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Abstract
Motivated by a desire to understand the computational complexity of counting constraint satis-
faction problems (counting CSPs), particularly the complexity of approximation, we study func-
tional clones of functions on the Boolean domain, which are analogous to the familiar relational
clones constituting Post’s lattice. One of these clones is the collection of log-supermodular (lsm)
functions, which turns out to play a significant role in classifying counting CSPs. In our study,
we assume that non-negative unary functions (weights) are available. Given this, we prove that
there are no functional clones lying strictly between the clone of lsm functions and the total clone
(containing all functions). Thus, any counting CSP that contains a single nontrivial non-lsm func-
tion is computationally as hard as any problem in #P. Furthermore, any non-trivial functional
clone (in a sense that will be made precise below) contains the binary function “implies”. As a
consequence, all non-trivial counting CSPs (with non-negative unary weights assumed to be avail-
able) are computationally at least as difficult as #BIS, the problem of counting independent sets
in a bipartite graph. There is empirical evidence that #BIS is hard to solve, even approximately.
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1 Introduction

In the classical setting, a constraint satisfaction problem CSP(Γ ) is specified by a finite
domain D and constraint language Γ , which is a set of relations of varying arities over D.
An instance of CSP(Γ ) is a set of n variables taking values in D, together with a set of
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constraints on those variables. Each constraint is an a-ary relation R from Γ applied to
an a-tuple of variables, the scope of the constraint. Thus, constraint satisfaction problems
(CSPs) may be viewed as generalised satisfiability problems, among which usual satisfiability
is a very special case.

The relational clone 〈Γ 〉R generated by a set Γ of relations is the set of relations that are
expressible, in some precise sense termed “pp-definability”, in terms of the base relations Γ .
It turns out that if two sets of relations Γ and Γ ′ generate the same relational clone
〈Γ 〉R = 〈Γ ′〉R, then the computational complexity of the corresponding CSPs, CSP(Γ ) and
CSP(Γ ′), are the same. Relational clones have played a key role in the development of the
complexity theory of CSPs: instead of considering all sets of relations Γ , one only needs to
consider the ones that are relational clones. For an introduction to the algebraic theory of
relational clones, see, for example, the expository chapter of Cohen and Jeavons [7].

Recently, there has been considerable interest in the computational complexity of counting
CSPs. Here, the goal is to count the number of solutions rather than merely to decide if
one exists. In fact, in order to encompass the computation of partition functions of models
from statistical physics and other generating functions, it is reasonable to consider weighted
sums, which can be expressed by replacing the relations in the constraint language by real- or
complex-valued functions. Then the weight of an assignment is the product of the function
values corresponding to that assignment, while the value of the CSP instance itself is the
sum of the weights of all assignments. If I is an instance of such a counting CSP then we
denote this weighted sum by Z(I), and call it the “partition function of I” by analogy with
the concept in statistical physics. For a finite set of functions Γ we are interested in the
problem #CSP(Γ ): given an instance I using only functions from Γ , output Z(I).

Our first goal (see §2) is to answer the question: what is the analogue of pp-definability,
and hence of relational clones, in the context of (weighted) counting CSPs (#CSPs), and
what insight does it provide into the computational complexity of these problems? At a
high level, the answer to the first question is clear. View the relations in Γ as predicates. A
relation is pp-definable over Γ in the classical sense if it can be expressed as the projection
of a conjunction of predicates in Γ . (Projection is the operation of existential quantification
over a certain subset of variables.) In order to adapt this concept to the counting setting, we
should replace a conjunction of relations by a product of functions, and replace existential
quantification (projection) by summation. However, in defining a counting analogue of
pp-definability, a number of detailed decisions have to be made, and a number of delicate
issues faced.

We call our proposed analogue of pp-definability “ppsω-definability”, and our analogue
of relational clone “functional clone”. There is at least one proposal in the literature for
extending pp-definability to the algebraic/functional setting, that of Yamakami [18]. However,
ppsω-definability is more liberal than the corresponding notion in [18], and leads to a more
inclusive functional clone. Our notion of ppsω-definability includes a limiting operation.
Without this limit, a functional clone may contain arbitrarily close approximations to a
function F of interest, without including F itself.

Aside from a desire for tidiness, there is a good empirical motivation for introducing limits.
Just as pp-definability is closely related to polynomial-time reductions between classical
CSPs, so is ppsω-definability related to approximation-preserving reductions between counting
CSPs. (Lemma 9 is a precise statement of this connection.) Many approximation-preserving
reductions in the literature (for example, [12]) are based not on a fixed “gadget” but
on sequences of increasingly-large gadgets that come arbitrarily close to some property
without actually attaining it. Our notion of ppsω-definability seems exactly to capture this
phenomenon.
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304 Log-supermodular functions

Our second, more concrete goal (see §3–§5) is to explore the role of log-supermodular
functions in the classification of functional clones, and hence in the complexity of approxim-
ating #CSPs. We restrict attention to the Boolean situation; that is, the domain is {0, 1}
and the allowed functions are of the form {0, 1}k → R≥0 for some integer k. A function with
Boolean domain is said to be log-supermodular if the logarithm of it is supermodular. It
is a non-trivial fact (Lemma 5) that the set LSM of log-supermodular functions is in fact
a functional clone. We examine the landscape of functional clones under the assumption
that non-negative unary functions (weights) are available. (Such an assumption is quite
usual in related work, such as Cai, Lu and Xia’s work on classifying “Holant∗” problems [6].)
Adding non-negative weights makes the classification of functional clones more tractable,
though we are still unable to provide a complete inventory. On the other hand, adding all
unary weights leads to a less rich (and more pessimistic) landscape [18]: negative weights
introduce cancellation, which tends to drive approximate counting CSPs in the direction of
intractability.

