
HAL Id: hal-00678182
https://hal.science/hal-00678182

Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Playing Mastermind With Constant-Size Memory
Benjamin Doerr, Carola Winzen

To cite this version:
Benjamin Doerr, Carola Winzen. Playing Mastermind With Constant-Size Memory. STACS’12 (29th
Symposium on Theoretical Aspects of Computer Science), Feb 2012, Paris, France. pp.441-452. �hal-
00678182�

https://hal.science/hal-00678182
https://hal.archives-ouvertes.fr

Playing Mastermind With Constant-Size Memory
Benjamin Doerr1 and Carola Winzen2

1 Max-Planck-Institut für Informatik
Saarbrücken, Germany

2 Max-Planck-Institut für Informatik
Saarbrücken, Germany

Abstract
We analyze the classic board game of Mastermind with n holes and a constant number of colors.
The classic result of Chvátal (Combinatorica 3 (1983), 325–329) states that the codebreaker
can find the secret code with Θ(n/ logn) questions. We show that this bound remains valid if
the codebreaker may only store a constant number of guesses and answers. In addition to an
intrinsic interest in this question, our result also disproves a conjecture of Droste, Jansen, and
Wegener (Theory of Computing Systems 39 (2006), 525–544) on the memory-restricted black-box
complexity of the OneMax function class.

1998 ACM Subject Classification F.2.2 [Analysis of algorithm and problem complexity]: Non-
numerical Algorithms and Problems

Keywords and phrases Algorithms, Mastermind, black-box complexity, memory-restricted algo-
rithms, query complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.441

1 Introduction

The original Mastermind game is a board game for two players invented in the seventies
by Meirowitz. It has pegs of six different colors. The goal of the codebreaker, for brevity
called Paul here, is to find a color combination made up by codemaker (called Carole in
the following). He does so by guessing color combinations and receiving information on how
close this guess is to Carole’s secret code. Paul’s aim is to use as few guesses as possible.

For a more precise description, let us call the colors 1 to 6. Write [n] := {1, . . . , n} for
any n ∈ N. Carole’s secret code is a length-4 string of colors, that is, a z ∈ [6]4. In each
iteration, Paul guesses a string x ∈ [6]4 and Carole replies with a pair (eq(z, x), π(z, x)) of
numbers. The first number, eq(z, x), which is usually indicated via black answer-pegs, is
the number of positions, in which Paul’s and Carole’s string coincide. The other number,
π(z, x), usually indicated by white answer-pegs, is the number of additional pegs having
the right color, but being in the wrong position. Formally eq(z, x) := |{i ∈ [4] | zi = xi}|
and π(z, x) := maxρ∈S4 |{i ∈ [4] | zi = xρ(i)}| − eq(z, x), where S4 denotes the set of all
permutations of [4]. Paul “wins” the game if he guesses Carole’s string, that is, if Carole’s
answer is (4, 0).

We are interested in strategies for Paul that guarantee him to find the secret code with
few questions. We thus adopt a worst-case view with respect to Carole’s secret code. This is
equivalent to assuming that Carole may change her hidden string at any time as long as it
remains consistent with all previous answers (devil’s strategy).

Previous results. Mathematics and computer science literature produces a plethora
of results on the Mastermind problem. For the original game with 6 colors and 4 positions,

© Benjamin Doerr and Carola Winzen;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 441–452

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.441
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

442 Playing Mastermind With Constant-Size Memory

Knuth [8] showed that Paul needs at most four queries until being able to identify Carole’s
string (which he may query in the fifth iteration to win the game).

Chvátal [3] studies a general version of this game with k colors and n positions, that is, the
secret code is a length-n string z ∈ [k]n. Denote by d(n, k) the minimum number of guesses
that enable Paul to win the game for any secret code. Chvátal proves that for k < n1−ε,
ε > 0 an arbitrarily small constant, we have d(n, k) = O(n log k

logn−log k). More precisely, he
shows that for any ε > 0 and n sufficiently large, (2 + ε)n(1+2 log k)

logn−log k guesses chosen from
[k]n independently and uniformly at random, with high probability, suffice to distinguish
between all possible codes (that is, each secret code leads to a different sequence of answers).
Therefore, the secret code can be determined after that many guesses. This remains true if
Carole replies only with black answer-pegs, that is, if for any of Paul’s guesses x she reveals
to him only eq(z, x), the number of bits, in which her and Paul’s string coincide.

For larger values of k, the following is known. For n ≤ k ≤ n2, Chvátal proves d(n, k) ≤
2n log k+ 4n and for k = ω(n2 logn) he shows (k− 1)/n ≤ d(n, k) ≤ dk/ne+ d(n, n2). These
results have subsequently been improved. Chen, Cunha, and Homer [2] show that d(n, k) ≤
2ndlogne+2n+dk/ne+2 for k ≥ n. Goodrich [7] proves d(n, k) ≤ ndlog ke+d(2−1/k)ne+k
for arbitrary k.

