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Abstract

We consider the complexity of two questions on polynomials given by arithmetic circuits: testing

whether a monomial is present and counting the number of monomials. We show that these

problems are complete for subclasses of the counting hierarchy which had few or no known natural

complete problems before. We also study these questions for circuits computing multilinear

polynomials.
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1 Introduction

Several recent papers in arithmetic circuit complexity refer to a family of classes called

the counting hierarchy consisting of the classes PP ∪ PP
PP ∪ PP

PP
PP

∪ . . .. For example,

Bürgisser [6] uses these classes to connect computing integers to computing polynomials,

while Jansen and Santhanam [14] — building on results by Koiran and Perifel [18] — use them
to derive lower bounds from derandomization. This hierarchy was originally introduced by

Wagner [32] to classify the complexity of combinatorial problems. Curiously, after Wagner’s

paper and another by Torán [27], this original motivation of the counting hierarchy has to

the best of our knowledge not been pursued for more than twenty years. Instead, research

focused on structural properties and the connection to threshold circuits [3]. As a result,

there are very few natural complete problems for classes in the counting hierarchy: for

instance, Kwisthout et al. give in [20] “the first problem with a practical application that is

shown to be FP
PP

PP

-complete”. The related class C=P appears to have no natural complete

problems at all (see [13, p. 293]). It is however possible to define seemingly natural ones by

starting with a #P-complete problem and considering the variant where an instance and a

positive integer are provided and the question is to decide whether the number of solutions

for this instance is equal to the integer. We consider these problems to be counting problems
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disguised as decision problems, in contrast to the question studied here. Note that the

corresponding logspace counting class C=L is known to have interesting complete problems

from linear algebra [1].

In this paper we follow Wagner’s original idea and show that the counting hierarchy is a

helpful tool to classify the complexity of several natural problems on arithmetic circuits by

showing complete problems for the classes PP
PP, PP

NP and C=P.1 The common setting of

these problems is the use of circuits or straight-line programs to represent polynomials. Such
a representation can be much more efficient than giving the list of monomials, but common

operations on polynomials may become more difficult. An important example is the question
of determining whether the given polynomial is identically zero. This is easy to do when

given a list of monomials. When the polynomial is given as a circuit, the problem, called

ACIT for arithmetic circuit identity testing, is solvable in coRP but is not known to be in P.

In fact, derandomizing this problem would imply circuit lower bounds, as shown in [15]. This
question thus plays a crucial part in complexity and it is natural to consider other problems

on polynomials represented as circuits. In this article we consider mainly two questions.

The first question, called ZMC for zero monomial coefficient, is to decide whether a

given monomial in a circuit has coefficient 0 or not. This problem has already been studied

by Koiran and Perifel [17]. They showed that when the formal degree of the circuit is

polynomially bounded the problem is complete for P#P. Unfortunately this result is not fully
convincing, because it is formulated with the rather obscure notion of strong nondeterministic
Turing reductions. We remedy this situation by proving a completeness result for the class

C=P under more traditional logarithmic space reductions. This provides a natural complete

problem for this class. Koiran and Perifel also considered the general case of ZMC, where

the formal degree of the circuits is not bounded. They showed that ZMC is in CH. We

provide a better upper bound by proving that ZMC is in coRP
PP. We finally study the case

of monotone circuits and show that the problem is then coNP-complete.

The second problem is to count the number of monomials in the polynomial computed

by a circuit. This seems like a natural question whose solution should not be too hard, but

in the general case it turns out to be PP
PP-complete, and the hardness holds even for weak

circuits. We thus obtain another natural complete problem, in this case for the second level

of the counting hierarchy.

Finally, we study the two above problems in the case of circuits computing multilinear

polynomials. We show that our first problem becomes equivalent to the fundamental problem
ACIT and that counting monomials becomes PP-complete.

2 Preliminaries

Complexity classes We assume the reader to be familiar with basic concepts of computa-

tional complexity theory (see e.g. [4]). All reductions in this paper will be logspace many-one
unless stated otherwise.

We consider different counting decision classes in the counting hierarchy [32]. These

classes are defined analogously to the quantifier definition of the polynomial hierarchy but,

in addition to the quantifiers ∃ and ∀, the quantifiers C, C= and C6= are used.