One particularly simple functional clone is the one generated by disequality. (Following
convention, we allow equality for free, in addition to the non-negative weights mentioned
earlier.) A counting CSP derived from this clone is trivial to solve exactly, as the partition
function factorises. Let us say that functions from this clone are of “product form”. Our main
result (Theorem 8) is that any clone that contains a function F that is not of product form
necessarily contains IMP, the binary (i.e., arity-2) function that takes the value 1, unless its
first argument is 1 and its second is 0, when it takes the value 0. (The complexity-theoretic
consequence of this will be discussed presently.) Furthermore (also Theorem 8), if F is not
log-supermodular (and is not in the clone generated by disequality), then the clone contains
all functions. Note that a large part of the functional clone landscape — below the clone
generated by IMP and above LSM — is very simple. If there is a complex landscape of
functional clones it must lie between the functional clone generated by IMP and the class of
functions LSM.

We present also an efficient version of ppsω-definability, and a corresponding notion of
functional clone, that allows complexity-theoretical consequences to be deduced (Theorem 10).
This is the third contribution of the paper (see §6). The last three authors, together with
Greenhill [10], studied the complexity of counting problems expressible using IMP. They
identified a class of natural problems of this form (which has since grown considerably)
which are interreducible via approximation-preserving reduction, and for which no efficient
approximation algorithm (FPRAS) is known. They conjectured that problems in this class
do not admit an FPRAS. If this is so then #CSP(F) is computationally intractable (in the
presence of nonnegative weights) whenever F contains a function F that is not of product
form. Furthermore, if F is not log-supermodular, then the counting problem #CSP(F) is
universal for Boolean counting CSPs and hence is provably NP-hard to approximate.

Although we focus on approximation of the partition functions of (weighted) #CSPs in
this paper, there is of course an extensive literature on exact computation; see, e.g., Cai,
Chen and Lu [5] and prior work.

2 Functional clones

Let (R,+,×) be any subsemiring of (C,+,×), where C denotes the complex numbers, and
D a finite domain. For n ∈ N, denote by Un the set of all functions Dn → R; also denote
by U = U0 ∪ U1 ∪ U2 ∪ · · · the set of functions of all arities. Suppose F ⊆ U is some
collection of functions, V = {v1, . . . , vn} is a set of variables and x : {v1, . . . , vn} → D



A.A. Bulatov, M. Dyer, L.A. Goldberg, and M. Jerrum 305

is an assignment to those variables. An atomic formula has the form ϕ = G(vi1 , . . . , via)
where G ∈ F , a = a(G) is the arity of G, and (vi1 , vi2 , . . . , via) ∈ V a is a scope. Note that
repeated variables are allowed. The function Fϕ : Dn → R represented by the atomic formula
ϕ = G(vi1 , . . . , via) is just Fϕ(x) = G(x(vi1), . . . ,x(via)) = G(xi1 , . . . , xia), where from now
on we write xj = x(vj).

A pps-formula (“primitive product summation formula”) is a summation of a product
of atomic formulas. A pps-formula ψ over F in variables V ′ = {v1, . . . , vn+m} has the form
ψ =

∑
vn+1,...,vn+m

∏s
j=1 ϕj , where ϕj are all atomic formulas over F in the variables V ′.

(The variables V are free, and the others, V ′ \ V , are bound.) The formula ψ specifies a
function Fψ : Dn → R in the following way:

Fψ(x) =
∑

y∈Dm

s∏
j=1

Fϕj
(x,y), (1)

where x and y are assignments x : {v1, . . . , vn} → D and y : {vn+1, . . . , vn+m} → D. The
functional clone 〈F〉 generated by F is the set of all functions in U that can be represented by
a pps-formula over F∪{EQ} where EQ is the binary equality function defined by EQ(x, x) = 1
and EQ(x, y) = 0 for x 6= y. We refer to the pps-formula as an “implementation” of the
function. We use the following lemma.

I Lemma 1. If G ∈ 〈F〉 then 〈F , G〉 = 〈F〉.

To make the next step we suppose that R is dense-in-itself with respect to the usual
topology on C. Then we say that an a-ary function F is ppsω-definable over F if there exists
a finite subset SF of F ∪ {EQ} such that, for every ε > 0, there is an a-ary function F̂

specified by a pps-formula over SF with ‖F̂ − F‖∞ = maxx∈Da |F̂ (x)− F (x)| < ε.