For k = 2 colors, the Mastermind problem is related to the well-studied coin weighing
problem. For this reason, first results on this problem date back to years as early as 1963,
when Erdős and Rényi [6] show that d(n, 2) = Θ(n/ logn).

Concerning the computational complexity, Stuckman and Zhang [9] show that it is NP -
hard to decide whether a given sequence (x(i), (eq(i), π(i)))ti=1 of queries x(i) and answers
(eq(i), π(i)) of black and white pegs has a secret code leading to these answers, i.e., whether
there exists a string z ∈ [k]n such that eq(z, x(i)) = eq(i) and π(z, x(i)) = π(i) for all i ∈ [t].
Goodrich [7] proves that this is already NP -hard if we only ask for consistence with the
black answer-peg replies eq(i).

Our results. Originally motivated by a conjecture on black-box complexities (cf. Sec-
tion 2), we study a memory-restricted version of the Mastermind problem. Since this original
motivation asks for the case of two colors only, we restrict ourselves to the number k of colors
being constant, though clearly our methods can also be used to analyze larger numbers of
colors.

The memory-restriction can be briefly described as follows. Given a memory of size
m ∈ N, Paul can store up to m guesses and Carole’s corresponding replies. Based only on
this information, Paul decides on his next guess. After receiving Carole’s reply, based only
on the content of the memory, the current guess, and the current answer, he decides which
m out of the m + 1 strings and answers he keeps in the memory. Note that our memory
restriction means that Paul truly has no other memory, in particular, no iteration counters,
no experience that certain colors are not used, and so one. So formally Paul’s strategy
consists of a guessing strategy, which can be fully described by a mapping from m-sets of
guesses and answers to strings x ∈ [k]n, and a forgetting strategy, which maps (m+ 1)-sets
of guesses and answers to m-subsets thereof.

Clearly, a memory-restriction makes Paul’s life not easier. The O(n/ logn) strategies by
Erdős and Rényi [6] and by Chvátal [3] do use the full history of guesses and answers and
thus only work with a memory of size Θ(n/ logn). Surprisingly, this amount of memory is
not necessary. In fact, one single memory cell is sufficient.

I Theorem 1. Let k ∈ N. For all n ∈ N, Paul has a size-one memory strategy winning the
Mastermind game with k colors and n positions in O(n/ logn) guesses. This remains true
if we allow Carole to play a devil’s strategy and if Carole only reveals the number of fully
correct pegs eq(x, z) (“black answer-peg version of Mastermind”).

B. Doerr and C. Winzen 443

The bound in Theorem 1 is asymptotically tight. A lower bound of Ω(n/ logn) is already
true without memory restrictions. This follows easily from an information theoretic argument,
cf. [6] or [3]. Our result disproves a conjecture of Droste, Jansen, and Wegener [5], who
believed that a lower bound of Ω(n logn) should hold for the 2-color black answer-peg
Mastermind problem with memory-restriction one.

The proof of Theorem 1 is quite technical. For a clearer presentation of the ideas, we
first consider the size-two memory-restricted model, cf. Section 3. The proof of Theorem 1
is given in Section 4. Before going into the proofs, in the following section we sketch the
connection between Mastermind games and black-box complexities.

2 Mastermind and Black-Box Complexities

In this section, we describe the connection between the Mastermind game and black-box
complexity. The reader only interested in the Mastermind result may skip this section
without loss.

Roughly speaking, the black-box complexity of a set of functions is the number of func-
tion evaluations needed to find the optimum of an unknown member from that set. Since
problem-unspecific search heuristics such as randomized hill-climbers, evolutionary algo-
rithms, simulated annealing etc. do optimize by repeatedly generating new search points and
evaluating their objective values (“fitness”), the black-box complexity is a lower bound on
the efficiency of such general-purpose heuristics [5].

Black-box complexity. Let S be a finite set. A (randomized) algorithm following the
scheme of Algorithm 1 is called black-box optimization algorithm for functions S → R.

Algorithm 1: Scheme of a black-box algorithm for optimizing f : S → R
1 Initialization: Sample x(0) according to some probability distribution p(0) on S;
2 Query f(x(0));
3 for t = 1, 2, 3, . . . do
4 Depending on

(
(x(0), f(x(0))), . . . , (x(t−1), f(x(t−1)))

)
choose a probability

distribution p(t) on S and sample x(t) according to p(t);
5 Query f(x(t));

For such an algorithm A and a function f : S → R, let T (A, f) ∈ R ∪ {∞} be the
expected number of fitness evaluations until A queries for the first time some x ∈ arg max f .
We call T (A, f) the runtime of A for f . For a class F of functions S → R, the A-black-box
complexity of F is T (A,F) := supf∈F T (A, f), the worst-case runtime of A on F . Let A be
a class of black-box algorithms for functions S → R. Then the A-black-box complexity of
F is T (A,F) := infA∈A T (A,F). If A is the class of all black-box algorithms, we also call
T (A,F) the unrestricted black-box complexity of F .

