
HAL Id: hal-00678196
https://hal.science/hal-00678196

Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear-Space Data Structures for Range Mode Query in
Arrays

Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison,
Bryan T. Wilkinson

To cite this version:
Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, Bryan T. Wilkinson.
Linear-Space Data Structures for Range Mode Query in Arrays. STACS’12 (29th Symposium on
Theoretical Aspects of Computer Science), Feb 2012, Paris, France. pp.290-301. �hal-00678196�

https://hal.science/hal-00678196
https://hal.archives-ouvertes.fr

Linear-Space Data Structures for Range Mode
Query in Arrays∗

Timothy M. Chan1, Stephane Durocher2, Kasper Green Larsen3,
Jason Morrison2, and Bryan T. Wilkinson1

1 University of Waterloo, Waterloo, Canada, tmchan@uwaterloo.ca and
b3wilkin@uwaterloo.ca

2 University of Manitoba, Winnipeg, Canada, durocher@cs.umanitoba.ca and
jason_morrison@umanitoba.ca

3 Aarhus University, Aarhus, Denmark, larsen@cs.au.dk

Abstract
A mode of a multiset S is an element a ∈ S of maximum multiplicity; that is, a occurs at least as
frequently as any other element in S. Given an array A[1 : n] of n elements, we consider a basic
problem: constructing a static data structure that efficiently answers range mode queries on A.
Each query consists of an input pair of indices (i, j) for which a mode of A[i : j] must be returned.
The best previous data structure with linear space, by Krizanc, Morin, and Smid (ISAAC 2003),
requires O(

√
n log logn) query time. We improve their result and present an O(n)-space data

structure that supports range mode queries in O(
√
n/ logn) worst-case time. Furthermore, we

present strong evidence that a query time significantly below
√
n cannot be achieved by purely

combinatorial techniques; we show that boolean matrix multiplication of two
√
n×
√
n matrices

reduces to n range mode queries in an array of size O(n). Additionally, we give linear-space data
structures for orthogonal range mode in higher dimensions (queries in near O(n1−1/2d) time) and
for halfspace range mode in higher dimensions (queries in O(n1−1/d2) time).

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases mode, range query, data structure, linear space, array

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.290

1 Introduction

The frequency of an element x in a multiset S, denoted freqS(x), is the number of occurrences
(i.e., the multiplicity) of x in S. A mode of S is an element a ∈ S such that for all x ∈ S,
freqS(x) ≤ freqS(a). A multiset S may have multiple distinct modes; the frequency of the
modes of S, denoted by m, is unique.

Along with the mean and median, the mode is a fundamental statistic in data analysis.
Given a sequence of n elements ordered in a list A, a range query seeks to compute the
corresponding statistic on the multiset determined by a subinterval of the list: A[i : j]. The
objective is to preprocess A to construct a data structure that supports efficient response to
one or more subsequent range queries, where the corresponding input parameters (i, j) are
provided at query time. Such a data structure is useful as it allows us to report statistics
over any window of a given sequence of data.

∗ Work supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC),
and in part by MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National
Research Foundation.

© T.M. Chan, S. Durocher, K.G. Larsen, J. Morrison, and B.T. Wilkinson;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 290–301

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.290
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T.M. Chan, S. Durocher, K.G. Larsen, J. Morrison, and B.T. Wilkinson 291

We assume the standard RAM model of computation with word size w = Ω(logn).
Although the complete set of possible queries can be precomputed and stored using Θ(n2)
space, practical data structures require less storage while still enabling efficient response
time. For all i, if i = j, then a range query must report A[i]. Consequently, any range
query data structure for a list of n items requires Ω(n) storage space in the worst case [2].
This leads to a natural question: how quickly can an O(n)-space data structure answer
range queries? A range mean query is equivalent to a normalized range sum query (partial
sum query), for which a precomputed prefix-sum array provides a linear-space static data
structure with constant query time [16]. Range median queries have been analyzed extensively
in recent years and are closely related to range counting, where efficient data structures
are now known (with linear space and logarithmic or slightly sublogarithmic query time)
[2, 3, 5, 10, 11, 14, 16, 20, 21]. In contrast, range mode queries appear more challenging than
range mean and median. As expressed recently by Brodal et al. [3, page 2]: “The problem of
finding the most frequent element within a given array range is still rather open.”

The best previous linear-space data structure for range mode query was by Krizanc et al.
[15, 16], who obtained a query time of O(

√
n log logn).1 No better approaches have been

discovered in the intervening eight years, which leads one to suspect that a
√
n-type bound

might be the best one could hope for.
Indeed, we present strong evidence that purely combinatorial approaches cannot avoid

the
√
n effect in the preprocessing or query costs, up to polylogarithmic factors. (Krizanc et

al.’s method has near n3/2 preprocessing time.) More specifically, we show in Section 7 that
boolean matrix multiplication (matrix multiplication on {0, 1}-matrices with addition and
multiplication replaced by OR and AND, respectively) of two

√
n×
√
n matrices reduces to n

range mode queries in an array of size O(n). This reduction implies that any data structure
for range mode must have either Ω(nω/2) preprocessing time or Ω(nω/2−1) query time in
the worst case, where ω denotes the matrix multiplication exponent. Since the current best
matrix multiplication algorithm has exponent 2.3727 [23], we cannot obtain preprocessing
time better than n1.18635 and query time better than n0.18635 simultaneously with current
knowledge. Moreover, since the current best combinatorial algorithm for boolean matrix
multiplication (which avoids algebraic techniques as in Strassen’s) has running time only
a polylogarithmic factor better than cubic [1], we cannot obtain preprocessing time better
than n3/2 and query time better than

√
n simultaneously by purely combinatorial techniques

with current knowledge, except for polylogarithmic-factor speedups.
In view of the above hardness result, it is therefore worthwhile to pursue more modest

improvements for the range mode problem. Notably, can the extra log log factor in Krizanc
et al.’s bound be eliminated?

