
HAL Id: hal-00678183
https://hal.science/hal-00678183

Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simpler Approximation of the Maximum Asymmetric
Traveling Salesman Problem

Katarzyna Paluch, Khaled Elbassioni, Anke van Zuylen

To cite this version:
Katarzyna Paluch, Khaled Elbassioni, Anke van Zuylen. Simpler Approximation of the Maximum
Asymmetric Traveling Salesman Problem. STACS’12 (29th Symposium on Theoretical Aspects of
Computer Science), Feb 2012, Paris, France. pp.501-506. �hal-00678183�

https://hal.science/hal-00678183
https://hal.archives-ouvertes.fr

Simpler Approximation of the Maximum
Asymmetric Traveling Salesman Problem
Katarzyna Paluch∗1, Khaled Elbassioni2, and Anke van Zuylen2

1 Institute of Computer Science, University of Wroclaw
ul. Joliot-Curie 15, room 304, 50-383 Wroclaw, Poland
abraka@cs.uni.wroc.pl

2 Max Planck Institute for Informatics
Campus E 13, Saarbrücken, Germany
{elbassio,anke}@mpi-inf.mpg.de

Abstract
We give a very simple approximation algorithm for the maximum asymmetric traveling sales-
man problem. The approximation guarantee of our algorithm is 2/3, which matches the best
known approximation guarantee by Kaplan, Lewenstein, Shafrir and Sviridenko. Our algorithm
is simple to analyze, and contrary to previous approaches, which need an optimal solution to a
linear program, our algorithm is combinatorial and only uses maximum weight perfect matching
algorithm.

1998 ACM Subject Classification I.1.2 Algorithms

Keywords and phrases approximation algorithm, maximum asymmetric traveling salesman prob-
lem

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.501

1 Introduction

In this paper, we study the maximum asymmetric traveling salesman problem (MAX ATSP).
The input to the MAX ATSP is a directed complete graph G = (V,A) with edge weights
w(e) ≥ 0 for all e = (i, j) ∈ A. The objective is to find a tour of maximum weight.
This problem is known to be APX-hard [11], and research has focused on finding good
approximation algorithms for this problem. Good approximation algorithms are of particular
interest because they imply good approximations for a number of related problems. For
example, it was shown by Breslauer, Jiang and Jiang [3] that an α-approximation algorithm for
MAX ATSP implies a (7

2−
3
2α)-approximation algorithm for the shortest superstring problem;

a problem that arises in DNA sequencing and data compression. Any α-approximation
algorithm for MAX ATSP implies an algorithm with the same guarantee for the maximal
compression problem defined by Tarhio and Ukkonen [12].

The current best approximation algorithm for MAX ATSP is due to Kaplan, Lewenstein,
Shafrir and Sviridenko [5] and achieves an approximation guarantee of 2

3 . Their algorithm
needs the optimal solution of an LP relaxation of the max ATSP, which is scaled up to an
integral solution by multiplying it by the least common denominator of all variables. From
the scaled up solution, a pair of cycle covers is extracted that have a combined weight of
at least twice the weight of the optimum solution. Finally the obtained pair of cycle covers

∗ Supported by MNiSW grant number N N206 368839, 2010-2013.

© Katarzyna Paluch, Khaled Elbassioni, and Anke van Zuylen;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 501–506

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.501
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

502 Simpler Approximation of MAX ATSP

is processed using a rather complicated coloring lemma. Previous results on MAX ATSP
appeared among others in [4], [6] [1], [9]. In this paper, we give a very simple approximation
algorithm that achieves the same guarantee as the algorithm by Kaplan et al. Our algorithm is
combinatorial in nature: it constructs a certain matching instance and computes a maximum
weight matching. We then give a simple procedure that uses this matching to form three
tours, and we show that the average weight of these tours is at least 2

3 times the optimum.
Other variants of the maximum traveling salesman problem that have been considered

are among others: the maximum symmetric traveling salesman problem (MAX TSP), in
which the underlying graph is undirected - currently the best known approximation ratio
is 7

9 [10], the maximum metric symmetric traveling salesman problem, in which the edge
weights satisfy the triangle inequality - the best approximation factor is 7

8 [7], the maximum
asymmetric traveling salesman problem with triangle inequality - the best approximation
ratio is 35

