
HAL Id: hal-00678185
https://hal.science/hal-00678185

Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Bounds for Bipartite Matching on Surfaces
Samir Datta, Arjun Gopalan, Raghav Kulkarni, Raghunath Tewari

To cite this version:
Samir Datta, Arjun Gopalan, Raghav Kulkarni, Raghunath Tewari. Improved Bounds for Bipartite
Matching on Surfaces. STACS’12 (29th Symposium on Theoretical Aspects of Computer Science),
Feb 2012, Paris, France. pp.254-265. �hal-00678185�

https://hal.science/hal-00678185
https://hal.archives-ouvertes.fr

Improved Bounds for Bipartite Matching on
Surfaces
Samir Datta1, Arjun Gopalan2, Raghav Kulkarni3, and
Raghunath Tewari4

1 Chennai Mathematical Institute, India
sdatta@cmi.ac.in

2 BITS Pilani, India
arjun91@gmail.com

3 LIAFA Paris 7 and LRI∗ Paris 11, France
kulraghav@gmail.com

4 Indian Institute of Technology – Kanpur, India
rtewari@cse.iitk.ac.in

Abstract
We exhibit the following new upper bounds on the space complexity and the parallel complexity
of the Bipartite Perfect Matching (BPM) problem for graphs of small genus:

(1) BPM in planar graphs is in UL (improves upon the SPL bound from Datta et. al. [7]);
(2) BPM in constant genus graphs is in NL (orthogonal to the SPL bound from Datta et. al. [8]);
(3) BPM in poly-logarithmic genus graphs is in NC; (extends the NC bound for O(logn) genus

graphs from Mahajan and Varadarajan [22], and Kulkarni et. al. [19].

For Part (1) we combine the flow technique of Miller and Naor [23] with the double counting
technique of Reinhardt and Allender [27]. For Part (2) and (3) we extend [23] to higher genus
surfaces in the spirit of Chambers, Erickson and Nayyeri [4].

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Perfect Matching, Graphs on Surfaces, Space Complexity, NC, UL

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.254

1 Introduction

1.1 Matching Problems in Graphs
A matching M in a graph G is a set of vertex disjoint edges. The end-points of the edges
in M are said to be matched. A perfect matching in a graph G is a matching M such that
every vertex of G is matched. See [21] for an excellent introduction to matching and related
problems.

Historically, matching problems have played a central role in Algorithms and Complex-
ity Theory. Edmond’s blossom algorithm [10] for Max-Matching was one of the first
examples of a non-trivial polynomial time algorithm. It had a considerable share in initi-
ating the study of efficient computation, including the class P itself; Valiant’s #P-hardness
[30] for counting perfect matchings in bipartite graphs provided surprising insights into the
counting complexity classes. The study of whether Perfect-Matching is parallelizable

∗ Supported by the French ANR Defis program under contract ANR-08-EMER-012 (QRAC project)

© Samir Datta, Arjun Gopalan, Raghav Kulkarni and Raghunath Tewari;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 254–265

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.254
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Datta, A. Gopalan, R. Kulkarni, and R. Tewari 255

has yielded powerful tools, such as the isolating lemma [25], that have found numerous other
applications.

The rich combinatorial structure of matching problems combined with their potential to
serve as central problems in the field invites their study from several perspectives. The focus
of this paper is on the space and parallel complexity of matching problems. The best known
upper bound for Perfect-Matching (and other matching problems mentioned above) is
non-uniform SPL [2] whereas the best hardness known is NL-hardness [5]. Unless otherwise
specified, all circuit classes from now on are uniform (say L-uniform).

1.2 Matching Problems in Planar Graphs
A well known example where planarity is a boon is that of counting perfect matchings.
The problem in planar graphs is in P [17] as opposed to being #P-hard in general graphs
[30]. Counting perfect matchings in planar graphs can in fact be done in NC [31]; thus
Perfect-Matching (Decision) in planar graphs is in NC. “Is the construction version
of Perfect-Matching in planar graphs in NC?” remains an outstanding open question,
whereas the bipartite planar case is known to be in NC [23], [22], [19], [7].

The space complexity of matching problems in planar graphs was first studied by Datta,
Kulkarni, and Roy [7] where it was shown that Min-Wt-PM in bipartite planar graphs is in
SPL. Kulkarni [18] shows that Min-Wt-PM in planar graphs (not necessarily bipartite) is
NL-hard. The only known hardness for Perfect-Matching in planar graphs is L-hardness
(cf. [6]). For bipartite planar graphs, nothing better than L-hardness is known.

Given a directed graph G and two vertices s and t in G, let Dir-Reach denote the
problem of deciding if there exists a path from s to t in G. Dir-Reach is NL-complete. It
turns out that Dir-Reach in planar graphs reduces (in log-space) to Perfect-Matching
in bipartite planar graphs [6]; the former was proved to be in UL∩ coUL by Bourke, Tewari,
and Vinodchandran [3]. In this paper we show that Perfect-Matching in bipartite planar
graphs is in UL, leaving the coUL bound as an intriguing open question.

