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Abstract
Finding edge-disjoint odd cycles is one of the most important problems in graph theory, graph
algorithm and combinatorial optimization. In fact, it is closely related to the well-known max-cut
problem. One of the difficulties of this problem is that the Erdős-Pósa property does not hold for
odd cycles in general. Motivated by this fact, we prove that for any positive integer k, there exists
an integer f(k) satisfying the following: For any 4-edge-connected graph G = (V,E), either G
has edge-disjoint k odd cycles or there exists an edge set F ⊆ E with |F | ≤ f(k) such that G−F
is bipartite. We note that the 4-edge-connectivity is best possible in this statement. Similar
approach can be applied to an algorithmic question. Suppose that the input graph G is a 4-edge-
connected graph with n vertices. We show that, for any ε > 0, if k = O((log log logn)1/2−ε),
then the edge-disjoint k odd cycle packing in G can be solved in polynomial time of n.
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1 Introduction

Finding edge-disjoint odd cycles is one of the most important problems in combinatorial
optimization, graph theory, and graph algorithm. Let us formulate our problem.

The edge-disjoint odd cycle packing
Input. A graph G with n vertices, and an integer k.
Problem. Does G have edge-disjoint k odd cycles?

Let us look at each importance of this problem.
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1.1 Importance in Combinatorial Optimization
In order to consider the edge-disjoint odd cycle packing, it is natural to consider the
“fractional” version of the problem. Given a graph G, a fractional edge-disjoint odd cycle
packing is a function f from C of odd cycles in G to [0, 1] satisfying

∑
C:e∈C f(C) ≤ 1 for

each edge e in G. The fractional version of the edge-disjoint odd cycle packing is defined to
be maximizing

∑
C∈C f(C) over the fractional odd cycle packings f in G. This allows us to

consider the integer programs whose linear program relaxations are duals. One can see that
the edge-disjoint odd cycle packing is a “dual” problem of finding a minimum edge cover for
the set of all odd cycles, which is one of the most important NP-complete problem, called the
maximum cut problem. Fiorini et al. [7] proved that the integrality gap of the edge-disjoint
odd cycle packing LP is bounded by a constant for planar graphs. But for general graphs,
this is not true. Goemans and Williamson [10] proved that the integrality gap of the dual
problem (the odd cycle covering LP) is at most 9/4 for planar graphs.

The edge-disjoint odd cycle packing is known to be NP-hard, even for planar graphs, if k
is a part of input, see [7]. We remark that packing disjoint cycles, i.e., no parity requirement,
has been also studied extensively. It is one of the most fundamental problems in graph theory
with applications to several areas (see [2, 18]). For more details in this context, we refer the
reader to the book by Schrijver [26].

1.2 Importance in Graph Theory
A family F of graphs is said to have the Erdős-Pósa property, if for every integer k there is an
integer f(k,F) such that every graph G contains k edge-disjoint subgraphs each isomorphic
to a graph in F or a set F of at most f(k,F) edges such that G − F has no subgraph
isomorphic to a graph in F . The term Erdős-Pósa property arose because in [5], Erdős and
Pósa proved that the family of cycles (without any parity condition) has this property.

On the other hand, for cycles with odd length, the situation is different. The Erdős-Pósa
property does not hold for odd cycles in general. Let us give an example. For a graph G, an
odd cycle cover is a set of edges F ⊆ E(G) such that G− F is bipartite. An Escher wall of
height h consists of an elementary wall W of height h and h vertex disjoint paths P1, . . . ,Ph

of length two such that:
(i) Each Pi has both endpoints on W but is otherwise disjoint from W .
(ii) One endpoint of Pi is in the ith brick of the top row of bricks of W , the other is in the

(h+ 1− i)th brick of the bottom row of W . Furthermore, both of these vertices are in
only one brick of W .

We remark that, as pointed out by Lovász and Schrijver (see [29]), an Escher wall of
height h contains neither two edge-disjoint odd cycles nor an odd cycle cover with fewer than
h edges. This shows that the Erdős-Pósa property does not hold for odd cycles. However,
Reed [21] proved that the Erdős-Pósa property holds for the half integral version of the
edge-disjoint odd cycle packing.

