
HAL Id: hal-00678172
https://hal.science/hal-00678172

Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

13/9-approximation for Graphic TSP
Marcin Mucha

To cite this version:
Marcin Mucha. 13/9-approximation for Graphic TSP. STACS’12 (29th Symposium on Theoretical
Aspects of Computer Science), Feb 2012, Paris, France. pp.30-41. �hal-00678172�

https://hal.science/hal-00678172
https://hal.archives-ouvertes.fr

13
9 -approximation for Graphic TSP∗

Marcin Mucha1

1 Institute of Informatics, University of Warsaw, mucha@mimuw.edu.pl

Abstract
The Travelling Salesman Problem is one of the most fundamental and most studied problems
in approximation algorithms. For more than 30 years, the best algorithm known for general
metrics has been Christofides’s algorithm with approximation factor of 3

2 , even though the so-
called Held-Karp LP relaxation of the problem is conjectured to have the integrality gap of only
4
3 . Very recently, significant progress has been made for the important special case of graphic
metrics, first by Oveis Gharan et al. [3], and then by Mömke and Svensson [8]. In this paper,
we provide an improved analysis of the approach presented in [8] yielding a bound of 13

9 on the
approximation factor, as well as a bound of 19

12 + ε for any ε > 0 for a more general Travelling
Salesman Path Problem in graphic metrics.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases approximation algorithms, travelling salesman problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.30

1 Introduction and related work

The Travelling Salesman Problem (TSP) is one the most fundamental and most studied
problems in combinatorial optimization, and aproximation algorithms in particular. In
the most standard version of the problem, we are given a metric (V, d) and the goal is to
find a closed tour that visits each point of V exactly once and has minimum total cost,
as measured by d. This problem is APX-hard, and the best known approximation factor
of 3

2 was obtained by Christofides [1] more than thirty years ago. However, the so-called
Held-Karp LP relaxation of TSP is conjectured to have an integrality gap of 4

3 . It is known
to have a gap at least that big, however the best known upper bound [9] for the gap is given
by Christofides’s algorithm and equal to 3

2 .
In a more general version of the problem, called the Travelling Salesman Path Problem

(TSPP), in addition to a metric (V, d) we are also given two points s, t ∈ V and the goal is to
find a path from s to t visiting each point exactly once, except if s and t are the same point
in which case it can be visited twice (this is when TSPP reduces to TSP). For this problem,
the best approximation algorithm known is that of Hoogeveen [7] with approximation factor
of 5

3 . However, the Held-Karp relaxation of TSPP is conjectured to have an integrality gap
of 3

2 .
One of the natural directions of attacking these problems is to consider special cases

and several attempts of this nature has been made. The most interesting one is the graphic
TSP/TSPP, where we assume that the given metric is the shortest path metric of an undirected
graph. Equivalently, in graphic TSP we are given an undirected graph G = (V,E) and we
need to find a shortest tour that visits each vertex at least once. Yet another formulation

∗ This work was partially supported by the Polish Ministry of Science grant N206 355636 and by the
ERC StD project PAAl no. 259515

© Marcin Mucha;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 30–41

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.30
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Mucha 31

would ask for a minimum size Eulerian multigraph spanning V and only using edges of G.
Similar formulations apply to the graphic TSPP case. The reason why these special cases
are very interesting is that they seem to include the difficult inputs of TSP/TSPP. Not only
are they APX-hard (see [5]), but also the standard examples showing that the Held-Karp
relaxation has a gap of at least 4

3 in the TSP case and 3
2 in the TSPP case, are in fact graphic

metrics.
Very recently, significant progress has been made in approximating the graphic TSP and

TSPP. First, Oveis Gharan et al. [3] gave an algorithm with an approximation factor 3
2 − ε

for graphic TSP. Following that, Mömke and Svensson [8] obtained a significantly better
approximation factor of 14(

√
2−1)

12
√

2−13 ≈ 1.461 for graphic TSP, as well as factor 3−
√

2 + ε ≈
1.586+ε for graphic TSPP, for any ε > 0. Their approach uses matchings in a truly ingenious
way. Whereas most earlier approaches (including that of Christofides [1] as well as Oveis
Gharan et al. [3]) add edges of a matching to a spanning tree to make it Eulerian, the new
approach is based on adding and removing the matching edges. This process is guided by a
so-called removable pairing of edges which essentially encodes the information on which edges
can be simultanously removed from the graph without disconnecting it. A large removable
pairing of edges is found by computing a minimum cost circulation in a certain auxiliary
flow network, and the bounds on the cost of this circulation translate into bounds on the
size of the resulting TSP tour/path.