1.3 Matching Problems in small genus graphs
Counting perfect matchings in graphs embedded on O(logn) genus surfaces is in NC (see Gal-
luccio and Loebl [12]). Combining this with a rounding procedure from Goldberg, Plotkin,
Shmoys, and Tardos [13], the authors of [22] and [19] obtain an NC algorithm for the de-
cision and construction versions of BPM in O(logn) genus graphs. In [8], the result of [7]
was extended to bipartite graphs of bounded genus and a tighter bound of SPL ⊆ NC was
obtained. We are able to improve these results using a technique of Miller and Naor [23]
and its extension to higher genus graphs by Chambers, Erickson and Nayyeri [4].

1.4 Our Results
I Theorem 1.1. Perfect-Matching in bipartite planar graphs is in UL.

The result holds for both decision and construction versions of the problem. We build on two
key algorithms: (1) Miller and Naor’s algorithm [23] for perfect matching in bipartite planar
graphs; (2) Reinhardt and Allender’s [27] UL algorithm for shortest path in min-unique
graphs: graphs with polynomially bounded edge-weights and having at most one minimum
weight path between any pair of vertices. Miller and Naor reduce the Perfect-Matching
(Decision) in planar graphs to the following problem in directed planar graphs: Neg-Cycle

STACS’12

256 Improved Bounds for Bipartite Matching on Surfaces

(Decision) problem - given a directed graph with polynomially bounded edge-weights, de-
cide whether or not the graph contains a negative weight cycle. The simple observation that
this reduction works in log-space combined with the crucial observation that Neg-Cycle
problem is in NL yields the somewhat surprising NL bound for perfect matching in bipartite
planar graphs. While this upper bound matches the lower bound of NL for matching in
bipartite graphs, we are able to improve it to UL by making efficient use of planarity. This
brings it tantalizingly close to the best known upper bound of UL ∩ coUL for planar reach-
ability. For the proof of the UL bound in part (a), we first provide a technical extension of
(2) when the graph contains negative weight edges but no negative weight cycles. A simple
but subtle combination of (1) and (2) then yields the desired result. As opposed to [19] and
[7], our space bounded algorithms do not require determinant computation as a subroutine,
instead we make use of a variant of planar reachability. However, for the weighted case we
do not know how to improve upon the SPL bound in [7]. We also do not know how to
improve on LC=L bound for maximum matching due to Hoang [15].

I Theorem 1.2. Perfect-Matching in bipartite graphs of constant genus is in NL.

I Theorem 1.3. Perfect-Matching in bipartite graphs of (logn)O(1)genus is in NC.

Again the results hold for both decision and construction versions but we require that a
cellular embedding of the graph be given as part of the input. We adapt the approach of
Chambers et. al. [4] in the context of the flow instance corresponding to the perfect matching
problem. Chambers, Erickson and Nayyeri [4] extend the techniques of Miller and Naor to
reduce the search space of a max-s, t-flow on a surface. In particular, for genus g surface they
can formulate the flow problem as a linear program in only O(g) variables. We show that a
flow instance corresponding to perfect matching in a bipartite graph embedded on a surface is
a yes instance exactly when we can send flows along the 2g basis cycles such that the residual
graph has no negative cycle. Moreover, if we start from a Perfect-Matching instance
then the flows must be integral and polynomially bounded. Thus exhaustive search in the
2g-dimensional space yields an NL algorithm for the existence of a Perfect-Matching
when g is a constant. We believe that this NL bound can be improved to UL.

For poly-logarithmic genus, the ellipsoid method yields an NC bound. Our observation is
that the separation oracle, the problem of determining if a weighted directed graph contains a
negative cycle, can be implemented in NC. For the construction version, we use the rounding
procedure of Goldberg, Plotkin, Shmoys and Tardos [13] to obtain an integral solution in
NC from the fractional solution coming from the ellipsoid algorithm.

We also consider Even-Path problem: deciding whether or not there is a directed
simple path of even length between two specified vertices. Even-Path is NP-complete [20]
but restricted to planar graphs it is in P [26]. For directed acyclic graphs (DAGs), the
problem is NL-complete. The Even-Path problem can be viewed as a relaxation of the
Red-Blue-Path problem - given a directed graph with edges colored Red or Blue, decide
whether or not there is a (simple) path between two specified vertices such that consecutive
edges in the path are of different colors. The Red-Blue-Path problem is known to be
NL-complete for planar DAGs [18]. This provides context for the following theorem.

I Theorem 1.4. Even-Path in planar DAG is in UL.