1.3 Importance in graph algorithm
The importance of finding edge-disjoint odd cycles comes also from the relation to the
edge-disjoint paths problem. In the edge-disjoint paths problem, we are given a graph G and
a set of k pairs of vertices (called terminals) in G, and we have to decide whether or not
G has k edge-disjoint paths connecting given pairs of terminals. This is certainly a central
problem in algorithmic graph theory and combinatorial optimization. See surveys [8, 23]. It
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208 Edge-disjoint Odd Cycles in 4-edge-connected Graphs

has attracted attention in the contexts of transportation networks, VLSI layout and virtual
circuit routing in high-speed networks or Internet.

We can see that the k edge-disjoint paths problem can be reduced to finding k edge-disjoint
odd cycles as follows. Suppose we have an instance of the edge-disjoint paths problem with
a graph G = (V,E) and terminal pairs (s1, t1), . . . , (sk, tk). Let G′ be the graph obtained
from G by subdividing every edge into two edges and by adding an edge connecting si and
ti for i = 1, . . . , k. Then finding edge-disjoint k odd cycles in G′ is equivalent to finding k
edge-disjoint paths in G.

Let us give previous known results on the edge-disjoint paths problem. If k is a part of the
input of the problem, then this is known to be NP-complete [6] and it remains NP-complete
even if G is constrained to be planar [17]. In fact, even for series-parallel graphs (allowing
multiple edges), it remains NP-complete [19]. This is one of the few problems that are known
to be NP-complete for series parallel graphs or bounded tree-width graphs. Let us observe
that the vertex-disjoint paths problem is solvable for bounded tree-width graphs (and hence
for series parallel graphs), see [20].

On the positive side, the seminal work of Robertson and Seymour [24] says that there
is a polynomial time algorithm (actually O(m3) time algorithm, where m is the number
of edges of an input graph G) for the edge-disjoint paths problem when the number k of
terminals is fixed (the time complexity is improved to O(n2) in [13] where n is the number
of vertices and a shorter correctness proof is given in [16]). Actually, this algorithm is one of
the spin-offs of their groundbreaking work on Graph Minor project, spanning 23 papers, and
giving several deep and profound results and techniques in discrete mathematics.

Recently, a faster algorithm and a much simpler correctness proof for the edge-disjoint
paths problem in 4-edge-connected graphs are given in [12].

I Theorem 1. Suppose that the input graph G is 4-edge-connected, which has n vertices.
For any ε > 0, if k = O((log log logn) 1

2−ε), then the k-edge-disjoint paths problem in G is
solvable in polynomial time of n.

1.4 Main Contributions
Lovász and Schrijver (see [29]) characterized graphs without two edge-disjoint odd cycles.
However, their proof heavily depends on the seminal result by Seymour [28] for decomposing
regular matroids. No such characterization has been known for k edge-disjoint odd cycles
for any fixed k, even k = 3. In fact, Lovász and Schrijver considered the problem of finding
a structure without many edge-disjoint odd cycles in early 1980’s (actually, it seems that
Gerards, Seymour, and Thomassen also considered this problem in early 1980’s).

As we pointed out, one of the main difficulties is because the Erdős-Pósa property does not
hold. The situation is not improved even if we assume a given graph to be 3-edge-connected,
as we can easily make the above example 3-edge-connected by adding some parallel edges.
On the other hand, if we assume some moderate edge-connectivity, i.e., if we assume 4-edge-
connectivity, then the situation dramatically changes. Actually, our result holds also for
graphs with no edge-cut of size exactly three, which we call 3-edge-cut-free graphs. The
following is our main result.

I Theorem 2. For any positive integer k, there exists an integer f(k) = 22O(k2 log k) satisfying
the following. For any 4-edge-connected graph (or any 3-edge-cut-free graph) G = (V,E),
either G has edge-disjoint k odd cycles or there exists an edge set F ⊆ E with |F | ≤ f(k)
such that G− F is bipartite.
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If we consider “vertex-disjoint” instead of “edge-disjoint”, then we need vertex-connectivity
Θ(k) as in [14]. So in the edge-disjoint case, we get a much better result. As we mentioned,
the 4-edge-connectivity is best possible.