In Section 3, we give a data structure that accomplishes just that: with O(n) space, we
can answer range mode queries in O(

√
n) time. The data structure is based on—and in some

ways simplifies—Krizanc et al.’s, since we use only rudimentary structures (mostly arrays),
without van Emde Boas trees or repeated binary searches.

In fact, we go beyond eliminating a mere log log factor: in Section 6, we present an O(n)-
space data structure that answers range mode queries in o(

√
n) time. The precise worst-case

time bound is O(
√
n/w) ⊆ O(

√
n/ logn). As one might guess, bit packing tricks are used

to achieve the speedup, but in addition we need a nontrivial combination of ideas, including

1 The original data structure described by Krizanc et al. [16] supports queries in O(
√

n log n) time. As
they remarked, this time can be reduced to O(

√
n log log n) by using van Emde Boas trees for predecessor

search [22].

STACS’12

292 Range Mode Query in Arrays

partitioning elements into two sets (one with small maximum frequency and another with a
small number of distinct elements), each handled by a different method, and an interesting
application of rank/select data structures (from the world of succinct data structures).

In Section 8, we consider a natural higher-dimensional generalization of the problem:
given a set of coloured points in Rd, support queries for the most frequently occurring colour
in some query range. We obtain the first nontrivial results for this geometric problem. For
example, for orthogonal ranges, we give a near-linear space data structure that supports
queries in near O(n1−1/2d) time. For halfspace ranges, we give a linear-space data structure
that supports queries in O(n1−1/d2) time. This latter result is obtained using an interesting
application of geometric cuttings [7], in addition to standard range searching data structures.

Throughout the paper, let m denote the maximum frequency (i.e., the mode of the overall
array), and let ∆ denote the number of distinct elements (m,∆ ≤ n).

2 Related Work

Computing a Mode. The mode of a multiset S of n items can be found in O(n logn)
time by sorting S and scanning the sorted list to identify the longest sequence of identical
elements. By reduction from element uniqueness, a matching Ω(n logn) lower bound in
the comparison model follows. Better bounds on the worst-case time can be obtained by
parameterizing in terms of m or ∆. A worst-case time of O(n log ∆) is easily achieved by
inserting the n elements into a balanced search tree in which each node stores a key and its
frequency. Munro and Spira [19] described an O(n log(n/m))-time algorithm and a matching
comparison-based lower bound. On the word RAM model, the mode can be computed in
linear expected time by hashing.
Range Mode Query. As mentioned, a data structure of Krizanc et al. [16] requires
linear space and provides O(

√
n log logn) query time. Krizanc et al. also considered larger-

space structures. They described data structures that provide constant-time queries using
O(n2 log logn/ logn) space and O(nε logn)-time queries using O(n2−2ε) space, for any fixed
ε ∈ (0, 1/2]. Petersen and Grabowski [21] improved the first bound to constant time and
O(n2 log logn/ log2 n) space and Petersen [20] improved the second bound to O(nε)-time
queries using O(n2−2ε) space, for any fixed ε ∈ [0, 1/2). Although its space requirement is
almost linear in n as ε approaches 1/2, the data structure of Petersen [20] requires ω(n)
space (the number of levels in a hierarchical set of tables and hash functions approaches
∞ as ε→ 1/2). Our new approach can also lead to improved space-time tradeoffs (see the
statement of Theorem 7 with the parameter s = n1−ε): we can obtain O(nε) query time
with O(n2−2ε/ logn) space for any fixed ε ∈ [0, 1/2]. This improves Petersen’s result (though
for ε = 0, Petersen and Grabowski’s result remains slightly better). Finally, Greve et al. [12]
prove a lower bound of Ω(logn/ log(s · w/n)) query time for any data structure that uses s
memory cells of w bits in the cell probe model.
Other Query Problems. Bose et al. [2] considered approximate range mode queries, in
which the objective is to return an element whose frequency is at least αm. They gave
a data structure that requires O(n/(1 − α)) space and answers approximate range mode
queries in O(log log1/α n) time for any fixed α ∈ (0, 1), as well as data structures that provide
constant-time queries for α ∈ {1/2, 1/3, 1/4}, using space O(n logn), O(n log logn), and
O(n), respectively. Greve et al. [12] gave data structures that support approximate range
mode queries in O(1) time using O(n) space for α = 1/3, and O(log(α/(1− α))) time using
O(nα/(1− α)) space for any fixed α ∈ [1/2, 1).

Durocher et al. [9] described an O(n)-space data structure that supports constant-time

T.M. Chan, S. Durocher, K.G. Larsen, J. Morrison, and B.T. Wilkinson 293

range majority queries; this data structure is then extended to range α-majority queries, a
generalization of range majority.

3 First Method: O(
√

n) Query Time and O(n) Space

We begin by presenting a linear-space data structure with O(
√
n) query time, improving

Krizanc et al.’s result [16] by a log log factor. We build on the data structure of Krizanc et
al. and introduce a different technique that avoids the need for predecessor search. We will
actually establish the following time-space tradeoff—the linear-space result follows by setting
the parameter s = d

√
ne.