The hope is that the proof of this theorem contains the seeds for a proof showing that
Red-Blue-Path for planar DAGs is in UL which would imply that NL collapses to UL. It
is worth noting that our proof of the UL bound for Even-Path in planar DAGs combines
two different deterministic isolation techniques ([3], [15]).

S. Datta, A. Gopalan, R. Kulkarni, and R. Tewari 257

1.5 Organization
Section 2 contains preliminaries. Section 3 contains the UL bound for bipartite planar
graphs. Section 4 contains the results for higher genus graphs. Section 5 contains UL bound
for Even-Path problem in planar DAG. Section 6 contains some open ends.

2 Preliminaries

2.1 Matching Problems
We consider the following computational problems related to matching:

Perfect-Matching (Decision) : decide if G contains a perfect matching.
Perfect-Matching (Construction) : construct a perfect matching in G (if exists).
Min-Wt-PM (Decision) : given G together with edge-weights w : E(G)→ Z such that
|w(e)| ≤ nO(1), and an integer k - decide if G contains a perfect matching of weight at
most k.
Max-Matching (Decision) : given G and an integer k, decide if G has a matching of
cardinality at least k.
UPM (Decision) : decide if G has a unique perfect matching

2.2 Space Complexity Classes
See the monograph by Vollmer [32] for definitions of standard circuit complexity classes. It
is known that UL ⊆ NL ⊆ NC ⊆ P and UL ⊆ SPL. It is also known that SPL ⊆ ⊕L ⊆ NC.
NL and SPL as well as NL and ⊕L are not known to be comparable.

2.3 Flow Terminology
Here we rephrase the terminology used in [23]. An undirected edge is a two element unordered
set {u, v} such that u, v ∈ V. An undirected graph G = (V,E) consists of a set V of vertices
and a set E of undirected edges. An arc is an ordered tuple (u, v) ∈ V × V . A directed
graph −→G = (V,−→E) consists of a set V of vertices and a set −→E ⊆ V × V of arcs. Given an
undirected graph G = (U, V), its directed version is a directed graph ←→G = (V,←→E) where
←→
E := {(u, v) | {u, v} ∈ E}.

A capacity-demand graph is a triple (G, c, d) where G = (V,E); every arc (u, v) ∈ ←→E
is assigned a real value c(u, v) called the capacity of the arc and every vertex v ∈ V is
assigned a real value d(v) called the demand at the vertex. A pseudo-flow in a capacity-
demand graph (G, c, d) is a function f : ←→E → R such that: (i) for every arc (u, v) ∈ ←→E ,

we have: (skew-symmetry) f(u, v) = −f(v, u), and (ii) for every vertex v ∈ V, we have:
(demands met)

∑
w∈V :(v,w)∈←→E f(v, w) = d(v). A flow in a capacity-demand graph (G, c, d) is

a function f :←→E → R such that: (a) f is a pseudo-flow in (G, c, d); (b) for every (u, v) ∈ ←→E ,

we have: (capacity constraints satisfied) f(u, v) ≤ c(u, v). A zero-demand graph (G, c) is a
capacity-demand graph in which the demand at every vertex is zero.

For a description of other graph theoretic terminology (such as walk, dual graph etc.),
we refer the reader to Diestel’s excellent text [9].

2.4 Main Lemmas from Miller and Naor [23]
I Definition 2.1 (Directed Dual). Let G be a planar graph. Fix an embedding of G in the
plane. Let G∗ denote the dual of G with respect to the fixed embedding. The directed

STACS’12

258 Improved Bounds for Bipartite Matching on Surfaces

dual of G is the directed version of G∗ denoted by
←−→
(G∗). The arcs of ←→G and that of

←−→
(G∗)

are in one to one correspondence. If e = {u, v} is an edge in G with a directed version
(u, v) and e∗ = {x∗, y∗} is the corresponding dual edge in G∗ then in

←−→
(G∗) the directed edge

that corresponds to (u, v) is directed (x∗, y∗) where x∗ is the face that lies to the left of the
directed edge (u, v).

I Proposition 2.2 (folklore, see for instance [23]). Let (G, c) be a zero-demand graph. Let f
be a flow in (G, c). If C∗ = (e∗1, . . . , e∗k) is a directed cycle in

←−→
(G∗), then∑

e : e∗∈C∗

f(e) = 0.

I Lemma 2.3 (Miller, Naor [23]). Let (G, c) be a zero-demand planar graph, then: there
exists a flow in (G, c) ⇐⇒

←−→
(G∗) has no negative weight cycle with respect to weights c.

3 Bipartite Planar Matching: The UL Bounds

Suppose we have a directed graph G with polynomially bounded weights on its edges. The
weights could be positive or negative. Let s be a fixed vertex in G. Let d(u, v) denote
the length of the minimum length path from u to v. whenever defined. Notice that these
definitions are conditional on the non-existence of negative cycles and we show how to deal
with these cases below.