Similar proof technique for Theorem 2 can be applied to the edge-disjoint odd cycle packing.
As we have already seen before, the edge-disjoint k odd cycle packing is a generalization of
the k edge-disjoint paths problem. Since the edge-disjoint paths problem in 4-edge-connected
graphs is much easier than the problem in general graphs [12], we expect that we can design
a simpler algorithm for the edge-disjoint k odd cycle packing under the assumption that the
input graph is 4-edge-connected. Here is our second contribution.

I Theorem 3. Suppose that the input graph G is a 4-edge-connected graph (or a 3-edge-
cut-free graph) with n vertices. For any ε > 0, if k = O((log log logn)1/2−ε), then the
edge-disjoint k odd cycle packing in G is solvable in polynomial time of n.

We have seen that the k edge-disjoint paths problem can be reduced to the edge-disjoint k
odd cycle packing by subdividing every edge into two edges and by adding an edge connecting
si and ti for i = 1, . . . , k. If the original graph is 4-edge-connected, then the obtained graph
is not 4-edge-connected but 3-edge-cut-free. Therefore, Theorem 3 implies Theorem 1 as a
corollary.

The characterization by Lovász and Schrijver results in a polynomial time algorithm for
testing whether or not a given graph contains two edge-disjoint odd cycles. In general, the
following theorem is recently proved.

I Theorem 4 (Kawarabayashi–Reed [15]). For any fixed k, there is a polynomial time algorithm
for the edge-disjoint odd cycle packing.

However, the correctness proof of the algorithm needs the whole graph minor papers,
and moreover, a hidden constant is huge.1 On the other hand, our proof for Theorem 3 is
within 5 pages, and the full proof is presented in this paper. In addition, our hidden constant
concerning k is not so big and therefore we can handle superconstant concerning k.

It is natural to ask why we do not consider the weaker condition that the minimum
degree being at least four, but in fact this weaker restriction would not gain us anything.
Consider an instance of the edge-disjoint k odd cycle packing on an arbitrary graph G that
may have degree three vertices. Then attach by two edges to each node in G a constant-sized
bipartite graph of high minimum degree. This new graph G′ has minimum degree high, but
the resulting instance of the edge-disjoint k odd cycle packing is clearly equivalent to the
original one in G. This example shows that 4-edge-connectivity is necessary. Thus we really
need to stick the 4-edge-connectivity in our proof.

2 Preliminaries

In this paper, n and m always mean the numbers of vertices and edges of a given graph,
respectively. A pair of subgraphs (A,B) is a separation if G = A ∪B and there are no edges
in E(A)∩E(B). The order of the separation (A,B) is |V (A)∩V (B)|. We denote a clique (or
a complete graph) with t vertices by Kt. A clique minor of order t, denoted by a Kt-minor,

1 To quote David Johnson [11], “for any instance G = (V, E) that one could fit into the known universe,
one would easily prefer |V |70 to even constant time, if that constant had to be one of Robertson and
Seymour’s.” He estimates one constant in an algorithm for testing for a fixed minor H to be roughly
2 ↑ 2222↑(2↑Θ(|V (H)|))

, where 2 ↑ n denotes a tower 222 ...

involving n 2’s.
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(v, e1)

(v, e2)

(v, {e1,e2})

Figure 1 Construction of L(G)

can be thought of as t disjoint trees T1, . . . , Tt such that there is an edge between Ti and Tj

for any i, j with i 6= j. Sometimes, one tree Ti is called a node of the clique minor. We say
that a clique minor K consisting of disjoint trees T1, . . . , Tt is odd, if for every cycle C in K,
|E(C)∩ (

⋃
i E(Ti))| is even. A block of a graph G is a maximal subgraph that is 2-connected

(or a single vertex or a K2).
It is well-known that the edge-disjoint paths problem can be reduced to the vertex-disjoint

paths problem by considering the line graph. Similarly, edge-disjoint cycles in a graph
correspond to vertex-disjoint cycles in its line graph. However, taking the line graph does
not keep the information of parity. Therefore, instead of the line graph, we introduce the
extended line graph, which is obtained from G by replacing every vertex by a clique whose
each edge is subdivided into two edges. More precisely, for a graph G = (V,E), the extended
line graph L(G) = (V ∗, E∗) of G is defined by

