
HAL Id: hal-00678169
https://hal.science/hal-00678169

Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preemptive and Non-Preemptive Generalized Min Sum
Set Cover

Sungjin Im, Maxim Sviridenko, Ruben van Der Zwaan

To cite this version:
Sungjin Im, Maxim Sviridenko, Ruben van Der Zwaan. Preemptive and Non-Preemptive Generalized
Min Sum Set Cover. STACS’12 (29th Symposium on Theoretical Aspects of Computer Science), Feb
2012, Paris, France. pp.465-476. �hal-00678169�

https://hal.science/hal-00678169
https://hal.archives-ouvertes.fr

Preemptive and Non-Preemptive Generalized Min
Sum Set Cover
Sungjin Im1, Maxim Sviridenko2, and Ruben van der Zwaan3

1 Department of Computer Science, University of Illinois, 201 N. Goodwin Ave.,
Urbana, IL 61801, USA.
im3@illinois.edu

2 IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY
10598, USA.
sviri@us.ibm.com

3 Department of Quantitative Economics, Maastricht University, The
Netherlands.
r.vanderzwaan@maastrichtuniversity.nl

Abstract
In the (non-preemptive) Generalized Min Sum Set Cover Problem, we are given n ground elements
and a collection of sets S = {S1, S2, ..., Sm} where each set Si ∈ 2[n] has a positive requirement
κ(Si) that has to be fulfilled. We would like to order all elements to minimize the total (weighted)
cover time of all sets. The cover time of a set Si is defined as the first index j in the ordering
such that the first j elements in the ordering contain κ(Si) elements in Si. This problem was
introduced by [1] with interesting motivations in web page ranking and broadcast scheduling.
For this problem, constant approximations are known [2, 15].

We study the version where preemption is allowed. The difference is that elements can be
fractionally scheduled and a set S is covered in the moment when κ(S) amount of elements in S
are scheduled. We give a 2-approximation for this preemptive problem. Our linear programming
and analysis are completely different from [2, 15]. We also show that any preemptive solution
can be transformed into a non-preemptive one by losing a factor of 6.2 in the objective function.
As a byproduct, we obtain an improved 12.4-approximation for the non-preemptive problem.

1998 ACM Subject Classification F.2.2. Nonnumerical Algorithms and Problems

Keywords and phrases Set Cover, Approximation, Preemption, Latency, Average cover time

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.465

1 Introduction

The Min Sum Set Cover problem is a minimum latency version of the hitting set problem. We
are given as input n elements, {1, 2, . . . , n} = [n] and a collection of sets S = {S1, S2, ..., Sm}
where each set Si ∈ 2[n]. The goal is to find a permutation of the elements such that the total
sum of (or equivalently average) cover/hitting times of all sets is minimized. For simplicity,
we will say that an element e is covered at time slot t or it has cover time cov(e) = t if
it is placed in the t-th position in the permutation. The cover time cov(Si) of a set Si is
defined as mine∈Si

cov(e) and the goal is to minimize
∑
Si∈S cov(Si). For this problem, a

simple greedy algorithm is known to achieve an approximation factor 4 [4, 8]. The greedy
algorithm iteratively picks the element that hits the most sets that are not yet hit. Also it is
known that the problem cannot be approximated within a factor of 4− ε for any ε > 0 unless
P = NP [8]. A closely related problem known as Min Sum Coloring was studied before in

© Sungjin Im, Maxim Sviridenko and Ruben van der Zwaan;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 465–476

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.465
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

466 Preemptive and Non-Preemptive Generalized Min Sum Set Cover

[4, 5] with applications in scheduling. Also the special case of the Min Sum Vertex Cover
was used in [6] as a heuristic for speeding up a solver for semidefinite programs.

The Min Latency Set Cover problem is a variant where the cover time is defined as the
time where all elements in the set are covered e.g. cov(Si) = maxe∈Si cov(e). This problem
is in fact equivalent to the precedence-constrained scheduling on a single machine [16], for
which various 2-approximation algorithms are known [10, 7, 11]. It was shown that, assuming
a variant of the Unique Games Conjecture, unless P=NP there is no 2− ε approximation for
any ε > 0 [3].

A generalization of the aforementioned problems was introduced by Azar, Gamzu and
Yin [1] to provide a better framework for ranking web pages in response to queries that
could have multiple intentions. This generalized problem was later named Generalized Min
Sum Set Cover [2], and can be stated as follows. Every set Si has a requirement κ(Si) ∈
{1, 2, . . . , |Si|} = [|Si|]. For a permutation of the ground set we define cov(e) as before and Si
is covered at time t if t is the earliest time such that |{e ∈ Si : cov(e) ≤ t}| ≥ κ(Si). Again, the
goal is to find a permutation of the elements in [n] minimizing

∑
Si∈S cov(Si). Azar et al. [1]

give a modified greedy algorithm that has a performance guarantee of O(ln(maxSi∈S κ(Si))).
The question whether there exists an O(1)-approximation was answered affirmatively by
Bansal, Gupta and Krishnaswamy [2]. In order to obtain an O(1)-approximation, they used
a time indexed linear program together with knapsack cover inequalities and gave a clever
randomized rounding scheme. Very recently, their approximation ratio of 485 was improved
by Skutella and Williamson to 28 via the same LP but a different rounding scheme [15].