Vk := {v | d(s, v) ≤ k}.

Let distw
k (u, v) denote the weight of the minimum weight walk (with respect to weights w)

of length at most k from u to v. Note that distw
k (u, v) could be negative. We define,

Σw
k :=

∑
v∈Vk

distw
k (s, v).

We use an extension of [27] to compute distw
k (s, v) and Vk in UL. We pause to note

that the technique of [27], called double counting in [27], is a generalization of the inductive
counting technique used by Immerman [16] and Szelepcsényi [28] to show that NL = coNL.
We combine this UL algorithm with Miller and Naor’s algorithm via Weighting Scheme A
in Section 5 to obtain the UL bound for perfect matching in bipartite planar graphs.

We need an extension of [27], when the graph contains negative weight edges but no neg-
ative weight cycles. We call this extension (Algorithm 2) as the Extended-RA Algorithm
. Following lemmas are simple consequences of the Extended-RA Algorithm and min-
uniqueness achieved via generalized BTV weights (Weighting Scheme A).

The weighting scheme A
Weighting scheme A is a generalization of the weight function in [3] to planar graphs. In
other words, given a directed planar graph G, we construct a log-space computable edge
weight function with respect to which any simple cycle in G has non-zero weight. Tewari and
Vinodchandran [29] give a log-space construction of such a weight function by an application
of Green’s Theorem. We give an alternate procedure (see Algorithm 1) that achieves the
same result.

S. Datta, A. Gopalan, R. Kulkarni, and R. Tewari 259

Input : A planar graph G
Output : An edge weight function wA such that for any simple cycle C in G

wA(C) 6= 0

1 Compute a spanning tree T in G;
2 For any arc e ∈ ←→T , set wA(e) = 0;
3 Let R denote the spanning tree in G∗ consisting of the edges that do not belong to
T. Fix a root r for R (say the unbounded face) and let −→R denote the orientation
of R where each edge is oriented towards the root;

4 An arc e∗ = (u, v) ∈ −→R separates the tree R into two subtrees. Let αu denote the
number of vertices in the subtree containing u. Set wA(u, v) = αu and
wA(v, u) = −αu;

5 Set wA(e) = wA(e∗) for every e ∈ E(G) where e∗ is the (directed) dual edge of e;
Algorithm 1: Weighting Scheme A

I Lemma 3.1 (adaptation of [3]). With respect to the weight function wA the absolute value
of the sum of the weights of the arcs along any simple directed cycle is equal to the number
of faces in the interior of the cycle.

Proof of Lemma 3.1: For a simple cycle C of G, let us define the weight of C, w(C), to
be the sum of weights of the edges lying along C in clockwise order. Note that wA is
skew symmetric. Thus clockwise and anti-clockwise weights of the cycle C are the same in
absolute value but opposite in sign. We are denoting the clockwise weight of C by w(C).

It suffices to show that for a facial cycle F of G, w(F) = +1. This is because for a simple
cycle C:

w(C) =
∑

F∈Interior(C)

w(F).

But w(F) equals the sum of the weights of dual edges (in G∗) outgoing from the dual vertex
F ∗ ∈ V (G∗), so it suffices to show that for every vertex u ∈ V (G∗):∑

v:(u,v)∈E(G∗)

αv = +1.

Observe that the number of nodes in the subtree rooted at u is one more than sum of the
number of vertices in the subtrees rooted at v for various v, such that (u, v) is a dual edge.
This, together with the skew symmetry of the weights wA(u, v), completes the proof. �

Input : A directed graph G on n vertices; edge-weights w : E(G)→ Z such that
|w(e)| ≤ nO(1); s, v ∈ V (G); and an integer t

Output : distw
t (s, v)

1 Initialize V0 ← {s} and Σw
0 ← 0;

2 for k = 1 to t do
3 Compute (|Vk|,Σw

k) from (|Vk−1|,Σw
k−1);

4 end
5 Compute distw

t (s, v) from (|Vt|,Σw
t) and output;

Algorithm 2: Extended-RA Algorithm (adapted from [27])

STACS’12

260 Improved Bounds for Bipartite Matching on Surfaces

I Lemma 3.2. Given a directed planar graph with polynomially bounded weights w on its
arcs such that there are no negative weight cycles, the shortest distance distw(u, v) between
any pair of vertices with respect to weights w can be computed in UL.

I Lemma 3.3. Given a directed planar graph with polynomially bounded weights w on its
arcs, deciding whether or not the graph contains a negative weight cycle is in coUL.