Denote the set of functions in U that are ppsω-definable over F ∪ {EQ} by 〈F〉ω; we
call this the ppsω-definable functional clone generated by F . Note that functions in 〈F〉ω
are determined only by finite subsets of F . Also, although some functions taking values
outside R (including partial functions, which are undefined, or infinite, on some inputs) may
be ppsω-definable over F ∪ {EQ}, 〈F〉ω is defined to include only functions in U . The class
of functions U in operation at any time will be clear from the context.

That completes the setup for expressibility. In order to deduce complexity results, we
need an effective version of 〈F〉ω. We say that a function F is efficiently ppsω-definable over
F if there is a finite subset SF of F , and a TMMF,SF

with the following property: on input
ε > 0,MF,SF

computes a pps-formula ψ over SF such that Fψ has the same arity as F and
‖Fψ − F‖∞ < ε. The running time ofMF,SF

is at most a polynomial in log ε−1. Denote
the set of functions in U that are efficiently ppsω-definable over F ∪ {EQ} by 〈F〉ω,p; we
call this the efficient ppsω-definable functional clone generated by F , The following useful
observation is immediate from the definition of 〈F〉ω,p.
I Observation 2. Suppose F ∈ 〈F〉ω,p. Then there is a finite SF ⊆ F such that F ∈ 〈SF 〉ω,p.

Since pps-formulas are defined using sums of products (with just one level of each), we
need to check that functions that are ppsω-definable in terms of functions that are themselves
ppsω-definable over F are actually directly ppsω-definable over F . The following lemma
ensures that this is the case.

I Lemma 3. If G ∈ 〈F〉ω [or G ∈ 〈F〉ω,p] then 〈F , G〉ω = 〈F〉ω [〈F , G〉ω,p = 〈F〉ω,p].

Lemma 3 may have wider applications in the study of approximate counting problems.
Often, approximation-preserving reductions between counting problems are complicated
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306 Log-supermodular functions

to describe and difficult to analyse, owing to the need to track error estimates. Lemma 3
suggests breaking the reduction into smaller steps, and analysing each of them independently.
This assumes, of course, that the reductions are ppsω-definable, but that often seems to be
the case in practice.

3 Relational Clones and Non-negative functions

A function F ∈ U is a Boolean function if its range is contained in {0, 1}. F encodes a
relation R as follows: x is in the relation R iff F (x) = 1. We will not distinguish between
relations and the Boolean functions that define them. Suppose that R ⊆ U is a set of
Boolean functions/relations. A pp-formula over R is an existentially quantified product of
atomic formulas. More precisely, a pp-formula ψ over R in variables V ′ = {v1, . . . , vn+m}
has the form ψ = ∃ vn+1, . . . , vn+m

∧s
j=1 ϕj , where ϕj are all atomic formulas over R in the

variables V ′. As before, the variables V = {v1, . . . , vn} are called “free”, and the others,
V ′ \ V , are called “bound”. The formula ψ specifies a Boolean function Rψ : Dn → {0, 1} in
the following way. Rψ(x) = 1 if there is a vector y ∈ Dm such that

∧s
j=1 Rϕj (x,y) evaluates

to “1”, where x and y are assignments x : {v1, . . . , vn} → D and y : {vn+1, . . . , vn+m} → D;
Rψ(x) = 0 otherwise. We refer to the pp-formula as an “implementation” of Rψ.

A relational clone (often called a “co-clone”) is a set of Boolean relations containing the
equality relation and closed under finite Cartesian products, projections, and identification of
variables. A basis [9] for the relational clone I is a set R of Boolean relations such that the
relations in I are exactly the relations that can be implemented with a pp-formula over R.
Every relational clone has such a basis.

For every set R of Boolean relations, let 〈R〉R denote the set of relations that can
be represented by a pp-formula over R ∪ {EQ}. It is well-known that if R ∈ 〈R〉R then
〈R ∪ {R}〉R = 〈R〉R Thus, 〈R〉R is in fact a relational clone with basis R.

A basis R for a relational clone 〈R〉R is called a “plain basis” [9, Definition 1] if every
member of 〈R〉R is definable by a CNF(R)-formula (a pp-formula over R with no ∃).

For most of this paper, we restrict attention to the Boolean domain D = {0, 1} and to
the codomain R = R≥0 of non-negative real numbers. For n ∈ N, denote by Bn the set of
all functions {0, 1}n → R≥0; also denote by B = B0 ∪ B1 ∪ B2 ∪ · · · the set of functions of
all arities. The advantage of working with the Boolean domain is (i) that it comes with a
well-developed theory of relational clones, and (ii) the concept of log-supermodular function
makes sense (see §4). As explained in the introduction, the advantage of working with
non-negative real numbers is that we thereby forbid cancellation, and potentially obtain a
more nuanced expressibility/complexity landscape.

Given a function F ∈ B, let RF be the function corresponding to the relation underlying F .
That is, RF (x) = 0 if F (x) = 0 and RF (x) = 1 if F (x) > 0. The following straightforward
lemma will be useful.