In this paper we study the Preemptive Generalized Min Sum Set Cover. Like the
Generalized Min Sum Set Cover problem, when κ(S) = |S| for all S ∈ S it is a special case
(and in fact is a equivalent to) single machine scheduling problem with precedence constraints
and preemptions: 1|prec, pmtn|

∑
wjCj . It is known that preemption does not improve the

solution quality for this problem (shown by a simple exchange argument), i.e. the optimal
preemptive and non-preemptive schedules have the same optimal value. Hence it follows
that there is no 2− ε approximation for any ε > 0 assuming a variant of the Unique Games
Conjecture and P 6= NP [3].

Preemptive Generalized Min Sum Set Cover is formally defined as follows. Given the
ground set of elements [n], sets S = {S1, S2, ..., Sm} and requirement κ(U) ∈ [|U |] for each
set U ∈ S, we should fractionally assign elements of the ground set to the interval [0, n].
Formally, we define functions xe(t) : [0, n] → {0, 1} where xe(t) is the indicator function
that denotes whether element e is scheduled at time t such that

∫ n
t=0 xe(t) dt = 1 for all

e ∈ [n] and
∑
e∈[n] xe(t) = 1 for any time t ∈ [0, n]. Then, the cover time cov(S) of the

set S is defined as the earliest time t such that
∫ t
τ=0

∑
e∈S xe(τ) dτ ≥ κ(S) and the goal is

to minimize the sum of cover times over all sets. Note that the cover time cov(S) is not
necessarily an integer unlike in the non-preemptive problem.

Our main motivation to study Preemptive Generalized Min Sum Set Cover is the fact
that it provides a lower bound for the optimal value of the Generalized Min Sum Set Cover.
We decouple finding an approximate solution to the relaxed problem (see Section 2) and the
question of the lower bound quality (see Section 3 and Conjecture 1).

Our Results
Our main result is a polynomial time approximation algorithm with performance guarantee
of 2 for the Preemptive Generalized Min Sum Set Cover. As we noticed before this result
is tight modulo some complexity assumptions [3]. We note that one can easily show that
the linear program used in [2, 15] is a valid relaxation for the preemptive problem, thus the

S. Im, M. Sviridenko, and R. van der Zwaan 467

best known approximation for the non-preemptive problem also carries for the preemptive
problem as well.

We introduce a configuration linear program which completely differs from the linear
programming relaxation used in [2, 15]. Interestingly, it is not obvious that our new linear
program is a valid relaxation for the preemptive problem, unlike the previous linear program
in [2, 15] which can be easily shown to be a valid relaxation for the preemptive (and non-
preemptive) problem. Our new LP is provably stronger than the previous LP, for both the
preemptive and non-preemptive problems.

Further, we study the “gap” between the preemptive and non-preemptive solutions
of the Generalized Min Sum Set Cover Problem, which is of independent interest. With
some modifications of the rounding scheme in [15], we show that one can transform any
α-approximate preemptive schedule into 6.2α-approximate non-preemptive one. With this
transformation, we obtain an 12.4-approximation for the non-preemptive Generalized Min
Sum Set Cover Problem, improving upon the previous best 28-approximation by Skutella and
Williamson[15]. We conjecture that the gap between optimal preemptive and non-preemptive
solutions is precisely two.

All our proofs easily extend to the case where every set Si has a non-negative weight
wi ≥ 0 and the objective is to minimize

∑
Si∈S wi · cov(Si).

Organization
The remainder of this paper is organized as follows. In Section 2 we introduce the configuration
linear program LPprimal. First, we prove that our configuration linear program is a valid
relaxation for Preemptive Generalized Min Sum Set Cover and that this linear program can
be solved in polynomial time. Finally, we design a rounding procedure that results in a
randomized 2-approximation (Section 2.4) that can be derandomized. In Section 3 we obtain
a transformation from a preemptive schedule to a non-preemptive schedule with a loss of
factor 6.2, which immediately implies a 12.4-approximation in expectation to Generalized
Min Sum Set Cover. In Section 4 we compare the time indexed linear program in [2, 15] to
our own configuration linear program and show our linear program is stronger. Due to space
constraints, we omit most parts from Section 3 and 4. We will include the full details and
omitted proofs in the full version of this paper.

2 2-Approximation for Preemptive Generalized Min Sum Set Cover

This section is devoted to prove the following theorem.

I Theorem 1. There is a randomized polynomial time 2-approximation algorithm for Pree-
mptive Generalized Min Sum Set Cover.

Throughout this section, for any integer t ∈ [n], the t-th time slot will be equivalent to
the time interval [t− 1, t].