44 [8].
The key idea in our approach to MAX ATSP is the following. A natural first idea that

has been very fruitful when designing an approximation algorithm for maximum traveling
salesman problems is to start with a cycle cover of maximum weight, i.e., a maximum weight
collection of edges such that each node is incident to exactly two edges (in the undirected
case) or exactly one incoming and one outgoing edge (in the directed case). Such a cycle
cover can be found in polynomial time by a reduction to maximum weight matching. Since
the optimal tour is a cycle cover, the weight of the maximum weight cycle cover is at least
the weight of the optimal tour. By removing the lightest edge from each cycle, we obtain a
collection of node disjoint paths, which can be arbitrarily connected to form a tour. For the
asymmetric case, this approach will give a 1

2 -approximation algorithm, since the cycle cover
may contain cycles of length two (2-cycles). If we could find a maximum weight cycle cover
without 2-cycles, then we would achieve a 2

3 -approximation, but, unfortunately, finding a
maximum weight cycle cover without 2-cycles is APX-hard [2].

Our key observation is the fact that we can exclude 2-cycles from the cycle cover, if we
allow the cycle cover to contain “half edges”: We split each edge (i, j) into two half edges;
the head of (i, j) (which is incident to j but not to i) and the tail of (i, j) (which is incident
to i, but not to j). A half edge has weight equal to half the weight of the original edge. Now,
for a pair of edges (i, j), (j, i), we ensure that the solution does not contain both edges, but
we do allow the solution to contain the heads of both (i, j) and (j, i) or the tails of both
(i, j) and (j, i). We show that such a cycle cover with half edges can be computed by an
appropriate reduction to a maximum weight perfect matching problem. Finally, we show
how to use the cycle cover with half edges to extract three tours with total weight at least
twice the weight of the cycle cover.

2 Cycle Covers without 2-Cycles but with Half-Edges

We begin by introducing the maximum weight cycle cover problem without 2-cycles, but
with half-edges, and showing it can be computed in polynomial time. Given a complete
directed graph G = (V,E) and weights w(e) ≥ 0 for each e ∈ E, a cycle cover is a subset C
of the edges, so that each i ∈ V has exactly one outgoing and one incoming edge in C. In
the maximum weight cycle cover problem with half-edges, we allow the solution C to contain
“only the head or only the tail” of an edge (i, j). Such a half-edge has weight 1

2w(i, j) and is
thought to be incident to only one endpoint of the edge (i, j). We introduce these half-edges
so that we can ensure that our cycle cover does not have 2-cycles. This gives rise to the
following problem:

K. Paluch, K. Elbassioni, and A. van Zuylen 503

I Definition 1. Given a directed graph G = (V,E) with edge weights w(i, j) ≥ 0 for every
(i, j) ∈ E, let G̃ = (Ṽ , Ẽ) be the graph obtained from G by replacing each (i, j) ∈ E by a
node v(i,j) and two edges (i, v(i,j)) and (v(i,j), j), each with weight 1

2w(i, j). A cycle cover
without 2-cycles but with half-edges is a subset C̃ ⊆ Ẽ such that

(i) each node in V has exactly one outgoing and one incoming edge in C̃;
(ii) for each (i, j) ∈ E, C̃ contains either zero edges from {(i, v(i,j)), (v(i,j), j), (j, v(j,i)),

(v(j,i), i)}, or it contains exactly one edge incident to i and one edge incident to j.

I Lemma 2. We can find a maximum weight cycle cover without 2-cycles but with half-edges
in polynomial time.

Proof. We reduce the problem of finding C̃ of maximum weight to a maximum weight perfect
matching problem in the following undirected graph G′:

For each node i ∈ V , we create two nodes, ini and outi. For an edge e = (i, j) ∈ E, we
create two nodes head(i,j) and tail(i,j), and we have three undirected edges
{outi, tail(i,j)}, {tail(i,j),head(i,j)} and {head(i,j), inj}. The weight of the first and third edge
is 1

2w(i, j), and the weight of the second edge is 0.
Note that a perfect matching in this graph corresponds to a cycle cover of G of the same

weight and vice versa: for each edge (i, j) of G, a perfect matching of G′ either contains
edge {tail(i,j),head(i,j)} or edges {outi, tail(i,j)}, {head(i,j), inj}. Of course, if we are only
interested in computing a cycle cover of G, then it suffices to split each node i into two: ini

and outi and connect inj and outi via an edge whenever (i, j) ∈ G and compute a perfect
matching in the thus obtained bipartite undirected graph. We will now show how to modify
G′ so that a perfect matching in G′ corresponds to a maximum weight cycle cover without
2-cycles but with half-edges.

