphabet are minimal, thus solving the question for k = 1.

In this paper we solve this question for a generic integer k ≥ 2 (see Theorem 1 later
on). At a slightly higher level of generality, we give a precise estimation of the asymptotic
proportion of minimal automata, within n-state accessible deterministic complete automata
over a k-letter alphabet, for the uniform distribution over the possible transition structures,
and a binomial distribution over terminal states, with arbitrary parameter 0 < b < 1 (the
uniform case corresponding to b = 1

2 ). Our theoretical results are in agreement with the
experimental ones.

The paper is organized as follows. In Section 2 we recall some basic notions of automata
theory, and we set a list of notations that will be used in the remainder of the paper. Then,
we state our main theorem, and give a short and simple heuristic argument. In Section 3 we
give a detailed description of the proof structure, and its subdivision into separate lemmas.
In Section 4 we prove in detail the most difficult lemmas, and give indications for those
that are provable through standard methods. Finally, in Section 5 we discuss some of the
implications of our result.

2 Statement of the result

For a given set E, |E| denotes the cardinality of E. The symbol [n] denotes the canonical
n-element set {1, 2, . . . , n}. Let E be a Boolean condition, the Iverson bracket [[E ]] is equal
to 1 if E = true and 0 otherwise. We use E(X) to denote the expectation of the quantifier
X, and P(E) = E([[E ]]) for the probability of the event E . For {Ei} a collection of events, we
define a shorthand for the first moment

m({Ei}) :=
∑
i

P(Ei) = E
(∑

i

[[Ei]]
)
. (1)

If p(c) is the probability that exactly c events occur, we have m({Ei}) =
∑
c c p(c) ≥∑

c≥1 p(c) = 1 − p(0), i.e. p(0) ≥ 1 − m({Ei}). This elementary inequality, known as
first-moment bound, is used repeatedly in the following. It is in fact a special case of a
more general relation (named Markov’s inequality), stating that, for x a random variable,
P(|x| ≥ a) ≤ E(|x|)/a (the specialisation is x ∈ N and a = 1).

A finite deterministic automaton A is a quintuple A = (Σ, Q, δ, q0, T ) where Q is a finite
set of states, Σ is a finite set of letters called alphabet, the transition function δ is a mapping
from Q × Σ to Q, q0 ∈ Q is the initial state and T ⊆ Q is the set of terminal (or final)
states. With abuse of notations, we identify T (i) ≡ [[i ∈ T ]].

An automaton is complete when its transition function is total. The transition function
can be extended by morphism to all words of Σ∗: δ(p, ε) = p for any p ∈ Q and for any
u, v ∈ Σ∗, δ(p, (uv)) = δ(δ(p, u), v). A word u ∈ Σ∗ is recognized by an automaton when
δ(q0, u) ∈ T . The language recognized by an automaton is the set of words that it recognizes.
An automaton is accessible when for any state p ∈ Q, there exists a word u ∈ Σ∗ such that
δ(q0, u) = p.

We say that two states p, q are Myhill-Nerode-equivalent (or just equivalent), and write
p ∼ q, if, for all finite words u, T (δ(p, u)) = T (δ(q, u)) [24]. This property is easily seen to
be an equivalence relation. An automaton is said to be minimal if all the equivalence classes
are atomic, i.e. p 6∼ q for all p 6= q. In other words, the minimal automaton A′ recognizing
the same language as A has set of states Q′ corresponding to the set of equivalence classes
of A. For a general reference on automata see e.g. [14].
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90 Asymptotic enumeration of Minimal Automata

At the aim of enumeration, the actual labeling of states in Q and letters in Σ is im-
material, and we can canonically assume that Q = [n], Σ = [k], and q0 = 1. In this case,
when there is no ambiguity on the values of n and k, we will associate an automaton A

to a pair (D, T ) of a transition structure and a set of terminal states. The set of complete
deterministic accessible automata with n states over a k-letter alphabet is denoted An,k.