2.1 Configuration LP
We write a configuration linear program. For a set S ∈ S, a valid configuration is an (integral)
assignment of elements in S to time slots. More formally, such a map can be described as an
injective function fS : S → [n]. For notational simplicity, we may represent the mapping
via a relation F =def {(e, fS(e)) | e ∈ S}. Let F(S) denote the collection of all possible
configurations for set S. Let CFS denote the completion time t of set S under the configuration

STACS’12

468 Preemptive and Non-Preemptive Generalized Min Sum Set Cover

F , i.e. the first time t′ such that |f−1
S ([t′])| ≥ κ(S). Let xe,t denote the fraction of element e

we schedule in the t-th time slot. The variable yFS is used to indicate which configurations S
adheres to. For example, if yFS = 1, it means all elements in S are scheduled following the
configuration F .

Our linear program is formulated as follows.

min
∑
S∈S

∑
F∈F(S)

CFS y
F
S (ILP)

s.t.
∑
e

xe,t = 1 ∀ t ∈ [n] (1)∑
t

xe,t = 1 ∀ e ∈ [n] (2)∑
F∈F(S)

yFS = 1 ∀S ∈ S (3)

∑
F∈F(S),(e,t)∈F

yFS = xe,t ∀ e, t ∈ [n], S : e ∈ S (4)

xe,t ∈ {0, 1} ∀ e, t ∈ [n]
yFS ∈ {0, 1} ∀S ∈ S, F ∈ F(S)

The constraints (1) and (2) enforce that exactly one element is scheduled at any time
slot and that an element can be scheduled only once over all times. The constraint (3) states
that each set S has a unique configuration. Finally, (4) says that if an element e is scheduled
at time t, then it must align with the configuration of S.

The relaxation LPprimal of ILP is then defined as follows.

min
∑
S∈S

∑
F∈F(S)

CFS y
F
S (LPprimal)

s.t. Constraints (1),(2),(3) and (4) hold
xe,t ≥0 ∀ e, t ∈ [n]
yFS ≥0 ∀S ∈ S, F ∈ F(S)

2.2 Validity of the LP
It is easy to verify that LPprimal is a valid linear programming relaxation for Generalized
Min Sum Set Cover. However, it is not obvious that the LPprimal is indeed a valid relaxation
for the preemptive problem. Since we will use two different types of fractional schedules
throughout the analysis, we first clearly define/remind those schedules. The first one is a
continuous schedule that is defined by indicator functions xe(t) : [0, n]→ {0, 1}, e ∈ [n] such
that (1) for any t ∈ [0, n],

∑
e∈[n] xe(t) = 1 and (2) for any e ∈ [n],

∫ n
τ=0 xe(τ) dτ = 1. We

say that xe(t), e ∈ [n] is a feasible schedule if all these conditions are satisfied. Recall that
the completion time CS of each set S is defined by a continuous schedule as the earliest time
t such that

∫ t
τ=0

∑
e∈S xe(τ) dτ ≥ κ(S). The other version of schedule, which is somewhat

discretized, is defined by xe,t, e, t ∈ [n] that satisfy (1)
∑
e∈[n] xe,t = 1, (2)

∑
t∈[n] xe,t = 1

and (3) 0 ≤ xe,t ≤ 1 for any e, t ∈ [n]. When these conditions are satisfied, we will say
xe,t, e, t ∈ [n] is feasible. Note that this discretized version of schedule does not immediately
define the completion time of sets. Rather, it is used in LPprimal as a relaxation of continuous
schedules. We show the following theorem.

S. Im, M. Sviridenko, and R. van der Zwaan 469

I Theorem 2. Consider any feasible continuous schedule xe(t), e ∈ [n]. Let CS denote the
completion time of S in this schedule. For any e, t ∈ [n], let xe,t =def

∫ t
τ=t−1 xe(τ) dτ . Then

xe,t satisfy constraints (1) and (2). Also there exists y-values that satisfy the other constraints
(3) and (4) as well and further satisfy∑

S∈S

∑
F∈F(S)

CFS y
F
S ≤

∑
S∈S

CS . (5)

The first claim in Theorem 2 that xe,t satisfy constraints (1) and (2) easily follows from
the property of continuous schedules and from how xe,t are defined. Due to the space
constraints, we defer the proof to the full version of this paper. In fact, it is not difficult
to see that there exist y-values that satisfy all constraints (1)-(4). However, we can find an
example of y-values satisfying all the constraints but not satisfying the inequality (5) (See full
version of this paper). Henceforth, we focus on showing that there exist “good” y-values that
also satisfy (5). We will show how to construct a feasible solution y such that the inequality∑

F∈F(S)

CFS y
F
S ≤ CS (6)

holds for any set S ∈ S which will imply the inequality (5). Since setting yS-values for a
specific S does not affect other y-values, we can focus on each S ∈ S. We will find “good"
yFS -values that satisfy constraints (3) and (4), and further (6).

To this end, we define two matroids M1 and M2 that enforce that any independent set in
the intersection of M1 and M2 which corresponds to a feasible configuration F ∈ F(S). Then
we show that the vector xe,t, e ∈ S, t ∈ [n] lies in the intersection of the polytopes of the two
matroids. Using the fact that such an intersection polytope is integral, we will be able to
decompose x into a convex combination of integer points that lie in the intersection of the
polytopes of M1 and M2. As already mentioned, due to the structure of the matroids, each
integer point will correspond to a configuration F ∈ F(S). By setting y-values as suggested
by the decomposition, we will guarantee that y satisfy constraints (3) and (4). Finally, we
will complete the analysis by showing that such y-values satisfy (6) as well. This is enabled
by some additional constraints we impose on the matroids. We refer the reader to Chapters
39-41 in [13] for the extensive overview of algorithmic matroid theory.

