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Abstract

We give asymptotically exact values for the treewidth tw(G) of a random geometric graph G(n, r)

in [0,
√

n]2. More precisely, we show that there exists some c1 > 0, such that for any constant 0 <

r < c1, tw(G) = Θ( log n
log log n ), and also, there exists some c2 > c1, such that for any r = r(n) ≥ c2,

tw(G) = Θ(r
√

n). Our proofs show that for the corresponding values of r the same asymptotic

bounds also hold for the pathwidth and treedepth of a random geometric graph.
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1 Introduction

Starting with the seminal paper of Gilbert [5], random geometric graphs have in recent

decades received a lot of attention as a model for large communication networks such as

sensor networks. Network agents are represented by the vertices of the graph, and direct

connectivity is represented by edges. For applications of random geometric graphs, we refer

to Chapter 3 of [7], and for a survey of many theoretical results, we refer to Penrose’s

monograph [12].

Given a set V of n vertices and a nonnegative real r = r(n), a random geometric graph is

defined as follows: each vertex is placed at some position of the square Sn = [0,
√

n]2, chosen

independently and uniformly at random. This choice of the square is only for convenience; by

suitable scaling of r we could have chosen the square [0, 1]2 and the results were still valid.

Note that with probability 1 no two vertices choose the same position. We will identify

each vertex with each position, that is, u ∈ V refers also to the geometrical position of u in

the square. Then we define G(n, r) as the random graph having V as the vertex set with

|V | = n, and with an edge connecting each pair of vertices u, v ∈ V at distance d(u, v) ≤ r,

where d(·, ·) denotes the Euclidean distance. In order to simplify calculations, we will use

the well-known idea of Poissonization (see [12]): we assume that the vertices of G(n, r) are

generated according to a Poisson point process of intensity 1 over the square Sn = [0,
√

n]2.
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Conditioned under the fact that this Poisson point process generates exactly n vertices

(which happens with probability Θ(1/
√

n)), this model and the standard model of random

geometric graphs have the same uniform distribution of the n vertices, and we will use this

equivalence from now on.

All our stated results are asymptotic as n → ∞. We use the usual notation a.a.s. to

denote asymptotically almost surely, i.e. with probability 1 − o(1). It is well known that the

property of the existence of a giant component of order Θ(n) undergoes a sharp threshold

in G(n, r) (see e.g. [6]), but the exact value r is not yet known. However, there exist two

positive constants c−, c+ such that for r ≤ c−, a.a.s. the largest component of G(n, r) is

a.a.s. of order O(log n), whereas for r ≥ c+, a component of order Θ(n) is present (see [12]).

In this paper, we study the behaviour of two tree-like parameters, the treewidth and the

treedepth, on random geometric graphs.

The treewidth of a graph measures the similarity between a tree and G. It was introduced

by Robertson and Seymour in [17] inside their series of articles on graph minors. It has several

applications in graph theory and algorithmics; one good example is Courcelle’s Theorem [1].

For a graph G = (V,E) on n vertices, we call (T,W ) a tree decomposition of G, where W

is a set of vertex subsets W1, . . . ,Ws ⊆ V (G) and T is a forest with vertices in W , such that

1.
⋃

Wi = V (G)

2. For any e = uv ∈ E(G) there exists a set Wi such that u, v ∈ Wi

3. For any v ∈ V (G), the subgraph induced by the Wi ∋ v is connected as a subgraph of T .

The width of a tree-decomposition is w(T,W ) = max
i

|Wi| − 1, and the treewidth of a graph

G can be defined as

tw(G) = min
(T,W )

w(T,W ).

A vertex partition V = (A,S,B) is a balanced k-partition if |S| = k + 1, S separates A and

B, and 1
3 (n − k − 1) ≤ |A|, |B| ≤ 2

3 (n − k − 1). Then S is called a balanced separator. The

following result connecting balanced partitions and treewidth is due to Kloks [9].

◮ Lemma 1 ([9]). Let G be a graph with n vertices and tw(G) ≤ k such that n ≥ k − 4.