I Lemma 4. Suppose F ⊆ B. Then 〈{RF | F ∈ F}〉R = {RF | F ∈ 〈F〉}.

4 Log-supermodular functions

A function F ∈ Bn is log-supermodular (lsm) if F (x ∨ y)F (x ∧ y) ≥ F (x)F (y) for all
x,y ∈ {0, 1}n. The terminology is justified by the observation that F is lsm if and only if
f = lnF is supermodular, where ln 0 is treated as −∞, a formal entity that is operated on
in the obvious way. We denote by LSM ⊂ B the class of all lsm functions. The second part
of our main result (Theorem 8) in some sense says that, in terms of expressivity, everything
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of interest takes place in the class LSM. The class LSM fits naturally into our study of
expressibility because of the following closure property: functions that are ppsω-definable
from lsm functions are lsm.

I Lemma 5. If F ⊆ LSM is any set of lsm functions then 〈F〉ω ⊆ LSM.

Proof. The only nontrivial step is to show that if G ∈ Bn+m is lsm then so is the function
G′ ∈ Bn defined by G′(x) =

∑
y∈{0,1}m G(x,y). It is enough to prove the claim for

m = 1, as the result for general m follows by induction. Suppose a′, b′ ∈ {0, 1}n, and
let A = {(a′, 0), (a′, 1)} and B = {(b′, 0), (b′, 1)}. We extend G to subsets of {0, 1}n+1

by letting G(Z) =
∑

z∈Z G(z) for all Z ⊆ {0, 1}n+1. Note that G′(a′) = G(A) and
G′(b′) = G(B). Denote by A ∨ B and A ∧ B the sets A ∨ B = {a ∨ b : a ∈ A and b ∈ B}
and A ∧ B = {a ∧ b : a ∈ A and b ∈ B}. Note that G′(a′ ∨ b′) = G(A ∨ B) and
G′(a′ ∧ b′) = G(A ∧ B). Since G is lsm, we know that G(a)G(b) ≤ G(a ∨ b)G(a ∧ b) for
all a, b ∈ {0, 1}n+1. Thus, applying the Ahlswede-Daykin “Four-functions Theorem” [1,
Theorem 1] with α = β = γ = δ = G,

G′(a′)G′(b′) = G(A)G(B) ≤ G(A ∨B)G(A ∧B) = G′(a′ ∨ b′)G′(a′ ∧ b′).

As a′, b′ ∈ {0, 1}n were arbitrary, G′ is lsm. More details are in the full version [4]. J

An important example of an lsm function is the 0,1-function “implies”, with IMP(1, 0) = 0
and IMP(x, y) = 1 for all other x and y. We also think of this as a binary relation
IMP = {(0, 0), (0, 1), (1, 1)}. Complexity-theoretic issues will be treated in detail in §6.
However, it may be helpful to give a pointer here to the importance of IMP in the study of
approximate counting problems.

The problem #BIS is that of counting independent sets in a bipartite graph. Dyer et
al. [10] exhibited a class of counting problems, including #BIS, which are interreducible
via approximation-preserving reductions. Further natural problems have been shown to lie
in this class, which appears to be of intermediate complexity between counting problems
that are tractable (i.e., admitting a polynomial-time approximation algorithm) and those
that are NP-hard to approximate. We will see in due course (Theorem 10) that #BIS and
#CSP(IMP) are interreducible via approximation-preserving reductions, and hence are of
equivalent difficulty.

We know from Lemma 5 that 〈IMP,B1〉ω ⊆ LSM. It is an open question whether the
inclusion is strict. A related question is whether LSM = 〈F〉ω for any finite set F of lsm
functions. A similar question has been investigated by Živný et al. [19] in this context of
optimisation problems, where summation is replaced by maximisation or minimisation.

5 The main result

Since we want to be able to derive computational results, we now restrict attention to
functions whose co-domains are restricted to efficiently-computable real numbers. A real
number is polynomial-time computable if the first n bits of its binary expansion can be
computed in time polynomial in n. Let Rp denote the set of non-negative real numbers
that are polynomial-time computable. For n ∈ N, denote by Bpn the set of all functions
{0, 1}n → Rp; also denote by Bp = Bp0 ∪ B

p
1 ∪ B

p
2 ∪ · · · the set of functions of all arities.

I Remark. If F ⊆ Bp then real numbers appearing as function values must be polynomial-
time computable. This is a stronger requirement than the efficiently approximable real
numbers defined in [13], but it results in a more uniform treatment of limits when we discuss
efficient ppsω-definability using these functions.
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308 Log-supermodular functions

5.1 Pinnings and modular functions
Let δ0 be the unary function with δ0(0) = 1 and δ0(1) = 0 and let δ1 be the unary function
with δ1(0) = 0 and δ1(1) = 1.

If n ≥ 2 then a 2-pinning of a function F ∈ Bn is a function

Gi,j(x1, x2) = F (c1, . . . , ci−1, x1, ci+1, . . . , cj−1, x2, cj , . . . , cn),

where i, j ∈ {1, . . . , n}, i 6= j, and each ck is in {0, 1}. Clearly, every 2-pinning of F is in
〈F,Bp1〉, since the constants ck can be implemented using the functions δ0 and δ1.