We begin with defining each of the two matroids M1 and M2 which have the same
common ground set, U = {(e, t) | e ∈ S, t ∈ [n]} (Recall that we are focusing on each fixed
S ∈ S separately). We will call (e, t) a pair in order to distinguish it from elements, [n]. The
first matroid M1 = (U, I(M1)) enforces that each element in S can be scheduled in at most
one time slot. Formally, the collection I(M1) of independent sets of M1 is defined as follows:
A ∈ I(M1) if and only if for any e ∈ S, |A ∩ {(e, t) | t ∈ [n]}| ≤ 1. Observe that M1 is a
partition matroid since pairs in U are partitioned based on each common element, and any
independent set collects at most one pair from each group. Hence the polytope P (M1) of
M1 (polymatroid) is defined as follows.∑

t∈[n]

xe,t ≤ 1 ∀e ∈ S (P (M1))

xe,t ≥ 0 ∀e ∈ S, t ∈ [n]

I Proposition 3. The vector x = (xe,t), e ∈ S, t ∈ [n] is in the polytope P (M1). Moreover,∑
e∈S,t∈[n] xe,t = |S|, i.e. x belongs to the base polymatroid of M1.
The second matroid M2 = (U, I(M2)) has a more involved structure. It enforces that in

each time slot, at most one element in S can be scheduled. Additionally, it enforces that at

STACS’12

470 Preemptive and Non-Preemptive Generalized Min Sum Set Cover

most κ(S) elements can be scheduled during the first C − 1 time slots and at most |S| − κ(S)
elements can be scheduled during the time slots, C + 1, C + 2, ..., n, where C is an integer
such that C − 1 < CS ≤ C. This additional constraints will be crucial in finding “good”
y-values. Formally, A ∈ I(M2) if and only if A satisfies

For each integer time t ∈ [n], |A ∩ {(e, t) | e ∈ S}| ≤ 1.
|A ∩ {(e, t) | e ∈ S], 1 ≤ t ≤ C − 1}| ≤ κ(S).
|A ∩ {(e, t) | e ∈ S,C + 1 ≤ t ≤ n}| ≤ |S| − κ(S).

We observe that I(M2) is a laminar matroid: All pairs in U are partitioned into groups
with the same time t, and at most one pair can be chosen from each group to be in an
independent set. Further, the second and third constraints put a limit on the number of pairs
that can be chosen from the groups of time slots t = 1, 2, ..., C − 1 and from the groups of
time slots t = C + 1, C + 2, ..., n, respectively. We define the polymatroid P (M2) as follows.∑

e∈S
xe,t ≤ 1 ∀t ∈ [n] (P (M2))

C−1∑
t=1

∑
e∈S

xe,t ≤ κ(S)

n∑
t=C+1

∑
e∈S

xe,t ≤ |S| − κ(S)

xe,t ≥ 0 ∀e ∈ S, t ∈ [n]

I Proposition 4. The vector x = (xe,t) lies in the polymatroid P (M2).
It is well known the the intersection of two polymatroids is an integral polytope, i.e. any

vertex point is integral. Hence since (xe,t) lies in the intersection of two polytopes P (M1)
and P (M2), it can be decomposed into a linear combination of vertex (hence integer) points
in P (M1) ∩ P (M2). Note that each of such integer points corresponds to an independent
set in I(M1) ∩ I(M2), which is of size at most |S| due to the constraints of M1. In fact,
the size must be exactly |S|, since

∑
e∈S

∑
t∈[n] xe,t = |S|. By the constraints of M1 and

the first constraints of M2, we conclude that each of such integer points corresponds to a
configuration F ∈ F(S). Hence we have shown the following lemma.

I Lemma 5. There exist F ′(S) ⊆ F(S) and positive constants θFS , F ∈ F ′(S) that satisfy∑
F∈F ′(S) θ

F
S = 1.

For any e ∈ S, t ∈ [n], xe,t =
∑
F∈F ′(S) θ

F
S · 1[(e, t) ∈ F].

where an indicator variable 1[(e, t) ∈ F] = 1 if and only if (e, t) ∈ F .

We let yFS = θFS for all F ∈ F ′(S) and yFS = 0 for all F ∈ F(S) \ F ′(S). Note that x and
y satisfy constraints (3) and (4).

It remains to show that y satisfy (6). Now the second and third constraints of M2 play a
crucial role. We make the following observation.

I Lemma 6. For any F ∈ F ′(S) exactly one of the following holds.
|F ∩ {(e, t) | e ∈ S, 1 ≤ t ≤ C − 1}| = κ(S).
|F ∩ {(e, t) | e ∈ S, 1 ≤ t ≤ C − 1}| = κ(S)− 1 and (e, C) ∈ F for some e ∈ S.