Then G has a balanced k-partition.

The treedepth td(G) of a graph G was introduced by Nešetřil and Ossona de Mendez

as a tree-like parameter in the scope of homomorphism theory. In particular, it provides

an alternative definition of bounded expansion classes [11]. Moreover, the notion of the

treedepth is closely connected to the treewidth. Intuitively speaking, the treewidth of a

graph G is a parameter that measures the similarity between G and a certain tree, while the

treedepth of G measures how close G is to a star. In other words, the treedepth also takes

into account the diameter of the tree we are comparing the graph with.

This concept of treedepth has been introduced using different names in the literature.

It is equivalent to the height of an elimination tree used in Cholesky decomposition [14].

Analogous definitions can be found using the terminology of rank function [10], vertex ranking

number (or ordered coloring) [3] or weak coloring number [8].

Let T be a rooted tree. The closure of T is the graph that has the same set of vertices

and two vertices are connected if they are relatives (ancestor or predecessor) in T . Consider

a rooted forest as the disjoint union of rooted trees whose height is the maximum of the

height among all the trees. The closure of a rooted forest will consist of the disjoint union

of the closures of each rooted tree. The treedepth of a graph G, td(G), is defined to be the

minimum height of a rooted forest, whose closure contains G as a subgraph.

STACS’12



410 On the treewidth of random geometric graphs

Observe that, by definition, if G is a graph with components H1, . . . ,Hm,

tw(G) = max
i

tw(Hi), td(G) = max
i

td(Hi). (1)

This two parameters are closely related by the following inequalities:

tw(G) ≤ td(G) ≤ tw(G)(log n + 1),

both bounds being sharp. For example, if S is a star, tw(S) = td(S) = 1, while if Pn is a

path of length n, tw(Pn) = 1 and td(Pn) = ⌊log n⌋ + 1.

Results and organization of the paper. In this paper we study the values of tw(G)

and td(G) of a random geometric graph G = G(n, r) for different values of r = r(n). In

particular, we prove the following two main theorems:

◮ Theorem 2. There is some constant 0 < c1 < c−, such that for any 0 < r ≤ c1, a.a.s.

tw(G(n, r)) = Θ( log n
log log n ), and also a.a.s. td(G(n, r)) = Θ( log n

log log n ).

◮ Theorem 3. There is some constant c2 > c+, such that for any r = r(n) ≥ c2, a.a.s.

tw(G(n, r)) = Θ(r
√

n), and also a.a.s. td(G(n, r)) = Θ(r
√

n).

◮ Remark. For G = G(n, r) with r constant, but r ≥ c2, by the results of [2], many problems

such as Steiner Tree, Feedback Vertex Set, Connected Vertex Cover can be

solved in time O(poly(n)3
√

n), and Connected Dominating Set, Connected Feedback

Vertex Set, Min Cycle Cover, Longest Path, Longest Cycle, Graph Metric

Travelling Salesman Problem can be solved in time O(poly(n)4
√

n).

◮ Remark. Other width parameters that are sandwiched between treewidth and treedepth

will have the same asymptotic behavior in G(n, r). For instance, the pathwidth of a graph,

introduced by Robertson and Seymour [16], is defined to be the similarity between a graph

and a path. Since the pathwidth is bounded from below by the treewidth and bounded from

above by the treedepth (see Theorem 5.3 and Theorem 5.11 of [18]), the former theorems

imply that for those values of r = r(n) the pathwidth of the graph is of the same order.

We point out that it is an interesting feature of G(n, r) that treewidth and treedepth are

asymptotically of the same order for a wide range of parameters r, since this is not true for

random graphs in general [13]. The similar value of treedepth and treewidth implies that

G(n, r) is more similar to a star–shaped tree than to a path–shaped tree, which in general is

not true for random graphs. Observe also that in the period before the giant component the

tree-like parameters are proportionally larger respect to the order of the components than

when a giant component appears. In the classical random graph model the existence of a

linear number of edges slightly above the giant component already implies a linear treewidth

(see [4]), whereas a random geometric graph with the same number of edges (and a giant

component) only has treewidth Θ(
√

n).