We say that a function F ∈ Bn is log-modular if f = lnF is modular, ie., F (x∨ y)F (x∧
y) = F (x)F (y) for all x,y ∈ {0, 1}n.

We will use the following fact about 2-pinnings of lsm and log-modular functions. This
follows directly from [15, Theorem 44.1] for the supermodular case, but Schrijver’s proof also
applies to the modular case. The lemma is originally due to Topkis [16].

I Lemma 6 (Topkis). Let F be a function from {0, 1}n to R>0. F is lsm iff every 2-pinning
of F is lsm. F is log-modular iff every 2-pinning of F is log-modular.

5.2 Binary functions
Recall that EQ is the binary relation EQ = {(0, 0), (1, 1)}. (We used the name “EQ” to denote
the equivalent binary function as well.) Denote by OR, NEQ, and NAND the binary relations
OR = {(0, 1), (1, 0), (1, 1)}, NEQ = {(0, 1), (1, 0)}, and NAND = {(0, 0), (0, 1), (1, 0)}.

I Lemma 7. Let F ∈ Bp2 . Assuming F (0, 1) ≥ F (1, 0),
(i) if F (0, 0)F (1, 1) = F (0, 1)F (1, 0), then 〈F,Bp1〉ω,p = 〈Bp1〉ω,p;
(ii) if RF = EQ, then 〈F,Bp1〉ω,p = 〈Bp1〉ω,p;
(iii) if RF = NEQ, then 〈F,Bp1〉ω,p = 〈NEQ,Bp1〉ω,p;
(iv) if IMP ⊆ RF and F (0, 0)F (1, 1) > F (0, 1)F (1, 0), then 〈F,Bp1〉ω,p = 〈IMP,Bp1〉ω,p;
(v) otherwise, 〈F,Bp1〉ω,p = 〈OR,Bp1〉ω,p = Bp.

I Remark. From Lemma 7, we see that IMP does not really occupy a special position in
〈IMP,Bp1〉ω,p, in the sense that there are other function F with 〈F,Bp1〉ω,p = 〈IMP,Bp1〉ω,p.
Similarly, OR does not occupy a special position in 〈OR,Bp1〉ω,p. Nevertheless, it is useful to
label the classes this way, and we will do so.
I Remark. From the proof of Lemma 7, we have the following inclusions between the four
classes involved. 〈Bp1〉ω,p ⊆ 〈NEQ,Bp1〉ω,p ⊆ 〈OR,Bp1〉ω,p and 〈Bp1〉ω,p ⊆ 〈IMP,Bp1〉ω,p ⊆
〈OR,Bp1〉ω,p. In fact, 〈NEQ,Bp1〉ω,p and 〈IMP,Bp1〉ω,p are incomparable, and hence all the
inclusions are actually strict. For one non-inclusion, note the clone 〈IMP,Bp1〉ω,p contains
only lsm functions, and hence does not contain NEQ. For the other, we claim that arity-2
functions in the clone 〈NEQ,Bp1〉ω,p are of one of three forms — U1(x)U2(y), U(x)EQ(x, y)
or U(x)NEQ(x, y) — and then observe that IMP matches none of these.

5.3 Functional clones on 2-element set
I Theorem 8. Suppose F ∈ Bp.

If F /∈ 〈NEQ,Bp1〉 then IMP ∈ 〈F,Bp1〉ω,p, and hence 〈IMP,Bp1〉ω,p ⊆ 〈F,B
p
1〉ω,p

If, in addition, F /∈ LSM then 〈F,Bp1〉ω,p = Bp.

The non-effective version of the theorem — with B,B1 replacing Bp,Bp1 , and 〈·〉ω replacing
〈·〉ω,p — also holds.
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Proof. We start with the first part of the theorem, for which the aim is to show that either
IMP ∈ 〈F,Bp1〉ω,p or F ∈ 〈NEQ,Bp1〉. Let C be the relational clone 〈RF , δ0, δ1〉R. Since
{RF , δ0, δ1} ⊆ {RF ′ | F ′ ∈ {F} ∪ Bp1}, C ⊆ 〈RF ′ | F ′ ∈ {F} ∪ B

p
1〉R, so by Lemma 4,

C ⊆ {RF ′ | F ′ ∈ 〈F,Bp1〉}.
First, suppose IMP ∈ C. Then 〈F,Bp1〉ω,p contains a function F ′ with RF ′ = IMP. The

function F ′ falls into parts (iv) or (v) of Lemma 7, so by this lemma, 〈F,Bp1〉ω,p is either
〈IMP,Bp1〉ω,p or 〈OR,Bp1〉ω,p. Either way, 〈F,Bp1〉ω,p contains IMP (as noted in Remark at
the end of Section 5.2). Similarly, if OR ∈ C or NAND ∈ C then IMP ∈ 〈F,Bp1〉ω,p.