1.1 Our results
In this paper we present an improved analysis of the cost of the circulation used in the
construction of the TSP tour/path. Our results imply a bound of 13

9 ≈ 1.444 on the
approximation factor for the graphic TSP, as well as a 19

12 + ε ≈ 1.583 + ε bound for the
graphic TSPP, for any ε > 0. The circulation used in [8] consists of two parts: the “core”
part based on an extreme optimal solution to the Held-Karp relaxation of TSP, and the
“correction” part that adds enough flow to the core part to make it feasible. We improve
bounds on costs of both part, in particular we show that the second part is in a sense
free. As for the first part, similarly to the original proof of Mömke and Svensson, our proof
exploits its knapsack-like structure. However, we use the 2-dimensional knapsack problem in
our analysis, instead of the standard knapsack problem. We also provide a supplementary
essentially matching lower bound on the cost of the core part, which means that any further
progress on bounding that cost has to take into account more than just the knapsack-like
structure of the circulation.

1.2 Organization of the paper
In the next section we present previous results relevant to the contributions of this paper. In
particular we recall key definitions and theorems of Mömke and Svensson [8]. In Section 3
we present the improved upper bound on the cost of the core part of the circulation, as well
as an essentially matching lower bound. In Section 4 we prove that the correction part of
the circulation is in a sense free. Finally, in Section 5 we apply the results of the previous
sections to obtain improved approximation algorithms for graphic TSP and TSPP.

2 Preliminaries

In this section we review some standard results concerning TSP/TSPP approximation and
recall the parts of the work of Mömke and Svensson [8] relevant to the contributions of

STACS’12

32 13
9 -approximation for Graphic TSP

this paper. Note that large parts of the material presented in [8] are omitted entirely or
collapsed to a single theorem statement. A reader interested in a more detailed and complete
exposition is advised to read the original paper instead.

2.1 Held-Karp Relaxation and the Algorithm of Christofides
The Held-Karp relaxation (or subtour elimination LP) for graphic TSP on graph G = (V,E)
can be formulated as follows (see [6, 4, 8] for details on equivalence between different
formulations):

min
∑
e∈E

xe subject to x(δ(S)) ≥ 2 for ∅ 6= S ⊂ V, where xe ≥ 0.

Here δ(S) denotes the set of all edges between S and V \S for any S ⊆ V , and x(F) denotes∑
e∈F xe for any F ⊆ E. We will refer to this LP as LP (G) and denote the value of any of

its optimal solutions by OPTLP (G).
The approximation ratio of the classic 3

2 -approximation algorithm for metric TSP due to
Christofides [1] is in fact related to OPTLP (G) as follows:

I Theorem 2.1 (Shmoys, Williamson [9]). The cost of the solution produced by the algorithm
of Christofides on a graph G is bounded by n+OPTLP (G)/2, and so its approximation factor
is at most n+OPTLP (G)/2

OPTLP (G) .

The Held-Karp relaxation can be generalized to the graphic TSPP in a straightforward
manner. Suppose we want to solve the problem for a graph G = (V,E) and endpoints s, t.
Let Φ = {S ⊆ V : |{s, t} ∩ S| = 1}. Then the relaxation can be written as

min
∑

e∈E xe

subject to x(δ(S)) ≥ 2 for S 6∈ Φ
x(δ(S)) ≥ 1 for S ∈ Φ

xe ≥ 0 for e ∈ E

We denote this generalized program by LP (G, s, t) and its optimum value by OPTLP (G, s, t).
It is clear that OPTLP (G, v, v) = OPTLP (G) for any v ∈ V .

Let G′ = (V,E ∪ {e′}), where e′ = {s, t}. From any feasible solution to LP (G, s, t) we
can obtain a feasible solution to LP (G′) by adding 1 to xe′ . Therefore

I Fact 2.2. OPTLP (G, s, t) ≥ OPTLP (G′)− 1.

2.2 Reduction to Minimum Cost Circulation
The authors of [8] use the optimal solution of LP (G) to construct a low cost circulation in a
certain auxiliary flow network. This circulation is then used to produce a small TSP tour for
G. We will now describe the construction of the flow network and the relationship between
the cost of the circulation and the size of the TSP tour.

Let us start with the following reduction

I Lemma 2.3 (Lemma 2.1 and Lemma 2.1(generalized) of Mömke and Svensson [8]). If there
exists a polynomial time algorithm that for any 2-vertex connected graph G returns a graphic
TSP solution of cost at most r · OPTLP (G), then there exists an algorithm that does the
same for any connected graph. Similarly, if there exists a polynomial time algorithm that for
any 2-vertex connected graph G and its two vertices s, t returns a graphic TSPP solution of
cost at most r ·OPTLP (G, s, t), then there exists an algorithm that does the same for any
connected graph.

M. Mucha 33

We will henceforth assume that the graphs we work with are all 2-vertex-connected. Let G
be such graph. We now construct a certain auxiliary flow network corresponding to G.