In Section 2 we give the proof of Theorem 2. Whereas the lower bound follows from a

standard argument about the maximum clique order, the proof of the upper bound is more

involved. In Section 3 we continue by proving Theorem 3. Finally, in Section 4 we conclude

mentioning open problems.

2 Proof of Theorem 2

Let rt = Θ(1) the (not yet known) threshold radius of having a giant component, i.e. a

connected component H with V (H) = Θ(n). In this section we will compute the treedepth
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for a random geometric graph with r < rt, i.e. when there is no giant component. We also

assume r = Θ(1). From now on, unless otherwise stated, we will call the vertices of G(n, r)

as points, since we use vertex for a different graph related to G(n, r) (see below). In [12] it is

shown that the order of the largest component in this case is a.a.s. Θ(log n), and we will

assume this from now on. This implies directly the coarse upper bound td(G) = O(log n).

For the sake of simplicity, we assume, moreover that r < c1, where c1 is a constant chosen

in such a way that the order of each component is a.a.s. at most log n (this value exists, see

Theorem 10.3 of [12], and is only chosen to simplify calculations).

We derive a lower bound on tw(G) by studying the clique number of G, ω(G). Tessellate

Sn into square cells of side length r/
√

2. Note that we have a linear number of such cells

and note that any two points in the same cell are connected by an edge. The distribution of

the number of points inside the cells can be modeled as a balls and bins problem: we have n

balls and m = Θ(n) bins, and each of the n balls is thrown independently and uniformly at

random into one of the bins. Denoting Xi denote the number balls inside the cell Ci, classical

results (see e.g. [15]) state that if m = Θ(n), then maxi Xi = (1 + o(1)) log n
log log n a.a.s..

As any pair of points that belong to the same cell of the tessellation, is connected by an

edge, G contains a clique subgraph formed of maxi Xi points, and therefore

td(G) ≥ tw(G) ≥ ω(G) =
log n

log log n
.

We will now show an upper bound on td(G) which asymptotically matches this lower bound.

We use the following lemma.

◮ Lemma 4. Let X ∼ Po(λ). For any k ≥ 2λ, Pr(X ≥ k) ≤ 2 Pr(X = k).

Having tessellated Sn into cells, we construct a cell-graph CG of G using the following

criterion: each non-empty cell will be represented by a vertex and two vertices of CG will

be joined if there exist two points in the corresponding cells of G that share an edge (see

Figure 1, where the tessellation is omitted for clarity). The cell-graph CG has a structure

similar to the original graph, but simpler.

(a) Random geometric graph (b) Cell-graph

Figure 1 A random geometric graph and its corresponding cell graph

Having in mind the previously established lower bound on the order of the maximum

clique, set Tmax = log n
log log n . We focus on a certain connected component H of G that will
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412 On the treewidth of random geometric graphs

have order at most log n. Note that there are at most n different components, not necessarily

all of logarithmic order. Let CH denote the cell-graph of component H. Note that since the

side length is r√
2
, each cell belongs to at most one connected component. Letting Ai be the

number of points in the cell i (which will produce an Ai-clique) the number of points in H

can be written as
∑

i∈V (CH) Ai, and we have
∑

i∈V (CH) Ai ≤ log n.

We will call a cell of the tessellation sparse if it contains less than T =
√

log n
log log n points,

and dense otherwise. Observe that all the cells contain at most Tmax points.

◮ Proposition 5. For any component H, the number of points belonging to dense cells is

a.a.s. not larger than O(Tmax).

Proof. Since Ai ∼ Po(λ), for some constant λ = λ(r),

p = Pr(Ai ≥ T ) ≥ Pr(Ai = T ) ∼ e−λ

√
2πT

(

eλ

T

)T

, (2)

using the Stirling approximation T ! ∼
√

2πT
(

T
e

)T
.