V ∗1 = {(v, e) | v ∈ V, e ∈ E, e is incident to v},
V ∗2 = {(v, {e1, e2}) | v ∈ V, e1, e2 ∈ E, e1 and e2 are incident to v},
V ∗ = V ∗1 ∪ V ∗2 ,
E∗ = {(v, e1)(v, {e1, e2}) | (v, e1), (v, {e1, e2}) ∈ V ∗}

∪ {(v1, e)(v2, e) | e is an edge connecting v1 and v2 in G}.

See Figure 1 for the construction of L(G). One can see that G contains edge-disjoint k odd
cycles if and only if L(G) contains vertex-disjoint k odd cycles.

We now look at definitions of the tree-width and wall. Let G be a graph, T a tree and let
V = {Vt ⊆ V (G) | t ∈ V (T )} be a family of vertex sets Vt ⊆ V (G) indexed by the vertices
t of T . The pair (T,V) is called a tree-decomposition of G if it satisfies the following three
conditions:

V (G) =
⋃

t∈T Vt,
for every edge e ∈ E(G) there exists a t ∈ T such that both ends of e lie in Vt,
if t, t′, t′′ ∈ V (T ) and t′ lies on the path of T between t and t′′, then Vt ∩ Vt′′ ⊆ Vt′ .

The width of (T,V) is the number max{|Vt| − 1 | t ∈ T} and the tree-width tw(G) of G is the
minimum width of any tree-decomposition of G.

We can apply dynamic programming to solve problems on graphs of bounded tree-width,
in the same way that we apply it to trees (see e.g. [1]), provided that we are given a bounded
width tree decomposition. Bodlaender [3] developed a linear time algorithm.

I Theorem 5. For an integer w, there exists a (wO(w))nO(1) time algorithm that, given a
graph G, either finds a tree decomposition of G of width w or concludes that the tree-width
of G is more than w. Furthermore, if w is fixed, there exists an O(n) time algorithm.

If the tree-width and k are small, by a standard dynamic programming technique, the
edge-disjoint k odd cycle packing can be solved efficiently (see e.g. [1]).
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Figure 2 An elementary wall of height 8

I Theorem 6. For integers w and k, there exists a (wO(kw))nO(1) time algorithm for the
edge-disjoint k odd cycle packing in graphs of tree-width w.

An elementary wall of height eight is depicted in Figure 1. An elementary wall of height
h for h ≥ 2 is similar. It consists of h levels each containing h bricks, where a brick is a
cycle of length six. A wall of height h is obtained from an elementary wall of height h by
subdividing some of the edges, i.e. replacing the edges with internally vertex disjoint paths
with the same endpoints. The nails of a wall are the vertices of degree three within it. Any
wall has a unique planar embedding. We define a distance function dW on the vertices of
W so that dW (x, y) is the minimum number of regions of this embedding that an arc in
the plane with endpoints x and y intersects. We define the distance between two subgraphs
W1,W2 of W by

dW (W1,W2) = min{dW (x, y) | x ∈ V (W1), y ∈ V (W2)}.

The perimeter of a wall W , denoted per(W ), is the boundary of the unique face in this
embedding which contains more than six vertices of the original elementary wall. For any wall
W in a given graph G, there is a unique component U of G−per(W ) containing W −per(W ).
The compass of W , denoted comp(W ), is the subgraph of G induced by V (U) ∪ V (per(W )).
A subwall of a wall W is a wall which is a subgraph of W . A subwall of W of height h is
proper if it consists of h consecutive bricks from each of h consecutive rows of W . For a
subgraph H, we say a proper subwall W ′ is dividing in H if H contains W ′ and the compass
of W ′ in H is disjoint from (W −W ′)∩H. A wall is flat if its compass does not contain two
vertex-disjoint paths connecting the diagonally opposite corners. Note that if the compass of
W has a planar embedding whose infinite face is bounded by the perimeter of W then W is
clearly flat. Seymour [27], Thomassen [30], and others have characterized precisely which
walls are flat.