As said, the unrestricted black-box complexity is a lower bound for the efficiency of
randomized search heuristics optimizing F . Unfortunately, often this lower bound is not
very useful. For example, Droste, Jansen, and Wegener [5] observe that the NP -complete
MaxClique problem on graphs of n vertices has a black-box complexity of only O(n2).

Black-box algorithms with bounded memory. As a possible solution to this
dilemma, Droste, Jansen, and Wegener suggest to restrict the class of algorithms con-
sidered from all black-box optimization algorithms to a reasonably large subset. A natural
restriction is to forbid the algorithm to exploit the whole history of search points evaluated.

STACS’12

444 Playing Mastermind With Constant-Size Memory

This is motivated by the fact that many heuristics, e.g., evolutionary algorithms, only store
a bounded size population of search points. Simple hill-climbers or the Metropolis algorithm
even store only one single search point.

Algorithm 2 is the scheme of a black-box algorithm with bounded memory of size µ. It is
important to note that a black-box algorithm with bounded memory is not allowed to access
any other information than the one stored in the µ pairs (x(1), f(x(1))), . . . , (x(µ), f(x(µ))),
which are currently stored in the memory and, in the selection step, also the information
provided by (x(µ+1), f(x(µ+1))). In particular, the algorithm does not have access to an
iteration counter.

Algorithm 2: Scheme of a black-box algorithm with memory of size µ for optimizing
function f : S → R

1 Initialization: M← ∅;
2 for t = 1, 2, . . . do
3 Depending (only) onM choose a probability distribution p on S and sample x(µ+1)

according to p ; //variation step
4 Query f(x(µ+1));
5 SelectM⊆M∪ {(x(µ+1), f(x(µ+1)))} of size |M| ≤ µ; //selection step

Mastermind and the OneMax function class. A test function often regarded to
analyze how the randomized search heuristic under investigation progresses in easy parts
of the search space, is the simple OneMax function OneMax : {0, 1}n → R, x 7→

∑n
i=1 xi.

Note that OneMax(x) = eq((1, . . . , 1), x) for all x ∈ {0, 1}n. In fact, for any z ∈ {0, 1}n,
eq(z, ·) yields an equivalent optimization problem. Let us denote by OneMaxn := {eq(z, ·) |
z ∈ {0, 1}n} the class of all these functions.

Due to a coupon collector effect, many classical randomized search heuristics like random-
ized local search or the (µ+ λ) evolutionary algorithm (with µ, λ constants) need Θ(n logn)
function evaluations to optimize OneMaxn.

As a moments thought reveals, black-box algorithms optimizing OneMaxn correspond
to strategies for Paul in the Mastermind game (without memory restriction) with two colors
and only black answer-pegs used. Hence the unrestricted black-box complexity of OneMaxn
is Θ(n/ logn) by the results of Erdős and Rényi [6] and Chvátal [3].

This connection was seemingly overlooked so far in the randomized search heuristics
community, where Droste, Jansen, and Wegener [5] prove an upper bound of O(n) and
later Anil and Wiegand [1] prove the asymptotically correct bound of O(n/ logn). Since
already the first bound is lower than what many randomized search heuristics achieve, Droste,
Jansen, and Wegener suggest to investigate the memory-restricted black-box complexity of
OneMaxn. They conjecture in [5, Section 6] that a memory restriction of size one leads to
a black-box complexity of order Θ(n logn).

Again, clearly, the memory-restricted black-box complexity of OneMaxn and optimal
strategies for Mastermind with two colors, black answer-pegs only, and a corresponding
memory restriction are equivalent questions. Consequently, our result can be rephrased to
saying that the black-box complexity of OneMaxn even with the memory restricted to one
is Θ(n/ logn), disproving the conjecture of Droste, Jansen, and Wegener.

B. Doerr and C. Winzen 445

3 The Mastermind Game with Memory of Size Two

Since the proof of Theorem 1 is quite technical, we give in this section a simpler proof
showing that with a memory of size two Paul can win the game using only O(n/ logn)
guesses. Already this proof contains many ingredients needed to prove Theorem 1, e.g., the
use of the random guessing strategy with limited memory, the block-wise determination of
the secret code, and the simulation of iteration counters in the memory.

Let k ≥ 2 be the number of colors used. In particular for k = 2, it will be convenient
to label the colors from 0 to k − 1. Let us denote the set of colors by C := [0..k − 1] :=
{0, 1, . . . , k − 1}. We assume that k is a constant and that the number n of positions in the
string is large, that is, all asymptotic notation is with respect to n.

I Theorem 2. Paul has a size-two memory strategy winning the black answer-peg only
Mastermind game with k colors and n positions in O(n/ logn) guesses. This remains true if
we allow Carole to play a devil’s strategy.