Let T be a DFS spanning tree of G with an arbitrary root vertex r. Direct all edges of T
(called tree-edges) away from the root, and all other edges (called back-edges) towards the
root. Let ~G be the resulting directed graph, and let ~T be its subgraph corresponding to T .
Where neccessary to avoid confusion, we will use the name arcs (and tree-arcs and back-arcs)
for the edges of this directed graph. The flow network is obtained from ~G by replacing some
of its vertices with gadgets, as described below.

Let v be any non-root vertex of ~G having l children: w1, . . . , wl in T . We introduce l
new vertices v1, . . . , vl and replace the tree-arc (v, wj) by tree-arcs (v, vj) and (vj , wj) for
j = 1, . . . , l. We also redirect to vj all the back-arcs leaving the subtree rooted by wj and
entering v. We will call the new vertices and the root in-vertices and the remaining vertices
out-vertices. We will also denote the set of all in-vertices by I. Notice that all the back-arcs
go from out-vertices to in-vertices, and that each in-vertex has exactly one outgoing edge.

We assign lower bounds (demands) and upper bounds (capacities) as well as costs to arcs.
The demands of the tree-arcs are 1 and the demands of the back-arcs are 0. The capacities of
all arcs are∞. Finally the cost of any circulation f is defined to be

∑
v∈I max(f(B(v))−1, 0),

where B(v) is the set of incoming arcs of v. This basically means that the cost is 0 for
tree-arcs and 1 for back-arcs, except that for every in-vertex the first unit of circulation is
free. The circulation network described above will be denoted C(G,T). For any circulation
C, we will use |C| to denote its cost as described above.

It is worth noting that the cost function of C(G,T) can be simulated using the usual
fixed-cost edges by introducing an extra vertex v′ for each in-vertex v, redirecting all in-arcs
of v to v′ and putting two arcs from v′ to v: one with capacity of 1 and cost 0, and the other
with capacity ∞ and cost 1. For simplicity of presentation however, we will use the simpler
network with a slighly unusual cost function.

Also note that the edges of C(G,T) minus the incoming tree edges of the in-vertices are
in 1-to-1 correspondance with the edges of G. Similarly, all vertices of C(G,T) except for
the new in-vertices correspond to the vertices of the original graph. We will often use the
same symbol to denote both edges or both vertices.

The main technical tool of [8] is given by the following theorem:

I Theorem 2.4 (Lemma 4.1 of [8]). Let G be a 2-vertex connected graph, let T be a DFS
tree of G, and let C∗ be a circulation in C(G,T) of cost |C∗|. Then there exists a spanning
Eulerian multigraph H in G with at most 4

3n+ 2
3 |C
∗| − 2

3 edges. In particular, this means
that there exists a TSP tour in the shortest path metric of G with the same cost.

and its generalized version

I Theorem 2.5 (Lemma 4.1(generalized) of [8]). Let G = (V,E) be a 2-vertex connected
graph and s, t its two vertices, and let G′ = (V,E ∪ {e′}) where e′ = {s, t}. Let T be a
DFS tree of G′ and let C∗ be a circulation in C(G′, T) of cost |C∗|. Then there exists
a spanning multigraph H in G, that has an Eulerian path between s and t with at most
4
3n+ 2

3 |C
∗| − 2

3 + distG(s, t) edges. In particular, this means that there exists a TSP path
between s and t in the shortest path metric of G with the same cost.

I Remark. The above theorem is not just a rewording of the generalized version of Lemma
4.1 from [8]. In our version C∗ is a circulation in C(G′, T) and not C(G,T). Note however,
that in the proof of Theorem 1.2 of [8] the authors are in fact using the version above, and
provide arguments for why it is correct.

STACS’12

34 13
9 -approximation for Graphic TSP

In order to be able to apply Theorem 2.4 and Theorem 2.5, the authors of [8] use the
optimal solution of LP (G) to define a circulation f in C(G,T) as follows. Let G = (V,E)
be a graph, and let E′ = {e ∈ E : x∗e > 0}, where x∗ is an extreme optimal solution of
LP (G). Let G′ = (V,E′). It is clear that x∗ is also an optimal solution for LP (G′), so an
r-approximate TSP tour with respect to OPTLP (G′) is also r-approximate with respect to
OPTLP (G). Therefore, we can always assume that E′ = E. The reason why this assumption
is useful is given by the following theorem.

I Theorem 2.6 (Cornuejols, Fonlupt, Naddef [2]). For any graph G, the support of any
extreme optimal solution to LP (G) has size at most 2n− 1.

Thus, we can assume that |E| ≤ 2n − 1. Moreover, we can assume that G is 2-vertex
connected because of Lemma 2.3.