One of the most important results concerning the tree-width is the main result of Graph
Minors. V [22] which says the following.

I Theorem 7. For any t, there exists a constant f1(t) such that if G has tree-width at least
f1(t), then G contains a wall W of height t.

The best known upper bound for f1(t) is 202t5 , see [4, 20, 25]. The best known lower
bound is Θ(t2 log t), see [25]. Furthermore, such a wall can be found efficiently.

I Theorem 8 ([24, 25]). In a graph G with tree-width at least f1(t), we can find a wall W
of height t in (f1(t)O(f1(t)))nO(1) time.

3 Finding a Large Clique Minor

In our algorithm for the edge-disjoint k odd cycle packing, we divide the problem into two
cases depending on whether the tree-width of the input graph is large or not. In order to
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212 Edge-disjoint Odd Cycles in 4-edge-connected Graphs

deal with the case when the tree-width is large, we show the following theorem, which says
that we can find a large clique minor in L(G) if the tree-width of G is large.

I Theorem 9. For any 4-edge-connected graph (or any 3-edge-cut-free graph) G and for any
integer t ≥ 2, there exists an integer g(t) = 2(2O(t2)) such that one of the following holds:
1. G has tree-width at most g(t).
2. The extended line graph L(G) contains a clique minor of order t.
Furthermore, either the tree decomposition of G of width at most g(t) or the Kt-minor in
L(G) can be computed in (g(t)O(g(t)))nO(1) time.

The objective of this section is to give a proof of this theorem. Since the proof is almost
the same as the proof of Theorem 4.1 in [12], we omit it. We note that [12] deals with the
line graph instead of the extended line graph.

We now give a remark that a large clique minor plays an important role in the disjoint
paths problem. By using the following theorem, we can reduce the disjoint paths problem to
an equivalent smaller problem if the input graph has a large clique minor. We will use this
theorem also in our proofs of Theorems 2 and 3.

I Theorem 10 (Robertson and Seymour [24, Theorem (5.4)]). Let s1, . . . , sk, t1, . . . , tk be the
terminals in a given G. If there is a clique minor of order at least 3k in G, and there is no
separation (A,B) of order at most 2k − 1 in G such that A contains all the terminals and
B −A contains at least one node of the clique minor, then there are vertex-disjoint paths Pi

with two ends in si, ti for i = 1, . . . , k.

4 Erdős-Pósa Property (Proof of Theorem 2)

In this section, we give a proof of Theorem 2. An outline of the proof is described as follows.
In Section 4.1, we show that if L(G) has a large clique minor, then G is not a minimum
counterexample of Theorem 2. In Section 4.2, we show that if L(G) contains no large clique
minor, then G cannot be a counterexample.

4.1 Property of a minimum counterexample
In this subsection, we show that if L(G) has a large clique minor, then G is not a minimum
counterexample of Theorem 2. To show this, we use the following theorem given in [9].

I Theorem 11 (Geelen et al. [9, Theorem 13]). There is a constant c such that if G contains
a Kt-minor K, where t ≥ dcl

√
log 12le for a positive integer l, then one of the following

holds.
1. G contains an odd Kl-minor.
2. There exists a vertex set X with |X| < 8l such that the unique block (i.e., maximal

2-connected subgraph) U of G−X that intersects all the nodes of K disjoint from X is
bipartite.

Furthermore, such an odd Kl-minor or a vertex set X can be found in O(nm) time.

With the aid of this theorem, we show the following property of a minimum counter-
example.

I Proposition 12. Let k and l be positive integers. Suppose that G = (V,E) is a 4-edge-
connected graph (or a 3-edge-cut-free graph) with minimum number of edges such that it does
not contain edge-disjoint k odd cycles and G−F is not bipartite for any F ⊆ E with |F | ≤ l.
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Then, L(G) has no clique minor of order max{d3ck
√

log 36ke, 50k}, where c is the constant
given in Theorem 11.