We will determine statistical averages of quantities associated to automata A ∈ An,k.
This requires the definition of a measure µ(A) over An,k. The simplest and more natural
case is just the uniform measure. We generalise this measure by introducing a continuous
parameter. For S a finite set, the multi-dimensional Bernoulli distribution of parameter
b over subsets S′ ⊆ S is defined as µb(S′) = b|S

′|(1 − b)|S|−|S′|. The distribution associ-
ated to the quantifier |S′| is thus the binomial distribution. We will consider the family
of measures µ(n,k)

b (A) = µ
(n,k)
unif (D)µ(n)

b (T ), with µ
(n,k)
unif (D) the uniform measure over the

transition structures of appropriate size, and µ(n)
b (T ) the Bernoulli measure of parameter b

over Q ≡ [n]. The uniform measure over all accessible deterministic complete automata is
recovered setting b = 1

2 . Superscripts will be omitted when clear.
The result we aim to prove in this paper is

I Theorem 1. In the set An,k, with the uniform measure, the asymptotic fraction of minimal
automata is

exp
(
− 1

2ckn
−k+2) , (2)

with

ck = 1
2 ωk

k ; −k ωk = ln(1− ωk) . (3)

More generally, for any 0 < b < 1, with measure µ(n,k)
b (A), the asymptotic fraction is

exp
(
− (1− 2b(1− b))ckn−k+2) . (4)

We singled out the constant ωk, instead of only ck, because the former appears repeatedly,
in the evaluation of several statistical properties of random automata. Solving (3), it can
be written in terms of (a branch of) the Lambert W -function, as ωk = 1 + 1

kW (−ke−k),
however the implicit definition (3) is of more practical use. See Table 1 for a numerical table
of values.

k 2 3 4 5 6
ωk 0.796812 0.940480 0.980173 0.993023 0.997484
ck 0.317455 0.415928 0.461509 0.482799 0.492498

Table 1 The constants involved in the statement of Theorem 1, for the first values of k.

The result above, specialised to b = 1/2, provides as a corollary the asymptotic number
of minimal automata, when combined with the known asymptotics for |An,k| [18, 4, 20]

|An,k| = ωk

{
kn+ 1
n

}
2n
(
1 +O(n−1)

)
, (5)

where
{
n
m

}
denotes a Stirling number of second type, i.e., the number of ways of partitioning

n elements into m non-empty blocks, and ωk is defined as in (3) (the asymptotics of Stirling
numbers in this regime is then extracted through a saddle-point analysis [11]).
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When it is understood that |Σ| = k, a transition function δ is identified with a k-tuple
of maps (or, for short, a k-map) δα : Q → Q, as δα(p) ≡ ∆(p, α) (in this case, to avoid
confusion, we use ∆ for the k-tuple of {δα}1≤α≤k). And, clearly, a k-map is identified with
the corresponding vertex-labeled, edge-coloured digraph over n vertices, with uniform out-
degree k, such that, for each vertex i ∈ [n] and each colour α ∈ [k], there exists exactly one
edge of colour α outgoing from i. The terminology of graph theory will occasionally be used
in the following.

We use the wordmotif for an unlabeled oriented graphM , when it is intended as denoting
the class of (edge-coloured) subgraphs of a k-map that are isomorphic to M . The core of
our proof is in the analysis of the probability of occurrence of certain motifs, that we now
introduce.

I Definition 2. A M-motif M of a transition structure D is a pair of states i 6= j, and
an ordered k-tuple of states {`α}1≤α≤k, such that δα(i) = δα(j) = `α (see Figure 1, left).
Repetitions among `α’s are allowed.

A three-state M-motif M (3) of a transition structure D is the analogue of a M-motif,
with three distinct states i, j and h, such that δα(i) = δα(j) = δα(h) = `α for all 1 ≤ α ≤ k
(see Figure 1, right).

M M (3)
i j

`1 `2 . . . `k

i j h

`1 `2 . . . `k

Figure 1 Left: a M-motif. Right: a three-state M-motif. The colouring of the edges is represented
through the multiplicity of arrows. The examples are for k = 3.