Input : A bipartite planar graph G
Output : A perfect matching in G if one exists; else reject

1 Construct a capacity-demand graph (G, c, d) as follows: for each vertex v ∈ A, set
d(v) = 1 and for each vertex v ∈ B, set d(v) = −1. For u ∈ A, v ∈ B, set
c(u, v) = 1 and c(v, u) = 0;

2 Construct a pseudo-flow f ′ in (G, c, d) (see [23]);
3 Construct a zero-demand graph (G, c− f ′);
4 Run Extended-RA Algorithm on

←−→
(G∗) with weights w = n4(c− f ′) + btv to

compute the shortest distances distw
n (u, v) in

←−→
(G∗), where btv denotes generalized

BTV weights (Weighting Scheme A defined in the beginning of this section);
5 Compute distc−f ′

n (u, v) in
←−→
(G∗) from the above by ignoring the lower order weights

from btv;
6 Run Miller and Naor’s algorithm to compute f (see algorithm in Section 5.1 in
[23]);

7 If f is a flow then for u ∈ A and v ∈ B, output “u is matched to v”
⇐⇒ f(u, v) = 1;

8 otherwise reject and output “No perfect matching";
Algorithm 3: UL algorithm for Perfect-Matching in bipartite planar graphs

Combining Algorithm 2 with Miller and Naor’s algorithm, we obtain the UL algorithm
(Algorithm 3) for Perfect-Matching in bipartite planar graphs.

I Theorem 3.4. (Theorem 1.1) In bipartite planar graphs, both the decision as well as the
construction versions of the Perfect-Matching are in UL.

Proof. The correctness of the above algorithm follows from [23]. To see the UL bound, note
that the Extended-RA algorithm computes distw

n correctly along a unique path assuming
min-uniqueness of the weights. If there are no negative weight cycles then the generalized
BTV weights (Section 5) guarantee min-uniqueness.

Thus, if there are no negative weight cycles in
←−→
(G∗) then we obtain a valid flow and a

perfect matching along the unique accepting path. Otherwise, we realize that f is not a
valid flow and reject. J

We also obtain the following corollary on similar lines

I Corollary 3.5. Single-source, single-sink maximum flow problem in planar networks with
polynomially bounded capacities is in LUL.

4 Bipartite Perfect Matching in higher genus graphs

We need G to be given together with its cellular embedding [4] on a surface of genus g.
Every graph admits a cellular embedding as the embedding on the minimal genus surface

S. Datta, A. Gopalan, R. Kulkarni, and R. Tewari 261

is always cellular [24]. We also need the 2g basis cycles in G explicitly given to us. The
advantage of cellular embedding of G is that every vertex of G corresponds to a face in the
dual graph G∗ and vice versa. Let G be a graph with a cellular embedding on a surface of
genus g and let C1, C2, . . . , C2g be the basis cycles. Using Steps 1, 2, and 3 of Algorithm 3,
we first obtain a multiple source multiple sink flow problem and then transform it to a zero
demand instance. None of these reductions use planarity. Let (G, c) denote the zero-demand
instance associated with G with capacity function c.We fix an arbitrary orientation for each
Ci. For i = 1, . . . , 2g, let Fi denote the flow that is zero everywhere outside Ci, i.e., Fi(e) = 0
if e /∈ Ci and for each e ∈ Ci the flow value is fi, i.e., Fi(e) = fi Let f = (f1, . . . , f2g) and
let c− f denote the graph with the weight of edge e defined as c(e)−

∑
i Fi(e).

The following is a generalization of Lemma 2.3 in Section 2 (same as Lemma 4.1 in
[23]) for higher genus graphs with cellular embeddings. After we obtained the proof of this
lemma, we learned that a similar lemma is already noted by Chambers et al. [4].

I Lemma 4.1. The zero demand instance (G, c) admits a valid flow if and only if there
exists f1, . . . , f2g such that the dual graph G∗ with weights c− f has no negative cycles.

Moreover: if the capacities c are integral then we can assume fi to be integral.

Proof. Analogous to the proof of Lemma 3.1 in [4].
If (G, c) admits a valid flow F then we fix 2g basis cycles C∗1 , . . . , C∗2g in the dual with

an arbitrarily chosen orientation and we take fi =
∑

e∈C∗
i
F (e). We need that C∗i crosses Ci

exactly once, and C∗i does not cross Cj if j 6= i. We claim that this choice leaves no negative
cycles in the dual with respect to weights c− f (cf. Lemma 3.1 in [4]).

If there exists f such that there are no negative cycles in the dual with respect to weights
c−f then using the shortest distance in dual (proof of Lemma 4.1 in [23]) we can get a valid
flow in the zero-demand instance. Here we use the fact that the embedding is cellular and
hence every vertex corresponds to a cycle in the dual; and the flow obtained by the shortest
distance in the dual sums up to zero on every cycle in the dual. J

We use the fact that if (G, c) admits a valid flow then there exists f such that the values
of fi are at most cmax · n, where cmax is the maximum absolute value of the capacites to
obtain the following.

I Theorem 4.2. Given a bipartite graph G together with a cellular embedding on a constant
genus surface, Perfect-Matching(Decision + Construction) in G is in NL.