Proof. Recall that |F | = |S|. By the third constraints of M2, we know that N≥C+1 =def

|F ∩ {(e, t) | e ∈ S,C + 1 ≤ t ≤ n}| ≤ |S| − κ(S), hence that N≥C =def |F ∩ {(e, t) | e ∈
S,C ≤ t ≤ n}| ≤ |S| − κ(S) + 1. Therefore, we have N≤C−1 =def |F ∩ {(e, t) | e ∈ S, 1 ≤

S. Im, M. Sviridenko, and R. van der Zwaan 471

t ≤ C − 1}| ≥ κ(S)− 1. Further, we know N≤C−1 ≤ κ(S) from the second constraint of M2.
Thus unless N≤C−1 = κ(S), it must be the case that N≤C−1 = κ(S)− 1. In that case, since
N≥C+1 ≤ |S| − κ(S), we conclude that (e, C) ∈ F for some e ∈ S. J

Motivated by the above lemma, we can now prove that our linear program is a valid
relaxation for the preemptive version of the problem.
Proof of Theorem 2. Partition F ′(S) into F ′1(S) and F ′2(S) by letting F ′1(S) to denote all
F ∈ F ′(S) that fall in the first case in the Lemma 6 and letting F ′2(S) = F ′(S) \ F ′1(S).
Let θ′ =

∑
F∈F ′

2(S) θ
F
S . Note that for any F ∈ F ′1(S), CFS ≤ C − 1 and for any F ∈ F ′2(S),

CFS = C. In words, the set S is completed no later than time C − 1 for (1 − θ′) fraction
of configurations in F ′(S) and exactly at time C for θ′ fraction of configurations in F ′(S).
Hence we have that∑

F∈F(S)

CFS y
F
S =

∑
F∈F ′(S)

CFS θ
F
S =

∑
F∈F ′

1(S)

CFS θ
F
S +

∑
F∈F ′

2(S)

CFS θ
F
S

≤ (1− θ′)(C − 1) + θ′C = C − 1 + θ′ (7)

Now we focus on upper-bounding θ′. From the definition of CS and the fact that∑
e∈S xe(τ) ≤ 1 for any τ , we know that∫ C−1

τ=0

∑
e∈S

xe(τ) dτ =
∫ CS

τ=0

∑
e∈S

xe(τ) dτ −
∫ CS

τ=C−1

∑
e∈S

xe(τ) dτ

≥ κ(S)− (CS − (C − 1)) (8)

On the other hand, it follows that∫ C−1

τ=0

∑
e∈S

xe(τ) dτ =
C−1∑
t=1

∑
e∈S

xe,t [By the definition of xe,t]

=
C−1∑
t=1

∑
e∈S

∑
F∈F ′(S)

yFS [From the decomposition of x into yFS]

=
∑

F∈F ′
1(S)

yFS
∑
e∈S

C−1∑
t=1

1[(e, t) ∈ F] +
∑

F∈F ′
2(S)

yFS
∑
e∈S

C−1∑
t=1

1[(e, t) ∈ F]

=
∑

F∈F ′
1(S)

θFS · κ(S) +
∑

F∈F ′
2(S)

θFS · (κ(S)− 1)

= (1− θ′) · κ(S) + θ′ · (κ(S)− 1) = κ(S)− θ′ (9)

From (8) and (9), we have θ′ ≤ CS − (C − 1). By combining this with (7), we complete
the proof of Theorem 2. J

2.3 Solving the LP
The linear programming relaxation LPprimal has exponentially many variables. Hence, we
solve the dual LP and show there are only polynomially many non-zero variables in the
primal LP that achieve the optimal LP value. The dual LP is as follows.

max
∑
t∈[n]

αt +
∑
e∈[n]

βe+
∑
S∈S

γS (LPdual)

s.t. αt + βe −
∑
S:e∈S

δetS ≤ 0 ∀e, t (10)

γS +
∑

(e,t)∈F

δetS ≤ CFS ∀S ∈ S, F ∈ F(S) (11)

STACS’12

472 Preemptive and Non-Preemptive Generalized Min Sum Set Cover

t1

t2

s

U
V
v1

vL
vL+1

vn

ue

t

k(ue, v1) = δe1S

c(t2, t) = |S| − κ(S)

c(t1, t) = κ(S)− 1

c(·, ·) = 1

vL−1

Figure 1 An illustration of the construction of the graph G, in which we want to find a maximum-
value flow.

To solve LPdual with the ellipsoid algorithm, we need a separation oracle for finding a
violated constraint (see [9]). Since constraints (10) are easy to verify (there are only n2 of
them), we focus on constraints (11). We need a polynomial time algorithm that given γS
and δetS-values, finds (if any) S ∈ S and F ∈ F(S) that violate constraints (11).

We model this problem as a classical minimum cost s-t flow problem. In this problem, we
are given a digraph G = (V,A), a capacity function c : A→ Q+, a cost function k : A→ Q
and the volume φ ∈ Q+. The goal is to send φ amount of flow from the source s to the sink t,
i.e. to find an s-t flow f of volume φ, subject to capacity constraints 0 ≤ f(e) ≤ c(e) for all
e ∈ A and the standard flow conservation constraints, minimizing the costs

∑
e∈A f(e)k(e).