Proof. Assume that L(G) has a clique minor K of order max{d3ck
√

log 36ke, 50k}. By
Theorem 11, we have one of the following.
1. L(G) contains an odd K3k-minor.
2. There exists a vertex set X with |X| < 24k such that the unique block U of L(G)−X

that intersects all the nodes of K disjoint from X is bipartite.

When L(G) contains an odd K3k-minor, we can take vertex-disjoint k cycles each passing
through three nodes of the clique minor in L(G). Since these cycles are of odd length by the
definition of the odd clique minor, we can find vertex-disjoint k odd cycles in L(G). Hence,
the corresponding cycles in G are edge-disjoint odd cycles, which contradicts the assumption.

Suppose that there exists a vertex set X with |X| < 24k such that the unique block U of
L(G)−X that intersects all the nodes of K disjoint from X is bipartite. Let U1, . . . , Uq be the
connected component of L(G)−X − U that are not bipartite. Since L(G) does not contain
vertex-disjoint k odd cycles, we have q < k. By the definition of U , each Ui is adjacent to at
most one vertex, say ui, of U . Therefore, we have a separation (A′, B′) of L(G) such that
V (A′)∩V (B′) = X∪{u1, . . . , uq} and B′−A′ is a bipartite graph containing U−{u1, . . . , uq}.
We note that B′ −A′ contains a clique minor of order 50k − |X ∪ {u1, . . . , uq}| > 25k. The
following claim shows that we can find a separation of small order with some additional
conditions.

I Claim 13. There exists a separation (A,B) of L(G) with Y := V (A) ∩ V (B) such that
|Y | < 25k, B −A is bipartite, B −A contains a clique minor of order 25k, we can link up Y
by vertex-disjoint paths in any desired way in B, there is no edge with both end vertices in
Y , and every vertex in Y is contained in V ∗1 , where V ∗1 is the vertex set as in the definition
of L(G).

Proof of the claim. Let (A,B) be a separation of L(G) of minimum order such that V (B) ⊆
V (U) ∪X, B − A is bipartite, and B − A contains at least one node of the clique minor.
Furthermore, we assume that |B| is minimum among such separations. We note that such a
separation exists, because (A′, B′) satisfies these conditions. We show that this separation
(A,B) satisfies the conditions in the above claim.

Define Y = V (A) ∩ V (B). By the definition of (A,B), it is obvious that |Y | ≤ |X ∪
{u1, . . . , ul}| < 25k. Since B − A contains at least one node of the clique minor, at least
50k− |Y | > 25k nodes are contained in B −A, that is, B −A contains a clique minor KB of
order at least 25k. By applying Theorem 10 with KB and the terminal set Y , we can link
up Y by vertex-disjoint paths in any desired way in B.

Assume that Y contains a vertex v∗ = (v, {e1, e2}) ∈ V ∗2 . Since v∗ is adjacent to two
vertices, say v∗1 , v

∗
2 ∈ V ∗1 , by removing v∗ from Y and adding v∗1 or v∗2 , we can obtain a

separation with smaller B, which contradicts the definition of (A,B). Thus, we have Y ⊆ V ∗1 .
Furthermore, there exists no edge with both end vertices in Y , because we can remove one
end vertex from Y if such an edge exists. J

Let (A,B) and Y be as in this claim, and we denote Y = {(vi, ei) | i = 1, 2, . . . , |Y |}
because Y ⊆ V ∗1 . Let FY = {e1, . . . , e|Y |} be the edge set in G that corresponds to Y . Then,
one component H of G−FY corresponds to B−A. More precisely, if (v, e) ∈ V ∗1 is contained
in B −A, then the corresponding edge e is contained in H. Now we observe the following by
the properties of B −A and the definition of L(G).
1. Since B −A is bipartite, H is also bipartite.
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2. Since we can link up Y by vertex-disjoint paths in any desired way in B, we can connect
FY in H by edge-disjoint paths in any desired way. We note that every path in B

connecting a fixed pair of vertices in Y has the same parity, and the same thing holds for
paths connecting FY in H.