The reason for studying M-motifs is in the two following easy remarks:

I Remark. If the transition structure of an automaton A contains a M-motif, with states i,
j and {`α}1≤α≤k, and T (i) = T (j), then i ∼ j and A is not minimal.

I Remark. Consider a transition structure D containing no three-state M-motifs, and r M-
motifs with states

{
ia, ja, {`aα}1≤α≤k

}
1≤a≤r. Averaging over the possible sets of terminal

states with the measure µb(T ), the probability that T (ia) = T (ja) for some 1 ≤ a ≤ r is
1− (2b(1− b))r.

Our theorem results as a consequence of a number of statistical facts, on the structure of
random automata, which are easy to believe although hard to prove. Thus, there is a short,
non-rigorous path leading to the theorem, that we now explain.

1. A fraction 1−o(1) of non-minimal automata contain two Myhill-Nerode-equivalent states
i ∼ j that are the incoming states of a M-motif.

2. Random transition structures locally “look like” random k-maps – this despite the highly
non-local, and non-trivial, accessibility condition – the only remarkable difference be-
ing in the distribution of the incoming degrees r of the states, pr = 0 if r = 0, and
1
ωk

Poisskωk(r) if r ≥ 1.
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92 Asymptotic enumeration of Minimal Automata

3. With this in mind, it is easy to calculate that the average number of M-motifs with
equivalent incoming states is (1− 2b(1− b))

(
n
2
)
n−k

[
E(r(r−1)pr)

k2

]k
, at leading order in n,

that is, 1
2 (1− 2b(1− b))ωkk n−k+2.

4. Random transition structures also show weak correlations between distant parts, and
M-motifs are ‘small’, thus, with high probability, pairs of M-motifs are non-overlapping.
This suggests that the distribution of the number of M-motifs is a Poissonian, with
the average calculated above (as if the corresponding events were decorrelated). As a
corollary, we get the probability that there are no M-motifs. By the first claim, on the
dominant role of M-motifs, this allows to conclude.

3 Structure of the proof

As it often happens, what seems the easiest way to get convinced of a claim is not necessarily
the easiest path to produce a rigorous proof. Our proof strategy will be in fact very different
from the sequence of claims collected above. As it is quite composite, in this section we will
outline the subdivision of the proof into lemmas, and postpone the proofs to Section 4.

Call Prare the probability, w.r.t. µb(D, T ) above, that the transition structure contains
no M-motif, and still the automaton is non-minimal. Call Pconfl the probability that the
transition structure contains some three-state M-motifs. Call P (r) the probability that
the transition structure contains no three-state M-motif, and exactly r M-motifs. Thus
Pconfl +

∑
r≥0 P (r) = 1.

The fraction of pairs (D, T ) of transition structures D with no three-state M-motif,
and sets of terminal states T taken with the Bernoulli measure of parameter b such that
T (ia) = T (ja) for some M-motif, are

∑
r≥1 P (r) (1− (2b(1− b))r). As a consequence, w.r.t.

the measure µb(A) above, the probability that an automaton is non-minimal is

P(A is non-minimal) =
∑
r≥1

P (r) (1− (2b(1− b))r) +O(Prare) +O(Pconfl) . (6)

(To be precise, above we are neglecting summands P (r)
rare, for r ≥ 1, describing the probability

of having no three-state M-motif, and exactly r M-motifs, all of which satisfying T (ia) 6=
T (ja), and still there exist pairs of equivalent states. From the treatment of the following
section, it would be easily seen that these terms are negligible.)

If one can prove that Prare, Pconfl = o
(
1− P (0)

)
, then

P(A is non-minimal) =
∑
r≥1

P (r)
(
1− (2b(1− b))r + o(1)

)
. (7)

In particular, if we can prove that P (r) = Poissρ(r)(1 + o(1)), with ρ =
∑
r rP (r), it would

follow that

P(A is non-minimal) =
(
1− e−ρ(1−2b(1−b)))(1 + o(1)) . (8)

This corresponds to the statement of Theorem 1, with ρ = ckn
−k+2.