As many previous works, the proof of Theorem 2 heavily relies on random guessing. For
the case of k = 2 colors, already Erdős and Rényi [6] showed that there is a t ∈ Θ(n/ logn)
such that t guesses x(1), . . . , x(t) chosen from {0, 1}n independently and uniformly at random,
together with Carole’s black answer-peg answers, uniquely define the hidden code. This was
generalized by Chvátal [3] to the following result.

I Theorem 3 (from [3]). Let ε > 0, let n > n(ε) be sufficiently large and let k < n1−ε.
Let x(1), . . . , x(t) be t ≥ (2+ε)n(1+2 log k)

logn−log k samples chosen from Cn independently and uniformly
at random. Then for all z ∈ Cn, the set

Sconsistent := {y ∈ Cn | ∀i ∈ [t] : eq(y, x(i)) = eq(z, x(i))}

satisfies E[|Sconsistent|] ≤ 1 + 1/n.

Since the strategy implicit in Theorem 3 needs a memory of size Θ(n/ logn), we cannot
apply it directly in our setting. We can, however, adapt it to work on smaller portions
(“blocks”) of the secret code, and this with much less memory.

Let y ∈ Cn and let B ⊆ [n] be a block (i.e., an interval) of size s := d
√
ne. As we shall

see, by t ∈ O(s/ log s) times guessing a string obtained from y by replacing the colors in B
by randomly chosen ones (and guessing k additional reference strings), we can determine
z|B , the part of the secret code z in block B.

We can do so with a memory of size two only. We store the string obtained from y by
altering it on B (sampling string) in one cell. Note that we do not need to remember y, as we
only need to ensure that our guesses agree in the positions [n] \B. We use the other memory
cell (storage string, in the following typically denoted by x) to store the random substrings
of length s substituted into y at B, and Carole’s answers. Note that each such answer can be
encoded in binary using `n ∈ O(logn) entries of the string. Hence the t guesses and answers
can be memorized using a total number of t(s+ `n) = O(n/ logn) positions.

This approach allows us to determine s positions of z using t = O(s/ log s) guesses. Hence
we can determine the secret code z with tdn/se = O(n/ logn) guesses as desired.

In Algorithm 3 (notation used will be introduced below) we make this strategy more
precise by giving it in pseudo-code. Note, however, that this algorithm does not fully satisfy
the size-two memory restriction. The reason is that the queries do not only depend on the
current state of the memory, but also on iteration counters and, e.g. in lines 9 and 11, on the
program counter. Further below, in Algorithm 4 we shall remove this shortcoming with a
few additional technicalities, which we are happy to spare for the moment.

STACS’12

446 Playing Mastermind With Constant-Size Memory

Algorithm 3: An almost size-two memory-restricted algorithm winning the k-color
black answer-peg only Mastermind game in O(n/ logn) guesses. Remark: x denotes
the unique string inM with xn = 1 and y denotes the unique string inM with yn = 0.

1 Initialization: y ← [0 . . . 0];
2 Query eq(z, y) and updateM← {(y, eq(z, y))};
3 for i = 1 to d(n− 1)/se do
4 x← [0 . . . 0|1]; //initialization of x
5 Query eq(z, x) and updateM by adding (i = 1) or replacing (i > 1) (x, eq(z, x)) in

M;
6 for q = 0 to t+ k − 1 do
7 if q < k then y ← substitute(y,Bi, [q . . . q]) ; //reference string
8 else y ← substitute(y,Bi, r) where r ∈ C|Bi| u.a.r.; //random guess
9 Query eq(z, y) and updateM by replacing (y, eq(z, y));

10 x← [x1 . . . xp1(x)|BLOCKi(y)|binary`n
(eq(z, y))|1|0 . . . 0|1] ; //add y’s info to x

11 Query eq(z, x) and updateM by replacing (x, eq(z, x));
12 while ∆i(y) < |Bi| do
13 y ← substitute(y,Bi, w), where w ∈ Sconsistenti u.a.r.;
14 Query eq(z, y) and updateM by replacing (y, eq(z, y));

15 while eq(z, y) < n do y ← substitute(y, {n}, c), where c ∈ C u.a.r., and query
eq(z, y);

Before we argue for the correctness of Algorithm 3, let us fix the notation. For any
string x ∈ Cn we also write x = [x1 . . . xn]. To ease reading, we allow ourselves to indicate
different structural components of x by vertical bars, e.g., x = [x1 . . . xp|xp+1 . . . xn]. For
i ∈ [d(n− 1)/se] let Bi := {(i− 1)s+ 1, . . . , is} ∩ [n− 1], the positions of the i-th block. Set

BLOCKi(x) := x|Bi
:= [x(i−1)s+1 . . . xmin{is,n−1}] ,

the i-th block of x. For any string r ∈ C|Bi| we define

substitute(x,Bi, r) := [x1 . . . x(i−1)s|r|xmin{is,n−1}+1 . . . xn] ,

the string with the i-th block substituted by r. Similarly, let substitute(y, {n}, c) :=
[y1 . . . yn−1|c]. Note that we do not assign the n-th position to any of the blocks. We do so
because in Algorithms 3 and 4 we shall use that position to indicate, which one of the two
strings in the memoryM is the storage string (the unique x ∈M with xn = 1) and which
one is the sampling string (the unique string y ∈M with yn = 0).