1 Observe that Hemaspaandra and Ogihara [13, p. 293] state that Mundhenk et al. [24] provide natural
complete problems for PP

NP. This appears to be a typo as Mundhenk et al. in fact present complete
problems not for PP

NP but for the class NP
PP which indeed appears to have several interesting complete

problems in the AI/planning literature.
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364 Monomials in arithmetic circuits

◮ Definition 2.1. Let C be a complexity class.

A ∈ CC if and only if there is B ∈ C, f ∈ FP and a polynomial p such that

x ∈ A ⇔
∣

∣

∣

{

y ∈ {0, 1}p(|x|) | (x, y) ∈ B
}∣

∣

∣
≥ f(x),

A ∈ C=C if and only if there is B ∈ C, f ∈ FP and a polynomial p such that

x ∈ A ⇔
∣

∣

∣

{

y ∈ {0, 1}p(|x|) | (x, y) ∈ B
}∣

∣

∣ = f(x),

A ∈ C6=C if and only if there is B ∈ C, f ∈ FP and a polynomial p such that

x ∈ A ⇔
∣

∣

∣

{

y ∈ {0, 1}p(|x|) | (x, y) ∈ B
}∣

∣

∣
6= f(x).

Observe that C6=C = coC=C with the usual definition coC = {Lc | L ∈ C}, where Lc is

the complement of L. That is why the quantifier C6= is often also written as coC=, so C6=P is
sometimes called coC=P.

The counting hierarchy CH consists of the languages from all classes that we can get from
P by applying the quantifiers ∃, ∀, C, C= and C6= a constant number of times. Observe that

with the definition above PP = CP. Torán [28] proved that this connection between PP and

the counting hierarchy can be extended and that there is a characterization of CH by oracles
similar to that of the polynomial hierarchy. We state some such characterizations which

we will need later on, followed by other technical lemmas (we omit the proof of Lemma 2.3

which is not stated in [28] but can be shown with similar techniques).

◮ Lemma 2.2. [28] PP
NP = C∃P.

◮ Lemma 2.3. PP
PP = CC6=P

◮ Lemma 2.4. [11] ∃C6=P = C6=P.

◮ Lemma 2.5. [25] For a large enough constant c > 0, it holds that for any integers n and x

with |x| 6 22n

and x 6= 0, the number of primes p smaller than 2cn such that x 6≡ 0 mod p

is at least 2cn/cn.

◮ Lemma 2.6. [13, p. 81] For every oracle X we have PP
BPP

X

= PP
X .

Arithmetic circuits An arithmetic circuit is a labeled directed acyclic graph (DAG) con-

sisting of vertices or gates with indegree or fanin 0 or 2. The gates with fanin 0 are called

input gates and are labeled with −1 or variables X1, X2, . . . , Xn. The gates with fanin 2

are called computation gates and are labeled with × or +. We can also consider circuits

where computation gates may receive more than two edges, in which case we say that they

have unbounded fanin. The polynomial computed by an arithmetic circuit is defined in the

obvious way: an input gate computes the value of its label, a computation gate computes

the product or the sum of its children’s values, respectively. We assume that a circuit has

only one sink which we call the output gate. We say that the polynomial computed by the

circuit is the polynomial computed by the output gate. The size of an arithmetic circuit is

the number of gates. The depth of a circuit is the length of the longest path from an input

gate to the output gate in the circuit. A formula is an arithmetic circuit whose underlying

graph is a tree. Finally, a circuit or formula is called monotone if, instead of the constant

−1, only the constant 1 is allowed.

It is common to consider so-called degree-bounded arithmetic circuits, for which the degree
of the computed polynomial is bounded polynomially in the number of gates of the circuit.
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In our opinion this kind of degree bound has two problems. One is that computing the

degree of a polynomial represented by a circuit is suspected to be hard (see [2, 17, 16]),

so problems defined with this degree bound must often be promise problems. The other

problem is that the bound on the degree does not bound the size of computed constants,

which by iterative squaring can have exponential bitsize. Thus even evaluating circuits on a

Turing machine becomes intractable. The paper by Allender et al. [2] discusses problems

that result from this. To avoid all these complications, instead of bounding the degree of the
computed polynomial, we choose to bound the formal degree of the circuit or equivalently to
consider multiplicatively disjoint circuits. A circuit is called multiplicatively disjoint if, for

each ×-gate, its two input subcircuits are disjoint from one another. See [23] for a discussion
of degree, formal degree and multiplicative disjointness and how they relate.