Note that our error term is not only small w.r.t. 1: as important for probabilities, it
is small also w.r.t. min(p, 1 − p), with p the probability of our event of interest. As, for
an alphabet with k letters, p ∼ n−k+2 has a non-trivial scaling with size when k > 2, this
difference is relevant.

So we see that Theorem 1 is implied by
I Proposition 1. The statements in the following list do hold
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1. P (r) = Poissρ(r)(1 + o(1)), for some ρ;
2. ρ = ckn

−k+2(1 + o(1));
3. Pconfl = o(n−k+2);
4. Prare = o(n−k+2).
A collection of related, more explicit probabilistic statements is the following
I Proposition 2. The average number of occurrences of M-motifsM and three-state M-motifs
M (3) in uniform random transition structures are respectively given by

m(M) = 1
2n
−k+2ωk

k
(
1 + o(1)

)
; (9)

m(M (3)) = 1
6n
−2k+3ωk

2k (1 + o(1)
)
. (10)

Given that there are no three-state M-motifs, the average number of r-tuples (M1, . . . ,Mr)
of distinct M-motifs is given by

1
r!m

(
(M1, . . . ,Mr)

)
= 1
r!

(
1
2n
−k+2ωk

k
(
1 + o(1)

))r
. (11)

The proof of this proposition is postponed to the end of Section 4.
Equation (9) proves ρ = ckn

−k+2 (1 + o(1)
)
, that is, Part 2 of Proposition 1. Using

the first-moment bound, equation (10) proves Pconfl = O(n−k+1) as required for Part 3 of
Proposition 1.

The result in equation (11) concerning higher moments of M-motifs implies the proof of
convergence of P (r) to a Poissonian distribution, Part 1 of Proposition 1. The idea behind
this claim is the fact that the occurrence of a M-motif with given states {i, j} (and any
k-tuple {`α}) is a ‘rare’ event, as it has a probability ∼ n−k, and, as the motifs are ‘small’
subgraphs, involving O(1) vertices, and parts of the transition structure D far away from
each other (in the sense of distance on the graph) are weakly correlated, we expect the
“Poisson Paradigm” to apply in this case, as discussed, for example, in Alon and Spencer [1,
ch. 8]. A rigorous proof of this phenomenon can be achieved using the strategy called Brun’s
sieve (see e.g. [1, sec. 8.3]). The verification of the hypotheses discussed in the mentioned
reference is exactly the statement of equation (11).

Thus, assuming Proposition 2, there is a single missing item in our ‘checklist’, namely,
Part 4 of Proposition 1. We need to determine that Prare = o(n−k+2). The idea behind this
is that, in absence of M-motifs, there is a high probability that, for all pairs of states (i, j),
certain isomorphic subgraphs of the two breadth-first search trees started from i and j visit
a large number of states which are all distinct. For i ∼ j, we need in particular that, for
all the pairs of homologous states in these subgraphs, they are either both or none terminal
states. The fact that they are all distinct implies that the probability for this to occur is
a product of factors 1 − 2b(1 − b), one for each such pair, thus we can concentrate on the
estimation of the size of these subgraphs.

For the bounds that we need, it would suffice to produce isomorphic subgraphs of size
of order lnn

− ln(1−2b(1−b)) , but it will turn out that the largest possible subgraph is provably of
size at least of order n

1
4(k+1) , and in fact conjecturally O(n).

Note that we need only an upper bound on Prare (and no lower bound), and we have
some freedom in producing bounds, as, at a heuristic level, we expect Prare = O(n−k+1)�
o(n−k+2). Our proof strategy will exploit this fact, and the following property of accessible
transition functions (see [7]): given a random k-map ∆ = {δα(i)}1≤i≤n,1≤α≤k, the number
of states accessible from state 1 is a random variable m = m(n, k), with average Θ(n) and
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94 Asymptotic enumeration of Minimal Automata

probability around the modal value1 of order n− 1
2 . Remarkably, if the accessible part has

size m, then the induced transition structure is sampled uniformly among all transition
structures of size m.