Let p1(x) := max{i ∈ [n− 1] | xi = 1}, the largest position i < n of x with entry “1”. As
mentioned above, we encode Carole’s answers eq(z, y) ∈ [0..n] in binary, using `n := dlogne+1
positions, and we denote this binary encoding of length `n by binary`n

(eq(z, y)). By ∆i(y)
we denote the contribution of the i-th block to the value eq(z, y), i.e., ∆i(y) is the number
of positions in the i-th block, in which Paul’s guess y and Carole’s secret code z coincide.
Formally, ∆i(y) := eq(z|Bi

, y|Bi
). Lastly, let Sconsistenti be the set of strings w of length |Bi|

such that substitute(z,Bi, w) is consistent with all of Carole’s replies (formal definition
follows). We shall see below that both ∆i(y) and Sconsistenti can be computed solely from the
content of the memory cells (lines 12–14).

We now argue for the correctness of Algorithm 3. Let us consider the state of the memory
after having sampled all t random samples for the i-th block (that is, we are in lines 12–14).

B. Doerr and C. Winzen 447

We show that based on the information given in the memory, we can restore the full history
of guesses for the i-th block. To this end, first note that for any guess y done in line 9, we
used s + `n + 1 positions in x for storing its information (line 10; we add the additional
“1” at the end to ease determining via p1(x) the positions in x, which have not yet been
used for storing information). In lines 6–11 we first asked and stored k non-random guesses
xc = substitute(y,Bi, [c . . . c]) and we stored these reference strings together with Carole’s
replies eq(z, xc) =

∑`n

h=1 2h−1xc(s+`n+1)−h, c ∈ [0..k − 1]. Therefore, for j ∈ [t], the j-th
random sample is r(j) = [x(k+j−1)(s+`n+1)+1 . . . x(k+j−1)(s+`n+1)+|Bi|] and the corresponding
query was y(j) = substitute(y,Bi, r(j)). We have stored Carole’s reply to this guess in
binary, and we can infer eq(z, y(j)) =

∑`n

h=1 2h−1x(k+j)(s+`n+1)−h. This shows how to regain
the full guessing history.

Next we show how to compute the contributions ∆i(y(j)) of the entries in the i-th
block. To this end, note that the constant substrings [c . . . c] in the reference strings
xc in total contribute exactly |Bi| to the sum eq(z, x0) + . . . + eq(z, xk). Formally,∑k−1
c=0 eq([z(i−1)s+1 . . . zmin{is,n−1}], [c . . . c]) = |Bi|. Since all other positions of the sam-

pling string y are not changed during the phase, in which we determine the i-th block, we
infer that

∆i(y(j)) = eq(z, y(j))− (eq(z, x0) + . . .+ eq(z, xk)− |Bi|)/k .

Consequently, in lines 12–14, the algorithm can compute ∆i(y(j)) for all j ∈ [t]. From this it
can infer

Sconsistenti := {z̃ ∈ C|Bi| | ∀j ∈ [t] : eq(z̃, BLOCKi(y(j))) = ∆i(y(j))},

the set of possible code segments in Bi. By Theorem 3, the expected size of Sconsistenti

is bounded from above by 1 + 1/|Bi|. Thus, in lines 12–14 we need an expected number
of 1 + 1/|Bi| samples w chosen from Sconsistenti uniformly at random until we find a y =
substitute(y,Bi, w) with ∆i(y) = s (which implies that the i-th block of y coincides with
Carole’s secret code). This shows how we determine the entries of the i-th block in an
expected total number of t = O(s/ log s) guesses.

When Algorithm 3 executes line 15, all but the last entry of y coincide with Carole’s
secret code. Hence trying random colors in the n-th position finds the hidden code z with an
additional expected number of k = Θ(1) guesses.

To turn Algorithm 3 into a size-two memory-restricted one, we use the first `n entries of
x to store in binary the iteration counter i, which indicates the index of the block currently
being under consideration. This will move the storage space for the guesses and answers by
`n positions to the right. Formally, we define i(x) :=

∑`n−1
h=0 2hx`n−h. The inner for loop

needs no additional memory to be simulated, because we can learn from p1(x) how many
guesses q(x) have been queried already. More precisely, since storing each guess requires
s+ `n + 1 positions and the first `n positions are used for indicating the number of already
determined entries, we have q(x) := (p1(x)− `n)/(s+ `n + 1) .