3 Zero monomial coefficient

We first consider the question of deciding if a single specified monomial occurs in a polynomial.
In this problem and others regarding monomials, a monomial is encoded by giving the variable
powers in binary.

ZMC

Input: Arithmetic circuit C, monomial m.

Problem: Decide if m has the coefficient 0 in the polynomial computed

by C.

◮ Theorem 3.1. ZMC is C=P-complete for both multiplicatively disjoint circuits and formulas.

Proof. Using standard reduction techniques from the #P-completeness of the permanent

(see for example [4]), one define the following generic C=P-complete problem, as mentioned

in the introduction.

per=

Input: Matrix A ∈ {0, 1,−1}n, d ∈ N.

Problem: Decide if per(A) = d.

Therefore, for the hardness of ZMC it is sufficient to show a reduction from per=. We

use the following classical argument. On input A = (aij) and d we compute the formula

Q :=
∏n

i=1

(

∑n

j=1 aijYj

)

. It is a classical observation by Valiant [29]2 that the monomial

Y1Y2 . . . Yn has the coefficient per(A). Thus the coefficient of the monomial Y1Y2 . . . Yn in

Q − dY1Y2 . . . Yn is 0 if and only if per(A) = d.

We now show that ZMC for multiplicatively disjoint circuits is in C=P. The proof is

based on the use of parse trees, which can be seen as objects tracking the formation of

monomials during the computation [23] and are the algebraic analog of proof trees [30]. A

parse tree of a multiplicatively disjoint circuit is a subgraph with the following properties: it
contains the output gate; if it contains a multiplication gate then it contains both its input

edges; if it contains an addition gate then it contains exactly one of its input edges. The

value of a parse tree is the product of the labels of all the input gates it contains. It is easy

to see that the polynomial computed by a multiplicatively disjoint circuit is the sum of the

values of all its parse trees.

2 According to [31] this observation even goes back to [12].

STACS’12



366 Monomials in arithmetic circuits

Consider a multiplicatively disjoint circuit C and a monomial m, where the input gates

of C are labeled either by a variable or by −1. A parse tree T contributes to the monomial

m in the output polynomial if, when computing the value of the tree, we get exactly the

powers in m; this contribution has coefficient +1 if the number of gates labeled −1 in T is

even and it has coefficient −1 if this number is odd. The coefficient of m is thus equal to

0 if and only if the number of trees contributing positively is equal to the number of trees

contributing negatively.

Let us represent a parse tree by a boolean word ǭ, by indicating which edges of C appear
in the parse tree (the length N of the words is therefore the number of edges in C). Some of
these words will not represent a valid parse tree, but this can be tested in polynomial time.

Consider the following language L composed of triples (C,m, ǫ0ǭ) such that:

1. ǫ0 = 0 and ǭ encodes a valid parse tree of C which contribute positively to m,

2. or ǫ0 = 1 and ǭ does not encode a valid parse tree contributing negatively to m.

Then the number of ǭ such that (C,m, 0ǭ) belongs to L is the number of parse trees

contributing positively to m and the number of ǭ such that (C,m, 1ǭ) belongs to L is equal

to 2N minus the number of parse trees contributing negatively to m. Thus, the number of

ǫ0ǭ such that (C,m, ǫ0ǭ) ∈ L is equal to 2N if and only if the number of trees contributing

positively is equal to the number of trees contributing negatively, if and only if the coefficient
of m is equal to 0 in C. Because L is in P, ZMC for multiplicatively disjoint circuits is in

C=P. ◭

◮ Theorem 3.2. ZMC belongs to coRP
PP.

Proof. Given a circuit C, a monomial m and a prime number p written in binary, CoeffSLP

is the problem of computing modulo p the coefficient of the monomial m in the polynomial

computed by C. It is shown in [16] (and implicitly in [22] and [17]) that CoeffSLP belongs
to FP

#P. See [9] for a more detailed proof simplifying the one in [22].