This has a direct simple consequence: if the average number of occurrences of a family of
events on a random k-map is m({Ei})k-maps = O(n−γ), then the same average over random
accessible transition functions of fixed size is bounded as m({Ei})acc. ≤ O(n−γ+ 1

2 ). Actually,
this bound is very generous and, if needed (but this is not our case), the extra exponent 1

2
could be replaced by any ε > 0 with some extra effort.

Thus, instead of proving that Prare = o(n−k+2), we will define the quantity P ′rare, exactly
as Prare but on random k-maps over n states. Note that the definitions of Prare and P ′rare
are based on two notions: not containing certain motifs, and not presenting pairs of Myhill-
Nerode-equivalent states, and that both this notions are not confined to accessible automata,
but are well-defined also for maps which are not accessible. Then we will prove that
I Proposition 3. P ′rare = o(n−k+ 3

2 ).
In summary, as this proposition implies Part 4 of Proposition 1, Proposition 2 implies Parts
1 to 3 of Proposition 1, and Proposition 1 implies our main Theorem 1, we need to provide
proofs of Propositions 2 and 3. This task is fulfilled in the following sections.

4 Proofs of the lemmas

Proof of Proposition 3. In a k-map, we say that a state i is a sink state if δα(i) = i for all
α. We say that two states {i, j} form a sink pair if the set

Nij = {i, j, δ1(i), δ1(j), · · · , δk(i), δk(j)}

has cardinality k+1 or smaller. As easily seen through the first-moment bound, the probab-
ility of having any sink state or sink pair in a random k-map is at most of order n−k+1 (pre-
cisely, the overall constant is bounded by 1 + (k+1)2k

2(k−1)! ). So, to prove that P ′rare = o(n−k+ 3
2 ),

it is enough to prove the same statement conditioned on the property that the k-map does
not contain any sink state or pair.

We say that two states {i, j} form a quasi-sink pair if the set Nij has cardinality k + 2.
The average number of quasi-sink pairs in a random k-map is of order n−k+2, thus this case
must be analysed at our level of accuracy.

There exist three families of quasi-sink pairs: one family corresponds to pairs producing
a M-motif; another family, that we call of type-1, corresponds to pairs for which there exists
a value α such that {i, j, δα(i), δα(j)} are all distinct; and a further family, that we call of
type-2, corresponds to pairs for which any letter α is such that δα(i) or δα(j) is not repeated
within Nij (say that the first case occurs for h letters, and the second one for the remaining
k − h ones).

In evaluating P ′rare, we have excluded the M-motif case, and we are left only with type-1
and type-2 quasi-sinks. Furthermore, we have excluded sink states, so in type-2 quasi-sinks
we must have both h and k − h non-zero.

For a type-1 quasi-sink {i, j}, define the pair following {i, j} as the pair {i′, j′} such that
i′ = δα(i), j′ = δα(j), for α the first lexicographic letter such that {i, j, δα(i), δα(j)} are all
distinct. For a type-2 quasi-sink {i, j} define the pair following {i, j} as the pair {i′, j′} with
i′ = δ1(i), j′ = δ1(j). Again, by first-moment estimate, the probability that there exists

1 I.e., the most probable value.
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a quasi-sink pair {i, j}, such that also the pair following it is a quasi-sink, is bounded by
O(n−k+1) (for which we need that h(k − h) > 0 in a type-2 quasi-sink), and we can further
condition our k-map not to contain such motifs. If {i, j} is a quasi-sink pair, a necessary
condition for i ∼ j is that also i′ ∼ j′. Thus, we can bound P ′rare by the probability that
there exist no non–quasi-sink pairs in the k-map. This is the formulation of the problem
that we ultimately address.

Consider a non–quasi-sink pair {i, j}, and construct the lexicographic breadth-first tree
exploration, simultaneously on the two states i and j, neglecting those branches in which,
in one or both of the two trees, there is a state already visited by the exploration (call leaves
these nodes).