It is known that if the volume φ and capacities ce, e ∈ E are integral then we can test
in polynomial time if there is an s-t flow of volume φ. Moreover, if there is such a flow (i.e.
there is a feasible solution to the problem) then there is an integral minimum-cost s-t flow,
and it can be found in polynomial time (see Chapter 12 in [13]).

We now show how to reduce our separation problem for constraints (11) to the minimum
cost s-t flow problem. It will be convenient for us to consider an equivalent maximum cost s-t
flow problem where the goal is to maximize the value of the objective function

∑
e∈A f(e)k(e).

Fix a set S and an integer L ∈ [n]. We will try to find a violated constraint for the
constraints (11) corresponding to the set S and configurations F ∈ F(S) with CFS = L.
Create a directed complete bipartite graph GL = (U, V,A) where part U has vertex ue for
each e ∈ S, part V has vertex vi for each time slot i ∈ [n]. Arc a = (ue, vi) ∈ A has cost
k(e) = δeiS and capacity c(e) = 1. We augment GL as follows. We add a source vertex s and
connect it to all vertices in U . There are two “intermediate” sinks t1 and t2, both connected
to the “final” sink t. The vertices v1, v2, ..., vL−1 in V are connected to t1 and the vertices
vL+1, vL+2, ..., vn in V are connected to the other intermediate sink t2. The arcs a between
the source s and part U have cost k(a) = 0 and capacity c(a) = 1. Analogously, all arcs a
between part V and intermediate sinks t1 and t2 have cost k(a) = 0 and capacity c(a) = 1.
Arcs a′ = (t1, t) and a′′ = (t2, t) have capacities c(a′) = κ(S) − 1 and c(a′′) = |S| − κ(S)
respectively, and all of them have zero costs. The vertex vL is special and is directly connected
to t. The arc (vL, t) has a unit capacity and zero cost. The goal is to find the s-t flow of
volume φ = |S| of maximum cost. See Figure 1 for an illustration of this construction.

Note that any integral s-t flow f of value |S| in digraph GL corresponds to a valid
configuration F for volume S such that CFS = L, and vice versa. Hence, if the maximum-cost
s-t flow in GL has cost more than L− γS , the constraint (11) is violated for S and F ∈ F(S)
that corresponds to the flow. The converse also holds: if the maximum-cost s-t flow has cost
less than or equal to L− γS there is no configuration F ∈ F(S) with CFS = L that violates

S. Im, M. Sviridenko, and R. van der Zwaan 473

time

(Stretch)

(Cut)

(Compress)

(Order)

(LP solution)

a b c d

Figure 2 In this example the schedule is stretched by a factor of two e.g. λ = 1
2 .

(11). With the help of this separation oracle and classical connection between separation and
optimization [9], we can solve LPdual in polynomial time.

Then we can optimally solve LPprimal by focusing only on yFS variables that correspond to
the constraints that were considered by the ellipsoid method in solving LPdual. A more formal
(and well-known) argument is that the LPdual with the subset of constraints considered by the
ellipsoid method is a relaxation of the original problem but it has the same optimal solution.
The dual of the relaxed problem is LPprimal restricted to the subset of corresponding variables
which by the strong duality theorem has the same optimal value.

2.4 Rounding procedure
Let xe,t and yFS be a basic optimal solution of the linear programming relaxation LPprimal.
In particular we know that there are at most 2n+m+ n2m non-zero variables (this is the
number of constraints (1)-(4)). Let CLPS denote the completion time of set S in the LP. That
is, CLPS =

∑
F∈F(S) C

F
S y

F
S . We create a schedule parameterized by λ ∈ (0, 1], where λ is

randomly drawn from (0, 1] according to the density function f(v) = 2v.
Create an arbitrary continuous schedule xe(t), e ∈ [n], t ∈ [0, n] from xe,t, e, t ∈ [n] such

that for any e, t ∈ [n],
∫ t
τ=t−1 xe(τ) dτ = xe,t. For example, this can be done by processing

each element e for the amount xe,t during the time step t in an arbitrary order between the
elements to obtain xe(t). For notational convenience, let σ denote the continuous schedule
xe(t). The new schedule σ(λ) is defined as follows. Stretch out the schedule σ by a factor
of 1

λ . In other words, map every point τ in time onto τ/λ. For each element e define
τe ∈ [1, n/λ] to be the earliest point in time when the element has been processed for one
time unit (out of total 1/λ). Leave the machine idle whenever it processes the element e
after time τe. After repeating this procedure for all elements e ∈ [n], we shift the whole
schedule to the left to eliminate all idle times. The final schedule σ(λ) has total length n.
Let x(λ)

e (t), e ∈ [n], t ∈ [0, n] be the resulting continuous schedule σ(λ). Note that similar
algorithms were used in scheduling before to design approximation algorithms for various
preemptive scheduling problems with total completion time objective [14, 12].