A perfect matching in G′ defines a set of half-edges C̃ ⊆ Ẽ of the same weight that
satisfies property (i) in Definition 1, but C̃ may contain four half-edges that correspond to
a 2-cycle in G. To enforce that C̃ also satisfies property (ii), we add two additional nodes,
i{i,j} and j{i,j} for each pair of edges (i, j), (j, i). We add an edge from i{i,j} to tail(i,j) and
head(j,i), and we add an edge from j{i,j} to head(i,j) and tail(j,i). These edges all have weight
0. The fact that the additional nodes need to be matched ensures that C̃ does not contain
all four half-edges corresponding to (i, j) and (j, i).

For a pair of edges (i, j), (j, i) in G, the matching instance G′ thus has a gadget containing
10 edges. See Figure 1. We now verify that a perfect matching in G′ corresponds to a cycle

out in

tail head

head tail

outin

i j

i j

i j

(i,j) (i,j)

(j,i) (j,i)

{i,j} {i,j}

Figure 1 A gadget corresponding to a 2-cycle on vertices i and j.

STACS’12

504 Simpler Approximation of MAX ATSP

(a)

(b)

Figure 2 Possible ways of matching vertices i{i,j}, j{i,j}, head(i,j), tail(i,j), head(j,i), tail(j,i).

cover without 2-cycles but with half-edges C̃ of the same weight. If a perfect matching
M of G′ matches nodes i{i,j} and j{i,j} as shown in Figure 2(a), then for one of the edges
(i, j), (j, i), both of the corresponding half-edges are excluded from C̃ and for the other edge,
either both of the corresponding half-edges, or neither of the corresponding half-edges will be
in C̃. If nodes i{i,j} and j{i,j} are matched as in Figure 2(b), M must contain appropriately
either {outi, tail(i,j)}, {outj , tail(j,i)} or {ini,head(j,i)}, (inj ,head(i,j)), i.e., C̃ contains either
(i, v(i,j)) and (j, v(j,i)) or (v(j,i), i) and (v(i,j), j). So indeed, condition (ii) of Definition 1 is
satisfied. J

I Lemma 3. Given a graph G, let C̃ be a cycle cover without 2-cycles but with half-edges.
Then, we can construct three sets of node disjoint paths P1,P2,P3 in G, with total weight at
least twice the weight of C̃.

Proof. We use C̃ to construct a set F of directed and undirected edges with endpoints in
V , and we then decompose F into three paths. For a pair of vertices i, j, if both (i, v(i,j))
and (v(i,j), j) are in C̃, then we replace it by the edge (i, j). If both (i, v(i,j)) and (j, v(j,i)),
or (v(i,j), j) and (v(j,i), i) are in C̃, then we add undirected edge {i, j}. We think of an
undirected edge as having two tails (and no heads) in the first case, and two heads (and no
tails) in the second case. Note that it is then the case that each node is the head of one edge
and the tail of one edge in F , by property (i) of Definition 1.

We will show how to find three sets of node-disjoint paths, such that each edge (i, j) ∈ F
is in exactly two of the paths, and for an undirected edge {i, j} ∈ F , there is one path that
contains (i, j) and one path that contains (j, i). Note that the sum of the weights of these
three sets of paths is exactly equal to twice the weight of C̃.

We consider a weakly connected component in (V, F). Note that a component has at
least three nodes by property (ii) of Definition 1. If the component has no undirected edges,
then it is a directed cycle, since each node is the head of one edge and the tail of another
edge. Let F ′ be the edges in the component. We take two adjacent edges e1, e2 and make
this the first path, the second path is F ′\{e1} and the third path is F ′\{e2}.

Otherwise, if F ′ does contain undirected edges, note that (V, F ′) is a cycle if we ignore
the direction of all edges. Moreover, it is the case that the number of undirected edges in the
cycle is even and an undirected edge having two heads (resp. two tails) is followed on the
cycle by an undirected edge having two tails (resp. two heads). To see this, recall that each

K. Paluch, K. Elbassioni, and A. van Zuylen 505

A1 B1

A2
B2

A3 B3

C1 D1

C2
D2

C3 D3

E1

E2

E3

E4

E5

E6

Figure 3 E1, E2, . . . , E6 represent directed paths. To P1 we add edges on paths E1, E3, E5 as
well as edges A1, D1, B2, D2, B3, D3. To P2 we add edges on paths E2, E4, E6 as well as edges
B1, C1, A2, C2, A3, C3. To P3 we add edges on paths E1, E2, . . . , E6.

node is the head and the tail of one edge, and that undirected edges have either two heads
or two tails.