To count the number of points lying in dense cells, we define the following random

variables:

Yi =

{

t if i is dense and has t points inside

0 otherwise

Our aim is to show that Y =
∑

i∈V (CH) Yi is at most O(Tmax). In this case (at least to

us) it is not clear how a Chernoff type inequality can be used. Nevertheless, we will show

that the probability that Y is larger than 8 Tmax is o(n−1) and taking a union bound over all

at most n components, a.a.s. no component will have more than 8 Tmax points in dense cells.

The probability of having a sparse cell is 1 − p, while the probability of having T + j

points inside a cell is Pr(Po(λ) = T+j) ∼ e−λ√
2π(T+j)

(

eλ
T+j

)T+j

. Since e−λ√
2π(T+j)

(

eλ
T+j

)T+j

≤

( eλ
T )T e−λ

√
2πT

( eλ
T )j , and using (2) we have

Pr(Po(λ) = T + j) ≤ p
(

eλ
T

)j
.

These observations lead to the definition of the following random variable:

Ri =











0 with probability 1 − p.

T + j with probability p
(

eλ
T

)j
for any j ≥ 1.

T with probability p
(

1 − eλ
T−eλ

)

First of all, observe that Ri is a probability distribution. The random variables Yi

and Ri have similar distributions. In fact, each variable Ri stochastically dominates the

corresponding random variable Yi. Analogously we define R =
∑

i∈V (CH) Ri. Then,

Pr(Y > t) ≤ Pr(R > t) for any t ∈ R (3)

and in particular this holds, if t = O(Tmax).

Now we compute explicitly an upper bound for Pr(R > 8 Tmax). We have |V (CH)| < log n

cells in H. There are n initial cells and then at most es different connected sets of s cells,

and for this reason there are at most nelog n ways to construct CH . Assuming that i of

them are dense, we have
(|V (CH)|

i

)

ways to choose them, and after that, at most (log n)i



D. Mitsche and G. Perarnau 413

ways to distribute the points among these cells. The probability of having a dense cell with

Ri = T + j is p
(

eλ
T

)j
, so that

Pr(R > 8 Tmax) = nelog n

|V (CH)|
∑

i=1

∑

S∈(V (CH )
i )

∑

P

j∈S cj≥8 Tmax

Pr





∧

j∈S

Aj = cj





≤ n2

|V (CH)|
∑

i=0

(

log n

i

)

(log n)i
i

∏

j=1

p

(

eλ

T

)cj−T

.

We use the upper bound
(

log n
i

)

≤ (log n)i. It must be also stressed that we have

i
∏

j=1

p

(

eλ

T

)cj−T

≤ (p
√

2πT )

P

cj
T < (p

√
2πT )8

√
log n,

since
∑

cj > 8 Tmax. Moreover, since cj > T (the cells are dense), we have for i = 8
√

log n+k,
∏i

j=1 p
(

eλ
T

)cj−T ≤ p8
√

log npk. Therefore, it is useful to split the former equation into two

sums:

Pr(R > 8 Tmax) ≤ n2

8
√

log n
∑

i=0

(log n)
2i

(p
√

2πT )8
√

log n

+n2
(

(log n)2p
)8

√
log n ∑

k>0

(

(log n)2p
)k

As
(

(log n)2p
)k

< 1/2, the infinite sum is less than one. Therefore,

Pr(R > 8 Tmax) ≤ n2
(

8
√

log n + 1
) (

(log n)2
√

2πTp
)8

√
log n

∼ exp
{

2 log n + 4 log log n + 8
√

log n (2 log log n + log p + O(log T ))
}

Since p ∼ c√
T

(

eλ
T

)T
, by Lemma 4 and (2), log p ∼ − 1

2

√
log n. The term Θ(log T ) =

O(log log n) is negligible and thus,

Pr(R > 8 Tmax) ≤ exp {−(1 + o(1))2 log n} = O(n−2). (4)