I Theorem 4.3. Given a bipartite graph G together with a cellular embedding on a surface
of poly-logarithmic genus, Perfect-Matching(Decision + Construction) in G is in NC.

Proof. Note that Lemma 4.1 reduces the decision version of the Bipartite Perfect Matching
problem to the problem of solving the feasibility of a linear program in variables f1, . . . , f2g

with the linear constraints that every cycle in the dual is non-negative with respect to weights
c− f. We use ellipsoid method to solve this problem.

The crucial observation is that the separation oracle for this problem is in NC. The
separation oracle in our context is, given a weighted graph, the problem of determining
whether or not it contains a negative cycle. This problem is equivalent to checking if all
pair shortest paths are well-defined (because otherwise vertices lying on a negative cycle will
have negative shortest paths to themselves). Thus a parallelized version of Floyd-Warshall
which runs in NC even when the weights are exponential [14] is sufficient for our purpose.

The running time of the algorithm modulo the separation oracle is polynomial in the
number of variables and hence in gO(1) time. This yields an NC algorithm for the decision
version for poly-log genus graphs, given their embedding in the required form.

STACS’12

262 Improved Bounds for Bipartite Matching on Surfaces

The construction version is also in NC,: A solution to the linear program in the 2g
variables naturally translates to a point inside the Perfect Matching Polytope of G [19].
Pulling back a point from R2g to R|E(G)| can be accomplished in L via an argument similar
to the proof of Lemma 4.1. An NC procedure to obtain a Perfect Matching, given a point
inside the Perfect Matching Polytope is described in [13] (also see Section 3 in [19]). J

5 Even-Path in planar DAG is in UL

I Definition 5.1 (Red-Blue-Path). Given a directed graph with each edge colored either
Red or Blue, a Red-Blue-Path from s to t is a (simple) directed path from s to t such that
consecutive edges are of different colors. The Red-Blue-Path problem is to decide if there
is a Red-Blue-Path from s to t.

I Definition 5.2 (Even-Path). Given a directed graph and two nodes s and t, an Even-Path
from s to t is a (simple) directed path from s to t containing even number of edges. The
Even-Path problem is to decide if there is an Even-Path from s to t.

I Theorem 5.3 ([18]). Red-Blue-Path in planar DAGs is NL-complete.

In this section, we prove that the Even-Path problem (which can be viewed as a relaxation
of the Red-Blue-Path problem as a path starting with say Red edge and ending with say
Blue edge is always of even length) in planar DAG is in fact in UL. Our proof involves a
combination of two different isolation techniques that are currently available.

I Lemma 5.4. Let G be a planar DAG and u and v be any two vertices in G. Then with
respect to the weight function wA, (a) if P1 and P2 are two minimum weight Even-Paths
from u to v, then P1 ⊕ P2 (the symmetric difference between the sets of edges of P1 and
P2) divides the plane into at most two bounded regions; (b) no three minimum weight Even-
Paths from u to v share a common vertex w other than u and v, such that the path segments
between the vertices u and w and between w and v are not identical. (c) there are at most
2n4 minimum weight Even-Paths from u to v.

Proof. (a) For the sake of contradiction let C1, C2 and C3 be any three bounded regions
of P1 ⊕ P2. Let Pij be the restriction of the i-th path to the j-th region for i ∈ {1, 2} and
j ∈ {1, 2, 3}. Observe that wA(P1j) 6= wA(P2j) since Cj is a simple cycle and by Lemma
3.1 we have that wA(Cj) 6= 0. Now the parity of the lengths of the path segments P1,j and
P2,j are different since if they were the same, we could replace the higher weighted segment
with the lower weighted one and get an even length path of lesser weight. This implies that
|C1| + |C2| + |C3| is odd since each |Ci| is odd. Let P ′i =

⋃
j Pij for i ∈ {1, 2}. Therefore

either |P ′1| is odd or |P ′2|, but not both. Without loss of generality lets assume |P ′1| is odd.
For each j pick the path segment between P1j and P2j that has lesser weight to create a set
say P ′. Now wA(P ′) is strictly smaller than both wA(P ′1) and wA(P ′2). If |P ′| is odd then
replace P ′1 with P ′ and if |P ′| is even then replace P ′2 with P ′ to get a path of smaller weight
and same parity. This is a contradiction. Thus P1 ⊕ P2 has at most two bounded regions.