We now describe a randomized algorithm to decide ZMC. Let c be the constant given in

Lemma 2.5. Consider the following algorithm to decide ZMC given a circuit C of size n and
a monomial m, using CoeffSLP as an oracle. First choose uniformly at random an integer

p smaller than 2cn. If p is not prime, accept. Otherwise, compute the coefficient a of the

monomial m in C with the help of the oracle and accept if a ≡ 0 mod p. Since |a| ≤ 22n

,

Lemma 2.5 ensures that the above is a correct one-sided error probabilistic algorithm for

ZMC. This yields ZMC ∈ coRP
CoeffSLP. Hence ZMC ∈ coRP

PP. ◭

◮ Theorem 3.3. ZMC is coNP-complete both for monotone formulas and monotone circuits.

Proof. For hardness, we reduce the NP-complete problem Exact-3-Cover [10] to the

complement of ZMC on monotone formulas, as done in [26, Chapter 3] (we reproduce the

argument here for completeness).

Exact-3-Cover

Input: Integer n and C1, . . . , Cm some 3-subsets of {1, . . . , n}.

Problem: Decide if there exists I ⊆ {1, . . . ,m} such that {Ci | i ∈ I} is

a partition of {1, . . . , n}.

Consider the formula F =
∏m

i=1(1 +
∏

j∈Ci
Xj). The monotone formula F has the

monomial
∏n

i=1 Xi if and only if (n, C1, . . . , Cm) is a positive instance of Exact-3-Cover.

Let us now show that ZMC for monotone circuits is in coNP. This proof will use the

notion of parse tree types, which are inspired by the generic polynomial introduced in [22]



Hervé Fournier, Guillaume Malod, and Stefan Mengel 367

to compute coefficient functions. We give here a sketch of the argument, more details are

provided in [9]. The parse trees of a circuit which is not necessarily multiplicatively disjoint

may be of a much bigger size than the circuit itself, because they can be seen as parse trees

of the formula associated to the circuit and obtained by duplicating gates and edges. Define

the type of a parse tree by giving, for each edge in the original circuit, the number of copies

of this edge in the parse tree. There can be many different parse trees for a given parse tree

type but they will all contribute to the same monomial, which is easy to obtain from the

type: the power of a variable in the monomial is the sum, taken over all input gates labeled

by this variable, of the number of edges leaving from this gate. In the case of a monotone

circuit, computing the exact number of parse trees for a given type is thus not necessary, as

a monomial will have a non-zero coefficient if and only if there exists a valid parse tree type

producing this monomial.

Parse tree types, much like parse trees in the proof of Theorem 3.1, can be represented

by Boolean tuples which must satisfy some easy-to-check conditions to be valid. Thus the

coefficient of a monomial is 0 if and only if there are no valid parse tree types producing this
monomial, which is a coNP condition. ◭

4 Counting monomials

We now turn to the problem of counting the monomials of a polynomial represented by a

circuit.

CountMon

Input: Arithmetic circuit C, d ∈ N.

Problem: Decide if the polynomial computed by C has at least d mono-

mials.

To study the complexity of CountMon we will look at what we call extending polynomials.
Given two monomials M and m, we say that M is m-extending if M = mm′ and m and m′

have no common variable. We start by studying the problem of deciding the existence of an

extending monomial.

ExistExtMon

Input: Arithmetic circuit C, monomial m.

Problem: Decide if the polynomial computed by C contains an m-

extending monomial.

◮ Proposition 4.1. ExistExtMon is in RP
PP. For multiplicatively disjoint circuits it is

C6=P-complete.

Proof. We first show the first upper bound. So let (C,m) be an input for ExistExtMon

where C is a circuit in the variables X1, . . . , Xn. Without loss of generality, suppose that

X1, . . . , Xr are the variables appearing in m. Let d = 2|C|: d is a bound on the degree of the
polynomial computed by C. We define C ′ =

∏n

i=r+1(1 + YiXi)
d for new variables Yi. We

have that C has an m-extending monomial if and only if in the product CC ′ the polynomial
P (Yr+1, . . . , Yn), which is the coefficient of m

∏n

i=r+1 Xd
i , is not identically 0. Observe that

P is not given explicitly but can be evaluated modulo a random prime with an oracle for

CoeffSLP. Thus it can be checked if P is identically 0 with the classical Schwartz-Zippel-

DeMillo-Lipton lemma (see for example [4]). It follows that ExistExtMon ∈ RP
PP.