By (3), this also implies that Pr(Y > 8 Tmax) = O(n−2), and by taking a union bound over

all components, this implies that a.a.s. there is no component having more than 8 Tmax

points inside dense cells. ◭

In order to obtain the desired matching upper bound, we need to construct a representation

of the shape of the connected components which simplifies the structure. We now tessellate

the square [0,
√

n]2 into square cells of side length r. Proposition 5 also follows for this kind

of tessellation since the size of the cells differs just by a constant factor. Consider now the

cell graph CG from this tessellation. Observe that the points belonging to a cell can only

be connected by an edge to points in the same cell and to points in one of the at most 8

cells adjacent to that cell. Therefore, CG will be a subgraph of the diagonal two-dimensional

grid graph L√
n,

√
n, where each cell is adjacent to the 8 cells surrounding it. The following

proposition will be useful:
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414 On the treewidth of random geometric graphs

◮ Proposition 6. Let Lm,n be a diagonal two-dimensional grid graph and suppose that m ≤ n.

Then

td(Lm,n) ≤ m log n.

Fix a component CH of CG. We know that |V (CH)| ≤ |V (H)| ≤ log n and hence, the

diameter of CH is at most log n. Without loss of generality we may assume that each vertex

is connected to all its 8 neighbouring cells provided that they are non empty. Take a vertex

v ∈ V (CH) for which there exists some other vertex at distance the diameter of CH . The

vertices of CH at distance d from v are said to be in the d-th floor. We also refer to the

points inside the cells at distance d from v as points in the d-th floor.

We provide an elimination scheme for H. We want to find a balanced separator of this

component (both parts will have linear order) that contains at most log n
(log log n)2 points. In

particular, the separator set will be chosen among the different floors of CH , corresponding

to points that belong to cells at some fixed distance from v in CH . Select the last floor f

such that the number of points in lower floors is at most |V (H)|/2. Observe that this is

always a separator that splits the graph H into two smaller pieces of order at most |V (H)|/2.

If this separator of H has order at most log n
(log log n)2 , we align in the elimination tree the points

of the separator in a path, and we proceed recursively for the two subgraphs. The subtrees

corresponding to these subgraphs are attached as children of the last node in the separator.

Suppose now that the floor f contains more than log n
(log log n)2 points of H. Then we can

have many consecutive floors, before and after f , with more than log n
(log log n)2 points. However,

since the order of the component H is at most log n, there can be at most (log log n)2 such

floors.

Considering CH , this implies that we have at most (log log n)2 such consecutive floors

containing more than log n
(log log n)2 points. Let us call the cell graph of these floors L′. Right

after and before these floors we have two small cuts in CH (meaning that they contain less

than log n
(log log n)2 points), call them A′ and B′ respectively. We will recursively repeat this

procedure for the two remaining parts A (the floors before A′) and B (the floors after B′)
(see Fig.2). Observe that both A and B contain at most |V (H)|/2 points each (but they

could contain much less, and in fact B could be empty).

Figure 2 Decomposition of CH

Focus now on L′. This is a subgraph of at most 4 copies of the diagonal grid log n ×
(log log n)2 (see Fig.2), since there are at most log n points in each floor and therefore at
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most log n cells containing them. By cutting these 4 copies and by using Proposition 6,

tdCG
(L′) ≤ O

(

(log log n)3
)

where tdCG
denotes the treedepth in the cell-graph.

The decomposition of CH = (A,A′, L′, B′, B) gives the following inequality:

tdCG
(CH) ≤ 2 log n

(log log n)2
+ max{tdCG

(A), O
(

(log log n)3
)

, tdCG
(B)}, (5)

since, as A′ and B′ were two floors with few points inside, |A′ ∪ B′| ≤ 2 log n
(log log n)2 .

Observe that there exists α, β ≤ 1/2 such that |A| ≤ α|V (H)| and |B| ≥ β|V (H)|, and

therefore, since the diameter of CH is at most log n, we can repeat this procedure at most

log2 |V (H)| = O(log log n) times. The constants α and β may change in each step but they

are uniformly bounded by 1/2. Hence, tdCG
(CH) ≤ O

(

log n
log log n

)

= O(Tmax).