Call (v1, v2, . . .) the ordered sequence of steps in the breadth-first search, at which a leaf
node is visited. For fixed integers v and h, we want to determine the probability of the event
vh ≤ v, conditioned to the event that the list has at least h items. By standard estimate of
factorials, and crucially making use of the exclusion of sink and quasi-sink motifs, it can be
proved for this quantity

P(vh ≤ v) ≤ 1
h!

(
v(v + 1)
n− 2v

)h
. (12)

Set h = k+1. By definition, in a non–quasi-sink pair, we certainly have at least k+1 entries
vj . If v = O(nγ) for some 0 < γ < 1, we have that for each non–quasi-sink pair {i, j}

P(v(ij)
k+1 ≤ v) ≤ O(n−(k+1)(1−2γ)) . (13)

The number of non–quasi-sink pairs is bounded by
(
n
2
)
, thus by first-moment bound

P(v(ij)
k+1 ≤ v for all {i, j}) ≤ O(n−k+1+2γ(k+1)) . (14)

For γ < 1
4(k+1) we thus get P(v(ij)

k+1 ≤ v for all {i, j}) ≤ o(n−k+ 3
2 ) as needed. Thus, we know

that, with probability larger than 1 − o(n−k+ 3
2 ), all the non–quasi-sink pairs in our k-map

have vk+1 & nγ , for any γ < 1
4(k+1) . This means that, if we truncate the breadth-first search

tree exploration to a depth of order γ lnn
ln k , we have at most k leaves in the tree. Thus, for

all the trees, we have at least order nγ internal nodes, i.e. pairs of states (i′, j′) for which it
is required T (i′) = T (j′) for having i ∼ j.

But, as all these states appear not repeated in the exploration, the probability that i ∼ j
is bounded by an exponential of the form (1− 2b(1− b))nγ , which decreases faster than any
power law. The overall factor

(
n
2
)
from the first-moment bound is irrelevant, and we are

able to conclude that P ′rare = o(n−k+ 3
2 ), as needed. Note that this proof works not only

for finite values of b in the open interval ]0, 1[, as required for our purposes, but even up to
b� n−γ . J

Before passing to the proof of Proposition 2, we need to recall the relation between
accessible deterministic complete automata and combinatorial objects known as k-Dyck
tableaux [4], and determine a collection of statistical properties of these tableaux.

Given the integers M and n, a tableau T in the set T [M × n] is a map from [M ] to [n]
such that:

1. every value y ∈ [n] has at least one preimage;
2. calling xT (y) the smallest preimage, we have xT (1) < xT (2) < . . . < xT (n).
The tableau T may be represented graphically, on a M × n grid, by marking the M pairs
{(x, T (x))}1≤x≤M . Then the conditions above translate as follows. There is exactly one
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marked entry per column. Mark in red the pairs (xT (y), y), and in black the remaining ones:
there is exactly one red entry per row, which is at the left of all black entries in the same
row (if any), and the polygonal line connecting the red entries in sequence is monotonically
increasing. We call the collections of positions of red and black marks respectively the
backbone BT and wiring part WT of the tableau T . It is easily seen that the number of
tableaux in T [M ×n] is given by the Stirling number of second type

{
M
n

}
. The asymptotic

evaluation of
{
M
n

}
, for n large and M/n = O(1), can be done through the general methods

of analytic combinatorics (see e.g. [10], and in particular [11] for this specific problem). A
result of this calculation that we shall need is the following

I Proposition 4. If M,M ′ = κn + O(1), with κ > 1, calling ω the only solution of the
equation −κω = ln(1− ω) in [0, 1],{

M

n

}
=
{
M ′

n

}(n
ω

)M−M ′ (
1 + o(1)

)
. (15)

For a fixed integer k, when M = N(n, k) = kn+ 1, we have a special subfamily of tableaux
in T [N × n]. A tableau is k-Dyck if xT (`) ≤ k(`− 1) + 1, i.e. if the backbone cells lie above
the line of slope 1/k containing the origin of the grid. A small example of k-Dyck tableau
is shown in Figure 2.