Let T used in the construction of C(G,T) be the tree resulting from always following the
edge e with the highest value of x∗e. We construct a circulation f in C(G,T) as a sum of two
ciculations: f ′ and f ′′. The ciculation f ′ corresponds to sending, for each back-arc a, flow of
size min(x∗a, 1) along the unique cycle formed by a and some tree-arcs. The circulation f ′′ is
defined in a way that guarantees that f = f ′ + f ′′ satisfies all the lower bounds. Let v be
an out-vertex and w an in-vertex, such that there is an arc (v, w) in C(G,T), and the flow
on (v, w) is smaller than 1. Also let a be any back-arc going from a descendant of w to an
ancestor of v (in ~T). Such an arc always exists since G is 2-vertex connected. We push flow
along all edges of the unique cycle formed by a and tree-arcs until the flow on (v, w) reaches
1.

The total cost of f can be bounded by∑
v∈I

max(f(B(v))− 1, 0) ≤
∑
v∈I

max(f ′(B(v))− 1, 0) +
∑
v∈I

f ′′(B(v)).

We will denote the sum
∑

v∈I f
′′(B(v)) by |f ′′|, which is slightly inconsistent with previous

definitions, but simplifies the notation quite a bit. We thus have |f | ≤ |f ′|+ |f ′′|.
The authors of [8] provide the following bounds for the two terms of the above expression:

I Lemma 2.7 (Claim 5.3 in [8]). |f ′′| ≤ OPTLP (G)− n.

I Lemma 2.8 (Claim 5.4 in [8]). |f ′| ≤ (7− 6
√

2)n+ 4(
√

2− 1)OPTLP (G).

The main theorem of [8] follows from these two bounds

I Theorem 2.9 (Theorem 1.1 in [8]). There exists a polynomial time approximation algorithm
for graphic TSP with approximation ratio 14(

√
2−1)

12
√

2−13 < 1.461.

3 New upper bound for |f ′|

In this section we describe an improved bound on |f ′|.

I Lemma 3.1. |f ′| ≤ 5
3OPTLP − 3

2n.

Before presenting our analysis of the cost of f ′ let us recall some notation and basic
observations introduced in [8]. For any v ∈ I let tv be the (unique) outgoing arc of v.

I Fact 3.2. For every in-vertex v, we have |B(v)| ≥
⌈

f ′(B(v))
min(x∗tv

,1)

⌉
.

Proof. Since T was constructed by always following the arc a with the highest value of x∗a,
we have that x∗tv

≥ xa for any a ∈ B(v) and the claim follows. J

M. Mucha 35

Decompose f ′(B(v)) into two parts: lv = min(2− x∗tv
, f ′(B(v))) and uv = f ′(B(v))− lv.

The intuition here is that the higher uv is, the larger OPTLP (G) is. In particular, if we let
u∗ =

∑
v∈I uv, then

I Fact 3.3 (Stated in the proof of Claim 5.4 in [8]). u∗ ≤ 2(OPTLP (G)− n).

Proof. Consider a vertex v of G which (in the construction of C(G,T)) is replaced by a
gadget with a set Iv of in-vertices, and let x∗(v) be the fractional degree of v in x∗. Since
for any w ∈ Iv, the tree-arc tw and all the back-arcs entering w correspond to edges of G
incident to v, each such w contributes at least 2 + uw to x∗(v), provided that uw > 0 (if
uw = 0 we cannot bound w’s contribution in any way). Since we also know that x∗(v) ≥ 2
(this is one of the inequalities of the Held-Karp relaxation), we get the following bound

x∗(v) ≥ max

2,
∑

w∈Iv, uw>0
(2 + uw)

 ≥ 2 +
∑

w∈Iv

uw.

Summing this over all vertices we get 2OPTLP (G) ≥ 2n+ u∗, and the claim follows. J

Because of Theorem 2.6 we have
∑

v∈I |B(v)|+ n− 1 ≤ 2n− 1, and so by Fact 3.2∑
v∈I

⌈
lv + uv

min(1, x∗tv
)

⌉
≤ n.

Also note that in terms of lv and uv the total cost of f ′ is given by the following formula∑
v∈I

max(0, lv + uv − 1).

Our goal is to upper-bound this cost as a function of n and u∗. Instead of working directly
with G and the solution x∗ to the corresponding LP (G), we abstract out the key properties
of x∗tv

, lv and uv and work in this restricted setting.

I Definition 3.4. A configuration of size n is a triple (x, l, u), where x, l, u : {1, . . . , n} → R≥0
such that for all i = 1, . . . , n
1. 0 < xi ≤ 1,
2. li ≤ 2− xi, and
3. ui > 0 =⇒ li = 2− xi.

I Definition 3.5. Let C = (x, l, u) be a configuration. We will say that the i-th element
of C uses d li+ui

xi
e edges and denote this number by ei(C), or ei if it is clear what C is.

We will also say that C uses
∑n

i=1 ei edges. Also, the value of C is defined as val(C) =∑n
i=1 max(0, li + ui − 1). Note that upper-bounding the cost of f ′ corresponds to finding

the maximum value of C.