I Theorem 1. Given an array A[1 : n] and any fixed value s ∈ [1, n], there exists a data
structure requiring O(n+ s2) space that supports range mode queries on A in O(n/s) time.

The following observation will be useful:

I Lemma 2 (Krizanc et al. [16]). Let A and B be any multisets. If c is a mode of A ∪ B
and c 6∈ A, then c is a mode of B.

Data Structure Precomputation. Given input array A[1 : n], let D denote the set of
distinct elements stored in A and assume some arbitrary ordering on the elements. We first
apply rank space reduction: construct an array B[1 : n] such that for each i, B[i] stores the
rank of A[i] in D. Here, B[i] ∈ {1, . . . ,∆}. For any a, i, and j, B[a] is a mode of B[i : j]
if and only if A[a] is a mode of A[i : j]. For simplicity, we describe our data structures in
terms of array B; a table look-up provides a direct bijective mapping from {1, . . . ,∆} to D.
Set D, array B, and the value ∆ are independent of any query range and can be computed
in O(n log ∆) time during preprocessing.

For each a ∈ {1, . . . ,∆}, let Qa = {b | B[b] = a}. That is, Qa is the set of indices b such
that B[b] = a. For any a, a range counting query for element a in B[i : j] can be answered
by searching for the predecessors of i and j, respectively, in the set Qa; the difference of their
indices is the frequency of a in B[i : j] [16]. Such a range counting query can be implemented
using an efficient predecessor data structure in Θ(log logn) time in the worst case (e.g., [22]).

The following related decision problem, however, can be answered in constant time by a
linear-space data structure: does B[i : j] contain at least q instances of element B[i]? This
question can be answered by a “select” query that returns the index of the qth instance of
B[i] in B[i : n]. For each a ∈ {1, . . . ,∆}, store the set Qa as an ordered array (also denoted
Qa for simplicity). Define a rank array B′[1 : n] such that for all b, B′[b] denotes the rank
(i.e., the index) of b in QB[b]. Given any q, i, and j, to determine whether B[i : j] contains
at least q instances of B[i] it suffices to check whether QB[i][B′[i] + q − 1] ≤ j. Since array
QB[i] stores the sequence of indices of instances of element B[i] in B, looking ahead q − 1
positions in QB[i] returns the index of the qth occurrence of element B[i] in B[i : n]; if this
index is at most j, then the frequency of B[i] in B[i : j] is at least q. If the index B′[i] + q− 1
exceeds the size of the array QB[i], then the query returns a negative answer. This gives the
following lemma:

I Lemma 3. Given an array A[1 : n], there exists a data structure requiring O(n) space that
can determine in constant time for any 0 ≤ i ≤ j ≤ n and any q whether A[i : j] contains at
least q instances of element A[i].

Following Krizanc et al. [16], given any s ∈ [1, n] we partition array B into s blocks of
size t = dn/se. That is, for each i ∈ {0, . . . , s− 2}, the ith block spans B[i · t+ 1 : (i+ 1)t]

STACS’12

294 Range Mode Query in Arrays

b
jb jb

ib

B

A 30 2030 2040 40 10 201040

3 23 24 4 1 214

20

2

10

1 3

30

5

50

1 4

40

5

10 10 50

B’

12

20

4

40

4

40

5

50

4

40

2

20

0 0 0 0 01 1 1 1 12 2 2 223 3 34 4 45 5

ji

0 1 2 3 4 5

query range A[7:19]

suffixprefix
span

2 31 4 8 10 11 13 1495 12 16156 191817 20 21 23227 24

6

2

4

3 6 17

1

15 21 22

1497

23131285

18 19 24

20

0 1 2 3 4 5 6

16

11

10

0

0

1

1

2

2

3

3

4

4

5

5
S

441 2 2 4

2 244 4

2 2 2 2

22 4

5 5

1

0

0

1

1

2

2

3

3

4

4

5

5
S’

1 43 6 6 7

2 3 5 5 6

2 4 4 4

2 2 3

2 3

Q

2

2

Q 3

Q 4

Q 1

Q 5

i

Figure 1 The array has size n = 24 (of which ∆ = 5 are distinct), partitioned into s = 6 blocks
of size t = 4. The query range is A[i : j] = A[7 : 19], for which the unique mode is 20, occurring
with frequency 5. The corresponding mode of B[i : j] is 2. The query range is partitioned into the
prefix B[7 : 8], the span B[9 : 16], and the suffix B[17 : 19]. The span covers blocks bi = 2 to bj = 3,
for which the corresponding mode is S[2, 3] = 2, occurring with frequency S′[2, 3] = 4.

and the last block spans B[(s− 1)t+ 1 : n]. We precompute tables S[0 : s− 1, 0 : s− 1] and
S′[0 : s− 1, 0 : s− 1], each of size Θ(s2), such that for any 0 ≤ bi ≤ bj < s, S[bi, bj] stores a
mode of B[bit+ 1 : (bj + 1)t] and S′[bi, bj] stores the corresponding frequency.