ǫ 1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c 5a 5b 5c 6a 6b 6c 7a 7b 7c 8a 8b 8c 9a 9b 9c

1
2
3
4
5
6
7
8
9

1

2

3

4

5

6

7

8
9

ǫ

Figure 2 Left: a tableau with n = 9 and k = 3. The backbone part is in red. This tableau is
valid because the red entries are monotonic (as shown by the orange profile), and k-Dyck because
they are all on the left of the green staircase line. Right: the associated k-map. Backbone edges,
corresponding to the breadth-first search tree, are in black, and wiring edges are in gray.

There exists a canonical bijection between k-Dyck tableaux and transition structures D
of accessible deterministic complete automata. It suffices to associate the indices (1, 2, . . . , n)
of the states to the rows of the tableaux, and the indices (ε, 11, . . . , 1k, · · · , n1, . . . , nk) of the
oriented edges of D to the columns. Then, for x = iα, the entry (x, y) is marked in T if and
only if δα(i) = y, and it is part of the backbone if and only if it is part of the breadth-first
search tree on D started at the initial state.

Given a function f̂(y) : [n]→ [M ], consider the restriction of the set T [M×n] to tableaux
T in which the backbone function xT (y) is dominated by f̂ , i.e., such that xT (y) ≤ f̂(y) for
all 1 ≤ y ≤ n. Call T [M × n; f̂ ] this set. Our k-Dyck tableaux correspond to the special
case T [N × n; f̂∅], with f̂∅(y) := N − k(n − y + 1). A required technical lemma, that we
state without proof, is the following

I Proposition 5. Take an integer n, N = O(n), B = O(1), and ` �
√
n. Let M = N − B,

and take a function f̂ such that f̂(y) = f̂∅(y) for all y ≤ `, f̂(y) = f̂∅(y) − B for all
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y ≥ n− `, and f̂∅(y)−B ≤ f̂(y) ≤ f̂∅(y) for all y. Then∣∣cT [M × n; f̂ ]
∣∣∣∣cT [M × n]
∣∣ −

∣∣cT [N × n; f̂∅]
∣∣∣∣cT [N × n]

∣∣ = o(1) . (16)

With these tools at hand, we are now ready to prove Proposition 2.

Proof of Proposition 2 (p.93). Given three distinct states i, j, h, with i < j < h, call
Mijh(T ) the event that in the tableau T there is a three-state motif on states {i, j, h} and
{`α}, for some `α’s. Similarly, given 2r distinct states {(ia, ja)}1≤a≤r, with ia < ja and
ja < ja+1, call M(i1,j1;...;ir,jr)(T ) the event that in the tableau T there is a r-tuple of M -
motifs, such that the a-th motif has states ia, ja, and {`aα}, for some `aα’s. Proposition 2
consists in evaluating the two quantities∑

i<j<h

E[[Mijh]]T [N×n;f̂∅] ;
∑

(i1,j1;...;ir,jr)

E[[M(i1,j1;...;ir,jr)]]T [N×n;f̂∅] . (17)

We now make a crucial remark: given a backbone structure B, the average over all possible
completions of the indicator variables [[Mijh]] (respectively [[M(i1,j1;...;ir,jr)]]) is zero if any
column of index in the set C = {k(j − 1) + 1 + α, k(h − 1) + 1 + α}1≤α≤k has a red mark
(respectively, in the set C = {k(ja − 1) + 1 + α}1≤a≤r;1≤α≤k), otherwise, it is

∏
i∈C y

−1
i ,

where yi is the height of the backbone profile at column i. As a consequence, backbone
structures contributing to the quantities in (17), weighted with the factor µ(c)