I Remark. The values xi, li and ui correspond to xtv , lv and uv, respectively. The properties
enforced on the former are clearly satisfied by the latter with the exception of the inequalities
xi ≤ 1. The reason for introducing these inequalities is the following. Without them, the
natural definition of the number of edges used by the i-th element of C would be

⌈
li+ui

min(xi,1)

⌉
.

However, in that case, for any configuration C there would exists a configuration C ′ with
val(C ′) ≤ val(C) and xi ≤ 1 for all i = 1, . . . , n. In order to construct C ′ simply replace
all xi > 1 with ones. If as a result we get li < 2− xi and ui > 0 for some i, simultanously
decrease ui and increase li at the same rate until one of these inequalities becomes an equality.

For that reason, we prefer to simply assume xi ≤ 1 and be able to use a (slightly) simpler
definition of ei. As we will see, the inequalities xi ≤ 1 turn out to be quite useful as well.

STACS’12

36 13
9 -approximation for Graphic TSP

We denote by CONF(n, u∗) the set of all configurations (x, l, u) of size n such that∑n
i=1 ui = u∗. We also use OPT(n, u∗) to denote any maximum value element of CONF(n, u∗),

and VAL(n, u∗) to denote its value. It is easy to see that

I Fact 3.6. |f ′| ≤ VAL(n, u∗).

Notice that determining VAL(n, u∗) for given n and u∗ is a 2-dimensional knapsack
problem. Here, items are the possible triples (xi, li, ui) satisfying the configuration definition.
The value of such a triple is equal to max(0, li+ui−1), i.e. its contribution to the configuration
value, if used in one. Also, the “mass” of (xi, li, ui) is ui and its “volume” is ei. We want to
maximize the total item value, while keeping tht total mass ≤ u∗ and total volume ≤ n.

I Lemma 3.7. For any n ∈ N, u∗ ∈ R≥0, there exists an optimal configuration in CONF(n, u∗)
such that:
1. ei = li+ui

xi
for all i = 1, . . . , n (in particular, all ei are integral),

2. (li = 0) ∨ (li = 2− xi) for all i = 1, . . . , n.

Proof. We prove each property by showing a way to transform any C ∈ CONF(n, u∗) into
C ′ ∈ CONF(n, u∗) such that val(C ′) ≥ val(C) and C ′ satisfies the property.

Let us start with the first property, which basically says that all edges are fully saturated.
Assume we have ei >

li+ui

xi
for some i ∈ {1, . . . , n}. If li < 2− xi, we increase li until either

ei = li+ui

xi
, in which case we are done, or li = 2−xi. In the second case we start decreasing xi

while increasing li at the same rate, until ei = li+ui

xi
. Clearly, both transformations increase

the value of the configuration and keep both ui and ei unchanged.
To prove the second property, let us assume that for some i ∈ {1, . . . , n} we have

0 < li < 2− xi. We also assume that our configuration already satisfies the first property, in
particular we have ei = li

xi
(ui = 0 since li < 2− xi). We increase xi and keep li = eixi until

li + xi = 2. This increases the value of the configuration and keeps ui and ei unchanged. To
see that xi ≤ 1, note that xi = li/ei ≤ li and xi + li = 2. J

I Theorem 3.8. For any n ∈ N, u∗ ∈ R≥0, and any C ∈ CONF(n, u∗) we have val(C) ≤
u∗ + 1

6 (n− u∗).

Proof. It is enough to prove the bound for optimal configurations satisfying the properties in
Lemma 3.7. Let C be such a configuration. We will prove that for all i = 1, . . . , n we have:

vali = max(0, li + ui − 1) ≤ ui + 1
6(ei − ui).

Summing this bound over all i gives the desired claim.
If ui = li = ei = 0, then the bound clearly holds. It follows from Lemma 3.7 that the only

other case to consider is when li = 2−xi and ei = li+ui

xi
(notice that in this case li +ui−1 ≥ 0

and so vali = li + ui− 1).It follows from these two equalities that eixi = li + ui = 2− xi + ui

and so

xi = 2 + ui

1 + ei
.

Using this expression to bound vali we get

vali = li + ui − 1 = 2− xi + ui − 1 = 1 + ui − xi = 1 + ui −
2 + ui

1 + ei
= ui −

1− (ei − ui)
1 + ei

.

We need to prove that

ui −
1− (ei − ui)

1 + ei
≤ ui + 1

6(ei − ui),

M. Mucha 37

or equivalently

(ei − ui)
(

1
6 −

1
1 + ei

)
+ 1

1 + ei
≥ 0.

Since ui ≤ ei (this follows from property 1 in Lemma 3.7 and the fact that xi ≤ 1), we have
two cases to consider.
Case 1: 1

6 −
1

1+ei
≥ 0. In this case the whole expression is clearly nonnegative.

Case 2: 1
6 −

1
1+ei

< 0, meaning that ei ∈ {1, 2, 3, 4}. In this case we proceed as follows:

(ei − ui)
(

1
6 −

1
1 + ei

)
+ 1

1 + ei
= ui

(
1

1 + ei
− 1

6

)
+ ei

6 −
ei − 1
ei + 1 .