3. Since B − A contains at least 25k + 1 nodes of the clique minor, H contains at least
25k + 1 edges.

Since H is bipartite by the first property, V (H) is partitioned into two color classes V1(H)
and V2(H). Now we contract Vi(H) to a single vertex vi for i = 1, 2 in G, and we remove some
edges between v1 and v2 so that 25k edges of E(H) remain between them. Let Ĝ = (V̂ , Ê) be
the obtained graph. We note that FY might contain an edge between two vertices in V1(H)
(or V2(H)), because B is not necessarily bipartite. In such a case, Ĝ contains a self-loop. We
can see that this reduction does not affect the existence of edge-disjoint k odd cycles by the
second property. On the other hand, if Ĝ− F̂ is bipartite for some F̂ ⊆ Ê with |F̂ | ≤ l, then
we can make G bipartite by removing the edge set that corresponds to F̂ , which contradicts
the assumption. Note that F̂ does not contain an edge connecting v1 and v2, because the
number of edges between v1 and v2 is bigger than |FY |. Thus, Ĝ − F̂ is not bipartite for
any F̂ ⊆ Ê with |F̂ | ≤ l. Since the number of edges decreases by the third property, this
contradicts the minimality of G. J

4.2 When L(G) has no large clique minor
In this subsection, we consider the case when L(G) has no clique minor of order t =
max{d3ck

√
log 36ke, 50k}. By Theorem 9, the tree-width of G is bounded by some constant

g(t). Since each vertex of G has degree at most t, one vertex in G is replaced by at most
t+
(

t
2
)
< t2 vertices in L(G). Thus, the tree-width of L(G) is smaller than a constant t2g(t).

Now we show the following proposition.

I Proposition 14. Let k be a positive integer. Let t and g(t) be positive integers as above,
and suppose that there exists an integer f(i) satisfying the condition in Theorem 2 for
i = 1, 2, . . . , k − 1. Suppose that G is a 4-edge-connected graph (or a 3-edge-cut-free graph)
not containing edge-disjoint k odd cycles such that L(G) has no clique minor of order t,
and F ⊆ E is a minimum edge set such that G − F is bipartite. Then, we have |F | ≤
max{4f(k − 1), 3t2g(t)}.

Proof. Assume that |F | > max{4f(k − 1), 3t2g(t)}. First, we show that F is “highly-
connected” in some sense. For two edges e1, e2, we say that a path P connects e1 and e2 if
the first and last edges of P are e1 and e2. A path connects two edge sets F1 and F2 if it
connects edges in F1 and F2. We show the following claim.

I Claim 15. For any sets F ′, F ′′ ⊆ F with |F ′| = |F ′′| ≤ |F |/2, there exist |F ′| edge-disjoint
paths each connecting F ′ and F ′′.

Proof of the claim. Let F ′, F ′′ ⊆ F be sets with |F ′| = |F ′′| ≤ |F |/2. To derive a contradic-
tion, assume that G does not contain |F ′| edge-disjoint paths connecting them. By Menger’s
theorem, there exists an edge set C ⊆ E such that |C| ≤ |F ′| − 1 and G − C contains no
path connecting F ′ and F ′′. That is, there exists a partition (G1, G2) of G− C such that
V (G1 ∩G2) = ∅, F ′ ⊆ E(G1) ∪ C, and F ′′ ⊆ E(G2) ∪ C.

If bothG1 andG2 contain an odd cycle, then each has at most k−2 edge-disjoint odd cycles.
By induction hypothesis, for i = 1, 2, Gi has an edge set Fi with |Fi| ≤ f(k − 1) such that
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Gi−Fi is bipartite. Then, G−(F1∪F2∪C) is bipartite and |F1∪F2∪C| < 2f(k−1)+ |F |2 ≤ |F |,
which contradicts the minimality of F .

Suppose that G1 contains no odd cycle. Then, G − ((F \ F ′) ∪ C) is bipartite and
|(F \ F ′) ∪ C| < |F |, which contradicts the minimality of F . The same argument can be
applied when G2 contains no odd cycle. J

We choose one end vertex ve arbitrary for each e ∈ F , and define a vertex set VF =
{(ve, e) | e ∈ F} of L(G). Then, VF is |F |/2-connected in L(G) by the above claim, where
we say that a vertex set X is κ-connected if |X| ≥ κ and for all subsets X1, X2 ⊆ X with
|X1| = |X2| ≤ κ there are |X1| vertex-disjoint paths connecting X1 and X2. In particular,
since |F | > max{4f(k − 1), 3t2g(t)}, VF is a 3

2 t
2g(t)-connected set of size 3t2g(t). Now we

use the following lemma.