The upper bound in the multiplicatively disjoint setting is easier: we can guess an m-

extending monomial M and then output the answer of an oracle for the complement of ZMC,

STACS’12



368 Monomials in arithmetic circuits

to check whether M appears in the computed polynomial. This establishes containment in

∃C6=P which by Lemma 2.4 is C6=P.

For hardness we reduce to ExistExtMon the C6=P-complete problem per6=, i.e., the

complement of the per= problem introduced for the proof of Theorem 3.1. We use essentially
the same reduction constructing a circuit Q :=

∏n

i=1

(

∑n

j=1 aijYj

)

. Observe that the only

potential extension of m := Y1Y2 . . . Yn is m itself and has the coefficient per(A). Thus

Q − dY1Y2 . . . Yn has an m-extension if and only if per(A) 6= d. ◭

CountExtMon

Input: Arithmetic circuit C, d ∈ N, monomial m.

Problem: Decide if the polynomial computed by C has at least d m-

extending monomials.

◮ Proposition 4.2. CountExtMon is PP
PP-complete.

Proof. Clearly CountExtMon belongs to PP
ZMC and thus with Theorem 3.2 it is in

PP
coRP

PP

. Using Lemma 2.6 we get membership in PP
PP. To show hardness, we reduce the

canonical CC6=P-complete problem CC6=3SAT to CountExtMon. With Lemma 2.3 the

hardness for PP
PP follows.

CC6=3SAT

Input: 3SAT-formula F (x̄, ȳ), k, ℓ ∈ N.

Problem: Decide if there are at least k assignments to x̄ such that there

are not exactly ℓ assignments to ȳ such that F is satisfied.

Let (F (x̄, ȳ), k, ℓ) be an instance for CC6=3SAT. Without loss of generality we may

assume that x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn) and that no clause contains a variable in

both negated and unnegated form. Let Γ1, . . . ,Γc be the clauses of F .

For each literal u of the variables in x̄ and ȳ we define a monomial I(u) in the variables

X1, . . . , Xn, Z1, . . . , Zc in the following way:

I(xi) = Xi

∏

{j | xi∈Γj}

Zj I(¬xi) =
∏

{j | ¬xi∈Γj}

Zj

I(yi) =
∏

{j | yi∈Γj}

Zj I(¬yi) =
∏

{j | ¬yi∈Γj}

Zj

From these monomials we compute a formula C by

C :=

n
∏

i=1

(I(xi) + I(¬xi))

n
∏

i=1

(I(yi) + I(¬yi)) . (1)

We fix a mapping mon from the assignments of F to the monomials computed by C: Let
ᾱ be an assignment to x̄ and β̄ be an assignment to ȳ. We define mon(ᾱβ̄) as the monomial
obtained in the expansion of C by choosing the following terms. If αi = 0, choose I(¬xi),

otherwise choose I(xi). Similarly, if βi = 0, choose I(¬yi), otherwise choose I(yi).

The monomial mon(ᾱβ̄) has the form
∏n

i=1 Xαi

i

∏c

j=1 Z
γj

j , where γj is the number of

true literals in Γj under the assignment ᾱβ̄. Then F is true under ᾱβ̄ if and only if mon(ᾱβ̄)

has the factor
∏c

j=1 Zj . Thus F is true under ᾱβ̄ if and only if mon(ᾱβ̄)
∏c

j=1

(

1 + Zj + Z2
j

)

has the factor
∏n

i=1 Xαi

i

∏c

j=1 Z3
j . We set C ′ = C

∏c

j=1

(

1 + Zj + Z2
j

)

.
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Consider an assignment ᾱ to x̄. The coefficient of the monomial
∏n

i=1 Xαi

i

∏c

j=1 Z3
j in

C ′ is the number of assignments β̄ such that ᾱβ̄ satisfies F . Thus we get

(F (x̄, ȳ), k, ℓ) ∈ CC6=3SAT

⇔ there are at least k assignments ᾱ to x̄ such that the monomial
n
∏

i=1

Xαi

i

c
∏

j=1

Z3
j

does not have coefficient ℓ in C ′

⇔ there are at least k assignments ᾱ to x̄ such that the monomial

n
∏

i=1

Xαi

i

c
∏

j=1

Z3
j

occurs in C ′′ := C ′ − ℓ

n
∏

i=1

(1 + Xi)

c
∏

j=1

Z3
j

⇔ there are at least k tuples ᾱ such that C ′′ contains the monomial

n
∏

i=1

Xαi

i

c
∏

j=1

Z3
j

⇔ C ′′ has at least k (

c
∏

j=1

Z3
j )-extending monomials.