The first term is clearly nonnegative and the second one can be checked to be nonnegative
for ei ∈ {1, 2, 3, 4}. Note that integrality of ei plays a key role here, as the second term is
negative for ei ∈ (2, 3).

J

We can show that the above bound is essentially tight

I Theorem 3.9. For any n ∈ N, u∗ ∈ R≥0, there exists C ∈ CONF(n, u∗) such that
val(C) = u∗ + 1

6 (n− u∗)−O(1).

Proof. It is quite easy to construct such C by looking at the proof of Theorem 3.8. We get
the first tight example when, in Case 2 of the analysis, we have ui = 0 and ei ∈ {2, 3}. This
corresponds to configurations consisting of elements of the form:

xi = 2
3 , li = 4

3 , ui = 0, in which case we have ei = 2 and so ui + 1
6 (ei − ui) = 1

3 and
vali = li + ui − 1 = 1

3 , or
xi = 1

2 , li = 3
2 , ui = 0, in which case we have ei = 3 and so ui + 1

6 (ei − ui) = 1
2 and

vali = li + ui − 1 = 1
2 .

Using these two items we can construct tight examples for u∗ = 0 and arbitrary n ≥ 2.
To handle the case of u∗ > 0 we need another (almost) tight case in the proof of

Theorem 3.8 which occurs when ui is close to ei and ei is relatively large. In this case the
value of the expression (ei − ui)

(
1
6 −

1
1+ei

)
+ 1

1+ei
is clearly close to 0. This corresponds

to using items of the form xi = 1, li = 1 and arbitrary ui. For such elements we have
ei = dui + 1e and so

ui + 1
6(ei − ui) ≤ ui + 1

3 ,

and

vali = li + ui − 1 = ui,

so the difference between the two is at most 1
3 . By combining the three types of items

described, we can clearly construct C as required for any n and u∗. J

We are now ready to prove the Lemma 3.1.

Proof (of Lemma 3.1). It follows from Theorem 3.8 and Fact 3.6 that

|f ′| ≤ u∗ + 1
6(n− u∗) = 5

6u
∗ + 1

6n.

Using Fact 3.3 we get:

|f ′| ≤ 5
6 · 2(OPTLP − n) + 1

6n = 5
3OPTLP −

3
2n.

J

STACS’12

38 13
9 -approximation for Graphic TSP

4 New upper bound for |f ′′|

In this section we give a new bound for |f ′′|. We do not bound it directly, as in Lemma 2.7.
Instead, we show the following.

I Lemma 4.1.

|f ′′| ≤ 5
6 (2OPTLP (G)− 2n− u∗) .

What this says is basically that f ′′ can be fully paid for by (5
6 of) the slack we get in Fact 3.3.

To better understand this bound, and in particular the constant 5
6 , before we proceed to

prove it, let us first show how it can be used.

I Corollary 4.2. |f | ≤ 5
3OPTLP − 3

2n.

Proof. We have |f | ≤ |f ′|+ |f ′′| ≤ 5
6u
∗+ 1

6n+ 5
6 (2OPTLP − 2n− u∗) = 5

3OPTLP − 3
2n. J

There are several interesting things to note here. First of all, we got the exact same bound
as in Lemma 3.1, which means that |f ′′| can be fully paid for by the slack in Fact 3.3, as
suggested earlier. In particular, this means that improving the constant 5

6 in Lemma 4.1 is
pointless, since we would still be getting the same bound on |f | when |f ′′| = 0. Therefore,
we do not try to optimize this constant, but instead make the proof of the Lemma as
straightforward as possible.

Let us now proceed to prove Lemma 4.1. For any non-root in-vertex w let zw =
x∗tw

+ x∗(B(w)). Basically, if v is the parent of w in ~T , then zw is the total value of x∗ over
all edges connecting v with vertices in the subtree Tw of T determined by w. Also, let γw be
the total of x∗ over all edges connecting vertices in Tw with vertices above v.

We can formulate the following local version of Lemma 4.1.

I Lemma 4.3. For every non-root vertex v of G we have

∑
w∈Iv

max(0, 1− γw) ≤ 5
6

(
x∗(v)− 2−

∑
w∈Iv

uw

)
.

Notice that Lemma 4.1 easily follows from Lemma 4.3 by summing over all non-root vertices.

Proof (of Lemma 4.3). Let v be a non-root vertex of G. We define 3 types of vertices in
Iv:

w ∈ Iv is heavy if γw < 1 and zw > 2
w ∈ Iv is light if γw < 1 and zw ≤ 2,
w ∈ Iv is trivial otherwise (i.e. γw ≥ 1).