Lastly, we need to replace the sequential queries in lines 9 and 11 of Algorithm 3 (as
this exploits information stored in the program counter). Fortunately, again we can deduce
from the memory where we stand. We define a function Part(y, x), which equals 1 if the
information of y has been added to the storage string x already and which equals 0 otherwise.

STACS’12

448 Playing Mastermind With Constant-Size Memory

Algorithm 4: A size-two memory-restricted algorithm winning the k-color black answer-
peg only Mastermind game in O(n/ logn) guesses. Remark: x denotes the unique
string inM with xn = 1 and y denotes the unique string inM with yn = 0.

1 Initialization: LetM← ∅ ; // clear memory
2 if M = ∅ then
3 y ← [0...0] ; //first reference string
4 Query eq(z, y) and updateM← {(y, eq(z, y))};
5 else if |M| = 1 then
6 x← [0...0|1] ; //initialization of storage string
7 Query eq(z, x) and updateM←M∪ {(x, eq(z, x))};
8 else if i(x) < d(n− 1)/se then
9 if x = [0 . . . 0|1] or ∆i(x)(y) = |Bi(x)| then

10 x← [binary`n
(i(x) + 1)|BLOCKi(x)+1(y)|binary`n

(eq(z, y))|1|0 . . . 0|1] ; //clear
storage string and add first reference string

11 Query eq(z, x) and updateM by replacing (x, eq(z, x));
12 else if Part(y, x) = 1 and q(x) < t+ k then
13 if q(x) < k then y ← substitute(y,Bi(x), [q(x) . . . q(x)]) ; //reference string
14 else y ← substitute(y,Bi(x), r) where r ∈ C|Bi(x)| u.a.r.; //random guess
15 Query eq(z, y) and updateM by replacing (y, eq(z, y));
16 else if Part(y, x) = 0 and ∆i(x)(y) < |Bi(x)| then
17 x← [x1 . . . xp1(x)|BLOCKi(x)(y)|binary`n

(eq(z, y))|1|0 . . . 0|1]; //add y’s info
to x

18 Query eq(z, x) and updateM by replacing (x, eq(z, x));
19 else if Part(y, x) = 1 and q(x) = t+ k then
20 y ← substitute(y,Bi(x), w) where w ∈ Sconsistenti(x) chosen u.a.r.;
21 Query eq(z, y);
22 if ∆i(x)(y) = |Bi(x)| then UpdateM by replacing (y, eq(z, y));

23 else if i(x) = d(n− 1)/se then
24 y ← substitute(y, {n}, c) where c ∈ C\{yn} u.a.r.;
25 Query eq(z, y) ;
26 Go to line 2;

That is, we set

Part(y, x) =


1, if

∑`n

i=1 2i−1xp1(x)−i = eq(z, y)
and BLOCKi(x)(y) = [xp1(x)−`n−|Bi(x)| . . . xp1(x)−`n−1]

0, otherwise .

Note that Part(y, x) = 1 indicates that the information of y has been stored in x also in the
case that our current sample equals the previous one. This is no problem as then the current
guess does not give any new information. Hence the use of Part modifies the algorithm to
sample t random guesses without immediate repitition. Note that the probability to sample
the same string r ∈ C|Bi(x)| twice in a row is at most 1/2 (if the last block consists only of
one position and k = 2) and is typically much smaller. Hence, occurrences of this event have
no influence on the asymptotic number of guesses needed to win the game.

B. Doerr and C. Winzen 449

With these modifications, Algorithm 3 becomes the truly size-two memory-restricted
Algorithm 4.

4 Memory of Size One: Proof of Theorem 1

Compared to the situation in Section 3, Paul faces two additional challenges in the size-one
memory-restricted setting. The obvious one is that he has less memory available, in particular,
after a large part of the code has been determined and needs to be stored. The more subtle
one is that he cannot any longer query a search point and then store whatever is worth
storing in the second memory cell. With one memory cell, all he can do is to guess a new
string and keep or forget it.

Before we give a proof of Theorem 1, let us discuss a linear time winning strategy, i.e., a
strategy that allows Paul to find Carole’s secret code in a linear expected number of guesses
using one memory cell only. This linear time strategy will be used in the proof of Theorem 1
to determine the last Θ(n/ logn) entries of the secret code.

The basic idea of the linear time strategy is to test each position one by one, from left
to right. Since we have just one memory cell, we need to indicate in this one string, which
entries have been determined already. We do so by keeping all not yet determined entries at
one identical value different from the one of the entry determined last. To this end, let us for
all x ∈ Cn define

tn(x) := min{i ∈ [n] | ∀j ∈ {i, . . . , n} : xj = xi} ,

the tail number of x. The following lemma describes the linear time strategy.

I Lemma 4. Let x ∈ Cn. Furthermore, let us denote Carole’s secret code by z ∈ Cn. Let us
assume that the first tn(x)− 1 entries of z have been determined (i.e., Carole can no longer
change the entries of [z1 . . . ztn(x)−1]). Further assume that xi = zi for all i < tn(x) and that
M = {(x, eq(z, x))} is the current content of the memory cell.