Now we are able to finish the proof of Theorem 2. By Proposition 5, we know that there

are at most O(Tmax) points in dense cells. We temporarily remove all these points, and

add them at the end. Any of the remaining cells now has at most T points. We apply the

previously described strategy of decomposition, the only difference being that each cell of

L′ contains now at most T points of G since there are no dense cells. Therefore, for the

subgraph corresponding to L′ in H we have td(L′) ≤ O
(

T (log log n)3
)

.

Since T (log log n)3 = o
(

2 log n
(log log n)2

)

, the upper bound on td(H) that arises from the

formula (5) applied on the original graph, is not affected. Therefore, the treedepth of the

component after removing the dense cells is at most O(Tmax). Finally, taking into account

all the points corresponding to the dense cells by attaching them all in a path above the root

of the elimination tree for the non dense cells, we still have

td(H) ≤ O

(

log n

log log n

)

,

since adding a point increases the treedepth by at most 1. Using Equation (1), we have

proven Theorem 2.

3 Proof of Theorem 3

Fix now r = r(n) ≥ c2, for some sufficiently large constant c2 above rt, the threshold radius

of having a giant component. We will first give a strategy to construct an elimination tree

for G, thus giving an upper bound on td(G).

Given A ⊆ [0,
√

n]2, we denote by vol(A) the area of A. We need the following lemma:

◮ Lemma 7. For any A ⊆ [0,
√

n]2 such that vol(A) ≥ c log n and any δ > 0, the number of

points inside A is a.a.s. at most (1 + δ) vol(A).

◮ Proposition 8. For any r ≥ c2, td(G) ≤ r
√

n.

Proof. We tessellate the square [0,
√

n]2 into square cells of length r. Denote, moreover, by

C(i,j) the j-th such cell in the i-th row, for 1 ≤ i, j ≤ m =
√

n/r.

We provide some tree decomposition, such that G can be embedded as a subgraph of the

closure of the tree. Define X1 = ∪m
i=0C(⌊m/2⌋,i) and denote by Y1 = {y1, . . . , ys} the points

inside the cells of X1 (in arbitrary order). We start constructing the tree by putting the root

into y1 and by attaching the path y1 − · · · − ys. Next, we define X1
2 = ∪⌊m/2⌋−1

i=0 C(i,⌊m/2⌋)
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416 On the treewidth of random geometric graphs

and X2
2 = ∪m

i=⌊m/2⌋+1C(i,⌊m/2⌋), and let X2 = ∪2
i=1X

i
2. Define Xi and Xj

i in the same way.

At the end of the path y1 − · · · − ys, we attach now two disjoint paths constructed with

the points of Y 1
2 and Y 2

2 , respectively (again in arbitrary order). This process will then be

iteratively repeated until all the points are added to the tree (see Figure 3). Every two steps

the number of cells in Xi grows by a factor of 2. If k is the number of steps, the construction

ends when 2k/2 =
√

n/r, that is, when k = log n − 2 log r.

X 1

X 2

X 3

X 4

Y 1
1

Y 2
1 Y 2

2

Y 4
1

Y 3
1 Y 3

4

Y 4
8

Figure 3 Sketch of the construction

Now we need to know the height of this elimination tree. Since vol(Xi) is at least of

logarithmic size, by Lemma 7 we can always ensure the concentration on the number of

points inside Xj
i .