The paths to be added to P1,P2 and P3 are now constructed as follows: to P1 we add
the directed edges that point in clockwise direction and we add the undirected edges, which
we make directed by directing them in clockwise direction. To P2 we add the directed edges
that point in anticlockwise direction, and we add the undirected edges and direct them in
anticlockwise direction. Finally, we also add all directed edges from F ′ to P3. An example of
this procedure is shown in Figure 3.

There is one exception to the above construction. If the directed edges in F ′ form one
path (possibly an empty path), then at least one of the two sets P1,P2 contains a cycle. In
this case, we take one undirected edge in F ′ and reverse its direction in both P1 and P2.

Clearly, the paths are node disjoint, each directed edge is contained in two of the three
sets P1,P2,P3, and for each undirected edge {i, j}, there is one set of paths that contains
(i, j) and one set of paths that contains (j, i). J

I Corollary 4. There exists a 2
3 -approximation algorithm for max ATSP.

Proof. The optimal tour gives a set C̃ that is a cycle cover without 2-cycles but with
half-edges, if for each edge (i, j) in the optimal tour, we include (i, v(i,j)) and (v(i,j), j) in
C̃. Hence the maximum weight set C̃ has weight at least OPT , and it can be computed
in polynomial time using Lemma 2. Using Lemma 3, we can thus find three sets of node
disjoint paths, P1,P2,P3, of total weight 2OPT . We can arbitrarily connect the paths in Pi

into a tour without decreasing the weight, for i = 1, 2, 3 and hence, one of these tours has
weight at least 2

3OPT . J

Acknowledgements

The authors thank Marcin Mucha for useful comments on an earlier version of this paper.

STACS’12

506 Simpler Approximation of MAX ATSP

References
1 Markus Bläser. An 8/13-approximation algorithm for the asymmetric maximum TSP. J.

Algorithms, 50(1):23–48, 2004.
2 Markus Bläser and Bodo Manthey. Two approximation algorithms for 3-cycle covers. In

Proceedings of the 5th International Workshop on Approximation Algorithms for Combin-
atorial Optimization, volume 2462 of Lecture Notes in Computer Science, pages 40–50.
Springer, 2002.

3 Dany Breslauer, Tao Jiang, and Zhigen Jiang. Rotations of periodic strings and short
superstrings. J. Algorithms, 24(2):340–353, 1997.

4 M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for finding
a maximum weight Hamiltonian circuit. Oper. Res., 27(4):799–809, 1979.

5 Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Approximation
algorithms for asymmetric tsp by decomposing directed regular multigraphs. J. ACM,
52(4):602–626, 2005. Preliminary version appeared in FOCS’03.

6 S. Rao Kosaraju, James K. Park, and Clifford Stein. Long tours and short superstrings
(preliminary version). In Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, pages 166–177, 1994.

7 Lukasz Kowalik and Marcin Mucha. Deterministic 7/8-approximation for the metric max-
imum tsp. Theor. Comput. Sci., 410(47-49):5000–5009, 2009.

8 Lukasz Kowalik and Marcin Mucha. 35/44-approximation for asymmetric maximum tsp
with triangle inequality. Algorithmica, 59(2):240–255, 2011.

9 Moshe Lewenstein and Maxim Sviridenko. A 5/8 approximation algorithm for the maximum
asymmetric tsp. SIAM J. Discrete Math., 17(2):237–248, 2003.

10 Katarzyna E. Paluch, Marcin Mucha, and Aleksander Madry. A 7/9 - approximation
algorithm for the maximum traveling salesman problem. In APPROX-RANDOM, pages
298–311, 2009.

11 Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman problem with
distances one and two. Mathematics of Operations Research, 18:1–11, 1993.

12 Jorma Tarhio and Esko Ukkonen. A greedy approximation algorithm for constructing
shortest common superstrings. Theor. Comput. Sci., 57:131–145, 1988.

	Introduction
	Cycle Covers without 2-Cycles but with Half-Edges