◭

◮ Theorem 4.3. CountMon is PP
PP-complete. It is PP

PP-hard even for unbounded fan-in

formulas of depth 4.

Proof. CountMon can be easily reduced to CountExtMon since the number of monomials
of a polynomial is the number of 1-extending monomials. Therefore CountMon belongs to

PP
PP.

To show hardness, it is enough to prove that instances of CountExtMon constructed in
Proposition 4.2 can be reduced to CountMon in logarithmic space. The idea of the proof

is that we make sure that the polynomial for which we count all monomials contains all

monomials that are not m-extending. Thus we know how many non-m-extending monomials
it contains and we can compute the number of m-extending monomials from the number of all
monomials. We could use the same strategy to show in general that CountExtMon reduces
to CountMon but by considering the instance obtained in the proof of Proposition 4.2

and analyzing the extra calculations below we get hardness for unbounded fanin formulas of

depth 4.

So let (C ′′, k,m) be the instance of CountExtMon constructed in the proof of Propo-

sition 4.2, with m =
∏c

j=1 Z3
j . We therefore need to count the monomials computed by

C ′′ which are of the form f(X1, . . . , Xn)
∏c

j=1 Z3
j . The circuit C ′′ is multilinear in X, and

the Zj can only appear with powers in {0, 1, 2, 3, 4, 5}. So the non-m-extending monomials

computed by C ′′ are all products of a multilinear monomial in the Xi and a monomial in

the Zj where at least one Zj has a power in {0, 1, 2, 4, 5}. Fix j, then all monomials that are
not m-extending because of Zj are computed by the formula

C̃j :=

(

n
∏

i=1

(Xi + 1)

)





∏

j′ 6=j

5
∑

p=0

Zp
j′





(

1 + Zj + Z2
j + Z4

j + Z5
j

)

. (2)

Thus the formula C̃ :=
∑

j C̃j computes all non-m-extending monomials that C ′′ can

compute. The coefficients of monomials in C ′′ cannot be smaller than −ℓ where ℓ is part

of the instance of CC6=3SAT from which we constructed (C ′′, k,m) before. So the formula
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370 Monomials in arithmetic circuits

C∗ := C ′′ + (ℓ + 1)C̃ contains all non-m-extending monomials that C ′′ can compute and it

contains the same extending monomials. There are 2n6c monomials of the form that C ′′

can compute, only 2n of which are m-extending, which means that there are 2n(6c − 1)

monomials computed by C∗ that are not m-extending. As a consequence, C ′′ has at least k

m-extending monomials if and only if C∗ has at least 2n(6c − 1) + k monomials. ◭

◮ Theorem 4.4. CountMon is PP
NP-complete both for monotone formulas and monotone

circuits.

Proof. We first show hardness for monotone formulas. The argument is very similar to the

proof of Theorem 4.3. Consider the following canonical C∃P-complete problem C∃3SAT.

C∃3SAT

Input: 3SAT-formula F (x̄, ȳ), k ∈ N.

Problem: Decide if there are at least k assignments ᾱ to x̄ such that

F (ᾱ, ȳ) is satisfiable.

We reduce C∃3SAT to CountMon. With Lemma 2.2 the hardness for PP
NP follows.

Consider a 3SAT-formula F (x̄, ȳ). Let n = |x̄| = |ȳ| and let c be the number of clauses of

F . Define the polynomial C∗ = C +
∑c

j=1 C̃j where C is defined by Equation 1 and C̃j

by Equation 2. The analysis is similar to the proof of Theorem 4.3. The polynomial C∗ is

computed by a monotone arithmetic formula and has at least 2n(6c − 1) + k monomials if

and only if (F, k) is a positive instance of C∃3SAT.

We now prove the upper bound. Recall that CountMon ∈ PP
ZMC. From Theorem 3.3,

it follows that CountMon on monotone circuits belongs to PP
NP. ◭

5 Multilinearity

In this section we consider the effect of multilinearity on our problems. We will not consider

promise problems and therefore the multilinear variants of our problems must first check if

the computed polynomial is multilinear. We start by showing that this step is not difficult.