We denote by Hv and Lv the sets of heavy and light vertices in Iv, respectively. Intuitively,
heavy vertices are the ones that contribute to both u∗ and |f ′′|, light vertices contribute only
to |f ′′|, and the remaining (i.e. trivial) vertices do not contribute to |f ′′|.

We are going to use the following observations:
1. zw ≥ 2− γw for all w ∈ Hv ∪ Lv,
2. x∗(v) ≥

∑
w∈Hv∪Lv

zw + max(0, 2−
∑

Hv∪Lv
γw).

The first observation follows from the Held-Karp inequality for the cut induced by the subtree
Tw of T determined by w. The second follows from Held-Karp inequality as well, this time
for the cut induced by the set

⋃
w∈Hv∪Lv

Tw ∪ {v}. The only edges crossing this cut are the
back-edges with total x∗ value

∑
Hv∪Lv

γw, and edges incident to v, but not to a vertex from
a subtree induced by one of w ∈ Hv ∪ Lv. The second term in the second observation is a

M. Mucha 39

lower-bound on the total x∗ value of this second kind of edges, resulting from the Held-Karp
inequality.

Note that the trivial vertices might have zw > 2 and so contribute to u∗. However in that
case the proof is quite simple and it will be advantageous for us to get it out of our way. Let
w0 be a trivial vertex with zw0 > 2. What we do is basically use this vertex to cancel out
the lone 2 in the second factor of the RHS of the bound in Lemma 4.3:

x∗(v)− 2−
∑

w∈Iv

uw ≥
∑

w∈Iv\w0

zw + zw0 − 2−
∑

w∈Iv\w0

uw − uw0 =
∑

w∈Iv\w0

(zw − uw)

Since w0 6∈ Hv ∪ Lv we thus have

5
6

(
x∗(v)− 2−

∑
w∈Iv

uw

)
≥

∑
w∈Hv∪Lv

5
6(zw − uw) ≥

∑
w∈Hv∪Lv

(1− γw).

The last inequality holds because we have zw−uw = 2 for heavy w and zw−uw = zw ≥ 2−γw

for light w. We can thus assume that all trivial vertices have zw ≤ 2 (and so uw = 0).
Note that using our observations, we can reformulate our claim as follows:

∑
w∈Hv∪Lv

(1− γw) ≤ 5
6

(∑
w∈Hv∪Lv

zw + max
(

0, 2−
∑

w∈Hv∪Lv

γw

)
− 2−

∑
w∈Iv

uw

)
.

and since we now assume that trivial vertices have zw ≤ 2, it is enough to prove:

∑
w∈Hv∪Lv

(1− γw) ≤ 5
6

(∑
w∈Lv

zw + max
(

0, 2−
∑

w∈Hv∪Lv

γw

)
+ 2(|Hv| − 1)

)

(since zw = 2 + uw for w ∈ Hv).
Clearly, if all w ∈ Iv are trivial, both sides of the bound are 0 and so it trivially holds.

Otherwise, we consider the following two cases:

Case 1:
∑

w∈Hv∪Lv
γw > 2. Notice that this implies |Hv|+ |Lv| ≥ 3. In this case the RHS

of the bound becomes

5
6

(∑
w∈Lv

zw + 2(|Hv| − 1)
)
≥ 5

6

(∑
w∈Lv

(2− γw) + 2(|Hv| − 1)
)
.

The ratio of the above expression and the LHS is lower-bounded by the ratio of these
same expressions with all γw = 0, i.e. 5

6 ·
2(|Lv|+|Hv|−1)
|Lv|+|Hv| , which is definitely at least 1,

since |Lv|+ |Hv| ≥ 3.
Case 2:

∑
w∈Hv∪Lv

γw ≤ 2. In this case the RHS of the bound becomes

5
6

(∑
w∈Lv

zw + 2−
∑

w∈Hv∪Lv

γw + 2(|Hv| − 1)
)
≥ 5

6

(∑
w∈Lv

(2− 2γw) +
∑

w∈Hv

(2− γw)
)
.

The claim now follows by observing that (2− 2γw) = 2(1− γw) and 2− γw ≥ 2(1− γw).

J

STACS’12

40 13
9 -approximation for Graphic TSP

5 Applications to graphic TSP and TSPP

As a consequence of Corollary 4.2, we get improved approximation factors for graphic TSP
and graphic TSPP.

I Theorem 5.1. There is a 13
9 -approximation algorithm for graphic TSP.

Proof. By Corollary 4.2 we get

|f | ≤ 5
3OPTLP −

3
2n.

The TSP tour guaranteed by Theorem 2.4 has size at most

4
3n+ 2

3 |f | ≤
4
3n+ 2

3

(
5
3OPTLP −

3
2n
)

= 10
9 OPTLP + 1

3n.