Observe that in Xj
i there are

√
n

r 2−⌈(i+1)/2⌉ cells of the tessellation. Then, vol(Xj
i ) =

r2|Xj
i | = r

√
n2−⌈(i+1)/2⌉. For a sufficiently large c, if i ≤ ℓ = log n−2 log log n+2 log r−log c,

vol(Xj
i ) ≥ c log n and by Lemma 7 together with a union bound over all j and i ≤ ℓ, we have

a.a.s.

|Y j
i | = O

(

r
√

n2−⌈(i+1)/2⌉
)

(6)

After this point vol(Xi) is too small to show concentration, but we have at most k − ℓ =

2 log log n − 4 log r + log c steps remaining. Since vol(Xj
i ) beyond ℓ is smaller than c log n,

we will have at most the number of points inside an area of size c log n containing it. Thus,

a.a.s., for any j and ℓ ≤ i ≤ k, |Y j
i | ≤ O(log n), and a.a.s.

k
∑

i=ℓ

max
j

∣

∣

∣
Y j

i

∣

∣

∣
≤ O(log n log log n).

Hence, the height of this elimination tree is a.a.s.

td(G) ≤
ℓ

∑

i=0

max
j

∣

∣

∣
Y j

i

∣

∣

∣
+

k
∑

i=ℓ+1

max
j

∣

∣

∣
Y j

i

∣

∣

∣

≤ O
(

r
√

n
(

∑

i≥0 2−⌈(i+1)/2⌉
))

+ O (log n log log n)

= O(r
√

n). ◭

For convenience, tessellate the square [0,
√

n]2 into small squares of size r/4. Given a set

A ⊆ V (identified with the corresponding geometric positions in [0,
√

n]2), define by ∂A the

boundary of A as ∂A =
{

x ∈ [0,
√

n]2 : minu∈A d(x, u) = r
2

}

. We use vol(∂A) to refer to the

length of the boundary of A.
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◮ Lemma 9. Let S be a separator of the giant component. Let A be a connected component

of G \ S. Then there exists a connected set of cells CS containing |CS | = cS = Θ(vol(∂A)/r)

cells, such that all the points inside CS are from the giant component and in the separator.

Figure 4 Cells of CS

◮ Theorem 10. There exists a constant c2 such that for any r ≥ c2, a.a.s., tw(G) ≥ Ω(r
√

n).

Proof. We will show that there exists no balanced separator of size o(r
√

n) for the giant

component H. Then, by Lemma 1, this implies that tw(H) = Ω(r
√

n), and therefore

tw(G) ≥ tw(H) = Ω(r
√

n).

Let S be a fixed balanced separator of H. Let S1, . . . , Sm the different connected

components of S. If m = Ω(r
√

n), for each component of S there is at least one point, since

H is connected. This point belongs to S and to H and therefore the separator contains at

least m = Ω(r
√

n) points. Therefore we can assume that m < r
√

n.

Since S is balanced, there exist two sets A and B (not necessarily connected) with

|A| = αn, |B| = βn for some 1
3 < α, β < 2

3 such that G \ S contains no edges from A to

B. By an isoperimetric inequality given a set A, vol(∂A) = Ω(
√

vol(A)). If vol(A) = αn

for 0 < α < 1, then even if A touches the boundary of [0,
√

n]2, this is still true since at

least a constant fraction of the perimeter is inside the square. Therefore we know that

vol(∂A) = Ω(
√

n), and by applying Lemma 9 for each connected component of S, we have a

set of cells CS with cS = Ω(
√

n/r) such that all the points inside CS are in S and in H.

Now we need to show that a.a.s. there are a lot of points inside CS . Denote by Y the

random variable counting the number of points inside CS . The following simple claim shows

that Y is concentrated around its expected value with very high probability.

◮ Claim 11. The number of points Y inside CS satisfies

Pr

(

Y < (1 − δ)E (Y ) = (1 − δ)
r2

16
cS

)

≤ e−
δ2r2

32 cS .

To show that no separator can have o(r
√

n) points we will use a union bound over all the

possible balanced separators of H. Write CS = ∪CSi where CSi are the cells given by

Lemma 9 for the separator Si. Letting cS1 , . . . , cSm the sizes of these separator components,

there are at most nmecS1
+···+cSm ways to construct CS : for each component CSi

we have n

places to choose where to start and then at most ecSi connected set of cells of size cSi .