(b) Let P1, P2 and P3 be three minimum weight paths from u to v that share a common
vertex (say w) such that the segments of each of the three paths between the vertices u and
w and between w and v are distinct. In other words, if P ′i and P ′′i are the segments of Pi

between the vertices u and w and between w and v respectively (for i ∈ {1, 2, 3}), then {P ′i}
are pairwise non-identical and so are {P ′′i }. There exists at least two path segments between
P ′1, P ′2 and P ′3 whose lengths have the same parity. Without loss of generality assume its
P ′1 and P ′2. Now if wA(P ′1) 6= wA(P ′2) then since they have the same parity we can pick the

S. Datta, A. Gopalan, R. Kulkarni, and R. Tewari 263

lesser weight path between P ′1 and P ′2 and similarly the lesser weight path between P ′′1 and
P ′′2 and append them to get an even path of weight less than either that of P1 or P2 from
u to v. Thus we can assume wA(P ′1) = wA(P ′2). By Lemma 3.1, this implies that P ′1 ⊕ P ′2
as at least two bounded regions. Moreover since P ′′1 and P ′′2 are also not identical, therefore
P ′′1 ⊕P ′′2 has at least one one bounded region. Thus P1⊕P2 has at least 3 bounded regions,
thus contradicting part (a).

(c) Let a, b, c and d be four vertices in G and let Pa,b,c,d be the set of all minimum
weight even length paths from u to v that pass through the vertices a, b, c and d in that
order and are vertex disjoint between the vertices a and b and between the vertices c and d
respectively. Then by part (b), Pa,b,c,d will have at most 2 paths. Since the total number of
such tuples is at most n4, therefore the number of minimum weight, even length u-v paths
is bounded by 2n4. J

Constructing an auxiliary graph
Construct a directed (multi)graph G′ from G as follows: the vertex set of G′ is the vertex
set of G. An edge (vi, vj) is in G′ if and only if there exists a vertex vk in G and the edges
(vi, vk) and (vk, vj) are in G. The weight w of an edges in G′ is the sum of the weights of
the corresponding two edges in G.

Now Lemma 5.5 follows by definition of G′ and part (c) of Lemma 5.4.

I Lemma 5.5. (a) G has a directed Even-Path from u to v if and only if G′ has a directed
path from u to v; (b) the number of minimum weights paths from u to v in G′ with respect
to wA is at most 2n4.

Weighting scheme B

Our weighting scheme B is based on a well known hashing scheme based on primes, due to
Fredman, Komlós and Szemerédi [11].

I Lemma 5.6 ([11]). Let c be a constant and S be a set of n-bit integers with |S| ≤ nc. Then
there is a c′ and a c′ logn-bit prime number p so that for any x 6= y ∈ S x 6≡ y (mod p).

Hoang used this scheme to give better upper bounds for Perfect-Matching in certain
classes of graphs [15]. Aduri, Tewari and Vinodchandran showed that reachability in graphs
where the number of paths from s to any vertex is bounded by a polynomial is in UL, by
applying this hashing scheme. We use Lemma 5.6 here to define a weight function with
respect to which G′ is min-unique.

Let pi be the ith prime number. Consider the lexicographical ordering of the edges
of G′ and denote the jth edge in this ordering by ej . Define the ith weight function (for
1 ≤ i ≤ q(n) and an appropriate polynomial q(n) dictated by Lemma 5.6), wBi(ej) = 2j(
mod pi).

I Lemma 5.7 (Adapted from [1]). There exists an i ≤ q(n) such that the graph G′ with
respect to the weight function Wi = wA · n10 + wBi

is min-unique.

Proof. Let Pv be the set of minimum weight paths from s to a vertex v in G′, with respect
to wA. Then by Lemma 5.5, |Pv| is bounded by 2n4. It follows from Lemma 5.6 that
with respect to some wBi , all paths in

⋃
v Pv will have distinct weights. Therefore G′ is

min-unique with respect to Wi for some i. J

STACS’12

264 Improved Bounds for Bipartite Matching on Surfaces

For each i ∈ [q(n)], check if G′ is min-unique with respect to Wi or not. Once we have
an appropriate i, we can decide reachability in G′ in UL [27]. By Lemma 5.5 a path in G′
corresponds to an EvenPath in G and thus we have Theorem 5.8.

I Theorem 5.8. (Theorem 1.4) Even-Path in planar DAGs is in UL.

6 Open Ends

Is Neg-Cycle (Decision) in planar graphs in UL? Is Odd-Cycle in planar graphs in ⊕L?
Is Perfect-Matching (Decision) in bipartite planar graphs in coUL? Is Min-Wt-PM
in bipartite planar graphs in NL? Is Max-Matching in bipartite planar graphs in NL?

Acknowledgement

We would like to thank Prajakta Nimbhorkar for discussion in the initial stages of the work,
in particular for pointing out that the Neg-Cycle problem is in NL. We would like to
thank V. Vinochandran for pointing out references [11] and [1] which are crucially used in
the proof of Theorem 5.8. The second author has been supported by Microsoft Research
India Travel Grant to attend the conference.

References
1 Pavan Aduri, Raghunath Tewari, and N. V. Vinodchandran. On the power of unambi-

guity in logspace. Technical Report TR10-009, Electronic Colloquium on Computational
Complexity, 2010.