The arrays Q1, . . . , Q∆ can be constructed in O(n) total time in a single scan of array B.
The arrays S and S′ (which we call the mode table) can be constructed in O(n · s) time by
scanning array B s times, computing one row of each array S and S′ per scan. Thus, the
total precomputation time required to initialize the data structure is O(n · s).
Query Algorithm. Given a query range B[i : j], let bi = d(i − 1)/te and bj = bj/tc − 1
denote the respective indices of the first and last blocks completely contained within B[i : j].
We refer to B[bit+ 1 : (bj + 1)t] as the span of the query range, to B[i : min{bit, j}] as its
prefix, and to B[max{(bj + 1)t+ 1, i} : j] as its suffix. One or more of the prefix, span, and
suffix may be empty; in particular, if bi > bj , then the span is empty. See Figure 1.

The value c = S[bi, bj] is a mode of the span with frequency fc = S′[bi, bj]. If the span
is empty, then let fc = 0. By Lemma 2, either c is a mode of B[i : j] or some element of
the prefix or suffix is a mode of B[i : j]. Thus, to find a mode of B[i : j], we verify for every
element in the prefix and suffix whether its frequency in B[i : j] exceeds fc and, if so, we
identify this element as a candidate mode and count its additional occurrences in B[i : j].

We now describe how to compute the frequency of all candidate elements in the prefix,
storing the value and frequency of the current best candidate in c and fc; an analogous
procedure is applied to the suffix. Sequentially scan the items in the prefix starting at the
leftmost index, i, and let x denote the index of the current item. If QB[x][B′[x]− 1] ≥ i, then
an instance of element B[x] appears in B[i : x−1], and its frequency has been counted already;
in this case, simply skip B[x] and increment x. Otherwise, check whether the frequency of
B[x] in B[i : j] (which is equivalent to the frequency of B[x] in B[x : j]) is at least fc by
Lemma 3 (i.e., by testing whether QB[x][B′[x] + fc − 1] ≤ j). If not, we again skip B[x].
Otherwise, B[x] is a candidate, and the exact frequency of B[x] in B[i : j] can be counted by
a linear scan2 of QB[x], starting at index B′[x] + fc− 1 and terminating upon reaching either
an index y such that QB[x][y] > j or the end of array QB[x] (i.e., y = |QB[x]|+ 1). That is,
QB[x][y] denotes the index of the first instance of element B[x] that lies beyond the query
range B[i : j] (or no such element exists). Consequently, the frequency of B[x] in B[i : j] is
fx = y −B′[x]. Update the current best candidate: c← B[x] and fc ← fx.

After all elements in the prefix and suffix have been processed, a mode of B[i : j] and its
frequency are stored in c and fc, respectively.

2 Although the time required to complete a linear scan could be reduced by instead using a binary search
or a more efficient predecessor data structure, the worst-case time remains unchanged; for simplicity, a
linear scan suffices.

T.M. Chan, S. Durocher, K.G. Larsen, J. Morrison, and B.T. Wilkinson 295

Analysis. Excluding the linear scans of QB[x], the query cost is clearly bounded by O(t).
For each candidate B[x] encountered during the processing of the prefix, the cost of the
linear scan of QB[x] is O(fx − fc). Since fc is at least the frequency of the mode of the span,
at least fx − fc instances of B[x] must occur in the prefix or suffix. We can thus charge
the cost of the scan to these instances. Since each element B[x] is considered a candidate
at most once (during its first appearance) in the prefix, we conclude that the total cost of
all the linear scans is proportional to the total number of elements in the prefix, i.e., O(t).
An analogous argument holds for the cost of processing the suffix. Therefore, a range mode
query requires O(t) = O(n/s) total time. The data structure requires O(n) space to store
the arrays A, B, and B′, O(n) total space to store the arrays Q1, . . . , Q∆, and O(s2) space
to store the tables S and S′. This proves Theorem 1.

4 Second Method: O(
√

n/w) Query Time and O(n) Space When
m ≤

√
nw

Our second method is a refinement of the first method (from Section 3), in which we store the
mode table (S and S′) more compactly by an encoding scheme that enables efficient retrieval
of the relevant information, using techniques from succinct data structures, specifically, for
rank/select operations. We show how to reduce a query to four rank/select operations. These
new ideas allow us to improve the space bound in Theorem 1 by a factor of w, which enables
us to use a slightly larger number of blocks, s, which in turn leads to an improved query time.
However, there is one important caveat: our space-saving technique only works when the
maximum frequency is small, namely, when m ≤ s. Specifically, we will prove the following
theorem in this section: choosing s = d

√
nwe gives O(n) space and O(

√
n/w) query time for

m ≤
√
nw.

I Theorem 4. Given an array A[1 : n] and any fixed s ∈ [1, n] such that m ≤ s (where m is
the frequency of the overall mode), there exists a data structure requiring O(n+ s2/w) space
that supports range mode queries on A in O(n/s) time.

Modified Data Structure. Recall that for a span from block bi to block bj , the mode
table stores a mode of the span and its frequency in S[bi, bj] and S′[bi, bj], respectively. As
we will show, a mode of the span can be computed efficiently if its frequency is known;
consequently, we omit table S. Also, instead of storing the frequency of the mode explicitly,
we store column-to-column frequency deltas (i.e., differences of adjacent frequency values);
observe that frequency values are monotone increasing across each row. We encode the
frequency deltas for a single row as a bit string, where a zero bit represents an increment
in the frequency of the mode (i.e., each frequency delta is encoded in unary) and a one bit
represents a former cell boundary. In any row, the number of ones is at most the number of
blocks, s, and the number of zeroes is at most m ≤ s. Precompute a data structure that uses
a linear number of bits to support O(1)-time binary rank and select operations on each row
(e.g., see [18]):3 given a binary string, for each a ∈ {0, 1}, ranka(i) returns the number of
times a occurs in the first i positions of the string, and selecta(i) returns the position of the
ith occurrence of a in the string. Thus, each row of the table uses O(s) bits of space. The
table has s rows and requires O(s2) bits of space in total. We pack these bits into words,
resulting in an O(s2/w)-space data structure.