I Example 7. See Figure 2 for an illustration. Consider an instance with 4 elements
{a, b, c, d}, with the LP solution xa,1 = 2/3, xb,1 = 1/3, xc,2 = 1, xd,3 = 1/3, xb,3 = 1/3,
xa,3 = 1/3, xd,4 = 2/3, xb,4 = 1/3. Construct a continuous schedule by randomly ordering
the elements in each time step. For example in time step 3, three elements, a, b, d are
scheduled seamlessly, each for 1/3 time steps. Then stretch the whole schedule by a factor
two (λ = 1/2). cut out each element after being scheduled by a unit amount. Finally,
compress the schedule, by shifting everything to the left removing the idle times.

STACS’12

474 Preemptive and Non-Preemptive Generalized Min Sum Set Cover

Let CS(λ) denote the completion time of S in the new schedule σ(λ). Order all config-
urations F ∈ F(S) for yFS > 0 in non-decreasing order of CFS . Let F1, F2, ..., Fk be such an
ordering. Define C̃s(λ) =def C

Fj

S where
∑j−1
i=1 y

Fi

S < λ and
∑j
i=1 y

Fi

S ≥ λ. Let 1[φ] be an
indicator function such that 1[φ] = 1 if and only if φ is true and zero otherwise.

I Lemma 8. For any S ∈ S and 0 < λ ≤ 1, CS(λ) ≤ 1
λ · C̃S(λ).

Proof. To simplify the proof we assume that there exists j such that
∑

1≤l≤j y
Fl

S = λ.
Otherwise, let j be the lowest index such that

∑
1≤l≤j y

Fl

S > λ, then we define two copies F ′j
and F ′′j of configuration Fj , with y

F ′
j

S = λ−
∑

1≤l≤j−1 y
Fl

S and yF
′′
j

S =
∑

1≤l≤j y
Fl

S − λ. Here

F ′j and F ′′j are the same configurations as Fj . Now,
∑

1≤l≤j−1(yFl

S) + y
F ′

j

S = λ.
We will show the following inequality:∫ C̃S(λ)/λ

τ=0

∑
e∈S

x(λ)
e (τ) dτ ≥ κ(S) (12)

since it would imply that the completion time CS(λ) of the set S in the schedule σ(λ)
must be no later than C̃S(λ)/λ. Since for every e ∈ S we have

∫ C̃S(λ)/λ
τ=0 x

(λ)
e (τ) dτ ≥

min
{

1,
∫ C̃S(λ)
τ=0 xe(t)/λ dτ

}
≥ min

{
1,

∑
t≤bC̃S(λ)c xe,t/λ

}
, and C̃S(λ) is integral by definition

for any λ ∈ (0, 1], it is sufficient to show the inequality∑
e∈S

min
{
λ,

∑
t≤C̃S(λ)

xe,t

}
≥ λκ(S) (13)

to derive (12). We now derive the inequality (13).∑
e∈S

min
{
λ,

∑
t≤C̃S(λ)

xe,t

}
≥

∑
e∈S

min
{
λ,

j∑
l=1

yFl

S · 1[(e, t) ∈ Fl for some t ≤ C̃(λ)]
}

=
∑
e∈S

j∑
l=1

yFl

S · 1[(e, t) ∈ Fl for some t ≤ C̃(λ)]

=
j∑
l=1

yFl

S

∑
e∈S

1[(e, t) ∈ Fl for some t ≤ C̃(λ)]

≥
j∑
l=1

yFl

S κ(S) = λκ(S)

The first inequality follows from constraints (4). The first equality holds because
∑j
l=1 y

Fl

S = λ.
The last inequality holds because for any Fl, l ≤ j, CFl

S ≤ C̃S(λ). J

The following lemma can be easily shown from the definition of C̃S(λ).

I Lemma 9. For any S ∈ S,
∫ 1
λ=0 C̃S(λ)dλ = CLPS .

Proof of Theorem 1. By Theorem 2, LPprimal is a valid relaxation, and we now show how to
round to obtain a 2-approximation (in expectation).

E[CS(λ)] =
∫ 1

λ=0
CS(λ) · 2λ dλ [By definition]

≤
∫ 1

λ=0

1
λ
· C̃S(λ) · 2λ dλ [By Lemma 8]

= 2
∫ 1

λ=0
C̃S(λ) dλ = 2CLPS [By Lemma 9]

J

S. Im, M. Sviridenko, and R. van der Zwaan 475

We shortly indicate how our approximation algorithm can be derandomized. The function
C̃S(λ) is a piecewise constant function, with at most a polynomial number of pieces since
there are at most polynomially many non-zero variables yFS for each S. This implies that
there are at most polynomially many “interesting” λ-values that we need to consider, among
which at least one that gives the desired approximation ratio.

3 Gap between Preemptive and Non-preemptive Schedules

In this section, we study the lower bound quality of the preemptive problem for the non-
preemptive problem. The goal is to show that there exists a small gap between the preemptive
and non-preemptive solutions (schedules) of Generalized Min Sum Set Cover. Note that if
we show a way to convert any given preemptive schedule into a non-preemptive one losing a
factor of η, it would immediately obtain a 2η-approximation algorithm for the non-preemptive
Generalized Min Sum Set Cover.