2 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting: Uni-
form and nonuniform upper bounds. Journal of Computer and System Sciences, 59:164–181,
1999.

3 Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar reachability
is in unambiguous log-space. ACM Trans. Comput. Theory, 1(1):1–17, 2009.

4 Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Homology flows, cohomology cuts.
In STOC, pages 273–282, 2009.

5 Ashok K. Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant depth reducibility. SIAM
Journal on Computing, 13(2):423–439, 1984.

6 Samir Datta, Raghav Kulkarni, Nutan Limaye, and Meena Mahajan. Planarity, determ-
inants, permanents, and (unique) matchings. ACM Trans. Comput. Theory, 1(3):1–20,
2010.

7 Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a perfect
matching in bipartite planar graphs. Theory of Computing Systems, 47:737–757, 2010.
10.1007/s00224-009-9204-8.

8 Samir Datta, Raghav Kulkarni, Raghunath Tewari, and N. V. Vinodchandran. Space
complexity of perfect matching in bounded genus bipartite graphs. Technical Report TR10-
079, Electronic Colloquium on Computational Complexity, 2010.

9 Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, August 2005.
10 J. Edmonds. Paths, trees and flowers. Canad. J. Math., 17:449–467, 1965.
11 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1)

worst case access time. J. ACM, 31:538–544, June 1984.
12 Anna Galluccio and Martin Loebl. On the theory of pfaffian orientations. i. perfect match-

ings and permanents. Electr. J. Comb., 6, 1999.

S. Datta, A. Gopalan, R. Kulkarni, and R. Tewari 265

13 Andrew V. Goldberg, Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Using interior-
point methods for fast parallel algorithms for bipartite matching and related problems.
SIAM J. Comput., 21(1):140–150, 1992.

14 Yijie Han, Victor Y. Pan, and John H. Reif. Efficient parallel algorithms for computing all
pair shortest paths in directed graphs. Algorithmica, 17(4):399–415, 1997.

15 Thanh Minh Hoang. On the matching problem for special graph classes. In IEEE Confer-
ence on Computational Complexity, pages 139–150, 2010.

16 Neil Immerman. Nondeterministic space is closed under complementation. SIAM J. Com-
put., 17(5):935–938, 1988.

17 P. W. Kasteleyn. Graph theory and crystal physics. Graph Theory and Theoretical Physics,
1:43–110, 1967.

18 Raghav Kulkarni. On the power of isolation in planar graphs. Technical Report TR09-024,
Electronic Colloquium on Computational Complexity, 2009.

19 Raghav Kulkarni, Meena Mahajan, and Kasturi R. Varadarajan. Some perfect match-
ings and perfect half-integral matchings in NC. Chicago Journal of Theoretical Computer
Science, 2008(4), September 2008.

20 Andrea Lapaugh and Christos Papadimitriou. The even-path problem for graphs and
digraphs. Networks Volume 14, Issue 4 , Pages 507 - 513, 1983.

21 L. Lovász and M.D. Plummer. Matching Theory, volume 29. North-Holland Publishing
Co, 1986.

22 Meena Mahajan and Kasturi R. Varadarajan. A new NC-algorithm for finding a perfect
matching in bipartite planar and small genus graphs (extended abstract). In STOC, pages
351–357, 2000.

23 Gary L. Miller and Joseph Naor. Flow in planar graphs with multiple sources and sinks.
SIAM J. Comput., 24(5):1002–1017, 1995.

24 Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. John Hopkins University Press,
2001.

25 Ketan Mulmuley, Umesh Vazirani, and Vijay Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7:105–113, 1987.

26 Zhivko Prodanov Nedev. Finding an even simple path in a directed planar graph. SIAM
Journal on Computing, Volume 29 , Issue 2, Oct 99, 685-695, 1999.

27 Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM Journal
of Computing, 29:1118–1131, 2000. An earlier version appeared in FOCS 1997, pp. 244–253.

28 Róbert Szelepcsényi. The method of forced enumeration for nondeterministic automata.
Acta Inf., 26(3):279–284, 1988.

29 Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in planar
graphs. Technical Report TR10-151, Electronic Colloquium on Computational Complexity,
2010.

30 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.

31 Vijay Vazirani. NC algorithms for computing the number of perfect matchings in k3,3–free
graphs and related problems. In Proceedings of SWAT ’88, pages 233–242, 1988.

32 Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Springer-
Verlag, 1999.

STACS’12

	Introduction
	Matching Problems in Graphs
	Matching Problems in Planar Graphs
	Matching Problems in small genus graphs
	Our Results
	Organization

	Preliminaries
	Matching Problems
	Space Complexity Classes
	Flow Terminology
	Main Lemmas from Miller and Naor MN95

	Bipartite Planar Matching: The UL Bounds
	Bipartite Perfect Matching in higher genus graphs
	Even-Path in planar DAG is in UL
	Open Ends