Combining the previous upper bound from Claim 11 with a union bound over all separators

of size cS ≥ Ω(
√

n/r), the probability of having such a bad balanced separator is at most
∑

cS≥Ω(
√

n/r)

∑

m≤O(r
√

n)

∑

cS1
+···+cSm=cS

nmecS e−γr2cS , (7)
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where γ = δ2/32 for any 0 < δ < 1
3 . The number of ways to sum i using m non-negative

numbers is
(

i+m
m−1

)

≤ (i + m)m ≤ nm, and thus, (7) can be bounded from above by

∑

cS≥Ω(
√

n/r)

∑

m≤O(r
√

n)

n2mecS e−γr2cS (8)

Observe that if m ≤ c r
√

n
log n for some small constant c > 0, then n2m < e2cr

√
n = o(eγr2cS ),

for sufficiently large γ. Therefore assume that m > c r
√

n
log n .

Suppose that there is a constant fraction of cells in CG\CS contained in components of size

at least
√

n log n
cr . We restrict our separator to these big components. For this (sub)separator

we have m ≤ c
( √

n
r log n

)

(there are at most n/r2 cells), and by the previous arguments, for

this (sub)separator, the probability of having few points is at most e−γr2cS for some γ > 0,

and hence the probability of having few points in S is also at most e−γr2cS .

Thus, there is at least a constant fraction of vertices of CG \ CS in components of order

at most
√

n log n
cr . Then, by the same isoperimetric inequality as before,

cS ≥ n1/4
√

log n√
cr

× c

√
n

r log n
= Ω

(

n3/4

r3/2
√

log n

)

,

since all the components have order at least
√

n log n
cr .

We distinguish two cases. First, we consider the case c2 ≤ r = O(
√

log n). Since

m = O(r
√

n), n2m = e2m log n ≤ e2r
√

n log n ≤ e2
√

n log3/2 n and eγr2cS ≥ e
γ n3/4√

r√
log n ≥ e

γ n3/4
√

log n ,

n2mecS e−γr2cS ≤ e−γ′r2cS

for some 0 < γ′ < γ. Otherwise, r = ω(
√

log n). Observe that m ≤ cS since cSi ≥ 1 by

definition. Therefore,

n2mecS e−γr2cS ≤ n2cS ecS e−γr2cS = e(2 log n+O(1)−γr2)cS ≤ e−γ′′r2cS

for some 0 < γ′′ < γ. We showed that each term of (8) can be bounded by an exponentially

small term. Hence, there exist constants ν, ν′ > 0, such that with probability at most

∑

cS≥Ω(
√

n/r)

∑

m≤O(r
√

n)

n2mecS e−νr2cS ≤ O
(

rn3/2e−ν′r
√

n
)

= o(1)

there exists a separator S containing less than (1 − δ) r2

16cS = Ω(r
√

n) points connected to

the giant component, completing the proof. ◭

4 Conclusion

We have shown that for random geometric graphs with 0 < r ≤ c1 and for r ≥ c2 the

parameters of treewidth and treedepth are asymptotically of the same order. The immediate

natural question that remains open is whether for all values of r = Θ(1), including the values

of c1 ≤ r ≤ c2, this happens to be true. For either of the parameters it would be interesting

to know whether there is a sharp threshold width of order o(1), in the sense that there exists

some critical value of the radius rc such that the treewidth (treedepth, respectively) of a

graph with radius of at most rc − o(1) is of order Θ( log n
log log n ) with probability at least 1 − ǫ,

and the treewidth (treedepth, respectively) of a graph with radius at least rc + o(1) is of
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order Θ(
√

n) with probability at least 1− ǫ, for any ǫ > 0. We remark that the general result

on sharp thresholds of monotone properties of [6] implies only a sharp threshold width of

order log3/4 n. Needless to say, in case of the existence of such a sharp threshold, it would be

nice to find this exact threshold value for any of the two parameters (they might coincide).

Using our methods, this, however, among other problems, requires the knowledge of the

exact threshold value rt of the appearance of the giant component in a random geometric

graph, which at the moment is not known.
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