Our scheme for transforming a preemptive schedule into non-preemptive one is similar
to the one by Skutella and Williamson [15]. We obtain a better gap by utilizing several
additional tricks and starting from a preemptive schedule. Formally we prove the following
theorem, of which the proof is deferred to the full version of this paper.

I Theorem 10. Given a preemptive schedule with cost C, then there exists a non preemptive
schedule with expected cost at most 6.2C. Furthermore, this transformation can be done in
polynomial time.

Combining Theorem 1 and Theorem 10 we derive

I Theorem 11. There exists a polynomial time 12.4-approximation algorithm for Generalized
Min Sum Set Cover.

We have shown an upper bound on the gap of 6.2, and any gap lower than 2 would result
in an approximation factor strictly less than 4 for the non-preemptive problem, which is
impossible unless P=NP [8]. We believe that our gap is not tight. In fact, we make the
following bold conjecture:

I Conjecture 1. Given a preemptive schedule with cost C then there is a non-preemptive
schedule with cost at most 2C. Further, such a non-preemptive schedule can be found in
polynomial time.

It would be also interesting to show if the optimal gap between values of preemptive
and non-preemptive schedules depends on parameter ξ = minS{κ(S)/|S|}. For example, we
know if ξ = 1 then there is no advantage for preemptive schedules, i.e. η = 1 in this case.

4 Comparison of our LP and the previous one in [2, 15]

In this section we compare our configuration LP and the LP considered in [2, 15], which is
time-indexed and based on knapsack covering inequalities. We show that our configuration
LP (LPPrimal) is stronger for the non-preemptive problem than the LP (LPBGK) considered in
[2, 15]. We first provide an instance for which LPPrimal has an objective value strictly larger
than LPBGK. Secondly, we show that for any instance LPPrimal has an objective no smaller
than the objective of LPBGK. Together with the fact that both LPs are valid relaxations, we
establish that LPPrimal is stronger than LPBGK. We will include the proofs in the full version
of this paper.

STACS’12

476 Preemptive and Non-Preemptive Generalized Min Sum Set Cover

References
1 Yossi Azar, Iftah Gamzu, and Xiaoxin Yin. In STOC, pages 669–678, 2009.
2 Nikhil Bansal, Anupam Gupta, and Ravishankar Krishnaswamy. A constant factor approx-

imation algorithm for generalized min-sum set cover. In SODA, pages 1539–1545, 2010.
3 Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In FOCS, pages

453–462, 2009.
4 Amotz Bar-Noy, Mihir Bellare, Magnús M. Halldórsson, Hadas Shachnai, and Tami Tamir.

On chromatic sums and distributed resource allocation. Inf. Comput., 140(2):183–202,
1998.

5 Amotz Bar-Noy, Magnús M. Halldórsson, and Guy Kortsarz. A matched approximation
bound for the sum of a greedy coloring. Inf. Process. Lett., 71(3):135–140, 1999.

6 S. Burer and R. Monteiro. A projected gradient algorithm for solving the maxcut sdp
relaxation. Optimization Methods and Software, 15:175–200, 2001.

7 Chandra Chekuri and Rajeev Motwani. Precedence constrained scheduling to minimize
sum of weighted completion times on a single machine. Discrete Applied Mathematics,
98(1-2):29–38, 1999.

8 Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover. Algorith-
mica, 40(4):219–234, 2004.

9 Martin Grotschel, László Laszlo Lovász, and Alexander Schrijver. Geometric algorithms
and combinatorial optimization. Second edition. Algorithms and Combinatorics, 2. Springer-
Verlag, Berlin, 1993.

10 Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize
average completion time: Off-line and on-line approximation algorithms. Mathematics of
Operations Research, 22(3):513–544, 1997.

11 François Margot, Maurice Queyranne, and YaoguangWang. Decompositions, network flows,
and a precedence constrained single-machine scheduling problem. Operations Research,
51(6):981–992, 2003.

12 Maurice Queyranne and Maxim Sviridenko. A (2+ε)-approximation algorithm for the gener-
alized preemptive open shop problem with minsum objective. J. Algorithms, 45(2):202–212,
2002.

13 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer-Verlag,
Berlin, 2003.

14 Andreas Schulz and Martin Skutella. Random-based scheduling: new approximations and
lp lower bounds. In RANDOM, pages 119–133, 1997.

15 Martin Skutella and David P. Williamson. A note on the generalized min-sum set cover
problem. Operations Research Letters, To appear, 2011.

16 Gerhard J. Woeginger. On the approximability of average completion time scheduling under
precedence constraints. Discrete Applied Mathematics, 131(1):237–252, 2003.

	Introduction
	2-Approximation for Preemptive Generalized Min Sum Set Cover
	Configuration LP
	Validity of the LP
	Solving the LP
	Rounding procedure

	Gap between Preemptive and Non-preemptive Schedules
	Comparison of our LP and the previous one in BansalGK10, SkutellaW11