There is a size-one memory-restricted guessing procedure LinAlg that—even if Carole
plays a devil’s strategy—after an expected constant number of successive calls modifies the
memory such that the string y now in the memory satisfies yi = zi for all i ≤ tn(x) and
tn(y) = tn(x) + 1. Every call of LinAlg requires only one guess.

Interestingly, for the definition of LinAlg, we need to distinguish between the cases of
k = 2 and k ≥ 3 colors, as certain arguments exploit particular properties of these cases. We
claim that Algorithm 5 certifies Lemma 4 for k = 2 colors. Here we denote, for all i ∈ [n], by
eni the i-th unit vector of length n.

Algorithm 5: Routine LinAlg for k = 2 colors
1 Assumption: The string x ∈ {0, 1}n in the memory satisfies tn(x) < n and xi = zi
for all i < tn(x);

2 Sample y ∈ {x⊕ entn(x), x⊕
∑n
i=tn(x)+1 e

n
i } uniformly at random;

3 Query eq(z, y);
4 if y = x⊕ entn(x) then
5 if eq(z, y) > eq(z, x) then M← {(y, eq(z, y))};
6 else
7 if eq(z, x) + eq(z, y) = n+ tn(x) then M← {(y, eq(z, y))};

STACS’12

450 Playing Mastermind With Constant-Size Memory

Algorithm 6: A size-one memory algorithm winning the k-color Mastermind game in
O(n/ logn) guesses.

1 Initialization: LetM← ∅;
2 if M = ∅ then
3 x← [0 . . . 0];
4 Query eq(z, x) and updateM← {(x, eq(z, x))};
5 if ∃c ∈ C : suffix(x) = [cc] ∧ tn(x) ≤ ` then
6 LinAlg ; //find the first ` entries [z1 . . . z`]
7 else if ∃c ∈ C : suffix(x) = [cc] ∧ tn(x) = `+ 1 then
8 x← [0 . . . 0︸ ︷︷ ︸

`

| 0 . . . 0︸ ︷︷ ︸
bs

|x1 . . . x`| 0 . . . 0︸ ︷︷ ︸
n−(2`+bs+`s+2)

|binary`s
(1)|01]; //copy prefix (which

coincides with the hidden code)
9 Query eq(z, x) and updateM by replacing (x, eq(z, x));

10 else if suffix(x) = [01] ∧ i(x) ≤ b ∧ q(x) < t+ k then
11 Apply Sampling;
12 else if suffix(x) = [01] ∧ i(x) ≤ b ∧ q(x) = t+ k then
13 Apply OptimizeBlock;
14 else if suffix(x) = [01] ∧ i(x) = b+ 1 then
15 x← [x`+bs+s+1 . . . x2`+bs+s+1|x`+1 . . . x`+bs|c . . . c] with c ∈ C\{x`+bs} u.a.r.;
16 Query eq(z, x) and updateM by replacing (x, eq(z, x)); //prepares x for LinAlg

17 else if ∃c ∈ C : suffix(x) = [cc] ∧ `+ bs < tn(x) ≤ n− 2 then
18 LinAlg;
19 else if ∃c ∈ C : suffix(x) = [cc] ∧ tn(x) = n− 1 then
20 Sample y ∈ {[x1 . . . xn−2|p] | p ∈ C2}\{x} uniformly at random;
21 Query eq(z, y);
22 if eq(z, y) = n then M← {(y, eq(z, y))} ; //hidden code found
23 Go to line 2;

A proof of Lemma 4 and the algorithm LinAlg for k ≥ 3 colors can be found in [4].
Building on LinAlg, we can now present Paul’s strategy for the one-memory setting and
thus prove Theorem 1.

The very rough overview of Paul’s strategy is the following. He determines the first
n − Θ(n/ logn) positions using random guessing, where he manages to store the random
substrings and Carole’s answers in the yet undetermined part of his one string in the memory.
As in the proof of Theorem 2, he does so by iteratively determining blocks of length s := d

√
ne.

Then, using the linear time strategy from Lemma 4, he determines the missing entries in
O(n/ logn) guesses.

To distinguish between the sampling and the linear time phase, Paul uses the last two
entries suffix(x) := [xn−1xn] of his string x. He has suffix(x) = [01], when he is in the
random guessing phase, and he uses suffix(x) = [cc] for some c ∈ C to indicate that he
applies calls to LinAlg. Once Paul has determined all but the last two entries (visible from
tn(x) = n− 1), he simply needs to sample uniformly at random from the set of all k2 − 1
remaining possible strings. This clearly finds z in a constant expected number of queries.

B. Doerr and C. Winzen 451

The total expected number of guesses can be bounded by

number of blocks de-
termined in phase 1︷ ︸︸ ︷
n−2
s (1−Θ(log−1 n))

queries needed to deter-
mine any such block︷ ︸︸ ︷

O(s
log s) +

queries needed in
the 2nd phase︷ ︸︸ ︷

O(n
logn) +

phase 3︷︸︸︷
O(1) = O(n

logn) .