3 Succinct data structures can ensure that space usage is very close to the length of the bit string up to
lower-order terms, but this fact is not needed in our application.

STACS’12

296 Range Mode Query in Arrays

Modified Query Algorithm. Assuming we know a mode of the span and its frequency,
we can process the prefix and suffix ranges in O(t) time as before. Our attention turns now
to determining a mode of the span and its frequency. We first obtain the frequency of the
mode of the span in O(1) time using rank and select queries on the bit string of the bith row:

posbj
← select1(bj − bi + 1), and freq ← rank0(posbj

).

Having found the frequency of the mode, identifying a mode itself is still a tricky problem.
We proceed in two steps. We first determine the block in which the last occurrence of a
mode lies, in O(1) time, as follows:

poslast ← select0(freq), and blast ← rank1(poslast) + bi.

Next we find a mode of the span by iteratively examining each element in block blast, using a
technique analogous to that for processing a suffix from Section 3. By Lemma 3 (reversed with
j ≤ i), we can check whether each element B[x] in blast has frequency freq in B[bit+ 1 : x],
in O(1) time per element. If the mode occurs multiple times in block blast, its last occurrence
will be successfully identified. Processing block blast requires O(t) total time. We conclude
that the total query time is O(t) = O(n/s) time. This proves Theorem 4.

5 Third Method: O(∆) Query Time and O(n) Space

In this section, we take a quick detour and consider a third method that has query time
sensitive to ∆, the number of distinct elements; this “detour” turns out to be essential in
assembling our final solution. We show the following:

I Theorem 5. Given an array A[1 : n], there exists a data structure requiring O(n) space
that supports range mode queries on A in O(∆) time, where ∆ denotes the number of distinct
elements in A.

The proof is simple: to answer a range mode query, the approach is to compute the
frequency (in the query range) for each of the ∆ possible elements explicitly, and then just
compute the maximum in O(∆) time.
Data Structure Precomputation. As before, we work with the array B by rank space
reduction. This time, we divide B into blocks of size t = ∆. For each i ∈ {1, . . . , bn/∆c},
and for every x ∈ {1, . . . ,∆}, store the frequency Ci[x] of x in the range B[1 : i∆]. The total
size of all these frequency tables is O((n/∆) ·∆) = O(n). The preprocessing time required is
O(n) (or O(n log ∆) time if ∆ or B must be computed).
Query Algorithm. Given a query range B[i : j], as mentioned, it suffices to compute the
frequency of x in B[i : j] for every x ∈ {1, . . . ,∆}.

Let bj = bj/∆c − 1. We can compute the frequency C(x) of x in the suffix B[bj∆ + 1 : j]
for every x ∈ {1, . . . ,∆} by a linear scan, in O(∆) time since the suffix has size at most ∆.
Then the frequency of x in B[1, j] is given by Cbj

[x] + C(x). The frequency of x in B[1, i]
can be computed similarly. The frequency of x in B[i, j] is just the difference of these two
numbers. The total query time is clearly O(∆). This proves Theorem 5.

6 Final Method: O(
√

n/w) Query Time and O(n) Space

We are finally ready to present our improved linear-space data structure with O(
√
n/w)

query time. Our final idea is simple: if the elements all have small frequencies, the second

T.M. Chan, S. Durocher, K.G. Larsen, J. Morrison, and B.T. Wilkinson 297

method (Section 4) already works well; otherwise, the number of distinct elements with large
frequencies is small, and so the third method (Section 5) can be applied instead.

More precisely, let s be any fixed value in [1, n]. Partition the elements of A into those with
low frequencies, i.e., at most s, and those with high frequencies, i.e., greater than s. A mode
of the low-frequency elements has frequency at most s. Thus we can apply Theorem 4 to build
an O(n+ s2/w)-space range mode query data structure on the low-frequency elements to
support O(n/s) query time. On the other hand, there are at most n/s distinct high-frequency
elements. Thus we can apply Theorem 5 to build an O(n)-space range mode query data
structure on the high-frequency elements to support O(n/s) query time. The following simple
decomposition lemma allows us to combine the two structures:

I Lemma 6. Given an array A[1 : n] and any ordered partition of A into two arrays B1[1 : n′]
and B2[1 : n − n′] such that no element in B1 occurs in B2 nor vice versa, if there exist
respective s1(n)- and s2(n)-space data structures that support range mode queries on B1 and
B2 in t1(n) and t2(n) time, then there exists an O(n+ s1(n) + s2(n))-space data structure
that supports range mode query on A in O(t1(n) + t2(n)) time.

Proof. For each a ∈ {1, 2} and i ∈ {1, . . . , n}, precompute Ia[i], the index in the Ba array of
the first element in A to the right of A[i] that lies in Ba; and precompute Ja[i], the index in
the Ba array of the first element in A to the left of A[i] that lies in Ba. Given a range query
A[i : j], we can compute the mode in the range B1[I1[i], J1[j]] and the mode in the range
B2[I2[i], J2[j]] and determine which has larger frequency; this is a mode of A[i : j]. J

We have thus completed the proof of our main theorem:

I Theorem 7. Given an array A[1 : n] and any fixed s ∈ [1, n], there exists a data structure
requiring O(n + s2/w) space that supports range mode queries on A in O(n/s) time. In
particular, by setting s = d

√
nwe, there exists a data structure requiring O(n) space that

supports range mode queries on A in O(
√
n/w) time.