The proof is omitted due to space constraints.

CheckML

Input: Arithmetic circuit C.

Problem: Decide if the polynomial computed by C is multilinear.

◮ Proposition 5.1. CheckML is equivalent to ACIT.

Next we show that the problem gets much harder if, instead of asking whether all the

monomials in the polynomial computed by a circuit are multilinear, we ask whether at least

one of the monomials is multilinear.

MonML

Input: Arithmetic circuit C.

Problem: Decide if the polynomial computed by C contains a multilinear
monomial.

The problem monML lies at the heart of fast exact algorithms for deciding k-paths by

Koutis and Williams [19, 33] (although in these papers the polynomials are in characteristic

2 which changes the problem a little). This motivated Chen and Fu [7, 8] to consider

monML, show that it is #P-hard and give algorithms for the bounded depth version. We
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provide further information on the complexity of this problem (the proof is similar to that of
Proposition 4.1 and can be found in [9]).

◮ Proposition 5.2. MonML is in RP
PP. It is C6=P-complete for multiplicatively disjoint

circuits.

We now turn to our first problem, namely deciding whether a monomial appears in the

polynomial computed by a circuit, in the multilinear setting.

ML-ZMC

Input: Arithmetic circuit C, monomial m.

Problem: Decide if C computes a multilinear polynomial in which the

monomial m has coefficient 0.

◮ Proposition 5.3. ML-ZMC is equivalent to ACIT.

Proof. We first show that ACIT reduces to ML-ZMC. So let C be an input for ACIT.

Allender et al. [2] have shown that ACIT reduces to a restricted version of ACIT in which

all inputs are −1 and thus the circuit computes a constant. Let C1 be the result of this

reduction. Then C computes identically 0 if and only if the constant coefficient of C1 is 0.

This establishes the first direction.

For the other direction let (C,m) be the input, where C is an arithmetic circuit and

m is a monomial. First check if m is multilinear, if not output 1 or any other nonzero

polynomial. Next we construct a circuit C1 that computes the homogeneous component of

degree deg(m) of C with the classical method (see for example [5, Lemma 2.14]). Observe

that if C computes a multilinear polynomial, so does C1. We now plug in 1 for the variables
that appear in m and 0 for all other variables, call the resulting (constant) circuit C2. If

C1 computes a multilinear polynomial, then C2 is zero if and only if m has coefficient 0

in C1. The end result of the reduction is C∗ := C2 + ZC3 where Z is a new variable and

C3 is a circuit which is identically 0 iff C computes a multilinear polynomial (obtained via

Proposition 5.1). C computes a multilinear polynomial and does not contain the monomial

m if and only if both C2 and ZC3 are identically 0, which happens if and only if their sum is
identically 0. ◭

In the case of our second problem, counting the number of monomials, the complexity

falls to PP.

ML-CountMon

Input: Arithmetic circuit C, d ∈ N.

Problem: Decide if the polynomial computed by C is multilinear and

has at least d monomials.

◮ Proposition 5.4. ML-CountMon is PP-complete (for Turing reductions).

Proof. We first show ML-CountMon ∈ PP. To do so we use CheckML to check that

the polynomial computed by C is multilinear. Then counting monomials can be done in

PP
ML-ZMC, and ML-ZMC is in coRP. By Lemma 2.6 the class PP

coRP is simply PP.

For hardness we reduce the computation of the {0, 1}-permanent to ML-CountMon.

The proposition follows, because the {0, 1}-permanent is #P-complete for Turing reductions.
So let A be a 0-1-matrix and d ∈ N and we have to decide if per(A) ≥ d. We get a matrix B

from A by setting bij := aijXij . Because every entry of B is either 0 or a distinct variable, we
have that, when we compute the permanent of B, every permutation that yields a non-zero
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summand yields a unique monomial. This means that there are no cancellations, so that

per(A) is the number of monomials in per(B).

The problem is now that no small circuits for the permanent are known and thus per(B)

is not a good input for ML-CountMon. But because there are no cancellations, we have

that det(B) and per(B) have the same number of monomials. So take a small circuit for

the determinant (for instance the one given in [21]) and substitute its inputs by the entries

of B. The result is a circuit C which computes a polynomial whose number of monomials

is per(A). Observing that the determinant, and thus the polynomial computed by C, is

multilinear completes the proof. ◭
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