∏
i∈C y

−1
i ,

correspond to generic backbone structures, weighted with the factor µ(c), over (N −kr)×n
tableaux. The correspondence is done by just erasing the columns in C. The function f̂ is
modified accordingly. Define

f̂ i1,...,ir (y) = f̂∅(y)− k
r∑
a=1

[[y ≥ ja]] . (18)

Then, the precise statement of the remark above is

E[[Mijh]]T [N×n;f̂∅] =
∣∣T [(N − 2k)× n; f̂ j,h]

∣∣∣∣T [N × n; f̂∅]
∣∣ ; (19)

E[[M(i1,j1;...;ir,jr)]]T [N×n;f̂∅] =
∣∣T [(N − kr)× n; f̂ j1,...,jr ]

∣∣∣∣T [N × n; f̂∅]
∣∣ . (20)

Thus, the right-hand side of (19) is just the special case r = 2 of (20). Of course we have

∣∣T [(N − kr)× n; f̂ j1,...,jr ]
∣∣∣∣T [N × n; f̂∅]

∣∣ =

∣∣T [(N−kr)×n;f̂j1,...,jr ]
∣∣∣∣T [(N−kr)×n]

∣∣∣∣T [N×n;f̂∅]
∣∣∣∣T [N×n]
∣∣

∣∣T [(N − kr)× n]
∣∣∣∣T [N × n]

∣∣ . (21)

We can apply Proposition 4 to the rightmost ratio. Then, if the ja’s are within the range
for application of Proposition 5, we can also simplify the leftmost ratio, to get

E[[Mijh]]T [N×n;f̂∅] '
(ωk
n

)2k
; (22)

E[[M(i1,j1;...;ir,jr)]]T [N×n;f̂∅] '
(ωk
n

)kr
. (23)
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As in Proposition 5 we just asked for `�
√
n, which is compatible with `� n, the fraction

of 2r-tuples (i1, j1; . . . ; ir, jr) such that some ja’s are out of range is subleading, and, using
the reasonings at the beginning of Section 3, the corresponding contribution can be included
in Pconfl.

Then, the straightforward calculation of the number of triplets (i, j, h), and 2r-tuplets
{(ia, ja)}1≤a≤r, at leading order in n, allows to conclude. J

5 Algorithmic consequences

The results obtained in this paper open new possibilities for the study in average of the
properties of regular languages, and of the average-case complexity of algorithms applied to
minimal automata. In this section we mention just a few among these consequences.

I Corollary 3. Minimal automata with n states over a k-letter alphabet can be randomly
generated with O(n3/2) average complexity, using Boltzmann samplers.

The random generator for complete deterministic accessible automata given in [4] is
based on a Boltzmann sampler [9], its average complexity is O(n3/2). As from Theorem 1
there is a constant proportion of minimal automata amongst accessible ones, the rejection
method can be efficiently applied to randomly generate a minimal automaton. Note that
such a generator (described in [4]) has already been implemented in REGAL,2 a C++-library
for the random generation of automata [2], though there were no theoretical result on the
efficiency of this algorithm at that time.

I Corollary 4. For the uniform distribution on complete deterministic accessible automata,
the average complexity of Moore’s state minimization algorithm is Θ(n log logn).

Proof. The average complexity of Moore’s state minimization algorithm for the uniform
distribution on n-state deterministic automata over a finite alphabet is O(n log logn) [8].
The upper bound for accessible automata is then obtained studying the size of the accessible
part of a k-random map [7, 18]. Moreover from [3] the lower bound of Moore’s algorithm
applied on minimal automata with n states is Ω(n log logn). Using Theorem 1, this is also
a lower bound for complete deterministic accessible automata. J

I Corollary 5. For the uniform distribution on complete deterministic accessible automata,
there exists a family of implementations of Hopcroft’s state minimization algorithm whose
average complexity is O(n log logn).

From [8] a family of implementations of Hopcroft’s state minimization algorithm are
always faster than Moore’s algorithm. The result follows from Corollary 4. In [5] the lower
bound on the algorithm is proved to be O(n logn) for any implementation. Though it is
still unknown whether there exists an implementation whose average complexity is Θ(n).
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