We now consider the possibilities. If RF is not affine, then [8, Lemma 5.30] shows that
one of IMP, OR and NAND is in C. This is also proved in [11, Lemma 15].

In fact, the set of all relational clones (also called “co-clones”) is well understood. These
are listed in [9, Table 2], which gives a plain basis for each relational clone. A graph illustrating
the subset inclusions between the relational clones, called Post’s lattice, is depicted in [2,
Figure 2]. This graph is reproduced in the full version [4, Figure 1]. The relational clones
are the vertices of the graph. A downwards edge from one clone to another indicates that
the lower clone is a subset of the higher one. For example, since there is a path (in this
case, an edge) from ID1 down to IR2 in Post’s lattice, we deduce that IR2 ⊂ ID1. We will
require bases for only 3 relational clones: IR2, ID1, and IL2; their plain bases are {EQ, δ0, δ1},
{EQ,NEQ, δ0, δ1}, and {(x1 ⊕ . . .⊕ xk = c) | k ∈ N, c ∈ {0, 1}}, respectively.

If RF is affine then the relations in C are given by linear equations, so C is either the
relational clone IL2 (whose plain basis is the set of all Boolean linear equations) or C is some
subset of IL2, in which case it is below IL2 in [4, Figure 1].

Now, EQ, δ0 and δ1 are in C. The relational clone containing these relations (and nothing
else) is IR2, so C is a (not necessarily proper) superset of IR2. Thus, C is (not necessarily
strictly) above IR2 in [4, Figure 1]. From the figure, it is clear that the only possibilities are
that C is one of the relational clones IL2, ID1 and IR2.

Now IR2 ⊂ ID1 and the plain basis of ID1 is {EQ,NEQ, δ0, δ1}. Therefore if C = IR2 or
C = ID1, then RF is definable by a CNF formula over {EQ,NEQ, δ0, δ1}.

Suppose that F (x) has arity n. To avoid trivialities, suppose that RF is not the empty
relation. Suppose that ψ(v1, . . . , vn) is a CNF formula over {EQ,NEQ, δ0, δ1} implementing
the relation Rψ = RF .

Let V = {v1, . . . , vn}. Let ψi be the projection of ψ onto variable vi. ψi is one of the three
unary relations {(0)}, {(1)}, and {(0), (1)}. Let V ′ = {vi ∈ V | ψi = {(0), (1)}}. For vi ∈ V ′
and vj ∈ V ′, let ψi,j be the projection of ψ onto variables vi and vj . ψi,j is a binary relation.
As is easily seen, of the 16 possible binary relations, the only ones that can occur are EQ,
NEQ and {0, 1}2. (See the full version [4] for details.) We define an equivalence relation ∼
on V ′ in which vi ∼ vj iff ψi,j ∈ {EQ,NEQ}. Let V ′′ contain exactly one variable from each
equivalence class in V ′. Let k = |V ′′|. For convenience, we will assume V ′′ = {v1, . . . , vk}.

Now, for every assignment x : {v1, . . . , vk} → {0, 1} there is exactly one assignment
y : {vk+1, . . . , vn} → {0, 1} such that RF (x,y) = 1. Let σ(x) be this assignment y. Now,
define the arity-k function G by G(x) = F (x, σ(x)). Note that

G(x) =
∑

y∈{0,1}n−k

F (x,y), (2)

where y is an assignment y : {vk+1, . . . , vn} → {0, 1}. By construction, G(x) is a strictly
positive function. Also, from (2), G ∈ 〈F,Bp1〉ω,p. We finish with two cases.

Case 1. Every 2-pinning of G is log-modular. Then G is also log-modular, by Lemma 6.
This means (see, for example, [3, Proposition 24]) that g = lnG is a linear function
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of x1, . . . , xk and ¬x1, . . . ,¬xk so G ∈ 〈NEQ,Bp1〉. (For example, if g = a1x1 + a2x2 +
a3¬x3 then G can be written as G(x1, x2, x3) =

∑
y3
f1(x1)f2(x2)f3(y3)NEQ(x3, y3), where

fi(x) = exp(aix) is a function in Bp1 .) Since F (x,y) = RF (x,y)G(x), we conclude that
F ∈ 〈NEQ,Bp1〉.

Case 2. There is a 2-pinning G′ of G that is not log-modular. Since G is strictly positive,
so is G′. Since G ∈ 〈F,Bp1〉ω,p, so is G′. By Lemma 7, (parts (iv) or (v)), IMP ∈ 〈G′,Bp1〉ω,p.
By Lemma 3, IMP ∈ 〈F,Bp1〉ω,p.

Finally, we consider the case in which C = IL2. Let ⊕3 be the relation {(0, 0, 0), (0, 1, 1),
(1, 0, 1), (1, 1, 0)} containing all triples whose Boolean sums are 0. From the plain basis of
IL2, we see that the relation ⊕3 is in C, so 〈F,Bp1〉 contains a function F ′ with RF ′ = ⊕3.
Let F ′′ be the symmetrisation of F ′ implemented by

F ′′(x, y, z) = F ′(x, y, z)F ′(x, z, y)F ′(y, x, z)F ′(y, z, x)F ′(z, x, y)F ′(z, y, z).