Notice that the approximation ratio of the resulting algorithm is getting better with OPTLP

increasing (with fixed n). Therefore the worst case bound is the one we get for OPTLP = n,
i.e. 10

9 + 1
3 = 13

9 . J

I Remark. This analysis is significantly simpler than the one in [8]. Balancing with Chris-
tofides’s algorithm is no longer necessary since bounds on approximation ratios for both
algorithms are decreasing in OPTLP .

I Theorem 5.2. There is a 19
12 +ε-approximation algorithm for graphic TSPP, for any ε > 0.

Proof. This proof is very similar to the proof of Theorem 1.2 in [8]. However, the reasoning
is slighly simpler, in our opinion. Suppose we want to approximate the graphic TSPP
in G = (V,E) with end-vertices s and t. Let G′ = (V,E ∪ {e′}), where e′ = {s, t}, and
let OPTLP denote OPTLP (G′). Also, let d be the distance between s and t in G. By
Corollary 4.2 we get

|f | ≤ 5
3OPTLP −

3
2n.

The TSP path guaranteed by Theorem 2.5 has size at most

4
3n+ 2

3 |f | −
2
3 + d

3 ≤
4
3n+ 2

3

(
5
3OPTLP −

3
2n
)
− 2

3 + d

3 = 10
9 OPTLP + n+ d− 2

3 .

It is clear that the quality of this algorithm deteriorates as d increases. We are going to
balance it with another algorithm that displays the opposite behaviour. The following
approach is folklore: Find a spanning tree T in G and double all edges of T except those
that lie on the unique shortest path connecting s and t. The resulting graph has a spanning
Eulearian path connecting s and t with at most 2(n− 1)− d edges.

Since OPTLP − 1 ≤ OPTLP (G, s, t) is a lower bound for the optimal solution, the two
approximation algorithms have approximation ratios bounded by

10
9 OPTLP + n+d−2

3
OPTLP − 1

and

2n− 2− d
OPTLP − 1 .

M. Mucha 41

For a fixed value of OPTLP the first of these expressions is increasing and the second is
decreasing in d. Therefore the worst case bound we get for an algorithm that picks the best
of the two solutions occurs when

10
9 OPTLP + n+ d− 2

3 = 2n− 2− d,

which leads to

d = 5
4n−

5
6OPTLP − 1.

For this value of d the approximation ratio is at most

2n− 2−
(5

4n−
5
6OPTLP − 1

)
OPTLP − 1 =

3n
4 − 1 + 5

6OPTLP

OPTLP − 1 =
3n
4 −

1
6

OPTLP − 1 + 5
6 .

Since OPTLP ≥ n this is at most
3n
4 −

1
3

n− 1 + 5
6 = 3

4 + 5
6 +O

(
1
n

)
= 19

12 +O

(
1
n

)
,

which proves the claim. J

I Remark. One might ask why the improvement for the graphic TSP is much bigger than the
one for graphic TSPP. The reason for that is that while for large values of OPT/n our bound
on |f | is significantly better than the one in [8], it is only slightly better when OPT = n. As
it turns out, this is exactly the worst case for TSPP, both in our analysis and in the one
in [8]. For TSP however, the worst case value of OPT for the analysis in [8] is larger than n.

6 Acknowledgements

The author would like to thank Marcin Pilipczuk for pointing out some problems in an early
version of this work, and an anonymous referee for his comments, which greatly improved
the presentation.

References
1 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-

lem. Technical Report 388, Graduate School of Industrial Administration, CMU, 1976.
2 G. Cornuejols, D. Naddef, and J. Fonlupt. The traveling salesman problem on a graph and

some related integer polyhedra. Math Programming, 33:1–27, 1985.
3 Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding approach

to the travelling salesman problem. In FOCS’11 (to appear), 2011.
4 Michel X. Goemans and Dimitris J. Bertsimas. On the parsimonious property of connectiv-

ity problems. In SODA’90, pages 388–396, 1990.
5 Michelangelo Grigni, Elias Koutsoupias, and Christos H. Papadimitriou. An approximation

scheme for planar graph tsp. In FOCS’95, pages 640–645, 1995.
6 Michael Held and Richard M. Karp. The traveling-salesman problem and minimum span-

ning trees. Operations Research, 18(6):1138–1162, 1970.
7 J. A. Hoogeveen. Analysis of christofides’ heuristic: some paths are more difficult than

cycles. Operations Research Letters, 10(5):291—-295, 1991.
8 Tobias Mömke and Ola Svensson. Approximating graphic tsp by matchings. In FOCS’11

(to appear), 2011.
9 David B. Shmoys and David P. Williamson. Analyzing the held-karp tsp bound: a mono-

tonicity property with application. Information Processing Letters, 35(6):281 – 285, 1990.

STACS’12

	Introduction and related work
	Our results
	Organization of the paper

	Preliminaries
	Held-Karp Relaxation and the Algorithm of Christofides
	Reduction to Minimum Cost Circulation

	New upper bound for |f'|
	New upper bound for |f''|
	Applications to graphic TSP and TSPP
	Acknowledgements