7 Boolean Matrix Multiplication and Range Mode

In this section, we show that boolean matrix multiplication of two
√
n×
√
n matrices reduces

to n range mode queries in an array of size O(n). Greve et al. [12] observe the following:

I Observation 8 (Greve et al. [12]). Let S be a multiset whose elements belong to a universe
U . Adding one of each element in U to S increases the frequency of the mode of S by one.

I Observation 9 (Greve et al. [12]). Let S1 and S2 be two sets (not multisets) and let S be
the multiset union of S1 and S2. The frequency of the mode of S is one if S1 ∩ S2 = ∅ and it
is two if S1 ∩ S2 6= ∅.

Now let A and B be two
√
n ×
√
n boolean matrices for which we are to compute the

product C = A ·B. The entry ci,j in C must be 1 precisely if there exists at least one index
k, where 1 ≤ k ≤

√
n, such that ai,k = bk,j = 1. Our goal is to determine whether this is the

case using one range mode query for each entry ci,j . Our first step in achieving this is to
transform each row of A and each column of B into a set. For the ith row of A, we construct
the set Ai containing all those indices k for which ai,k = 1, i.e., Ai = {k | ai,k = 1}. Similarly
we let Bj = {k | bk,j = 1}. Clearly ci,j = 1 if and only if Ai ∩ Bj 6= ∅. By Observation 9,
this can be tested if we can determine the frequency of the mode in the multiset union of
Ai and Bj . Our last step is thus to embed all the sets Ai and Bj into an array, such that
we can use range mode queries to perform these intersection tests for every pair i, j. Our

STACS’12

298 Range Mode Query in Arrays

constructed array M has two parts, a left part L and a right part R. The array M is then
simply the concatenation of L and R. The array L represents all the sets Ai. It consists of√
n blocks of

√
n entries. The ith block (entries L[(i− 1)

√
n+ 1 : i

√
n]) represents the set

Ai, and it consists of the elements {1, . . . ,
√
n} \Ai in some arbitrary order, followed by the

elements of Ai in some arbitrary order. The array R similarly represents the sets Bj and it
also consists of

√
n blocks of

√
n entries. The jth block represents the set Bj and it consists

of the elements in Bj in some arbitrary order, followed by the elements {1, . . . ,
√
n} \Bj in

some arbitrary order.
Now assume that |Ai| and |Bj | are known for each set Ai and Bj . We can now determine

whether Ai ∩ Bj 6= ∅ (i.e., whether ci,j = 1) from the result of the range mode query on
M [start(i) : end(j)], where

start(i) = (i− 1)
√
n+ 1 +

√
n− |Ai| and end(j) = n+ (j − 1)

√
n+ |Bj |.

To see this, first observe that start(i) is the first index in M of the elements in Ai, and that
end(j) is the last index in M of the elements in Bj . In addition to a suffix of the block
representing Ai and a prefix of the block representing Bj , the subarray M [start(i) : end(j)]
contains

√
n− i complete blocks from L and j − 1 complete blocks from R. Since a complete

block contains all the elements {1, . . . ,
√
n}, it follows from Observations 8 and 9 that

Ai ∩Bj 6= ∅ (i.e., ci,j = 1) if and only if the frequency of the mode in M [start(i), end(j)] is
2 +
√
n− i+ j − 1. The answer to the query (start(i), end(j)) thus allows us to determine

whether ci,j = 1 or 0. The array M and the values |Ai| and |Bj | can clearly be computed in
linear time when given matrices A and B, thus we have the following result:

I Theorem 10. Let p(n) be the preprocessing time of a range mode data structure and q(n)
its query time. Then boolean matrix multiplication on two

√
n×
√
n matrices can be solved

in time O(p(n) + n · q(n) + n).

8 Higher Dimensions

We now consider generalizations of the range mode problem to Euclidean spaces of constant
dimension d. Given a set P of n points in Rd, each of which is assigned a colour, we consider
the problem of constructing an efficient data structure to support queries that return a most
frequently occurring colour in P ∩ Q for a query range Q ⊆ Rd. We consider orthogonal
range queries in Section 8.1 and halfspace range queries in Section 8.2.

8.1 Orthogonal Ranges
We generalize the technique of Krizanc et al. [16] by dividing space into sd grid cells
such that there are O(n/s) points between any two consecutive parallel grid hyperplanes.
The generalization of a span of a query range Q is the largest rectangle inside Q whose
sides lie along grid hyperplanes. There are s2d distinct spans and for each we precompute
and store the mode of the span. This component of our data structure thus requires
O(s2d) space. For each set of points of a given colour, we also build an orthogonal range
counting data structure [8] with polylogarithmic space overhead that answers queries in
polylogarithmic time (see [13] for the best known solution, using O(n(logn/ log logn)d−2)
space and with O((logn/ log logn)d−1) query time). Across all colours, these data structures
require O(n polylogn) space.