Now let µ0 = F ′′(0, 0, 0) and µ2 = F ′′(0, 1, 1). Let U be the unary function with U(0) = µ
−1/3
0

and U(1) = µ
1/6
0 µ

−1/2
2 . Note that since F ∈ Bp, the appropriate roots of µ0 and µ2

are efficiently computable, so U ∈ Bp1 . Now ⊕3(x, y, z) = U(x)U(y)U(z)F ′′(x, y, z), so
⊕3 ∈ 〈F,Bp1〉. Finally, let U ′ be the unary function defined by U ′(0) = 1 and U ′(1) = 2 and
let G(x, z) =

∑
y ⊕3(x, y, z)U ′(y). Note that G(0, 0) = G(1, 1) = 1 and G(0, 1) = G(1, 0) = 2.

By Lemma 1, G is in 〈F,Bp1〉. But by Lemma 7, IMP ∈ 〈G,Bp1〉ω,p so by Lemma 3,
IMP ∈ 〈F,Bp1〉ω,p.

We now prove Part 2 of the theorem. Suppose that F is not lsm and that F /∈
〈NEQ,Bp1〉 so, by Part 1 of the theorem, we have IMP ∈ 〈F,Bp1〉ω,p. Let H(x1, x2) =∑
y1,y2

IMP(y1, x1)IMP(y1, x2)IMP(x1, y2)IMP(x2, y2). Note that H(0, 0) = H(1, 1) = 2
and H(0, 1) = H(1, 0) = 1. Now for any integer k, let

Hk(x1, . . . , xn) =
∑

y1,...,yn

F (y1, . . . , yn)
n∏
i=1

H(xi, yi)k.

By construction, Hk is strictly positive. Also, as k gets large, Hk(x1, . . . , xn) gets closer
and closer to 2knF (x1, . . . , xn). Thus, for sufficiently large k, Hk is not lsm. By Lemma 1,
H ∈ 〈F,Bp1〉ω,p so Hk ∈ 〈F,Bp1〉ω,p. Applying Lemma 6 to Hk, there is a binary function
F1 ∈ 〈F,Bp1〉 that is not lsm so F1(0, 0)F1(1, 1) < F1(0, 1)F1(1, 0). By Parts (iii) and (v) of
Lemma 7, we either have NEQ ∈ 〈F,Bp1〉 or OR ∈ 〈F,Bp1〉. In the latter case, we are finished
by (v) of Lemma 7. In the former case, we are also finished since OR ∈ 〈IMP,NEQ〉— details
are given in the full version [4]. J

6 Complexity-theoretic consequences

In order to explore the computational consequences of Theorem 8, we need to recall some
definitions from computational complexity, specifically relating to approximate counting
problems. For contextual material and proofs of any unsubstantiated claims made below,
please refer to [10].

For our purposes, a counting problem is a function Π from instances w (encoded as a
word over some alphabet Σ) to a number Π(w) ∈ R≥0. For example, w might encode an
instance I of a counting CSP problem #CSP(Γ ), in which case Π(w) would be the partition
function Z(I) associated with I. A randomised approximation scheme (RAS) for Π is a
randomised algorithm that takes an instance w and returns an approximation Y to Π(w).
The approximation scheme has a parameter ε > 0 which specifies the error tolerance. Since
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the algorithm is randomised, the output Y is a random variable depending on the “coin
tosses” made by the algorithm. We require that, for every instance w and every ε > 0,
Pr
[
e−εΠ(w) ≤ Y ≤ eεΠ(w)

]
≥ 3/4. The RAS is said to be a fully polynomial randomised

approximation scheme, or FPRAS, if it runs in time bounded by a polynomial in |w| (the
length of the word w) and ε−1. See Mitzenmacher and Upfal [14, Definition 10.2].

Suppose that Π1 and Π2 are functions from Σ∗ to R≥0. An “approximation-preserving
reduction” (AP-reduction) [10] from Π1 to Π2 gives a way to turn an FPRAS for Π2
into an FPRAS for Π1. Specifically, an AP-reduction from Π1 to Π2 is a randomised
algorithm A for computing Π1 using an oracle1 for Π2. The algorithm A takes as input a
pair (w, ε) ∈ Σ∗ × (0, 1), and satisfies the following three conditions: (i) every oracle call
made by A is of the form (v, δ), where v ∈ Σ∗ is an instance of Π2, and 0 < δ < 1 is an
error bound satisfying δ−1 ≤ poly(|w|, ε−1); (ii) the algorithm A meets the specification for
being a randomised approximation scheme for Π1 (as described above) whenever the oracle
meets the specification for being a randomised approximation scheme for Π2; and (iii) the
run-time of A is polynomial in |w| and ε−1. Note that the class of functions computable by
an FPRAS is closed under AP-reducibility. Informally, AP-reducibility is the most liberal
notion of reduction meeting this requirement. If an AP-reduction from Π1 to Π2 exists
we write Π1 ≤AP Π2. If Π1 ≤AP Π2 and Π2 ≤AP Π1 then we say that Π1 and Π2 are
AP-interreducible, and write Π1 =AP Π2.