I Lemma 16 (Diestel et al. [4, Proposition 3]). Let G be a graph and κ be a positive integer.
If G contains a (κ+ 1)-connected set of size at least 3κ, then G has tree-width at least κ.

Since L(G) has a 3
2 t

2g(t)-connected set VF of size 3t2g(t), L(G) has tree-width at least
t2g(t) by Lemma 16, which is a contradiction. J

By Propositions 12 and 14, f(k) is bounded by 3t2g(t) = 22O(k2 log k) , which completes
the proof of Theorem 2.

5 Packing Algorithm (Proof of Theorem 3)

In this section, we give an algorithm for the edge-disjoint k odd cycle packing in 4-edge-
connected graphs (or 3-edge-cut-free graphs), and prove Theorem 3.

Since the case with small tree-width is easy by Theorem 6, it suffices to deal with the
case when the extended line graph L(G) has a large clique minor by Theorem 9. For this
case, we give a procedure that reduces the original instance to a smaller instance.

I Proposition 17. Let G be a 4-edge-connected graph (or a 3-edge-cut-free graph) and k be
a positive integer. If a clique minor of order at least max{d3ck

√
log 36ke, 50k} is given in

L(G), where c is the constant given in Theorem 11, then we can reduce an instance of the
edge-disjoint k odd cycle packing in G to an equivalent smaller instance in polynomial time.

Proof. We use a similar argument to the proof of Proposition 12. Suppose that the extended
line graph of G contains a clique minor K of order at least max{d3ck

√
log 36ke, 50k}. Then,

we have one of the following by Theorem 11.
1. L(G) contains an odd K3k-minor.
2. There exists a vertex set X with |X| < 24k such that the unique block U of L(G)−X

that intersects all the nodes of K disjoint from X is bipartite.

When L(G) contains an odd K3k-minor, G contains edge-disjoint k odd cycles, which
means that we can easily find edge-disjoint k odd cycles in G. (In other words, we can reduce
the original instance to a trivial “YES” instance.)

Suppose that there exists a vertex setX with the above conditions. LetA,B, Y, FY , H, V1(H),
and V2(H) be as in the proof of Proposition 12. Construct a smaller graph by contracting
Vi(H) to a single vertex vi for i = 1, 2 and by removing some edges between v1 and v2, and
let Ĝ = (V̂ , Ê) be the obtained graph. We have already seen in the proof of Proposition 12
that this reduction does not affect the existence of edge-disjoint k odd cycles. Since the
obtained graph is smaller than the original one, the obtained instance is a desired one. J
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Now we give a proof of Theorem 3.

Proof of Theorem 3. First, we apply Theorem 9 where t = max{d3ck
√

log 36ke, 50k} and
c is the constant given in Theorem 11. Then, either the input graph G has tree-width at
most g(t), or L(G) contains a clique minor of order t by Theorem 9. In the first case, we can
solve the edge-disjoint k odd cycle packing in G in (g(t)O(kg(t)))nO(1) time by Theorem 6.
In the second case, we apply Proposition 17 to obtain a smaller instance, and recurse the
algorithm. We note that the running time (g(t)O(kg(t)))nO(1) is bounded by a polynomial
of n if k = O((log log logn)1/2−ε). This shows that we can solve the problem in polynomial
time. J

Finally, we give a remark on the time complexity for the case when k is a fixed constant.
In this case, the most time consuming part is to execute Theorem 11 repeatedly. Since L(G)
might have Ω(n3) vertices and edges when G has vertices of high degree, if we apply a naive
reduction algorithm, then the time complexity of the reduction step becomes O(n6), and
so the total running time is O(n6m). If we find an edge set FY of G directly (i.e., without
constructing L(G)), then the running time will be greatly improved, but we will not discuss
this issue in this paper.
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