Given a query hyperrectangle Q we use binary search amongst the grid hyperplanes in
order to determine the slabs in which Q’s sides lie. We then determine the mode of Q’s span

T.M. Chan, S. Durocher, K.G. Larsen, J. Morrison, and B.T. Wilkinson 299

in O(1) time from our precomputed table. For each of the 2d sides of Q we must additionally
consider each of the O(n/s) points in the slab in which the side lies. For each such point, we
count the number of points of its colour in Q using the range counting data structure of its
colour in polylogarithmic time to find the actual mode. So, the running time of a query is
O (2d · (n/s) · polylogn) = O ((n/s) · polylogn) time.

I Theorem 11. Given a set P of n points in Rd, each of which is assigned a colour, and
any fixed s ∈ {1, . . . , n}, there exists a data structure requiring O(n polylogn + s2d) space
that supports orthogonal range mode queries in O ((n/s) · polylogn) time. In particular, by
setting s = dn1/2de, there exists a data structure requiring O(n polylogn) space that supports
range mode queries in O(n1−1/2d polylogn) time.

Alternatively, we can guarantee O(n) space if we increase the query time by an nε factor,
by switching to a linear-space data structure for orthogonal range counting with O(nε) query
time (by using a range tree [8] with nε fan-out).

8.2 Halfspace Ranges
We now consider halfspace range queries. We work in dual space [8], where the input is
transformed into n hyperplanes, each assigned a colour, and a query halfspace is transformed
into a point. A query for a dual point q returns the most frequently occurring colour amongst
the hyperplanes that lie below q. Let s ∈ {1, . . . , n} be a fixed parameter specified by the
user. We use the key concept of cuttings [7] from computational geometry. Given a set of n
hyperplanes in Rd, a (1/r)-cutting is a partition of Rd into simplicial cells such that each cell
intersects at most n/r hyperplanes. The following is known [7, 6]:

I Lemma 12. For any set of n hyperplanes in Rd, there exists a (1/r)-cutting with O(rd)
cells. Furthermore, there is a data structure for point location in the (1/r)-cutting, also
requiring O(rd) space and answering queries in O(log r) time.

We set r = (n·sd−1)1/d. For each cell γ in the cutting, we store the mode of the hyperplanes
that lie strictly below γ. This component of our data structure requires O(rd) = O(n · sd−1)
space. In primal space, we build a simplex range reporting data structure [4, 17] for all of
the points with S = O(n · sd−1) space. This data structure reports the k points in a query
simplex in O((n/S1/d) polylogn + k) = O((n/s)1−1/d polylogn + k) time. Also, for each
colour i, we build a separate halfspace range counting data structure [4, 17] for the ni points
of colour i, with Si = O(ni · sd−1) space and O(ni/S1/d

i + logni) = O((ni/s)1−1/d + logn)
query time. The total space is O(n · sd−1).

Given a dual query point q, we first identify the cell γ of the (1/r)-cutting that contains
q in O(log r) time. The mode of the hyperplanes below q is either the colour stored at cell γ
or one of the colours of the hyperplanes intersecting γ. We can find the O(n/r) hyperplanes
intersecting γ by simplex range reporting in primal space in O((n/s)1−1/d polylogn+ n/r)
time, since the set of all hyperplanes intersecting a simplex dualizes to a polyhedron of O(1)
size. For each hyperplane that intersects γ and lies below q, we perform a halfspace range
counting query for the points of the colour of the hyperplane in primal space to determine
the actual mode. The running time of this step is O

(∑O(n/r)
i=1 (ni/s)1−1/d + (n/r) logn

)
.

By Hölder’s inequality, the sum in the first term is bounded by O((n/r)1/d · (n/s)1−1/d) =
O((n/s)1−1/d2) for r = (n · sd−1)1/d. The second term (n/r) logn = (n/s)1−1/d logn does
not dominate except when n/s = O(polylogn).

STACS’12

300 Range Mode Query in Arrays

I Theorem 13. Given a set P of n points in Rd, each of which is assigned a colour, and any
fixed s ∈ {1, . . . , n}, there exists a data structure requiring O(n · sd−1) space that supports
halfspace range mode queries in O((n/s)1−1/d2 + polylogn) time. In particular, by setting
s = 1, there exists a data structure requiring O(n) space that supports halfspace range mode
queries in O(n1−1/d2) time.

A similar approach works for other ranges (e.g., simplices, balls, and other constant-degree
semialgebraic sets) by transforming query ranges to query points in a higher dimension, and
using cuttings in this higher-dimensional space.

9 Discussion and Directions for Future Research

We close by mentioning a few interesting open problems. A useful generalization of the
problem is to return the kth most frequently occurring element (or the k most frequent
elements) in a query range. Due to its dependence on precomputed modes stored in array S,
an analogous generalization of our methods (except for the third method) seems unlikely
without a significant increase in space, if k is large.
I Open Problem 1. Construct an O(n)-space data structure for identifying the kth most
frequently occurring element (or the k most frequent elements) in the range A[i : j] in time
O(n1−ε) (or O(n1−ε + k)) for some constant ε > 0, where i, j, and k are given at query time.

We have given (near-)linear-space data structures for multiple variants of range mode,
including orthogonal range mode for a d-dimensional point set and halfspace range mode for a
d-dimensional point set. Our results, in various ways, build on and generalize the techniques
of Krizanc et al. [16]. It is unknown whether there are entirely different approaches that can
achieve smaller exponents on n in the query times.
I Open Problem 2. Is there a linear-space dynamic data structure for range mode in an
array that supports queries and updates in O(

√
n polylogn) time? In the full paper we give

respective dynamic data structures with O(n) space and O(n3/4 polylogn) query and update
times, and with O(n4/3) space and O(n2/3 polylogn) query and update times.
I Open Problem 3. Is there a (near-)linear-space data structure for orthogonal range mode
in Rd that supports queries in o(n1−1/2d) time?
I Open Problem 4. Is there a linear-space data structure for halfspace range mode in Rd
that supports queries in o(n1−1/d2) time?