A word of warning about terminology. Subsequent to [10] the notation ≤AP has been
used to denote a different type of approximation-preserving reduction which applies to
optimisation problems. We will not study optimisation problems in this paper, so hopefully
this will not cause confusion.

The complexity of approximating Boolean #CSPs in the unweighted case (i.e., where
the functions in Γ have codomain {0, 1}) was earlier studied by the final three authors [11].
Two counting problems played a special role there, and in earlier work in the complexity of
approximate counting [10]. They also play a key role here.

Name #SAT
Instance A Boolean formula ϕ in conjunctive normal form.
Output The number of satisfying assignments of ϕ.

Name #BIS
Instance A bipartite graph B.
Output The number of independent sets in B.

An FPRAS for #SAT would, in particular, have to decide with high probability between
a formula having some satisfying assignments or having none. Thus #SAT cannot have an
FPRAS unless NP = RP.2 The same is true of any problem to which #SAT is AP-reducible.
As far as we are aware, the complexity of approximating #BIS does not relate to any of
the standard complexity theoretic assumptions, such as NP 6= RP. Nevertheless, there is
increasing empirical evidence that no FPRAS for #BIS exists, and we adopt this as a working
hypothesis. Of course, this hypothesis implies that no #BIS-hard problem (problem to
which #BIS is AP-reducible) admits an FPRAS. Finally, here is a precise statement of the

1 The reader who is not familiar with oracle Turing machines can just think of this as an imaginary
(unwritten) subroutine for computing Π2.

2 The supposed FPRAS would provide a polynomial-time decision procedure for satisfiability with two-
sided error; however, there is a standard trick for converting two-sided error to the one-sided error
demanded by the definition of RP [17, Thm 10.5.9].
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computational task we are interested in. A (weighted) #CSP problem is parameterised by a
finite subset F of Bp and defined as follows.

Name #CSP(F)
Instance A pps-formula ψ consisting of a product of m atomic F-formulas over n free

variables x. (Thus, ψ has no bound variables.)
Output The value

∑
x∈{0,1}n Fψ(x) where Fψ is the function defined by that formula.

Officially, the input size |w| is the length of the encoding of the instance. However, we
shall take the size of a #CSP(F) instance to be n + m, where n is the number of (free)
variables and m is the number of constraints (atomic formulas). This is acceptable, as we
are only concerned to measure the input size within a polynomial factor; moreover, we
have restricted Γ to be finite, thereby avoiding the issue of how to the encode constraint
functions F . We typically denote an instance of #CSP(F) by I and the output by Z(I); by
analogy with systems in statistical physics we refer to Z(I) as the partition function.

Aside from simplifying the representation of problem instances, there is another, more
important reason for decreeing that F is finite, namely, that it allows us to prove the following
basic lemma relating functional clones and computational complexity. It is, of course, based
on a similar result for classical decision CSPs.

I Lemma 9. Suppose F ⊆ Bp is finite. If F ∈ 〈F〉ω,p then #CSP(F,F) ≤AP #CSP(F)

Proof. Let k be the arity of F . LetM be a TM which, on input ε′ > 0, computes a k-ary
pps-formula ψ over F ∪ EQ such that ‖Fψ − F‖∞ < ε′. Consider an input (I, ε) where I
is an instance of #CSP(F,F) and ε is an accuracy parameter. The key idea of the proof is
to construct an instance I ′ of #CSP(F) by replacing each F -constraint in I with the set of
constraints and extra (bound) variables in the formula ψ that is output byM with input ε′.
After choosing an appropriate ε′ the proof can be completed by a fairly straightforward
computation (see the full version [4]). J

I Theorem 10. Suppose F is a finite subset of Bp.

If F ⊆ 〈NEQ,Bp1〉 then, for any finite S ⊆ Bp1 , there is an FPRAS for #CSP(F , S).
Otherwise,

There is a finite subset S of Bp1 such that #BIS ≤AP #CSP(F , S).
If there is a function F ∈ F such that F /∈ LSM then there is a finite subset S of Bp1
such that #SAT =AP #CSP(F , S).

I Example 11. Let F ∈ Bp2 be the function defined by F (0, 0) = F (1, 1) = λ and F (0, 1) =
F (1, 0) = 1, where λ > 1. Then, by Theorem 10, #CSP(F, S) is #BIS-hard, for some set S
of unary weights. (This counting CSP is also #BIS-easy.) Note that #CSP(F, S) is nothing
other than the ferromagnetic Ising model with an applied field. So we recover, with no effort,
the main result of Goldberg and Jerrum’s investigation of this model [12].

I Example 12. If F is as before, but λ ∈ (0, 1), then F /∈ LSM and Theorem 10 tells us that
#CSP(F, S) is #SAT-hard, for some set S of unary weights. This is a restatement of the
well-known fact that the partition function of an antiferromagnetic Ising model is hard to
compute, even approximately.
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