A non-trivial part is the random guessing phase. As in the proof of Theorem 2, after
guessing t+ k strings, we want to be able to regain the full guessing history. If we simply
stored the random substring and Carole’s reply in some unused part of x, then this changed
memory would influence Carole’s next answer and we would be unable to deduce information
on the next guess from it. We solve this difficulty as follows. We store Carole’s latest reply
(i.e., value eq(z, x) currently in the memory) and we sample new (random) substrings for the
current block at the same time. Here we store the value eq(z, x) in a part of x for which we
know the entries of Carole’s hidden code. By this, we can separate in Carole’s next answer
the influence of the just stored information from the one of the random guess. The precise
description of this Sampling substrategy can be found in [4].

To gain this storage space where we know the hidden code, we start with another phase,
Phase 0, in which we apply the LinAlg procedure O(logn) times until we found the first
` := `n + 1 positions of z (cf. Lemma 4).

The pseudo-code for the size-one memory-restricted strategy winning the Mastermind
game with k colors in O(n/ logn) guesses is given in Algorithm 6. Similar to the notation in
the proof of Theorem 2, we denote for any h ∈ [0..n] the binary encoding of length `n by
binary`n

(h) and we denote the binary encoding of length `s := dlog se+ 1 by binary`s
(h).

The current block of interest i(x) is encoded in positions {n− `s− 1, . . . , n− 2}, i.e., we have
i(x) :=

∑`s−1
h=0 2hxn−2−h and Bi(x) := {`+ (i(x)− 1)s+ 1, . . . , `+ i(x)s}. The total number

of blocks which we determine via random guessing is b := bn−2
s (1− K

logn)c for some suitable
large constant K. The number of random guesses for each block is t := d(2 + ε) s(1+2 log k)

log s−log k e
for some arbitrarily small constant ε > 0. Lastly, the actual number of already sampled
guesses for block Bi(x) is denoted by q(x). As discussed in the proof of Theorem 2, q(x) can
be computed via the largest position p1 < n− 2− `s with xp1 = 1. Note that the Sampling
routine described above implicitly updates the counter q(x) by changing the p1 value. The
OptimizeBlock routine determines BLOCKi(x)(z), stores it in Bi(x) and increases the block
counter i(x) by one.

To end this proof sketch, let us show that our memory cell has enough storage capacity to
store all t+ k substrings, the values binary`n

(eq(z, x)), and the values binary`s
(∆i(v)(v)).

We have n− 2− (2`+ bs) = n− n(1−K/ logn)−O(logn) = Kn/ logn−O(logn) positions
for storing information and the total number of positions needed for storing the t+ k sample
informations is

(t+ k)(s+O(logn)) = Θ(n/ logn) + o(n/ logn) < Kn/ logn−O(logn)

for constant, but sufficiently large K.

Acknowledgment

Carola Winzen is a recipient of the Google Europe Fellowship in Randomized Algorithms.
This research is supported in part by this Google Fellowship.

STACS’12

452 Playing Mastermind With Constant-Size Memory

References
1 Gautham Anil and R. Paul Wiegand. Black-box search by elimination of fitness func-

tions. In Proceedings of the 10th ACM Workshop on Foundations of Genetic Algorithms
(FOGA’09), pages 67–78. ACM, 2009.

2 Zhixiang Chen, Carlos Cunha, and Steven Homer. Finding a hidden code by asking ques-
tions. In Proceedings of the 2nd Annual International Conference on Computing and Com-
binatorics (COCOON’96), pages 50–55. Springer, 1996.

3 Vasek Chvátal. Mastermind. Combinatorica, 3:325–329, 1983.
4 Benjamin Doerr and Carola Winzen. Playing mastermind with constant-size memory.

CoRR, abs/1110.3619, 2011.
5 Stefan Droste, Thomas Jansen, and Ingo Wegener. Upper and lower bounds for randomized

search heuristics in black-box optimization. Theory of Computing Systems, 39:525–544,
2006.

6 Paul Erdős and Alfréd Rényi. On two problems of information theory. Magyar Tud. Akad.
Mat. Kutató Int. Közl., 8:229–243, 1963.

7 Michael T. Goodrich. On the algorithmic complexity of the mastermind game with black-
peg results. Information Processing Letters, 109:675–678, 2009.

8 Donald E. Knuth. The computer as a master mind. Journal of Recreational Mathematics,
9:1–5, 1977.

9 Jeff Stuckman and Guo-Qiang Zhang. Mastermind is NP-complete. INFOCOMP Journal
of Computer Science, 5:25–28, 2006.

	Introduction
	Mastermind and Black-Box Complexities
	The Mastermind Game with Memory of Size Two
	Memory of Size One: Proof of Theorem 1