Lastly, the following open problem is likely difficult since currently no techniques seem
capable of proving unconditional super-polylogarithmic cell probe lower bounds:
I Open Problem 5. Prove a tight, unconditional lower bound on the worst-case query time
required by any O(n)-space data structure that supports range mode queries on an array of
n items.
Acknowledgements. The authors thank Peyman Afshani, Francisco Claude, Meng He, Ian
Munro, Patrick Nicholson, Matthew Skala, and Norbert Zeh for discussing various topics
related to range searching.

References
1 N. Bansal and R. Williams. Regularity lemmas and combinatorial algorithms. In Proc.

IEEE FOCS, pages 745–754, 2009.
2 P. Bose, E. Kranakis, P. Morin, and Y. Tang. Approximate range mode and range median

queries. In Proc. STACS, volume 3404 of LNCS, pages 377–388. Springer, 2005.

T.M. Chan, S. Durocher, K.G. Larsen, J. Morrison, and B.T. Wilkinson 301

3 G. S. Brodal, B. Gfeller, A. G. Jørgensen, and P. Sanders. Towards optimal range medians.
Theor. Comp. Sci., 412(24):2588–2601, 2011.

4 T. M. Chan. Optimal partition trees. In Proc. ACM SoCG, pages 1–10, 2010.
5 T. M. Chan and M. Pătraşcu. Counting inversions, offline orthogonal range counting, and

related problems. In Proc. ACM-SIAM SODA, pages 161–173, 2010.
6 B. Chazelle. Cutting hyperplanes for divide-and-conquer. Disc. Comp. Geom., 9(2):145–

158, 1993.
7 B. Chazelle. Cuttings. In Handbook of Data Structures and Applications, pages 25.1–25.10.

CRC Press, 2005.
8 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:

Algorithms and Applications. Springer-Verlag, Heidelberg, Germany, 3rd edition, 2008.
9 S. Durocher, M. He, J. I. Munro, P. K. Nicholson, and M. Skala. Range majority in constant

time and linear space. In Proc. ICALP, volume 6755 of LNCS, pages 244–255. Springer,
2011.

10 T. Gagie, S. J. Puglisi, and A. Turpin. Range quantile queries: Another virtue of wavelet
trees. In Proc. SPIRE, volume 5721 of LNCS, pages 1–6. Springer, 2009.

11 B. Gfeller and P. Sanders. Towards optimal range medians. In Proc. ICALP, volume 5555
of LNCS, pages 475–486. Springer, 2009.

12 M. Greve, A. G. Jørgensen, K. D. Larsen, and J. Truelsen. Cell probe lower bounds and
approximations for range mode. In Proc. ICALP, volume 6198 of LNCS, pages 605–616.
Springer, 2010.

13 J. JáJá, C. W. Mortensen, and Q. Shi. Space-efficient and fast algorithms for multidimen-
sional dominance reporting and counting. In Proc. ISAAC, volume 3341 of LNCS, pages
558–568. Springer, 2004.

14 A. G. Jørgensen and K. D. Larsen. Range selection and median: Tight cell probe lower
bounds and adaptive data structures. In Proc. ACM-SIAM SODA, pages 805–813, 2011.

15 D. Krizanc, P. Morin, and M. Smid. Range mode and range median queries on lists and
trees. In Proc. ISAAC, volume 2906 of LNCS, pages 517–526. Springer, 2003.

16 D. Krizanc, P. Morin, and M. Smid. Range mode and range median queries on lists and
trees. Nordic Journal of Computing, 12:1–17, 2005.

17 J. Matoušek. Range searching with efficient hierarchical cuttings. Disc. Comp. Geom.,
10(2):157–182, 1993.

18 J. I. Munro. Tables. In V. Chandru and V. Vinay, editors, Foundations of Software
Technology and Theoretical Computer Science, volume 1180 of LNCS, pages 37–42. Springer,
1996.

19 J. I. Munro and M. Spira. Sorting and searching in multisets. SIAM J. Comp., 5(1):1–8,
1976.

20 H. Petersen. Improved bounds for range mode and range median queries. In Proc. SOFSEM,
volume 4910 of LNCS, pages 418–423. Springer, 2008.

21 H. Petersen and S. Grabowski. Range mode and range median queries in constant time
and sub-quadratic space. Inf. Proc. Let., 109:225–228, 2009.

22 P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Inf. Proc. Let., 6(3):80–82, 1977.

23 V. Vassilevska Williams. Breaking the Coppersmith-Winograd barrier.
http://www.cs.berkeley.edu/˜virgi/matrixmult.pdf, 2011.

STACS’12

	Introduction
	Related Work
	First Method: O(n) Query Time and O(n) Space
	Second Method: O(n/w) Query Time and O(n) Space When mnw
	Third Method: O() Query Time and O(n) Space
	Final Method: O(n/w) Query Time and O(n) Space
	Boolean Matrix Multiplication and Range Mode
	Higher Dimensions
	Orthogonal Ranges
	Halfspace Ranges

	Discussion and Directions for Future Research

